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Abstract

This study employs the regional Climate-Weather Research and Forecasting model (CWRF) downscaling and its skillful
multi-physics ensemble approach to enhance summer extreme precipitation prediction in the Yangtze River Basin. The CWRF
simulations at 30-km driven by the ECMWF Interim reanalysis during 1980-2015 are conducted using 28 model physics
configurations. The prediction skill is evaluated for four standard indices: simple daily intensity, total extreme precipitation
and its fraction to total precipitation, and maximum consecutive dry days. The control CWRF configuration outperforms the
driving reanalysis, which underestimates all indices despite its utilization of surface data assimilation. Notably, the downs-
caling skills of CWRF exhibit substantial variability across diverse physics configurations, with cumulus parameterization
being most influential. In particular, the ensemble cumulus parameterization (ECP) demonstrates remarkable proficiency in
capturing both spatial patterns and interannual variations. This proficiency is further magnified through ECP’s integration
with Morrison or Morrison-aerosol microphysics and CCCMA, CAML or CAM radiation schemes, significantly enhancing
overall skills. The ensemble average of these skill-enhanced physics configurations better reproduces observed geographic
distributions and interannual anomalies for all four indices, surpassing the control CWRF’s performance. This improvement
can be primarily attributed to a more accurate portrayal of the East Asian Jet and its associated regional circulation patterns
by the ensemble. These findings underscore a significant opportunity for enhancing predictions of extreme precipitation by
further refining the physics representation within the climate system coupling, especially among cumulus, microphysics, and
radiation processes. Optimizing the multi-physics ensemble approach holds substantial promise in this endeavor.

Keywords Extreme precipitation - Physical parameterization - Regional climate model - Downscaling skill enhancement -
Multi-physics ensemble

1 Introduction

Extreme precipitation can bring serious impacts on human
health, economy, and ecosystems (Liang 2022). The losses
caused by these extreme disasters are estimated to exceed
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2.37% of the gross domestic product in China each year
since 1990 (Jiang et al. 2015; Zhang and Zhou 2020). The
Yangtze River Basin (YRB) is particularly vulnerable to
extreme precipitation since it is home for nearly 40% of
the Chinese population, and contributes about 40% of the
total Chinese gross domestic product (Li and Lu 2017). The
region is greatly affected by the East Asian monsoon and
experiences a large interannual variability in summer precip-
itation, which have caused disastrous social and economic
consequences through both frequent floods and droughts (Li
and Lin 2015). For instance, the 1998 flood in the YRB
affected 240 million people, caused more than 3000 deaths,
and approximately $40 billion in damages (Zong and Chen
2000). The 2010 heavy rainfall events over East China
affected 134 million people and costed nearly $18 billion
(Murray and Ebi 2012; Zhao et al. 2012). Future risk would
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increase, as the frequency and intensity of extreme events in
the YRB have been detected increasing over the past decades
(Wang and Zhou 2005; Zhai et al. 2005; Ma et al. 2015), and
are projected to intensify under global warming (Piao et al.
2010; Sun et al. 2018; Jiang et al. 2021).

Global general circulation models (GCMs) are often used
to simulate and predict extreme precipitation, however, to
date, these models generally underestimate such events
(Jiang et al. 2015; Dong and Dong 2021). For example, He
et al. (2019) showed that almost all CMIP5 models fail to
capture the observed spatial distribution of summer extreme
precipitation over the YRB and South China, with the per-
centage of total rainfall from heavy events underestimated by
25-75%. Dong and Dong (2021) evaluated the performance
of CMIP6 models in simulating seven extreme precipitation
indices and showed that dry biases still exist in South China.
Additionally, Xu et al. (2011) demonstrated that models are
limited in reproducing the interannual variation of precipita-
tion extremes in river basins over China. To overcome the
problem, regional climate models (RCMs) have been devel-
oped for downscaling at higher spatial resolutions, which can
represent more detailed regional-scale precipitation features
and extreme events compared to their driving GCMs (Yang
et al. 2016; Jiang et al. 2021). But resolution increases do not
always improve simulated extreme precipitation (Chan et al.
2013; Kopparla et al. 2013; O’Brien et al. 2016). Even there
is a tendency to overestimate the intensity magnitude of
heavy rainfall over the YRB in convection permitting mod-
els with grid spacing of 1-5 km (Li et al. 2019; Dong et al.
2022). Hence, adequately representing finer-scale physical
processes is the key to predicting extreme events (Sun and
Liang 2020b; Jiang et al. 2021).

Physical parameterizations, particularly for cumulus
convection, impact the extreme precipitation simulation.
For example, Huang and Gao (2017) showed that the Kain-
Fritsch scheme tends to overestimate summer extreme
precipitation in the YRB, whereas the Grell scheme under-
estimates it, especially for the intensity and total amount.
Zhaoye et al. (2022) found that Kain-Fritsch scheme per-
forms better than the Grell-Devenyi and Bullock-Wang
schemes for a rainstorm event simulation, but all underes-
timate precipitation intensity over the core affecting area in
Northwest China. Some studies have also investigated the
sensitivity of microphysics, radiation, planetary boundary
layer, and land surface schemes (Kang et al. 2015; Gao et al.
2021; Kong et al. 2022; Merino et al. 2022). Given these
studies have mostly concentrated on one or two particular
processes for short-term or less than 10 years, more efforts
are needed to construct a multi-physics ensemble of long
integrations. In fact, Yuan et al. (2012) conducted 16 ensem-
ble downscaling simulations with alternative microphysics,
cumulus, land surface, and radiation schemes for 27 winters
in China, and demonstrated the importance of radiation and
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cumulus schemes in simulating extremes. Sun and Liang
(2020b) found that the United States long-term extreme pre-
cipitation simulation was more sensitive to cumulus param-
eterization than the microphysics, aerosol, cloud, radiation,
boundary layer, and surface schemes through all seasons.
However, a comprehensive exploration into the relationship
between model performance in simulating long-term sum-
mer extreme precipitation characteristics and diverse physics
parameterization schemes across the YRB, along with the
underlying mechanisms, has been seldomly attempted.

Recently, the regional Climate-Weather Research and
Forecasting model (CWRF), developed by Liang et al.
(2012), has shown advanced downscaling skills in reproduc-
ing monsoon rainbands, seasonal-interannual precipitation
variations, and 95th percentile daily precipitation (P95) in
China (Liang et al. 2019b; Li et al. 2020; Jiang et al. 2021).
Most recently, Zhang et al. (2023) compared the sensitivity
of CWRF downscaling seasonal P95 variations over China
to five cumulus parameterization schemes and explored the
physical processes and mechanisms underlying regional
model biases. However, the performance of CWRF in down-
scaling extreme statistics across the YRB and its sensitivity
to diverse physics (in addition to cumulus) parameteriza-
tions remain unclear. The main objective of this study is to
enhance CWREF capabilities in downscaling YRB summer
extreme precipitation spatiotemporal characteristics through
exploration of varying model physics representations. The
resulting multi-physics ensemble, derived from these refined
CWREF configurations, is subsequently employed to enhance
the overall performance. This approach is necessary as a
single combination of selected parameterization schemes
does not yield optimal results for all metrics in every region
(Liang et al. 2012).

