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Abstract
This study employs the regional Climate-Weather Research and Forecasting model (CWRF) downscaling and its skillful 
multi-physics ensemble approach to enhance summer extreme precipitation prediction in the Yangtze River Basin. The CWRF 
simulations at 30-km driven by the ECMWF Interim reanalysis during 1980–2015 are conducted using 28 model physics 
configurations. The prediction skill is evaluated for four standard indices: simple daily intensity, total extreme precipitation 
and its fraction to total precipitation, and maximum consecutive dry days. The control CWRF configuration outperforms the 
driving reanalysis, which underestimates all indices despite its utilization of surface data assimilation. Notably, the downs-
caling skills of CWRF exhibit substantial variability across diverse physics configurations, with cumulus parameterization 
being most influential. In particular, the ensemble cumulus parameterization (ECP) demonstrates remarkable proficiency in 
capturing both spatial patterns and interannual variations. This proficiency is further magnified through ECP’s integration 
with Morrison or Morrison-aerosol microphysics and CCCMA, CAML or CAM radiation schemes, significantly enhancing 
overall skills. The ensemble average of these skill-enhanced physics configurations better reproduces observed geographic 
distributions and interannual anomalies for all four indices, surpassing the control CWRF’s performance. This improvement 
can be primarily attributed to a more accurate portrayal of the East Asian Jet and its associated regional circulation patterns 
by the ensemble. These findings underscore a significant opportunity for enhancing predictions of extreme precipitation by 
further refining the physics representation within the climate system coupling, especially among cumulus, microphysics, and 
radiation processes. Optimizing the multi-physics ensemble approach holds substantial promise in this endeavor.

Keywords  Extreme precipitation · Physical parameterization · Regional climate model · Downscaling skill enhancement · 
Multi-physics ensemble

1  Introduction

Extreme precipitation can bring serious impacts on human 
health, economy, and ecosystems (Liang 2022). The losses 
caused by these extreme disasters are estimated to exceed 

2.37% of the gross domestic product in China each year 
since 1990 (Jiang et al. 2015; Zhang and Zhou 2020). The 
Yangtze River Basin (YRB) is particularly vulnerable to 
extreme precipitation since it is home for nearly 40% of 
the Chinese population, and contributes about 40% of the 
total Chinese gross domestic product (Li and Lu 2017). The 
region is greatly affected by the East Asian monsoon and 
experiences a large interannual variability in summer precip-
itation, which have caused disastrous social and economic 
consequences through both frequent floods and droughts (Li 
and Lin 2015). For instance, the 1998 flood in the YRB 
affected 240 million people, caused more than 3000 deaths, 
and approximately $40 billion in damages (Zong and Chen 
2000). The 2010 heavy rainfall events over East China 
affected 134 million people and costed nearly $18 billion 
(Murray and Ebi 2012; Zhao et al. 2012). Future risk would 
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increase, as the frequency and intensity of extreme events in 
the YRB have been detected increasing over the past decades 
(Wang and Zhou 2005; Zhai et al. 2005; Ma et al. 2015), and 
are projected to intensify under global warming (Piao et al. 
2010; Sun et al. 2018; Jiang et al. 2021).

Global general circulation models (GCMs) are often used 
to simulate and predict extreme precipitation, however, to 
date, these models generally underestimate such events 
(Jiang et al. 2015; Dong and Dong 2021). For example, He 
et al. (2019) showed that almost all CMIP5 models fail to 
capture the observed spatial distribution of summer extreme 
precipitation over the YRB and South China, with the per-
centage of total rainfall from heavy events underestimated by 
25–75%. Dong and Dong (2021) evaluated the performance 
of CMIP6 models in simulating seven extreme precipitation 
indices and showed that dry biases still exist in South China. 
Additionally, Xu et al. (2011) demonstrated that models are 
limited in reproducing the interannual variation of precipita-
tion extremes in river basins over China. To overcome the 
problem, regional climate models (RCMs) have been devel-
oped for downscaling at higher spatial resolutions, which can 
represent more detailed regional-scale precipitation features 
and extreme events compared to their driving GCMs (Yang 
et al. 2016; Jiang et al. 2021). But resolution increases do not 
always improve simulated extreme precipitation (Chan et al. 
2013; Kopparla et al. 2013; O’Brien et al. 2016). Even there 
is a tendency to overestimate the intensity magnitude of 
heavy rainfall over the YRB in convection permitting mod-
els with grid spacing of 1–5 km (Li et al. 2019; Dong et al. 
2022). Hence, adequately representing finer-scale physical 
processes is the key to predicting extreme events (Sun and 
Liang 2020b; Jiang et al. 2021).

Physical parameterizations, particularly for cumulus 
convection, impact the extreme precipitation simulation. 
For example, Huang and Gao (2017) showed that the Kain-
Fritsch scheme tends to overestimate summer extreme 
precipitation in the YRB, whereas the Grell scheme under-
estimates it, especially for the intensity and total amount. 
Zhaoye et al. (2022) found that Kain-Fritsch scheme per-
forms better than the Grell-Devenyi and Bullock-Wang 
schemes for a rainstorm event simulation, but all underes-
timate precipitation intensity over the core affecting area in 
Northwest China. Some studies have also investigated the 
sensitivity of microphysics, radiation, planetary boundary 
layer, and land surface schemes (Kang et al. 2015; Gao et al. 
2021; Kong et al. 2022; Merino et al. 2022). Given these 
studies have mostly concentrated on one or two particular 
processes for short-term or less than 10 years, more efforts 
are needed to construct a multi-physics ensemble of long 
integrations. In fact, Yuan et al. (2012) conducted 16 ensem-
ble downscaling simulations with alternative microphysics, 
cumulus, land surface, and radiation schemes for 27 winters 
in China, and demonstrated the importance of radiation and 

cumulus schemes in simulating extremes. Sun and Liang 
(2020b) found that the United States long-term extreme pre-
cipitation simulation was more sensitive to cumulus param-
eterization than the microphysics, aerosol, cloud, radiation, 
boundary layer, and surface schemes through all seasons. 
However, a comprehensive exploration into the relationship 
between model performance in simulating long-term sum-
mer extreme precipitation characteristics and diverse physics 
parameterization schemes across the YRB, along with the 
underlying mechanisms, has been seldomly attempted.

Recently, the regional Climate-Weather Research and 
Forecasting model (CWRF), developed by Liang et  al. 
(2012), has shown advanced downscaling skills in reproduc-
ing monsoon rainbands, seasonal-interannual precipitation 
variations, and 95th percentile daily precipitation (P95) in 
China (Liang et al. 2019b; Li et al. 2020; Jiang et al. 2021). 
Most recently, Zhang et al. (2023) compared the sensitivity 
of CWRF downscaling seasonal P95 variations over China 
to five cumulus parameterization schemes and explored the 
physical processes and mechanisms underlying regional 
model biases. However, the performance of CWRF in down-
scaling extreme statistics across the YRB and its sensitivity 
to diverse physics (in addition to cumulus) parameteriza-
tions remain unclear. The main objective of this study is to 
enhance CWRF capabilities in downscaling YRB summer 
extreme precipitation spatiotemporal characteristics through 
exploration of varying model physics representations. The 
resulting multi-physics ensemble, derived from these refined 
CWRF configurations, is subsequently employed to enhance 
the overall performance. This approach is necessary as a 
single combination of selected parameterization schemes 
does not yield optimal results for all metrics in every region 
(Liang et al. 2012).