The paper is arranged as follows. Section 2 introduces
the model, experimental design, observations, and analy-
sis methods. Section 3 presents the main results, including
(1) a comparison of CWRF capabilities in simulating YRB
summer extreme precipitation spatial patterns and interan-
nual variations among diverse physics parameterizations,
alongside the driving reanalysis; (2) an evaluation of over-
all model performance rankings and optimal multi-physics
ensemble skill enhancements; and (3) a process understand-
ing of model biases and skill enhancements. Section 4 gives
conclusions and discussion.

2 Data and methods

The CWREF has been developed from the Weather Research
and Forecasting model (WRF) (Skamarock et al. 2008) to
extend applications for climate research, incorporating
numerous advancements in system interactions among
land, atmosphere, ocean; convection, microphysics; and
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cloud, aerosol, radiation processes (Liang et al. 2012).
Prominently, CWREF incorporates a state-of-the-art Con-
junctive Surface—Subsurface Process model (CSSP) to
realistically represent terrestrial hydrology, land surface,
and atmosphere processes (Choi et al. 2007, 2013; Choi
and Liang 2010; Yuan and Liang 2011; Xu et al. 2014);
a built-in Cloud-Aerosol-Radiation ensemble model
(CAR) to fully estimate interactions among cloud proper-
ties, aerosol properties, and radiation transfers (Liang and
Zhang 2013; Zhang et al. 2013). Furthermore, a built-in
Ensemble Cumulus Parameterization (ECP) significantly
improves simulation performances of precipitation cli-
matology and extremes in the United States (Liang et al.
2012; Qiao and Liang 2015, 2016, 2017; Sun and Liang
2020a, b) and China (Liu et al. 2008; Zeng et al. 2008;
Liang et al. 2019b; Li et al. 2020; Jiang et al. 2021). The
CWREF integration of various parameterization schemes
for each major physical process enables a comprehensive
sensitivity analysis of extreme precipitation simulation in
relation to physics representations (Sun and Liang 2020b).

The model computational domain centers at (35.18°N,
110°E) based on the Lambert conformal map projection with
horizontal grid spacing of 30 km and has 36 vertical terrain-
following levels with the top at 50 hPa. The buffer zone
includes 14 grids in each lateral boundary of the four domain
edges. We conducted an ensemble of 28 CWRF simulations
using different combinations of key physics parameterization
schemes (Table 1). This includes one control configuration
(CTL, Liang et al. 2019a) and 27 physics configurations that
swap CTL with one alternate parameterization scheme for
cumulus, microphysics, radiation, boundary layer, surface
and cloud processes. Given available computing resources,
we primarily focus on the first four processes with multiple
parameterization schemes; for both the surface and cloud
processes, we choose one alternative: NOAH land model
(Ek et al. 2003) and prognostic cloud scheme (Wilson et al.
2008), which are compared respectively with the control
CSSP and diagnostic cloud scheme (Xu and Randall 1996).
This list represents a trade-off for a diverse range of physics
representations between availability built in CWREF, suit-
ability for climate modeling, and relative performance based

Table 1 Summary of the

N Physics Control configuration Sensitivity con-  Parameterization scheme
CWRF coptrol apd se.nsmvuy figuration
configurations with different
physics parameterization Cumulus (CU) ECP penetrative convection plus  El KFeta
schemes UW shallow convection E2 BMJ
E3 Grell
E4 Tiedtke
E5 NSAS
E6 Donner
E7 Emanuel
Microphysics (MP) GSFCGCE E8 Lin
E9 WSM6
E10 Etamp new
Ell Thompson
El2 Thompson-aero
El13 Morrison
El4 Morrison + 3d aerosol
Radiation (RA) GSFCLXZ E15 CCCMA
El6 CAWCR
E17 CAM
E18 CAML
El19 FuLiou
E20 RRTMG
Boundary layer (BL) CAM3 E21 YSU
E22 MYNN
E23 Boulac
E24 ACM
E25 uw
Surface (SF) CSSP land plus UOM ocean E26 NOAH
Cloud (CL) Xu-Randall Diagnostic E27 Prognostic
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on initial testing over a thousand combinations (Liang et al.
2012, 2019a, b; Liang and Zhang 2013; Zhang et al. 2013).
More details of the model physics schemes can be found in
Liang et al. (2012) and Sun and Liang (2020b). All simula-
tions are integrated over the period of October 1, 1979 to
December 31, 2015 (the beginning two months for spin-
up), driven by 6-hourly lateral boundary conditions from
the European Centre for Medium-Range Weather Forecasts
(ECMWEF) Interim reanalysis (ERI) at ~ 80-km grid spacing
(Dee et al. 2011). Following Liang et al. (2019b), this study
adopts the subregion divisions of distinct climate regimes
and geographical conditions for result analysis, focusing on
those relevant to the YRB.

For model validation, observed daily precipitation data
is from the CNO5.1 dataset at 0.25° horizontal grid spacing
based on an objective analysis of rain gauge measurements
at 2416 meteorological stations in Mainland China during
1980-2015 by the China Meteorological Administration
(Wu and Gao 2013). In addition, the driving ERI precipita-
tion is used to evaluate the CWRF downscaling ability. The
newly released fifth generation ECMWF reanalysis (ERAS5)
with 31 km horizontal grid spacing (Hersbach et al. 2019)
is chosen as the best proxy for the observed atmospheric
circulation characteristics, as it more realistically represents
interactions between precipitation, land, and atmospheric
processes (Sun and Liang 2020a, b). All these data are inter-
polated onto the CWRF 30-km grid using the conservative
mapping method for direct comparison.

This study uses four major extreme precipitation indices
(Table S1), selected due to their wide adoption in climate
research (Peterson 2005; Cui et al. 2019; Tang et al. 2021).
Each index is calculated from daily rainfall data, provid-
ing insights into different aspects of extreme precipitation
events. The simple daily intensity index (SDII) quantifies
the average precipitation intensity over the rainy days, in
which rainfall exceeds 1 mm. The total extreme precipita-
tion (R95P) measures the cumulative amount of all daily
rainfalls that surpass the long-term 95th percentile of rainy
days (P95), reflecting the total magnitude of extreme precipi-
tation events. The ratio of RO5P over the total precipitation
(R95T) depicts the relative contribution from extreme wet
days (exceeding P95), offering an insight into the frequency
and regularity of extreme events within the overall rainfall
distribution. The maximum number of consecutive dry days
(CDD) is the longest duration of continuous dry conditions
with daily rainfall below 1 mm, measuring the pattern of
droughts and the persistence of dry spells.