The paper is arranged as follows. Section 2 introduces 
the model, experimental design, observations, and analy-
sis methods. Section 3 presents the main results, including 
(1) a comparison of CWRF capabilities in simulating YRB 
summer extreme precipitation spatial patterns and interan-
nual variations among diverse physics parameterizations, 
alongside the driving reanalysis; (2) an evaluation of over-
all model performance rankings and optimal multi-physics 
ensemble skill enhancements; and (3) a process understand-
ing of model biases and skill enhancements. Section 4 gives 
conclusions and discussion.

2 � Data and methods

The CWRF has been developed from the Weather Research 
and Forecasting model (WRF) (Skamarock et al. 2008) to 
extend applications for climate research, incorporating 
numerous advancements in system interactions among 
land, atmosphere, ocean; convection, microphysics; and 
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cloud, aerosol, radiation processes (Liang et al. 2012). 
Prominently, CWRF incorporates a state-of-the-art Con-
junctive Surface–Subsurface Process model (CSSP) to 
realistically represent terrestrial hydrology, land surface, 
and atmosphere processes (Choi et al. 2007, 2013; Choi 
and Liang 2010; Yuan and Liang 2011; Xu et al. 2014); 
a built-in Cloud-Aerosol-Radiation ensemble model 
(CAR) to fully estimate interactions among cloud proper-
ties, aerosol properties, and radiation transfers (Liang and 
Zhang 2013; Zhang et al. 2013). Furthermore, a built-in 
Ensemble Cumulus Parameterization (ECP) significantly 
improves simulation performances of precipitation cli-
matology and extremes in the United States (Liang et al. 
2012; Qiao and Liang 2015, 2016, 2017; Sun and Liang 
2020a, b) and China (Liu et al. 2008; Zeng et al. 2008; 
Liang et al. 2019b; Li et al. 2020; Jiang et al. 2021). The 
CWRF integration of various parameterization schemes 
for each major physical process enables a comprehensive 
sensitivity analysis of extreme precipitation simulation in 
relation to physics representations (Sun and Liang 2020b).

The model computational domain centers at (35.18°N, 
110°E) based on the Lambert conformal map projection with 
horizontal grid spacing of 30 km and has 36 vertical terrain-
following levels with the top at 50 hPa. The buffer zone 
includes 14 grids in each lateral boundary of the four domain 
edges. We conducted an ensemble of 28 CWRF simulations 
using different combinations of key physics parameterization 
schemes (Table 1). This includes one control configuration 
(CTL, Liang et al. 2019a) and 27 physics configurations that 
swap CTL with one alternate parameterization scheme for 
cumulus, microphysics, radiation, boundary layer, surface 
and cloud processes. Given available computing resources, 
we primarily focus on the first four processes with multiple 
parameterization schemes; for both the surface and cloud 
processes, we choose one alternative: NOAH land model 
(Ek et al. 2003) and prognostic cloud scheme (Wilson et al. 
2008), which are compared respectively with the control 
CSSP and diagnostic cloud scheme (Xu and Randall 1996). 
This list represents a trade-off for a diverse range of physics 
representations between availability built in CWRF, suit-
ability for climate modeling, and relative performance based 

Table 1   Summary of the 
CWRF control and sensitivity 
configurations with different 
physics parameterization 
schemes

Physics Control configuration Sensitivity con-
figuration

Parameterization scheme

Cumulus (CU) ECP penetrative convection plus 
UW shallow convection

E1 KFeta
E2 BMJ
E3 Grell
E4 Tiedtke
E5 NSAS
E6 Donner
E7 Emanuel

Microphysics (MP) GSFCGCE E8 Lin
E9 WSM6
E10 Etamp new
E11 Thompson
E12 Thompson-aero
E13 Morrison
E14 Morrison + 3d aerosol

Radiation (RA) GSFCLXZ E15 CCCMA
E16 CAWCR​
E17 CAM
E18 CAML
E19 FuLiou
E20 RRTMG

Boundary layer (BL) CAM3 E21 YSU
E22 MYNN
E23 Boulac
E24 ACM
E25 UW

Surface (SF) CSSP land plus UOM ocean E26 NOAH
Cloud (CL) Xu-Randall Diagnostic E27 Prognostic
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on initial testing over a thousand combinations (Liang et al. 
2012, 2019a, b; Liang and Zhang 2013; Zhang et al. 2013). 
More details of the model physics schemes can be found in 
Liang et al. (2012) and Sun and Liang (2020b). All simula-
tions are integrated over the period of October 1, 1979 to 
December 31, 2015 (the beginning two months for spin-
up), driven by 6-hourly lateral boundary conditions from 
the European Centre for Medium-Range Weather Forecasts 
(ECMWF) Interim reanalysis (ERI) at ~ 80-km grid spacing 
(Dee et al. 2011). Following Liang et al. (2019b), this study 
adopts the subregion divisions of distinct climate regimes 
and geographical conditions for result analysis, focusing on 
those relevant to the YRB.

For model validation, observed daily precipitation data 
is from the CN05.1 dataset at 0.25° horizontal grid spacing 
based on an objective analysis of rain gauge measurements 
at 2416 meteorological stations in Mainland China during 
1980–2015 by the China Meteorological Administration 
(Wu and Gao 2013). In addition, the driving ERI precipita-
tion is used to evaluate the CWRF downscaling ability. The 
newly released fifth generation ECMWF reanalysis (ERA5) 
with 31 km horizontal grid spacing (Hersbach et al. 2019) 
is chosen as the best proxy for the observed atmospheric 
circulation characteristics, as it more realistically represents 
interactions between precipitation, land, and atmospheric 
processes (Sun and Liang 2020a, b). All these data are inter-
polated onto the CWRF 30-km grid using the conservative 
mapping method for direct comparison.

This study uses four major extreme precipitation indices 
(Table S1), selected due to their wide adoption in climate 
research (Peterson 2005; Cui et al. 2019; Tang et al. 2021). 
Each index is calculated from daily rainfall data, provid-
ing insights into different aspects of extreme precipitation 
events. The simple daily intensity index (SDII) quantifies 
the average precipitation intensity over the rainy days, in 
which rainfall exceeds 1 mm. The total extreme precipita-
tion (R95P) measures the cumulative amount of all daily 
rainfalls that surpass the long-term 95th percentile of rainy 
days (P95), reflecting the total magnitude of extreme precipi-
tation events. The ratio of R95P over the total precipitation 
(R95T) depicts the relative contribution from extreme wet 
days (exceeding P95), offering an insight into the frequency 
and regularity of extreme events within the overall rainfall 
distribution. The maximum number of consecutive dry days 
(CDD) is the longest duration of continuous dry conditions 
with daily rainfall below 1 mm, measuring the pattern of 
droughts and the persistence of dry spells.