Our analysis first evaluates the impacts of model physics
configurations on spatial distributions of extreme precipi-
tation climatological means in Sect. 3.1 and then on their
interannual variations in Sect. 3.2. We employ a comprehen-
sive suite of metrics to assess model performance, includ-
ing spatial and temporal correlation, root-mean-square-error
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(RMSE), standard deviation, and bias of each extreme index
as well as mean absolute relative bias (MARB) across all
indices over the YRB. The MARB is defined as the aver-
age of the absolute values of relative biases across all indi-
ces (see equation S1 for the calculation detail), eliminat-
ing the compensating effect between positive and negative
biases in the indices (e.g., Jiang et al. 2015). Furthermore,
in Sect. 3.3, we determine the overall model skill based on a
comprehensive ranking metric (MR) that integrates relative
scores of correlation, deviation, and RMSE among all indi-
ces. This evaluation strategy using the multifaceted metrics
enables a comprehensive assessment of the models’ rela-
tive strengths and weaknesses across various dimensions.
Finally, in Sect. 3.4, we explore the linkages of the model
biases to regional circulation patterns, adding depth to our
physical understanding of the model performance from a cli-
mate system perspective. This evaluation approach ensures
a nuanced and comprehensive understanding of the model’s
capabilities.

3 Results

3.1 Impact of physics configurations on extreme
precipitation mean spatial patterns

First, the general abilities in capturing observed summer
YRB extreme precipitation characteristics are compared
among the 28 CWREF physics configurations along with the
driving ERI. Figure 1 compares the 36-year (1980-2015)
mean relative biases (simulated vs observed) for the four
indices averaged over the YRB. The ERI largely underesti-
mates all four indices, especially for CDD by about 22.5%,
which is associated with overestimating the total number
of rainy days due to its significant drizzling problem (Sun
and Liang 2020b). Compared to ERI, CWRF CTL gener-
ally reduces the magnitude of these biases, with MARB
decreased from 13.9% to 9.8%. The CTL captures more
realistic extreme precipitation characteristics, except for
overestimating R95P by 12.4%, in contrast to ERI’s under-
estimation by 5.0%.

All CWRF members overestimate CDD and hence tend to
underestimate the number of wet days. This tendence seems
to result from a model bias against low-intensity rain events
and thus may be affected by the standard 1 mm/day threshold
used for defining rainy days (Peterson 2005). The thresh-
old has been widely adopted in climate analyses, including
regional climate model simulations at a 30-km resolution
(e.g., Sun and Liang 2020a; Jiang et al. 2021). However, our
test with a lower threshold of 0.1 mm/day showed minimal
impact on our results (Figure S1), implying that other factors
like physics representation may cause this tendence.
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In contrast, most members tend to underestimate SDII
and R95P, but overestimate R95T. Biases in the extreme
precipitation amount is likely influenced by precipitation
intensity (Sun and Liang 2020b), while biases in the extreme
precipitation ratio is related to the tendency that models with
less extreme precipitation often have less total precipitation
amount (Tang et al. 2021). In general, the relative biases of
R95P and R95T are smaller than those of SDII and CDD,
capturing extreme precipitation events better than mean
conditions. This aligns partially with Jiang et al. (2015),
indicating less pronounced biases for SDII and R95T than
those for total precipitation and CDD in CMIP5 models
across eastern China. CWRF has been demonstrated with
superior performance in simulating extreme precipitation
(Liang et al. 2019a, b; Sun and Liang et al. 2020a, b), due
to its advanced physics representation, especially cumulus
parameterization. The variability in the biases across indices
depicts the inherent complexity of climate modeling, empha-
sizing the need to consider regional and multiple factors in
interpreting results.

(d) CDD () MARB
225 13.9 ERI
16.5 9.8 CTL
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44.0 37.9 Ccu_BMJ
45.7 31.0 CU_Grell 100
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The performance of CWRF in capturing observed
extreme precipitation characteristics varies significantly
among different physics configurations. The most influen-
tial factor is cuamulus parameterization, where the spread of
mean relative biases among the eight schemes spans between
[—35.7,100.3] or 136% for SDII, [— 55.7, 29.1] or 84.8% for
RO5P, [— 16.2, 20.7] or 36.9% for R95T, and [16.5, 127.6]
or 111.1% for CDD. The influence is moderate by radiation
parameterization, where the spread of mean relative biases
among the seven schemes is 35.9%, 53.9%, 12.5%, and 38%
for SDII, R95P, R95T, and CDD, respectively. On the other
hand, the sensitivity to boundary layer, microphysics, sur-
face, or cloud parameterization is relatively weak, where the
spread of mean relative biases ranges around 16-24% for all
indices. These results suggest that cuamulus parameterization
plays the dominant role for CWRF’s ability to simulate YRB
summer extreme precipitation. According to the MARB
score (Fig. le), CAML radiation and Morrison or Morri-
son plus 3d aerosol microphysics schemes further improve
over CTL, reducing the overall bias magnitude from 9.8%
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to 8.2% and 8.4% or 9.1%, respectively. The CCCMA radia-
tion scheme also performs well, with a MARB of 10.1%.
However, Tiedtke and Donner cumulus schemes perform
poorly, with substantially large MARBs of 48.9% and 63.2%.

Figure 2 compares the overall performances among ERI
and 28 CWREF physics configurations in capturing observed
geographic distributions of summer mean extreme precipita-
tion indices over the YRB, including spatial pattern correla-
tion, normalized standard deviation, and centered pattern
RMSE. For SDII (Fig. 2a), ERI shows a small negative pat-
tern correlation (— 0.10) and substantially underestimates
standard deviation (0.6), whereas CWRF CTL performs
better, having a much higher correlation (0.36) albeit an
overestimated deviation (1.48). As discussed later, the nega-
tive correlation of ERI with observations is identified with
incorrect spatial pattern and large local underestimation. The
greatest discrepancy among the CWRF members is identi-
fied with those using different cumulus schemes. In particu-
lar, NSAS most strongly correlates with the observed pattern
(0.47) and slightly overestimates deviation (1.17). Compared
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Fig.2 Taylor diagrams of the performance among ERI and all CWRF
physics configurations in simulating 1980-2015 mean summer four
indices geographic distributions over the YRB: a SDII, b R95P, ¢
RI95T, and d CDD. Shown are the corresponding spatial correlation
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to the control ECP, KFeta simulates a higher correlation
(0.38) but an excessive deviation (2.12). Other cumulus
schemes generally have lower correlations (0.06-0.32), or
abnormally high deviations (e.g., 2.48-2.87 by Donner and
Tiedtke). When ECP is combined with the alternate schemes
in other physical processes, CWRF performs similarly as
in CTL, producing correlations between 0.35 and 0.50 and
deviations between 1.13 and 1.67. One exception is that the
ACM boundary layer scheme has a much lower correlation
(0.19) than the control CAM3.

For R95P (Fig. 2b), ERI correlates more highly (than
SDII) with the observed pattern (0.38), but still underes-
timates the deviation (0.78). In contrast, CWRF CTL pro-
duces even higher correlation (0.52) but larger deviation
(1.70). As discussed in Liang et al. (2019b), this increased
spatial variability may partly result from the coarse refer-
ence data that cannot represent actual distribution details.
Of all the cumulus schemes, the control ECP performs best
overall. KFeta correlates with observations more strongly
(0.63), but also overestimates more deviation (1.98). Other

Long-term averaged spatial pattern
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vations. The distance of the simulation to observation indicates the
root-mean-square error. The black dot (OBS) represents the perfect
score with a unit correlation and deviation



Enhancing summer extreme precipitation prediction in the Yangtze River Basin through CWRF...

cumulus schemes have systematically lower scores than
ECP, with smaller pattern correlations (0.29-0.46) or larger
spatial deviations (e.g., 1.91-2.01 by Donner and Tiedtke).
While ECP is combined with the alternate schemes in other
physical processes, CWREF skills resemble CTL, producing
generally higher correlations (0.50-0.67) and comparable
deviations (1.25—1.85) in R95P than SDII. One exception is
that the CAML radiation scheme substantially overestimates
spatial deviation (2.16).