Our analysis first evaluates the impacts of model physics 
configurations on spatial distributions of extreme precipi-
tation climatological means in Sect. 3.1 and then on their 
interannual variations in Sect. 3.2. We employ a comprehen-
sive suite of metrics to assess model performance, includ-
ing spatial and temporal correlation, root-mean-square-error 

(RMSE), standard deviation, and bias of each extreme index 
as well as mean absolute relative bias (MARB) across all 
indices over the YRB. The MARB is defined as the aver-
age of the absolute values of relative biases across all indi-
ces (see equation S1 for the calculation detail), eliminat-
ing the compensating effect between positive and negative 
biases in the indices (e.g., Jiang et al. 2015). Furthermore, 
in Sect. 3.3, we determine the overall model skill based on a 
comprehensive ranking metric (MR) that integrates relative 
scores of correlation, deviation, and RMSE among all indi-
ces. This evaluation strategy using the multifaceted metrics 
enables a comprehensive assessment of the models’ rela-
tive strengths and weaknesses across various dimensions. 
Finally, in Sect. 3.4, we explore the linkages of the model 
biases to regional circulation patterns, adding depth to our 
physical understanding of the model performance from a cli-
mate system perspective. This evaluation approach ensures 
a nuanced and comprehensive understanding of the model’s 
capabilities.

3 � Results

3.1 � Impact of physics configurations on extreme 
precipitation mean spatial patterns

First, the general abilities in capturing observed summer 
YRB extreme precipitation characteristics are compared 
among the 28 CWRF physics configurations along with the 
driving ERI. Figure 1 compares the 36-year (1980–2015) 
mean relative biases (simulated vs observed) for the four 
indices averaged over the YRB. The ERI largely underesti-
mates all four indices, especially for CDD by about 22.5%, 
which is associated with overestimating the total number 
of rainy days due to its significant drizzling problem (Sun 
and Liang 2020b). Compared to ERI, CWRF CTL gener-
ally reduces the magnitude of these biases, with MARB 
decreased from 13.9% to 9.8%. The CTL captures more 
realistic extreme precipitation characteristics, except for 
overestimating R95P by 12.4%, in contrast to ERI’s under-
estimation by 5.0%.

All CWRF members overestimate CDD and hence tend to 
underestimate the number of wet days. This tendence seems 
to result from a model bias against low-intensity rain events 
and thus may be affected by the standard 1 mm/day threshold 
used for defining rainy days (Peterson 2005). The thresh-
old has been widely adopted in climate analyses, including 
regional climate model simulations at a 30-km resolution 
(e.g., Sun and Liang 2020a; Jiang et al. 2021). However, our 
test with a lower threshold of 0.1 mm/day showed minimal 
impact on our results (Figure S1), implying that other factors 
like physics representation may cause this tendence.
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In contrast, most members tend to underestimate SDII 
and R95P, but overestimate R95T. Biases in the extreme 
precipitation amount is likely influenced by precipitation 
intensity (Sun and Liang 2020b), while biases in the extreme 
precipitation ratio is related to the tendency that models with 
less extreme precipitation often have less total precipitation 
amount (Tang et al. 2021). In general, the relative biases of 
R95P and R95T are smaller than those of SDII and CDD, 
capturing extreme precipitation events better than mean 
conditions. This aligns partially with Jiang et al. (2015), 
indicating less pronounced biases for SDII and R95T than 
those for total precipitation and CDD in CMIP5 models 
across eastern China. CWRF has been demonstrated with 
superior performance in simulating extreme precipitation 
(Liang et al. 2019a, b; Sun and Liang et al. 2020a, b), due 
to its advanced physics representation, especially cumulus 
parameterization. The variability in the biases across indices 
depicts the inherent complexity of climate modeling, empha-
sizing the need to consider regional and multiple factors in 
interpreting results.

The performance of CWRF in capturing observed 
extreme precipitation characteristics varies significantly 
among different physics configurations. The most influen-
tial factor is cumulus parameterization, where the spread of 
mean relative biases among the eight schemes spans between 
[− 35.7, 100.3] or 136% for SDII, [− 55.7, 29.1] or 84.8% for 
R95P, [− 16.2, 20.7] or 36.9% for R95T, and [16.5, 127.6] 
or 111.1% for CDD. The influence is moderate by radiation 
parameterization, where the spread of mean relative biases 
among the seven schemes is 35.9%, 53.9%, 12.5%, and 38% 
for SDII, R95P, R95T, and CDD, respectively. On the other 
hand, the sensitivity to boundary layer, microphysics, sur-
face, or cloud parameterization is relatively weak, where the 
spread of mean relative biases ranges around 16–24% for all 
indices. These results suggest that cumulus parameterization 
plays the dominant role for CWRF’s ability to simulate YRB 
summer extreme precipitation. According to the MARB 
score (Fig. 1e), CAML radiation and Morrison or Morri-
son plus 3d aerosol microphysics schemes further improve 
over CTL, reducing the overall bias magnitude from 9.8% 

Fig. 1   The 1980–2015 mean 
relative biases (from observa-
tions, %) of the four extreme 
precipitation indices (a–d) and 
their absolute average (MARB, 
e) over the YRB for summer 
(JJA) as assimilated (ERI) and 
simulated by all CWRF physics 
configurations: a SDII, b R95P, 
c R95T, d CDD, and e MARB. 
The number listed in each grid 
cell represents the correspond-
ing relative bias or MARB, with 
the colored scale on the right 
side
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to 8.2% and 8.4% or 9.1%, respectively. The CCCMA radia-
tion scheme also performs well, with a MARB of 10.1%. 
However, Tiedtke and Donner cumulus schemes perform 
poorly, with substantially large MARBs of 48.9% and 63.2%.

Figure 2 compares the overall performances among ERI 
and 28 CWRF physics configurations in capturing observed 
geographic distributions of summer mean extreme precipita-
tion indices over the YRB, including spatial pattern correla-
tion, normalized standard deviation, and centered pattern 
RMSE. For SDII (Fig. 2a), ERI shows a small negative pat-
tern correlation (− 0.10) and substantially underestimates 
standard deviation (0.6), whereas CWRF CTL performs 
better, having a much higher correlation (0.36) albeit an 
overestimated deviation (1.48). As discussed later, the nega-
tive correlation of ERI with observations is identified with 
incorrect spatial pattern and large local underestimation. The 
greatest discrepancy among the CWRF members is identi-
fied with those using different cumulus schemes. In particu-
lar, NSAS most strongly correlates with the observed pattern 
(0.47) and slightly overestimates deviation (1.17). Compared 

to the control ECP, KFeta simulates a higher correlation 
(0.38) but an excessive deviation (2.12). Other cumulus 
schemes generally have lower correlations (0.06–0.32), or 
abnormally high deviations (e.g., 2.48–2.87 by Donner and 
Tiedtke). When ECP is combined with the alternate schemes 
in other physical processes, CWRF performs similarly as 
in CTL, producing correlations between 0.35 and 0.50 and 
deviations between 1.13 and 1.67. One exception is that the 
ACM boundary layer scheme has a much lower correlation 
(0.19) than the control CAM3.

For R95P (Fig. 2b), ERI correlates more highly (than 
SDII) with the observed pattern (0.38), but still underes-
timates the deviation (0.78). In contrast, CWRF CTL pro-
duces even higher correlation (0.52) but larger deviation 
(1.70). As discussed in Liang et al. (2019b), this increased 
spatial variability may partly result from the coarse refer-
ence data that cannot represent actual distribution details. 
Of all the cumulus schemes, the control ECP performs best 
overall. KFeta correlates with observations more strongly 
(0.63), but also overestimates more deviation (1.98). Other 

Fig. 2   Taylor diagrams of the performance among ERI and all CWRF 
physics configurations in simulating 1980–2015 mean summer four 
indices geographic distributions over the YRB: a SDII, b R95P, c 
R95T, and d CDD. Shown are the corresponding spatial correlation 

(azimuthal) and normalized standard deviation (radius) against obser-
vations. The distance of the simulation to observation indicates the 
root-mean-square error. The black dot (OBS) represents the perfect 
score with a unit correlation and deviation
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cumulus schemes have systematically lower scores than 
ECP, with smaller pattern correlations (0.29–0.46) or larger 
spatial deviations (e.g., 1.91–2.01 by Donner and Tiedtke). 
While ECP is combined with the alternate schemes in other 
physical processes, CWRF skills resemble CTL, producing 
generally higher correlations (0.50–0.67) and comparable 
deviations (1.25–1.85) in R95P than SDII. One exception is 
that the CAML radiation scheme substantially overestimates 
spatial deviation (2.16).

For R95T (Fig. 2c), ERI has a small negative pattern 
correlation with observations (-0.05) and substantially 
overestimates spatial deviation (1.31). As compared with 
SDII and R95P, all CWRF ECP members systematically 
decrease pattern correlations (0.09–0.27) and more signifi-
cantly overestimate spatial deviations (1.46–2.06). The result 
indicates that it is more challenging to capture R95T. The 
BMJ, Tiedtke, and Donner cumulus schemes produce lower 
correlations (0.01–0.07) or greater deviation (e.g., 2.15 by 
Tiedtke), whereas the KFeta, Grell, NSAS, and Emanuel 
schemes increase correlations (0.10–0.18) and reduce the 
overestimation of deviations (1.01–1.74).

For CDD (Fig. 2d), as compared with SDII, R95P and 
R95T, all CWRF ECP members significantly increase pat-
tern correlations (0.61–0.70), albeit producing spatial devia-
tions with a wide range (1.50–2.36). Thus, ECP has a higher 
skill in simulating consecutive dry days than precipitation 
intensity and extremes. The ECP has a slightly higher pat-
tern correlation (0.68) than ERI (0.64) and overestimates 
spatial deviation (1.83) opposite to ERI’s systematic under-
estimation (0.81). Other cumulus schemes generally show 
less skills than ECP, with systematically lower pattern corre-
lations (0.37–0.65) or substantially overestimated deviations 
(e.g., 2.26–2.37 by Tiedtke and BMJ).

The above comparisons show large sensitivity to cumu-
lus parameterization schemes in simulating spatial pattern 
of extreme events, which is consistent with previous stud-
ies (Sun and Liang 2020a, 2023a, b). The sensitivity also 
differs among extreme precipitation indices—the CWRF 
downscaling ability is generally more skillful in capturing 
R95P and CDD than SDII and R95T. To quantify overall 
skills in reproducing long-term averaged spatial patterns 
of extreme precipitation characteristics, Fig. 3 displays the 
ranks among ERI and 28 CWRF members on each extreme 
precipitation index. The ranking is based on the compre-
hensive rating metrics (MR) defined in the Supplementary 
Information equation (S2) following Jiang et al. (2015). 
The MR measures the composite performance of three key 
statistics (pattern correlation, spatial deviation, RMSE) in 
the Taylor diagram. It is arranged in the increasing order 
such that a smaller rank number (more red boxes) indicates 
an overall higher skill. The result highlights a few CWRF 
physics configurations that notably improve the overall skill 
over CTL. In particular, the CAML, CCCMA, and CAM 

radiation schemes and the NSAS cumulus scheme are overall 
more skillful when they replace GSFCLXZ and ECP respec-
tively in the CTL configuration. Thus, there is still large 
room for further improvement in simulating YRB extreme 
precipitation by refining model physics representation or 
through optimizing the multi-physics ensemble.

3.2 � Impact of physics configurations on extreme 
precipitation interannual variations

Figure 4 compares the performances among ERI and 28 
CWRF physics configurations in capturing observed YRB 
regional mean interannual variations of summer extreme 
precipitation indices during 1980–2015. For all the extreme 
precipitation indices, ERI produces good correlations 
(0.52–0.79) and reasonable deviations (0.76–1.21). This is 
expected since ERI has assimilated pseudo rainfall obser-
vations on a daily basis that should have contained most 
authentic temporal features (Liang et al. 2019b; Sun and 
Liang 2020a). In contrast, CWRF CTL produces smaller 
interannual correlations with observations (0.41–0.64) and 
larger temporal deviations (1.32–2.46). The CWRF downs-
caling ability is still remarkable as compared to other models 
(Liang et al. 2019b).

Among all eight cumulus schemes, ECP exhibits an over-
all outstanding performance. In contrast, the KFeta scheme 
simulates comparable interannual correlations (0.40–0.57) 
and less overestimates temporal deviations (1.28–1.70) for 
R95T and CDD. In addition, NSAS produces a slightly 
smaller correlation (0.54) and more realistic deviation 
(1.18) than ECP for SDII. Other cumulus schemes perform 
systematically worse, having much lower correlations and 
substantially underestimated (e.g., BMJ for SDII and R95P) 
or overestimated (e.g., Tiedtke and Donner for SDII and 
CDD) deviations. In particular, BMJ fails completely, with 
the worst or even negative correlations for SDII and R95T.

Other physical processes’ schemes are relatively clustered 
for SDII, R95P, and R95T, producing interannual correla-
tions between 0.45 and 0.67 and deviations between 0.85 
and 1.60. They are more scattered for CDD, producing 
lower correlations (0.25–0.46) and excessively high devia-
tions (1.34–3.26). A few members, such as the Etamp_new 
microphysics scheme, the YSU boundary layer scheme, 
and the NOAH surface scheme, perform persistently worse 
than the majority, having systematically lower correlation 
(0.23–0.50) or larger variability (1.16–3.26). These results 
indicate that CWRF well reproduces observed SDII, R95P 
and R95T interannual variations in the YRB, although it is 
more difficult to capture CDD. Most models have limited 
skills in simulating CDD interannual variations during the 
summer monsoon (Jiang et al. 2015).

Figure 5 compares the performance ranks among ERI and 
28 CWRF members on simulating interannual variations of 
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extreme precipitation indices. The Morrison plus 3d aero-
sol or Morrison microphysics scheme improves CWRF 
skills when replacing the GSFCGCE scheme in the control 
CWRF. Immediately following CTL, the CAML, CCCMA 
and CAM radiation schemes produce good skills as the GSF-
CLXZ scheme. Note that these radiation schemes are also 
identified earlier as top-skilled in reproducing the long-term 
average spatial distributions of extreme precipitation. They 
are preferred for CWRF to consistently capture both spatial 
pattern and interannual variability of extreme precipitation 
over the YRB.

3.3 � Overall model skill and optimal multi‑physics 
ensemble

Figure 6 shows the scattering relationship in terms of the 
MR ranks between spatial distributions and interannual vari-
ations among ERI and 28 CWRF physics configurations. 
The ranks among all models in capturing observed spatial 
distributions and interannual variations over the YRB are 

correlated with a coefficient of 0.63, which is statistically 
significant at the 5% significance level. Thus, the models 
that more accurately capture the spatial pattern tend to more 
realistically reproduce the interannual variation of regional 
extreme precipitation, and vice versa. Similar significant 
correspondences were reported among CMIP5 models in 
simulating extreme precipitation over eastern China (Jiang 
et al. 2015). It is interesting to note that ERI ranks much 
higher for interannual variation (0.84) than spatial pattern 
(0.53). So do CWRF CTL and the configurations using Mor-
rison or Morrison plus 3d aerosol microphysics scheme.