For R95T (Fig. 2¢), ERI has a small negative pattern
correlation with observations (-0.05) and substantially
overestimates spatial deviation (1.31). As compared with
SDII and R95P, all CWRF ECP members systematically
decrease pattern correlations (0.09-0.27) and more signifi-
cantly overestimate spatial deviations (1.46-2.06). The result
indicates that it is more challenging to capture R95T. The
BMLJ, Tiedtke, and Donner cumulus schemes produce lower
correlations (0.01-0.07) or greater deviation (e.g., 2.15 by
Tiedtke), whereas the KFeta, Grell, NSAS, and Emanuel
schemes increase correlations (0.10-0.18) and reduce the
overestimation of deviations (1.01-1.74).

For CDD (Fig. 2d), as compared with SDII, R95P and
RO95T, all CWRF ECP members significantly increase pat-
tern correlations (0.61-0.70), albeit producing spatial devia-
tions with a wide range (1.50-2.36). Thus, ECP has a higher
skill in simulating consecutive dry days than precipitation
intensity and extremes. The ECP has a slightly higher pat-
tern correlation (0.68) than ERI (0.64) and overestimates
spatial deviation (1.83) opposite to ERI’s systematic under-
estimation (0.81). Other cumulus schemes generally show
less skills than ECP, with systematically lower pattern corre-
lations (0.37-0.65) or substantially overestimated deviations
(e.g., 2.26-2.37 by Tiedtke and BMJ).

The above comparisons show large sensitivity to cumu-
lus parameterization schemes in simulating spatial pattern
of extreme events, which is consistent with previous stud-
ies (Sun and Liang 2020a, 2023a, b). The sensitivity also
differs among extreme precipitation indices—the CWRF
downscaling ability is generally more skillful in capturing
R95P and CDD than SDII and R95T. To quantify overall
skills in reproducing long-term averaged spatial patterns
of extreme precipitation characteristics, Fig. 3 displays the
ranks among ERI and 28 CWRF members on each extreme
precipitation index. The ranking is based on the compre-
hensive rating metrics (MR) defined in the Supplementary
Information equation (S2) following Jiang et al. (2015).
The MR measures the composite performance of three key
statistics (pattern correlation, spatial deviation, RMSE) in
the Taylor diagram. It is arranged in the increasing order
such that a smaller rank number (more red boxes) indicates
an overall higher skill. The result highlights a few CWRF
physics configurations that notably improve the overall skill
over CTL. In particular, the CAML, CCCMA, and CAM

radiation schemes and the NSAS cumulus scheme are overall
more skillful when they replace GSFCLXZ and ECP respec-
tively in the CTL configuration. Thus, there is still large
room for further improvement in simulating YRB extreme
precipitation by refining model physics representation or
through optimizing the multi-physics ensemble.

3.2 Impact of physics configurations on extreme
precipitation interannual variations

Figure 4 compares the performances among ERI and 28
CWREF physics configurations in capturing observed YRB
regional mean interannual variations of summer extreme
precipitation indices during 1980-2015. For all the extreme
precipitation indices, ERI produces good correlations
(0.52-0.79) and reasonable deviations (0.76—1.21). This is
expected since ERI has assimilated pseudo rainfall obser-
vations on a daily basis that should have contained most
authentic temporal features (Liang et al. 2019b; Sun and
Liang 2020a). In contrast, CWRF CTL produces smaller
interannual correlations with observations (0.41-0.64) and
larger temporal deviations (1.32-2.46). The CWRF downs-
caling ability is still remarkable as compared to other models
(Liang et al. 2019b).

Among all eight cumulus schemes, ECP exhibits an over-
all outstanding performance. In contrast, the KFeta scheme
simulates comparable interannual correlations (0.40-0.57)
and less overestimates temporal deviations (1.28-1.70) for
R95T and CDD. In addition, NSAS produces a slightly
smaller correlation (0.54) and more realistic deviation
(1.18) than ECP for SDII. Other cumulus schemes perform
systematically worse, having much lower correlations and
substantially underestimated (e.g., BMJ for SDII and R95P)
or overestimated (e.g., Tiedtke and Donner for SDII and
CDD) deviations. In particular, BMJ fails completely, with
the worst or even negative correlations for SDII and R95T.

Other physical processes’ schemes are relatively clustered
for SDII, R95P, and R95T, producing interannual correla-
tions between 0.45 and 0.67 and deviations between 0.85
and 1.60. They are more scattered for CDD, producing
lower correlations (0.25-0.46) and excessively high devia-
tions (1.34-3.26). A few members, such as the Etamp_new
microphysics scheme, the YSU boundary layer scheme,
and the NOAH surface scheme, perform persistently worse
than the majority, having systematically lower correlation
(0.23-0.50) or larger variability (1.16-3.26). These results
indicate that CWRF well reproduces observed SDII, R9SP
and R95T interannual variations in the YRB, although it is
more difficult to capture CDD. Most models have limited
skills in simulating CDD interannual variations during the
summer monsoon (Jiang et al. 2015).

Figure 5 compares the performance ranks among ERI and
28 CWRF members on simulating interannual variations of
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Fig.3 The rank on the ability
to simulate the climatologi-

cal mean spatial distribution
for each extreme precipita-

tion index over the YRB, in
terms of corresponding spatial
correlation (left), normalized
standard deviation (center), and
root-mean-square error (right):
a SDII, b R95P, ¢ R95T, and d
CDD. The number listed in each
grid cell represents the respec-
tive rank. The ordering models
names from top to bottom
follow their averaged ranking
across all indices

extreme precipitation indices. The Morrison plus 3d aero-
sol or Morrison microphysics scheme improves CWRF
skills when replacing the GSFCGCE scheme in the control
CWRF. Immediately following CTL, the CAML, CCCMA
and CAM radiation schemes produce good skills as the GSF-
CLXZ scheme. Note that these radiation schemes are also
identified earlier as top-skilled in reproducing the long-term
average spatial distributions of extreme precipitation. They
are preferred for CWREF to consistently capture both spatial
pattern and interannual variability of extreme precipitation
over the YRB.