The ranks differ largely among the CWRF physics con-
figurations. Among six major physical processes, the highest 
sensitivity is identified to cumulus schemes which show the 
largest scattering range of the ranks. Among all eight cumu-
lus schemes, ECP is overall superior in capturing both spa-
tial pattern and interannual variability, having balanced high-
est spatial and temporal MR values. Although NSAS ranks 
higher than ECP for the spatial distribution, it ranks sig-
nificantly lower for the interannual variation, producing less 

Fig. 3   The rank on the ability 
to simulate the climatologi-
cal mean spatial distribution 
for each extreme precipita-
tion index over the YRB, in 
terms of corresponding spatial 
correlation (left), normalized 
standard deviation (center), and 
root-mean-square error (right): 
a SDII, b R95P, c R95T, and d 
CDD. The number listed in each 
grid cell represents the respec-
tive rank. The ordering models 
names from top to bottom 
follow their averaged ranking 
across all indices
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intense precipitation and more consecutive dry days (Fig. 1). 
Other cumulus schemes rank much worse. Especially, BMJ, 
Tiedtke, and Donner schemes perform the worst, with MR 
values systematically less than 0.3. The result is consistent 
with the conclusion of Zhang et al. (2023) that ECP overall 
best represents P95 spatial distribution in China, while the 
other four schemes either overestimated (KFeta, Tiedtke) 
or underestimated (BMJ, NSAS) it. They showed that, in 
Central China (YRB), summer P95 interannual departures 
simulated by ECP are mainly associated with positive mois-
ture convergence (27%) and negative convective available 
potential energy (18%) departures. The ECP better captures 
the balance of the two opposite factors for a more realistic 
P95 simulation in the YRB.

We can easily identify the five top-ranked CWRF con-
figurations using the Morrison and Morrison plus 3d aerosol 
microphysics schemes and the CCCMA, CAML and CAM 
radiation schemes, which produce the spatial and tempo-
ral MR values larger than 0.56 and 0.53 respectively. As 
coupled with the ECP cumulus scheme, these radiation and 
microphysics schemes significantly enhance the CWRF abil-
ity to capture observed spatiotemporal variations of extreme 

precipitation over the YRB. The result implies that realistic 
extreme precipitation simulations require improved system 
coupling especially among cumulus, microphysics and radi-
ation processes (Sun and Liang 2020a, b).

Given the superior performance of ECP to other cumulus 
schemes, our best multi-physics ensemble mean (BMPE) 
integrates ECP with the Morrison and Morrison plus 3d aer-
osol microphysics schemes as well as the CCCMA, CAML, 
and CAM radiation schemes. This BMPE is designed to 
enhance CWRF’s ability to accurately capture extreme pre-
cipitation characteristics in the YRB. The BMPE construc-
tion is detailed in the Supplementary Information. Figure 7 
compares the geographic distributions of the four extreme 
precipitation indices among observations, ERI, CWRF CTL, 
and BMPE. Also shown are the corresponding spatial pat-
tern correlation, RMSE, and bias over the YRB between 
each simulation and observations.

The observed rainfall intensity (SDII) shows maxima of 
more than 16 mm day−1 over broad areas along the Yang-
tze River, especially in the middle and lower reaches of the 
basin (Fig. 7a). ERI totally misses this intensity core, with 
peaks smaller than 13 mm day−1 and only in the upper reach, 

Fig. 4   Same as Fig. 2 except for simulating interannual variability of summer four indices during 1980–2015 averaged over the YRB. Shown are 
the corresponding interannual correlations (azimuthal) and normalized standard deviations (radius) compared with observations
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leading to a negative pattern correlation and a large RMSE 
with a systematic underestimation by 1.6 mm day−1 as aver-
aged over the YRB. In contrast, CWRF CTL realistically 
captures the core with a sufficient intensity and reasonable 
distribution, notably increases the pattern correlation by 0.46 
and reduces RMSE by 10% with a slight underestimation 
by 0.2 mm day−1 on average. BMPE further improves the 
CWRF skill over its CTL, increases the correlation by 0.11 
and reduces RMSE by 4%, although it shrinks the area of the 
core with a larger underestimation of average 1.0 mm day−1.

For R95P (Fig.  7b), ERI still produces insufficient 
amounts, causing a large dry bias of 7.6 mm as averaged 
over the YRB. Again, CWRF CTL better captures the spa-
tial distribution, increasing the pattern correlation over 
ERI by 0.14, but substantially overestimates the amount by 
14.1 mm on average, increasing RMSE by 53%. BMPE fur-
ther improves the CWRF skill over its CTL, increases the 
correlation by 0.12 and largely reduces both RMSE (by 19%) 
and average wet bias down to 1.1 mm.

For R95T (Fig.  7c), CWRF CTL outperforms ERI, 
increasing the pattern correlation by 0.14 and reducing 
RMSE by 10%. As compared with observations, CTL simu-
lates an expanded coverage of strengthened R95T, causing 
a positive bias of 0.8% as averaged over the YRB, whereas 
ERI substantially underestimates both the coverage and 
strength, causing a larger negative bias of 3.1%. BMPE sig-
nificantly improves the CWRF skill over its CTL, increasing 
the correlation by 0.14 and reducing both RMSE by 18% and 
overestimation bias down to 0.5%.

For CDD (Fig. 7d), ERI systematically underestimates 
the magnitude by 2.7 days as averaged over the YRB, lead-
ing to the common drizzling problem. On the other hand, 
CWRF CTL overestimates the magnitude by 2.0 days on 
average, eliminating the drizzling problem albeit overdo-
ing it somewhat. BMPE improves the CWRF skill over its 
CTL, increasing the pattern correlation by 0.03 and reducing 
RMSE by 11%, but still has a large overestimation bias by 
2.2 days.

Fig. 5   Same as Fig. 3 except 
for interannual variability for 
each extreme precipitation 
index averaged over the YRB, 
in terms of corresponding 
interannual correlation (left), 
normalized standard deviation 
(center), and root-mean-square 
error (right)
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In summary, CWRF CTL enhances ERI skill for extreme 
precipitation, while BMPE further advances CTL ability. 
This consistent improvement from ERI to CTL to BMPE 
spans all eleven indices of extreme precipitation, includ-
ing the additional P95, AEPI, R95N, R10, CWD, RX5day, 
and PMAX (Table S1). A detailed discussion of skills on 
these additional indices is provided in the Supplementary 
Information.

Figure 8 compares the geographic distributions of sum-
mer interannual correlations with observations between 
CWRF CTL and BMPE simulated four extreme precipita-
tion indices during 1980–2015. Shown also are the density 
functions that depict the frequency distributions of the cor-
relations at all CWRF grids within the YRB along with 
their respective percentage of areas that have significant 
correlations. We consider correlations greater than 0.28 
to be indicative of skillful signals as they are statistically 
significant at the 5% significance level by the one-tail stu-
dent’s t-test. CWRF CTL captures observed interannual 
anomalies over 28.5%, 24.8%, 15.9%, and 26.9% areas of 
the YRB for SDII, R95P, R95T, and CDD, respectively. 
Most of these signal areas occur along the Yangtze River 
and to the south of its middle and lower reaches. Skills 
are lacking mainly in the regions between the Yellow and 
Yangtze Rivers. BMPE largely improves the skills over 
CTL for all the four indices as clearly shown by the sys-
tematic shift of the frequency density curve toward the 

higher correlation end. BMPE captures observed interan-
nual anomalies over 47.6%, 40.8%, 28.9%, and 33.5% areas 
of the YRB for SDII, R95P, R95T, and CDD, respectively. 
The added values of BMPE to CTL are the expanded cov-
erages of significant correlations with observations by 
19.1%, 16.0%, 13.0%, and 6.7% areas of the YRB for the 
four indices. There remain large areas (52.4–71.1%) where 
correlations are insignificant. This indicates the big chal-
lenge in capturing extreme precipitation interannual vari-
ations over the YRB, where prevailing convective systems 
during the summer monsoon are difficult to predict (Liang 
et al. 2019b; Li et al. 2020).

Figure 9 compares interannual variations of CWRF 
CTL and BMPE simulated with observed anomalies of the 
four extreme precipitation indices averaged over the YRB. 
Also shown are the interannual correlation coefficient and 
RMSE between the simulated and observed anomalies 
during 1980–2015 for each index. The CTL captures well 
observed anomalies with correlations of 0.59, 0.64, 0.51, 
and 0.41 for SDII, R95P, R95T, and CDD, respectively. 
BMPE improves the SDII, R95P, and R95T skills over 
CTL, increasing the correlations with observations by 
0.07, 0.04, and 0.07 and reducing RMSE by 17, 12, and 
17%, respectively. In contrast, for CDD, BMPE reduces 
from CTL RMSE by 30% but also the correlation by 0.05. 
As discussed earlier, it is more difficult to capture CDD 
variations.

Fig. 6   Scatter diagrams of 
models’ MR index on account 
of Taylor diagrams for spatial 
(x axis) and interannual (y 
axis) variation over the YRB. 
Labeled is the correlation coeffi-
cient (CC), which is statistically 
significant at the 5% signifi-
cance level. The models in the 
upper-right quadrant perform 
well for both conditions
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3.4 � Regional circulations associated with extreme 
precipitation biases

To explore possible causes for extreme precipitation biases, 
CWRF modeled atmospheric circulations in CTL and the 
five top ranked configurations that differ only in micro-
physics (Morrison, Morrison plus 3d aerosol) and radiation 
(CCCMA, CAML, CAM) schemes as well as BMPE are 
compared with ERA5. See the Supplementary Information 
for the reason selecting ERA5 as the reference. Note that the 
changes in CWRF experiments are only by switching one 
scheme from CTL, so the circulation differences are induced 
by that specific physics representation. The EAJ and the 
Hadley cell are two distinct circulation systems dominating 

east China monsoon rainfall (Liang and Wang 1998), and 
hence are elaborated in the comparison below. Figures 10 
and 11 compare the summer mean circulation character-
istics, including 200/850 hPa wind, 500 hPa geopotential 
height, and column moisture flux geographic distributions, 
as well as latitude-altitude cross-sections of wind and latitu-
dinal variations of R95P biases from observations averaged 
across eastern China (105°-122°E), where the YRB covers 
latitudes around 24°–34°N.

As revealed in ERA5, the strong westerly jet stream 
prevails at 200 hPa, with the maximum speed exceeding 
30 m s−1 over Xinjiang and the jet axis located at approxi-
mately 40°N (Fig. 10). The EAJ exit stretches across North 
China to Japan, having the YRB persistently beneath its core 

Fig. 7   Spatial distributions of summer four indices as observed 
(OBS), ERI, CWRF control (CTL), and the best multi-physics ensem-
ble mean (BMPE): a SDII, b R95P, c R95T, and d CDD. Listed are 

the corresponding spatial pattern correlation (corr), root-mean-square 
error (rmse), and bias over the YRB between each simulation and 
observations
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to the right (south) side. The western Pacific subtropical 
high, depicted by the 5,860-gpm contour of 500 hPa geo-
potential height, occupies the southeast coasts. Meanwhile, 
two branches of low-level southerly monsoon flows sweep 
eastern China, one carrying water vapor from the Bay of 
Bengal and the other from the South China Sea and the west-
ern Pacific Ocean, which generate high moisture flux con-
vergence over the south of the Yangtze River. The secondary 
meridional circulation crossing the EAJ exit in accord with 
the Hadley circulation produces prevailing ascent motions, 
resulting in major precipitation in the YRB (Figs. 11 and 
S4). ERA5 tends to overestimate the ascent strength, caus-
ing significant wet R95P biases along the Yangtze and Pearl 
Rivers.

Compared with ERA5, the control CWRF physics con-
figuration weakens the jet stream, shrinking the EAJ exit 
westward to Hebei (Fig. 10). The subtropical high is slightly 
extended to northwest and accompanied with stronger 
low-level southwesterlies along its western ridge, causing 
stronger moisture fluxes to the upper reaches of the Yang-
tze and Peral Rivers but weaker fluxes in the lower reaches 
near the coast. The EAJ underestimate, up to 3 m/s over 
the southern North China and northern YRB areas, leads to 
stronger ascents directly beneath its exit, while the Hadley 
circulation intensification causes stronger ascents in South 
China (Fig.  11). Between the two ascending branches, 
descending motions occur in the southern YRB. As a result, 
the CWRF CTL reduces ERA5 wet R95P biases in the YRB 

Fig. 8   Spatial distributions of CWRF CTL and BMPE simulated 
1980–2015 summer four indices interannual correlations with obser-
vations: e SDII, f R95P, g R95T, and h CDD. Also shown (a–d) 
are the corresponding frequency density functions at all grids over 

the YRB. The correlations greater than 0.28 as marked by the verti-
cal lines denote the 5% significance level with the one-tail student’s 
t-test. Labeled at the top of each panel are the respective percentage 
of areas over the YRB that have significant interannual correlations
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but increases them in North and South China (Figs. 11 and 
S4).

When CWRF couples the ECP cumulus and Morrison 
or Morrison plus 3d aerosol microphysics schemes, the jet 
stream is further weakened and its EAJ exit is shifted far-
ther westward to Shanxi. Although the subtropical high and 
associated low-level southerlies over eastern China are better 
simulated, the moisture convergence is underestimated over 
larger YRB areas than CTL. The larger EAJ underestimate, 
up to 4 m/s over the southern North China and northern 
YRB areas, reduces upward motions and rainfall beneath its 
exit, while the more intensified Hadley circulation enhances 
upward motions and rainfall in South China, compared to 
CTL. These lead to small dry R95P biases in the YRB and 
decreased wet biases over North China but increased wet 
biases over South China. Using the Morrison versus Mor-
rison plus 3d aerosol scheme results in marginally reduced 

overall circulation biases. Consequently, the former exhibits 
comparatively improved performance in simulating extreme 
precipitation.