3.3 Overall model skill and optimal multi-physics
ensemble

Figure 6 shows the scattering relationship in terms of the
MR ranks between spatial distributions and interannual vari-
ations among ERI and 28 CWREF physics configurations.
The ranks among all models in capturing observed spatial
distributions and interannual variations over the YRB are

@ Springer

RA_CAML

RA_CCCMA

RA_CAM

CU_NSAS 29
RA_CAWCR

CL_Prognostic 27
SF_NOAH o5
MP_Morrison+3d aerosol

MP_Morrison 23
BL_UW o1
MP_Lin - _5
MP_WSMe6 —19 -§
BL_MYNN P ‘_g
ERI - @
MP_Thompson —15 -'g
BL_YSU T 2
cTL ] 13 f
BL_Boulac 11 &
CU_KFeta ] T
RA_RRTMG °
BL_ACM L7
MP_Thompson-aero ]
CU_Grell 5
RA_FuLiou 3
MP_Etamp new

CU_Emanuel 1
CuU_BMJ

CU_Donner

CU_Tiedtke

correlated with a coefficient of 0.63, which is statistically
significant at the 5% significance level. Thus, the models
that more accurately capture the spatial pattern tend to more
realistically reproduce the interannual variation of regional
extreme precipitation, and vice versa. Similar significant
correspondences were reported among CMIPS5 models in
simulating extreme precipitation over eastern China (Jiang
et al. 2015). It is interesting to note that ERI ranks much
higher for interannual variation (0.84) than spatial pattern
(0.53). So do CWRF CTL and the configurations using Mor-
rison or Morrison plus 3d aerosol microphysics scheme.
The ranks differ largely among the CWRF physics con-
figurations. Among six major physical processes, the highest
sensitivity is identified to cumulus schemes which show the
largest scattering range of the ranks. Among all eight cumu-
lus schemes, ECP is overall superior in capturing both spa-
tial pattern and interannual variability, having balanced high-
est spatial and temporal MR values. Although NSAS ranks
higher than ECP for the spatial distribution, it ranks sig-
nificantly lower for the interannual variation, producing less
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Fig.4 Same as Fig. 2 except for simulating interannual variability of summer four indices during 1980-2015 averaged over the YRB. Shown are
the corresponding interannual correlations (azimuthal) and normalized standard deviations (radius) compared with observations

intense precipitation and more consecutive dry days (Fig. 1).
Other cumulus schemes rank much worse. Especially, BMJ,
Tiedtke, and Donner schemes perform the worst, with MR
values systematically less than 0.3. The result is consistent
with the conclusion of Zhang et al. (2023) that ECP overall
best represents P95 spatial distribution in China, while the
other four schemes either overestimated (KFeta, Tiedtke)
or underestimated (BMJ, NSAS) it. They showed that, in
Central China (YRB), summer P95 interannual departures
simulated by ECP are mainly associated with positive mois-
ture convergence (27%) and negative convective available
potential energy (18%) departures. The ECP better captures
the balance of the two opposite factors for a more realistic
P95 simulation in the YRB.

We can easily identify the five top-ranked CWRF con-
figurations using the Morrison and Morrison plus 3d aerosol
microphysics schemes and the CCCMA, CAML and CAM
radiation schemes, which produce the spatial and tempo-
ral MR values larger than 0.56 and 0.53 respectively. As
coupled with the ECP cumulus scheme, these radiation and
microphysics schemes significantly enhance the CWREF abil-
ity to capture observed spatiotemporal variations of extreme

precipitation over the YRB. The result implies that realistic
extreme precipitation simulations require improved system
coupling especially among cumulus, microphysics and radi-
ation processes (Sun and Liang 2020a, b).

Given the superior performance of ECP to other cumulus
schemes, our best multi-physics ensemble mean (BMPE)
integrates ECP with the Morrison and Morrison plus 3d aer-
osol microphysics schemes as well as the CCCMA, CAML,
and CAM radiation schemes. This BMPE is designed to
enhance CWRF’s ability to accurately capture extreme pre-
cipitation characteristics in the YRB. The BMPE construc-
tion is detailed in the Supplementary Information. Figure 7
compares the geographic distributions of the four extreme
precipitation indices among observations, ERI, CWRF CTL,
and BMPE. Also shown are the corresponding spatial pat-
tern correlation, RMSE, and bias over the YRB between
each simulation and observations.

The observed rainfall intensity (SDII) shows maxima of
more than 16 mm day™' over broad areas along the Yang-
tze River, especially in the middle and lower reaches of the
basin (Fig. 7a). ERI totally misses this intensity core, with
peaks smaller than 13 mm day~! and only in the upper reach,
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Fig.5 Same as Fig. 3 except
for interannual variability for
each extreme precipitation
index averaged over the YRB,
in terms of corresponding
interannual correlation (left),
normalized standard deviation
(center), and root-mean-square
error (right)

leading to a negative pattern correlation and a large RMSE
with a systematic underestimation by 1.6 mm day~" as aver-
aged over the YRB. In contrast, CWRF CTL realistically
captures the core with a sufficient intensity and reasonable
distribution, notably increases the pattern correlation by 0.46
and reduces RMSE by 10% with a slight underestimation
by 0.2 mm day~' on average. BMPE further improves the
CWREF skill over its CTL, increases the correlation by 0.11
and reduces RMSE by 4%, although it shrinks the area of the
core with a larger underestimation of average 1.0 mm day ™.

For R95P (Fig. 7b), ERI still produces insufficient
amounts, causing a large dry bias of 7.6 mm as averaged
over the YRB. Again, CWRF CTL better captures the spa-
tial distribution, increasing the pattern correlation over
ERI by 0.14, but substantially overestimates the amount by
14.1 mm on average, increasing RMSE by 53%. BMPE fur-
ther improves the CWREF skill over its CTL, increases the
correlation by 0.12 and largely reduces both RMSE (by 19%)
and average wet bias down to 1.1 mm.
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For R95T (Fig. 7c), CWRF CTL outperforms ERI,
increasing the pattern correlation by 0.14 and reducing
RMSE by 10%. As compared with observations, CTL simu-
lates an expanded coverage of strengthened R95T, causing
a positive bias of 0.8% as averaged over the YRB, whereas
ERI substantially underestimates both the coverage and
strength, causing a larger negative bias of 3.1%. BMPE sig-
nificantly improves the CWREF skill over its CTL, increasing
the correlation by 0.14 and reducing both RMSE by 18% and
overestimation bias down to 0.5%.

For CDD (Fig. 7d), ERI systematically underestimates
the magnitude by 2.7 days as averaged over the YRB, lead-
ing to the common drizzling problem. On the other hand,
CWRF CTL overestimates the magnitude by 2.0 days on
average, eliminating the drizzling problem albeit overdo-
ing it somewhat. BMPE improves the CWREF skill over its
CTL, increasing the pattern correlation by 0.03 and reducing
RMSE by 11%, but still has a large overestimation bias by
2.2 days.
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In summary, CWRF CTL enhances ERI skill for extreme
precipitation, while BMPE further advances CTL ability.
This consistent improvement from ERI to CTL to BMPE
spans all eleven indices of extreme precipitation, includ-
ing the additional P95, AEPI, R95N, R10, CWD, RX5day,
and PMAX (Table S1). A detailed discussion of skills on
these additional indices is provided in the Supplementary
Information.