When CWRF adopts the CCCMA radiation scheme, the 
EAJ exit is shifted westward to Shanxi. Relative to CTL, 
the western ridge of the subtropical high exhibits a more 
accurate inland extension. This, coupled with strengthened 
low-level southwesterlies over the southern YRB and South 
China, contributes to intensified moisture fluxes south of the 
Yangtze River but weakened the fluxes to the north. Com-
pared to CTL, the larger EAJ underestimate, up to 4 m/s over 
the southern areas of North China, produces weaker ascend-
ing motions in North China, while the widened Hadley cir-
culation yields stronger ascending motions in the southern 
YRB and South China. As a result, the CCCMA reduces 
CTL’s wet R95P biases in North China but increases them 
in the YRB and South China.

Fig. 9   Interannual anomalies of summer four indices during 1980–
2015 averaged over the YRB as observed (OBS), CWRF CTL, and 
BMPE: a SDII, b R95P, c R95T, and d CDD. Listed are the corre-

sponding interannual correlation (corr) and root-mean-square error 
(rmse) with observations
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When CWRF adopts the CAML radiation scheme, the 
EAJ exit is shifted eastward to Hebei. This shift is accompa-
nied with an eastward displacement of the subtropical high 
and its inland ridge extension as well as the low-level south-
westerlies, causing northeasterly flow perturbations in North 

China and north of the Yangtze River. Consequently, the 
moisture flux convergence is significantly underestimated in 
North China and the northern YRB but enhanced in South 
China. The EAJ underestimate, by 2.5 m/s in the south-
ern areas of North China and 3 m/s in the YRB, produces 

Fig. 10   Climatology of summer mean wind at 850 hPa (m s−1, vec-
tors) and vertically integrated (1000–300 hPa) moisture flux (kg 
m−1  s−1, color shadings) based on ERA5 and their respective depar-
tures (from ERA5) simulated by seven CWRF physics configurations. 

Overlaid are the corresponding wind speed at 200 hPa (m s−1, dashed 
contours starting from 20 at an interval of 5) and 500-hPa geopoten-
tial height’s 5860 gpm (red solid contour)
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weaker ascending motions north of the Yangtze River, while 
the significantly intensified Hadley circulation yields much 
stronger ascending motions south of the Yangtze River. 
Compared to CTL, these changes cause the monsoon rain-
band shifted southwards. As a result, the CAML scheme 

notably reduces CTL’s wet R95P biases in North China but 
increases them in the YRB and more substantially in South 
China.

Contrarily, the adoption of the CAM radiation scheme 
results in a westward shift of the EAJ exit to Ningxia and 

Fig. 11   Climatology of summer mean latitude-altitude wind circula-
tion distributions averaged across 105°–122°E based on ERA5 and 
their respective departures (from ERA5) simulated by seven CWRF 
physics configurations. Color shadings and arrows denote the zonal 
(m s−1) and meridional (m s−1)/vertical (10–3 m s−1) wind compo-

nents, respectively. Overlaid are the corresponding biases (from 
observations) in latitudinal variations of R95P (mm, solid curves with 
the scale on the right). The YRB spans latitudes around 24°–34°N, 
while the approximate bands for Northeast, North, and South China 
are marked by NE, NC, and SC, respectively
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an expansion of the subtropical high northwestward, with 
its ridge covering larger areas of southeastern China. Com-
pared to CTL, these changes cause enhanced moisture fluxes 
across an extensive region stretching from the western YRB 
to Northeast China. Simultaneously, moisture fluxes are 
diminished in the eastern YRB and South China due to low-
level perturbations of southerly and easterly flows, respec-
tively. The larger underestimate of the EAJ exit by 5 m/s in 
southern North China, coupled with the low-level easterly 
flow overestimate by 3 m/s in South China, leads to weaker 
ascending motions north of the Yangtze River than CTL. 
Thus, the CAM scheme reduces CTL’s overall wet R95P 
biases in North and South China but produces significant 
dry biases in the YRB.

On average of the five top-ranked CWRF configurations 
(Morrison, Morrison plus 3d aerosol, CCCMA, CAML, 
CAM), BMPE more accurately captures the subtropical high 
and low-level southerlies over eastern China, although still 
shifting the EAJ exit westward to Shanxi and underestimat-
ing moisture fluxes in the YRB. The EAJ exit underestimate 
by 4 m/s in southern North China leads to weaker ascending 
motions in North China and northern YRB than CTL, while 
the slightly intensified Hadley circulation causes stronger 
ascending motions in southern YRB and South China. Due 
to the error cancelation within the chosen configurations, 
BMPE yields minor wet R95P biases in the YRB and North 
China. However, large wet biases persist in South China.

Compared to ERA5, ERI produces systematically weaker 
westerly jet stream at 200 hPa over the entire CWRF domain, 
shrinking the EAJ exit westward to Hebei and simulating 
easterly departures in North China and northern YRB over 
1.2 m/s as well as in South China over 2.5 m/s (Fig. S5). 
These alterations suppress ascending motions and decrease 
rainfall in the YRB and more strongly in South China. 
Therefore, the general underestimation of the EAJ exit in 
CWRF may be largely driven by the ERI forcing errors. Our 
results highlight the importance of physics representation for 
realistic regional extreme precipitation simulation.

4 � Conclusions and discussion

This study employs the CWRF downscaling and its skill-
ful multi-physics ensemble approach to enhance summer 
extreme precipitation prediction over the YRB. It quanti-
fies the CWRF ability in downscaling spatial patterns and 
capturing interannual variations in four key extreme pre-
cipitation indices during 1980–2015, while comparing 
the results against the driving ERI reanalysis and ranking 
performance across 28 different combinations of physics 
parameterizations. We embrace a comprehensive evalu-
ation strategy, incorporating multiple metrics across all 
indices alongside understanding of the linkages to regional 

circulation patterns. The skill assessment comprises spatial 
and temporal correlation, root-mean-square-error (RMSE), 
standard deviation, and bias of each index, as well as mean 
absolute relative bias (MARB) of all indices and a compre-
hensive ranking metric (MR) based on relative scores of 
correlation, deviation, and RMSE among these indices. The 
finest CWRF physics configurations are identified through 
MR ranking of all four indices to construct the best multi-
physics ensemble (BMPE). This ensemble is compared 
with the control CWRF to explore skill enhancement from 
varying physics representation and gain insights into model 
biases of YRB extreme precipitation and their connections 
to regional circulation patterns. The main findings are sum-
marized below:

First, ERI notably underestimates all four indices, despite 
its extensive utilization of comprehensive data assimilation. 
Conversely, the control CWRF downscaling substantially 
enhances the ability to accurately capture observed spatial 
patterns of extreme precipitation. The skill enhancements 
are particularly remarkable for SDII and R95T, as these 
indices display spatial structures and magnitudes that ERI 
struggles to replicate. The CWRF downscaling demonstrates 
considerable added value in capturing distinctive regional 
characteristics of extreme precipitation, achieved through 
enhanced physics representations. Of particular note, CWRF 
integrates the ECP scheme, which employs dynamic selec-
tions and optimal cumulus parameterization closure assump-
tions, differentiating between land and oceans (Qiao and 
Liang 2015, 2016, 2017). This integration leads to a signifi-
cant enhancement in total precipitation intensity and rainy-
day frequency (Sun and Liang 2020b).