Figure 8 compares the geographic distributions of sum-
mer interannual correlations with observations between
CWRF CTL and BMPE simulated four extreme precipita-
tion indices during 1980-2015. Shown also are the density
functions that depict the frequency distributions of the cor-
relations at all CWRF grids within the YRB along with
their respective percentage of areas that have significant
correlations. We consider correlations greater than 0.28
to be indicative of skillful signals as they are statistically
significant at the 5% significance level by the one-tail stu-
dent’s t-test. CWRF CTL captures observed interannual
anomalies over 28.5%, 24.8%, 15.9%, and 26.9% areas of
the YRB for SDII, R95P, R95T, and CDD, respectively.
Most of these signal areas occur along the Yangtze River
and to the south of its middle and lower reaches. Skills
are lacking mainly in the regions between the Yellow and
Yangtze Rivers. BMPE largely improves the skills over
CTL for all the four indices as clearly shown by the sys-
tematic shift of the frequency density curve toward the

Spatial distribution

higher correlation end. BMPE captures observed interan-
nual anomalies over 47.6%, 40.8%, 28.9%, and 33.5% areas
of the YRB for SDII, R95P, R95T, and CDD, respectively.
The added values of BMPE to CTL are the expanded cov-
erages of significant correlations with observations by
19.1%, 16.0%, 13.0%, and 6.7% areas of the YRB for the
four indices. There remain large areas (52.4-71.1%) where
correlations are insignificant. This indicates the big chal-
lenge in capturing extreme precipitation interannual vari-
ations over the YRB, where prevailing convective systems
during the summer monsoon are difficult to predict (Liang
et al. 2019b; Li et al. 2020).

Figure 9 compares interannual variations of CWRF
CTL and BMPE simulated with observed anomalies of the
four extreme precipitation indices averaged over the YRB.
Also shown are the interannual correlation coefficient and
RMSE between the simulated and observed anomalies
during 1980-2015 for each index. The CTL captures well
observed anomalies with correlations of 0.59, 0.64, 0.51,
and 0.41 for SDII, R95P, R95T, and CDD, respectively.
BMPE improves the SDII, R95P, and R95T skills over
CTL, increasing the correlations with observations by
0.07, 0.04, and 0.07 and reducing RMSE by 17, 12, and
17%, respectively. In contrast, for CDD, BMPE reduces
from CTL RMSE by 30% but also the correlation by 0.05.
As discussed earlier, it is more difficult to capture CDD
variations.
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Fig.7 Spatial distributions of summer four indices as observed
(OBS), ERI, CWREF control (CTL), and the best multi-physics ensem-
ble mean (BMPE): a SDII, b R95P, ¢ R95T, and d CDD. Listed are

3.4 Regional circulations associated with extreme
precipitation biases

To explore possible causes for extreme precipitation biases,
CWRF modeled atmospheric circulations in CTL and the
five top ranked configurations that differ only in micro-
physics (Morrison, Morrison plus 3d aerosol) and radiation
(CCCMA, CAML, CAM) schemes as well as BMPE are
compared with ERAS. See the Supplementary Information
for the reason selecting ERAS as the reference. Note that the
changes in CWRF experiments are only by switching one
scheme from CTL, so the circulation differences are induced
by that specific physics representation. The EAJ and the
Hadley cell are two distinct circulation systems dominating
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the corresponding spatial pattern correlation (corr), root-mean-square
error (rmse), and bias over the YRB between each simulation and
observations

east China monsoon rainfall (Liang and Wang 1998), and
hence are elaborated in the comparison below. Figures 10
and 11 compare the summer mean circulation character-
istics, including 200/850 hPa wind, 500 hPa geopotential
height, and column moisture flux geographic distributions,
as well as latitude-altitude cross-sections of wind and latitu-
dinal variations of R95P biases from observations averaged
across eastern China (105°-122°E), where the YRB covers
latitudes around 24°-34°N.

As revealed in ERAS, the strong westerly jet stream
prevails at 200 hPa, with the maximum speed exceeding
30 m s~! over Xinjiang and the jet axis located at approxi-
mately 40°N (Fig. 10). The EAJ exit stretches across North
China to Japan, having the YRB persistently beneath its core
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Fig.8 Spatial distributions of CWRF CTL and BMPE simulated
1980-2015 summer four indices interannual correlations with obser-
vations: e SDII, f R95P, g R95T, and h CDD. Also shown (a—d)
are the corresponding frequency density functions at all grids over

to the right (south) side. The western Pacific subtropical
high, depicted by the 5,860-gpm contour of 500 hPa geo-
potential height, occupies the southeast coasts. Meanwhile,
two branches of low-level southerly monsoon flows sweep
eastern China, one carrying water vapor from the Bay of
Bengal and the other from the South China Sea and the west-
ern Pacific Ocean, which generate high moisture flux con-
vergence over the south of the Yangtze River. The secondary
meridional circulation crossing the EAJ exit in accord with
the Hadley circulation produces prevailing ascent motions,
resulting in major precipitation in the YRB (Figs. 11 and
S4). ERAS tends to overestimate the ascent strength, caus-
ing significant wet R95P biases along the Yangtze and Pearl
Rivers.

the YRB. The correlations greater than 0.28 as marked by the verti-
cal lines denote the 5% significance level with the one-tail student’s
t-test. Labeled at the top of each panel are the respective percentage
of areas over the YRB that have significant interannual correlations

Compared with ERAS, the control CWRF physics con-
figuration weakens the jet stream, shrinking the EAJ exit
westward to Hebei (Fig. 10). The subtropical high is slightly
extended to northwest and accompanied with stronger
low-level southwesterlies along its western ridge, causing
stronger moisture fluxes to the upper reaches of the Yang-
tze and Peral Rivers but weaker fluxes in the lower reaches
near the coast. The EAJ underestimate, up to 3 m/s over
the southern North China and northern YRB areas, leads to
stronger ascents directly beneath its exit, while the Hadley
circulation intensification causes stronger ascents in South
China (Fig. 11). Between the two ascending branches,
descending motions occur in the southern YRB. As a result,
the CWRF CTL reduces ERAS wet RO5P biases in the YRB
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Fig.9 Interannual anomalies of summer four indices during 1980—
2015 averaged over the YRB as observed (OBS), CWRF CTL, and
BMPE: a SDII, b R95P, ¢ R95T, and d CDD. Listed are the corre-

but increases them in North and South China (Figs. 11 and
S4).

When CWREF couples the ECP cumulus and Morrison
or Morrison plus 3d aerosol microphysics schemes, the jet
stream is further weakened and its EAJ exit is shifted far-
ther westward to Shanxi. Although the subtropical high and
associated low-level southerlies over eastern China are better
simulated, the moisture convergence is underestimated over
larger YRB areas than CTL. The larger EAJ underestimate,
up to 4 m/s over the southern North China and northern
YRB areas, reduces upward motions and rainfall beneath its
exit, while the more intensified Hadley circulation enhances
upward motions and rainfall in South China, compared to
CTL. These lead to small dry R95P biases in the YRB and
decreased wet biases over North China but increased wet
biases over South China. Using the Morrison versus Mor-
rison plus 3d aerosol scheme results in marginally reduced
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sponding interannual correlation (corr) and root-mean-square error
(rmse) with observations

overall circulation biases. Consequently, the former exhibits
comparatively improved performance in simulating extreme
precipitation.

When CWRF adopts the CCCMA radiation scheme, the
EAJ exit is shifted westward to Shanxi. Relative to CTL,
the western ridge of the subtropical high exhibits a more
accurate inland extension. This, coupled with strengthened
low-level southwesterlies over the southern YRB and South
China, contributes to intensified moisture fluxes south of the
Yangtze River but weakened the fluxes to the north. Com-
pared to CTL, the larger EAJ underestimate, up to 4 m/s over
the southern areas of North China, produces weaker ascend-
ing motions in North China, while the widened Hadley cir-
culation yields stronger ascending motions in the southern
YRB and South China. As a result, the CCCMA reduces
CTL’s wet RO5P biases in North China but increases them
in the YRB and South China.
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Fig. 10 Climatology of summer mean wind at 850 hPa (m s~', vec-
tors) and vertically integrated (1000-300 hPa) moisture flux (kg
m~! 571, color shadings) based on ERAS and their respective depar-
tures (from ERAS) simulated by seven CWREF physics configurations.

When CWREF adopts the CAML radiation scheme, the
EAJ exit is shifted eastward to Hebei. This shift is accompa-
nied with an eastward displacement of the subtropical high
and its inland ridge extension as well as the low-level south-
westerlies, causing northeasterly flow perturbations in North

Overlaid are the corresponding wind speed at 200 hPa (m s~, dashed
contours starting from 20 at an interval of 5) and 500-hPa geopoten-
tial height’s 5860 gpm (red solid contour)

China and north of the Yangtze River. Consequently, the
moisture flux convergence is significantly underestimated in
North China and the northern YRB but enhanced in South
China. The EAJ underestimate, by 2.5 m/s in the south-
ern areas of North China and 3 m/s in the YRB, produces
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Fig. 11 Climatology of summer mean latitude-altitude wind circula-
tion distributions averaged across 105°-122°E based on ERAS5 and
their respective departures (from ERAS) simulated by seven CWRF
physics configurations. Color shadings and arrows denote the zonal
(m s~!) and meridional (m s~Y)/vertical (10~ m s~") wind compo-

weaker ascending motions north of the Yangtze River, while
the significantly intensified Hadley circulation yields much
stronger ascending motions south of the Yangtze River.
Compared to CTL, these changes cause the monsoon rain-
band shifted southwards. As a result, the CAML scheme
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nents, respectively. Overlaid are the corresponding biases (from
observations) in latitudinal variations of R95P (mm, solid curves with
the scale on the right). The YRB spans latitudes around 24°-34°N,
while the approximate bands for Northeast, North, and South China
are marked by NE, NC, and SC, respectively

notably reduces CTL’s wet R95P biases in North China but
increases them in the YRB and more substantially in South
China.

Contrarily, the adoption of the CAM radiation scheme
results in a westward shift of the EAJ exit to Ningxia and
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an expansion of the subtropical high northwestward, with
its ridge covering larger areas of southeastern China. Com-
pared to CTL, these changes cause enhanced moisture fluxes
across an extensive region stretching from the western YRB
to Northeast China. Simultaneously, moisture fluxes are
diminished in the eastern YRB and South China due to low-
level perturbations of southerly and easterly flows, respec-
tively. The larger underestimate of the EAJ exit by 5 m/s in
southern North China, coupled with the low-level easterly
flow overestimate by 3 m/s in South China, leads to weaker
ascending motions north of the Yangtze River than CTL.
Thus, the CAM scheme reduces CTL’s overall wet RO5P
biases in North and South China but produces significant
dry biases in the YRB.

On average of the five top-ranked CWRF configurations
(Morrison, Morrison plus 3d aerosol, CCCMA, CAML,
CAM), BMPE more accurately captures the subtropical high
and low-level southerlies over eastern China, although still
shifting the EAJ exit westward to Shanxi and underestimat-
ing moisture fluxes in the YRB. The EAJ exit underestimate
by 4 m/s in southern North China leads to weaker ascending
motions in North China and northern YRB than CTL, while
the slightly intensified Hadley circulation causes stronger
ascending motions in southern YRB and South China. Due
to the error cancelation within the chosen configurations,
BMPE yields minor wet R95P biases in the YRB and North
China. However, large wet biases persist in South China.

Compared to ERAS, ERI produces systematically weaker
westerly jet stream at 200 hPa over the entire CWRF domain,
shrinking the EAJ exit westward to Hebei and simulating
easterly departures in North China and northern YRB over
1.2 m/s as well as in South China over 2.5 m/s (Fig. S5).
These alterations suppress ascending motions and decrease
rainfall in the YRB and more strongly in South China.
Therefore, the general underestimation of the EAJ exit in
CWREF may be largely driven by the ERI forcing errors. Our
results highlight the importance of physics representation for
realistic regional extreme precipitation simulation.

4 Conclusions and discussion

This study employs the CWRF downscaling and its skill-
ful multi-physics ensemble approach to enhance summer
extreme precipitation prediction over the YRB. It quanti-
fies the CWREF ability in downscaling spatial patterns and
capturing interannual variations in four key extreme pre-
cipitation indices during 1980-2015, while comparing
the results against the driving ERI reanalysis and ranking
performance across 28 different combinations of physics
parameterizations. We embrace a comprehensive evalu-
ation strategy, incorporating multiple metrics across all
indices alongside understanding of the linkages to regional

circulation patterns. The skill assessment comprises spatial
and temporal correlation, root-mean-square-error (RMSE),
standard deviation, and bias of each index, as well as mean
absolute relative bias (MARB) of all indices and a compre-
hensive ranking metric (MR) based on relative scores of
correlation, deviation, and RMSE among these indices. The
finest CWREF physics configurations are identified through
MR ranking of all four indices to construct the best multi-
physics ensemble (BMPE). This ensemble is compared
with the control CWREF to explore skill enhancement from
varying physics representation and gain insights into model
biases of YRB extreme precipitation and their connections
to regional circulation patterns. The main findings are sum-
marized below:

First, ERI notably underestimates all four indices, despite
its extensive utilization of comprehensive data assimilation.
Conversely, the control CWRF downscaling substantially
enhances the ability to accurately capture observed spatial
patterns of extreme precipitation. The skill enhancements
are particularly remarkable for SDII and R95T, as these
indices display spatial structures and magnitudes that ERI
struggles to replicate. The CWRF downscaling demonstrates
considerable added value in capturing distinctive regional
characteristics of extreme precipitation, achieved through
enhanced physics representations. Of particular note, CWRF
integrates the ECP scheme, which employs dynamic selec-
tions and optimal cumulus parameterization closure assump-
tions, differentiating between land and oceans (Qiao and
Liang 2015, 2016, 2017). This integration leads to a signifi-
cant enhancement in total precipitation intensity and rainy-
day frequency (Sun and Liang 2020b).

Second, the CWRF downscaling capability varies across
different extreme precipitation indices. Broadly, CWRF
tends to underestimate SDII and R95P, while overestimat-
ing R95T and CDD. Among most physics configurations,
spatial distributions of R95P and CDD are better captured
than SDII and R95T. These configurations also reasonably
replicate interannual variations across all indices except
CDD. The MR analysis underscores a noteworthy pattern:
configurations that aptly capture spatial distributions tend to
reproduce interannual variations more accurately in regional
extreme precipitation, and vice versa.