Second, the CWRF downscaling capability varies across 
different extreme precipitation indices. Broadly, CWRF 
tends to underestimate SDII and R95P, while overestimat-
ing R95T and CDD. Among most physics configurations, 
spatial distributions of R95P and CDD are better captured 
than SDII and R95T. These configurations also reasonably 
replicate interannual variations across all indices except 
CDD. The MR analysis underscores a noteworthy pattern: 
configurations that aptly capture spatial distributions tend to 
reproduce interannual variations more accurately in regional 
extreme precipitation, and vice versa.

Third, CWRF downscaling skills exhibit substantial vari-
ability among various physics configurations, with cumulus 
parameterization being the most influence, evident by its 
wide-ranging impact across six primary physical processes. 
Of all eight cumulus schemes, the control ECP overall dem-
onstrates remarkable proficiency in capturing both spatial 
patterns and interannual variations of extreme precipitation. 
While NSAS excels in simulating mean spatial patterns, its 
performance for interannual variations is much weaker, 
resulting in insufficient intense precipitation amounts and 
an elevated number of consecutive dry days. The remaining 
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cumulus schemes generally show lower skills, with BMJ, 
Tiedtke, and Donner notably underperforming and display-
ing pronounced biases.

Fourth, the five highest MR-ranked CWRF configura-
tions incorporate the Morrison and Morrison plus 3d aero-
sol microphysics schemes, alongside the CCCMA, CAML 
and CAM radiation schemes, which replace the control 
GSFCGCE and GSFCLXZ schemes respectively. Coupling 
ECP cumulus scheme with these microphysics and radia-
tion schemes significantly enhances the CWRF capability 
to accurately capture observed spatiotemporal variations in 
extreme precipitation across the YRB. While certain under-
estimations of SDII and overestimations of CDD still per-
sist in localized areas, the ensemble average of these skill-
enhanced physics configurations (BMPE) more faithfully 
reproduces observed geographic distributions and interan-
nual anomalies for all four indices, surpassing the perfor-
mance of the control CWRF.

Fifth, differences in EAJ and Hadley cell circulations, 
as well as their associated vertical motions and moisture 
fluxes, exhibit strong correlations with YRB extreme pre-
cipitation biases. The control ECP and its members com-
bined with the CCCMA and CAML radiation schemes 
simulate slightly weaker EAJ and expanded Hadley circu-
lations, fostering stronger ascending motions in the YRB. 
These changes coincide with stronger low-level southerly 
flows over southeastern China, accompanied by enhanced 
moisture transport from the South China Sea and the west-
ern Pacific warm pool–resulting in notable wet R95P biases 
in the YRB. In contrast, the Morrison or Morrison plus 3d 
aerosol microphysics and CAM radiation schemes simulate 
relatively weakened EAJ and Hadley circulations that sup-
press strong ascending motions in the YRB. They also pro-
duce less intense moisture fluxes, contributing to significant 
dry biases in the YRB. On the other hand, BMPE adeptly 
captures the overall summer mean circulation features and 
displays minimal wet biases in the YRB. The favorable out-
come of the ensemble mean primarily stems from the effec-
tive mitigation of errors among the chosen configurations.

To further explore the impact of model resolution on the 
CWRF’s ability to downscale extreme precipitation, we 
considered the interlinkage between physics representation 
and spatial resolution, particularly the scale dependence of 
convection parameterization (Weisman et al. 1997; Jung and 
Arakawa 2004; Yu and Lee 2011; Field et al. 2017). Addi-
tional CWRF experiments are conducted using the control 
physics configuration at 30, 15, and 10 km grid spacings to 
determine the resolution sensitivity. In these experiments, 
all surface boundary conditions are constructed accordingly 
to match the increased resolution (Liang et al. 2005; Xu 
et al. 2014). Figure 12 contrasts summer geographic distri-
butions of the four extreme precipitation indices for the year 
2003 across these different grid spacings. Finer resolution 

simulations are mapped onto the 30-km grid for uniform 
analysis, assessing mean biases, spatial correlations, and 
RMSEs with respect to observations over the YRB. The 
simulations at the 15-km grid spacing generally outper-
form those at 30-km across the YRB, increasing spatial 
pattern correlations with observations and generally reduc-
ing RMSEs, although some biases shift, notably for R95P. 
Conversely, the 10-km simulation shows a consistent decline 
in performance compared to the 15-km run, with reduced 
pattern correlations for most indices except SDII as well as 
increased RMSEs and biases except for CDD.

Convection-permitting model (CPM) simulations may 
improve extreme precipitation prediction. Liang et  al. 
(2019a) systematically explored the efficacy of various WRF 
model configurations of grid nesting (from 30, 15, 9, 5, 3 
to 1 km, single or double or triple nested grids) and con-
vection treatment (the traditional or scale-aware cumulus 
parameterization or the explicit convection) for Jiangsu’s 
Meiyu rainfall forecasts. They concluded that the double 
nested approach combining cumulus parameterization at a 
15-km grid with explicit convection at a 1-km grid offers 
an effective solution to more accurate rainfall forecasting, 
particularly for clear and heavy to extreme rain events. This 
approach avoids the challenge in representing convections 
across scales. Such resolution sensitivity in the outer domain 
resulted from solely cumulus parameterization. Our result 
may indicate that the ECP cumulus scheme performs the 
best at 15 km. Dong et al. (2022) showed advantages of the 
WRF at the 1.5-km inner grid (resolving convection) over 
the 9-km outer grid (parametrizing cumulus) in simulating 
extreme precipitation on sub-daily timescales in the Yangtze 
River Delta. However, they also identified limitations for the 
CPM to capture the duration and coverage of heavy precipi-
tation and the occurrence of longer-duration events. These 
studies underscore the complexity of high-resolution model 
abilities in capturing extreme precipitation characteristics. 
Improvements cannot be made by CPMs without enhancing 
physics representations to fit the refined resolution. While 
important to a complete understanding of extreme precipita-
tion predictability, CPM simulations are impossible due to 
the lack of computing resources and beyond the scope of this 
study, whose main objective is to determine skill depend-
ence on model physics representation at 30-km and identify 
those configurations that can enhance their ensemble perfor-
mance. Nonetheless, our results provide solid evidence for 
the China’s National Climate Center to improve its opera-
tional seasonal forecasts by optimizing CWRF multi-physics 
ensemble with a reduced number of but skillful configura-
tions than the current suite, preferably at 15-km as comput-
ing resources permit.

Further endeavors are essential to enhance the ensem-
ble’s performance by fine-tuning the weights for a broader 
suite of superior and diverse configurations, guided by 
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comprehensive model rankings across both spatial and tem-
poral dimensions (Liang et al. 2007, 2012; Tang et al. 2021). 
The current study has confined its selection to only five top-
ranked configurations, which, due to their limited diversity, 
may not offer sufficient spread to adequately address com-
pensating errors for an optimal ensemble outcome. Moreo-
ver, while also discussing seven other indices, the focus of 
our skill assessment has centered around the four indices that 
capture the fundamental characteristics of extreme precipi-
tation. Expanding the range to encompass more representa-
tive metrics, not solely for extreme precipitation but also for 
other statistical moments and even the entire daily frequency 
distribution, can lead to a more robust optimization. Despite 
these considerations, our findings stand as an encouraging 

testament, underscoring the substantial potential of CWRF 
downscaling to elevate extreme precipitation predictions 
through the enhancement of its physics representations and 
the strategic optimization of its multi-physics ensemble. 
These physics enhancement and ensemble optimization can 
be integrated with resolution refinement to further increase 
prediction skill.
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