Third, CWRF downscaling skills exhibit substantial vari-
ability among various physics configurations, with cumulus
parameterization being the most influence, evident by its
wide-ranging impact across six primary physical processes.
Of all eight cumulus schemes, the control ECP overall dem-
onstrates remarkable proficiency in capturing both spatial
patterns and interannual variations of extreme precipitation.
While NSAS excels in simulating mean spatial patterns, its
performance for interannual variations is much weaker,
resulting in insufficient intense precipitation amounts and
an elevated number of consecutive dry days. The remaining
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cumulus schemes generally show lower skills, with BM]J,
Tiedtke, and Donner notably underperforming and display-
ing pronounced biases.

Fourth, the five highest MR-ranked CWRF configura-
tions incorporate the Morrison and Morrison plus 3d aero-
sol microphysics schemes, alongside the CCCMA, CAML
and CAM radiation schemes, which replace the control
GSFCGCE and GSFCLXZ schemes respectively. Coupling
ECP cumulus scheme with these microphysics and radia-
tion schemes significantly enhances the CWRF capability
to accurately capture observed spatiotemporal variations in
extreme precipitation across the YRB. While certain under-
estimations of SDII and overestimations of CDD still per-
sist in localized areas, the ensemble average of these skill-
enhanced physics configurations (BMPE) more faithfully
reproduces observed geographic distributions and interan-
nual anomalies for all four indices, surpassing the perfor-
mance of the control CWRF.

Fifth, differences in EAJ and Hadley cell circulations,
as well as their associated vertical motions and moisture
fluxes, exhibit strong correlations with YRB extreme pre-
cipitation biases. The control ECP and its members com-
bined with the CCCMA and CAML radiation schemes
simulate slightly weaker EAJ and expanded Hadley circu-
lations, fostering stronger ascending motions in the YRB.
These changes coincide with stronger low-level southerly
flows over southeastern China, accompanied by enhanced
moisture transport from the South China Sea and the west-
ern Pacific warm pool-resulting in notable wet R95P biases
in the YRB. In contrast, the Morrison or Morrison plus 3d
aerosol microphysics and CAM radiation schemes simulate
relatively weakened EAJ and Hadley circulations that sup-
press strong ascending motions in the YRB. They also pro-
duce less intense moisture fluxes, contributing to significant
dry biases in the YRB. On the other hand, BMPE adeptly
captures the overall summer mean circulation features and
displays minimal wet biases in the YRB. The favorable out-
come of the ensemble mean primarily stems from the effec-
tive mitigation of errors among the chosen configurations.

To further explore the impact of model resolution on the
CWRF’s ability to downscale extreme precipitation, we
considered the interlinkage between physics representation
and spatial resolution, particularly the scale dependence of
convection parameterization (Weisman et al. 1997; Jung and
Arakawa 2004; Yu and Lee 2011; Field et al. 2017). Addi-
tional CWRF experiments are conducted using the control
physics configuration at 30, 15, and 10 km grid spacings to
determine the resolution sensitivity. In these experiments,
all surface boundary conditions are constructed accordingly
to match the increased resolution (Liang et al. 2005; Xu
et al. 2014). Figure 12 contrasts summer geographic distri-
butions of the four extreme precipitation indices for the year
2003 across these different grid spacings. Finer resolution

@ Springer

simulations are mapped onto the 30-km grid for uniform
analysis, assessing mean biases, spatial correlations, and
RMSEs with respect to observations over the YRB. The
simulations at the 15-km grid spacing generally outper-
form those at 30-km across the YRB, increasing spatial
pattern correlations with observations and generally reduc-
ing RMSEs, although some biases shift, notably for RO5P.
Conversely, the 10-km simulation shows a consistent decline
in performance compared to the 15-km run, with reduced
pattern correlations for most indices except SDII as well as
increased RMSEs and biases except for CDD.

Convection-permitting model (CPM) simulations may
improve extreme precipitation prediction. Liang et al.
(2019a) systematically explored the efficacy of various WRF
model configurations of grid nesting (from 30, 15, 9, 5, 3
to 1 km, single or double or triple nested grids) and con-
vection treatment (the traditional or scale-aware cumulus
parameterization or the explicit convection) for Jiangsu’s
Meiyu rainfall forecasts. They concluded that the double
nested approach combining cumulus parameterization at a
15-km grid with explicit convection at a 1-km grid offers
an effective solution to more accurate rainfall forecasting,
particularly for clear and heavy to extreme rain events. This
approach avoids the challenge in representing convections
across scales. Such resolution sensitivity in the outer domain
resulted from solely cumulus parameterization. Our result
may indicate that the ECP cumulus scheme performs the
best at 15 km. Dong et al. (2022) showed advantages of the
WREF at the 1.5-km inner grid (resolving convection) over
the 9-km outer grid (parametrizing cumulus) in simulating
extreme precipitation on sub-daily timescales in the Yangtze
River Delta. However, they also identified limitations for the
CPM to capture the duration and coverage of heavy precipi-
tation and the occurrence of longer-duration events. These
studies underscore the complexity of high-resolution model
abilities in capturing extreme precipitation characteristics.
Improvements cannot be made by CPMs without enhancing
physics representations to fit the refined resolution. While
important to a complete understanding of extreme precipita-
tion predictability, CPM simulations are impossible due to
the lack of computing resources and beyond the scope of this
study, whose main objective is to determine skill depend-
ence on model physics representation at 30-km and identify
those configurations that can enhance their ensemble perfor-
mance. Nonetheless, our results provide solid evidence for
the China’s National Climate Center to improve its opera-
tional seasonal forecasts by optimizing CWRF multi-physics
ensemble with a reduced number of but skillful configura-
tions than the current suite, preferably at 15-km as comput-
ing resources permit.

Further endeavors are essential to enhance the ensem-
ble’s performance by fine-tuning the weights for a broader
suite of superior and diverse configurations, guided by
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CWRF.15km

(a) SDII (mm/d)

CWRF.10km

F

(b) R95P (mm)

(c) RO5T (%)

% rmse 8.89

/D bias 0.72

(d) CDD (d)

Fig. 12 Same as Fig. 7 except for the four indices in the summer of the year 2003 as observed (OBS) and simulated by CWRF control (CTL) at
the respective grid spacings of 30, 15, and 10 km: a SDII, b R95P, ¢ R95T, and d CDD

comprehensive model rankings across both spatial and tem-
poral dimensions (Liang et al. 2007, 2012; Tang et al. 2021).
The current study has confined its selection to only five top-
ranked configurations, which, due to their limited diversity,
may not offer sufficient spread to adequately address com-
pensating errors for an optimal ensemble outcome. Moreo-
ver, while also discussing seven other indices, the focus of
our skill assessment has centered around the four indices that
capture the fundamental characteristics of extreme precipi-
tation. Expanding the range to encompass more representa-
tive metrics, not solely for extreme precipitation but also for
other statistical moments and even the entire daily frequency
distribution, can lead to a more robust optimization. Despite
these considerations, our findings stand as an encouraging

testament, underscoring the substantial potential of CWRF
downscaling to elevate extreme precipitation predictions
through the enhancement of its physics representations and
the strategic optimization of its multi-physics ensemble.
These physics enhancement and ensemble optimization can
be integrated with resolution refinement to further increase
prediction skill.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00382-024-07153-x.
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