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Abstract

We consider a multiple access channel (MAC) problem where several users communicate with a base station and in which the users

may have different applications or communication purposes for using the network, which is reflected via associated communication metrics.

Specifically, we use throughput as the metric to reflect regular data transmission purposes, and latency, modeled by the inverse throughput,

is used to reflect data transmission speed as another metric. The problem is formulated as a non-zero sum game. The equilibrium is derived

in closed form. Stability in communication for such a heterogeneous network is established by proving the uniqueness of the equilibrium,

except for particular cases where stability still can be maintained via cooperation of users with throughput metric or their switching to latency

metric.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Problems involving mobile devices communicating wire-

lessly with a base station (BS) and allocating resources in

a decentralized manner are multi-objective by their nature,

and have been studied widely under a game theoretic frame-

work [1]. For example, game theory has been used in [2±4]

to study a fading MAC scenario, and, in [5±7], to study an

orthogonal frequency division multiplexing (OFDM) scenario.

In all of these works [2±7], the user’s communication utility

(metric) is throughput. Meanwhile, in [8], latency, modeled

by the inverse signal-to-interference-plus-noise ratio (SINR),

was considered as communication metric. Throughout all

of the above papers, communication networks were consid-

ered homogeneous in the sense that all users have the same

communication metric.

Motivation of this research. First note that due to the open

access nature of wireless networks the users might differ in

its communication purposes or implemented applications, and

hence the users may need to address different communication
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metrics, for example, throughput and latency as metrics to

reflect regular and emergency communication purposes, re-

spectively. In this sense all of the above papers deal with

multi- user communication where all the users have a similar

purpose or application, which may not correspond to a realistic

network scenario. The other example implementing different

metrics might be IoT (Internet of Things) sensor nodes which

are usually widespread in the environment and some of them

might be located in places difficult to serve (say, for empty

battery replacement). Then, throughput metric might suit the

nodes easy to be served meanwhile latency metric might suit

the nodes that are difficult to be served since such metric

allows to control idle mode, i.e., the mode where the node

does not spend resources. The goal of this paper is to study

such a heterogeneous multi-user network by throughput and

latency metrics implemented by different users.

Contribution of the paper. A heterogeneous MAC prob-

lem, where multiple users being administered by a base station

can use either throughput or latency communication met-

rics, is modeled in a game-theoretic framework. To the best

knowledge of the authors such heterogeneous MAC networks

have not been considered in literature. The studied multi-

user networks in literature are homogeneous by implemented

communication metric by users (either each of them imple-

ments throughput or latency metric only). Thus, these studied
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networks are the boundary cases of the suggested generalized

model. Specifically, in this paper the network is a heteroge-

neous one, where some of the users implement throughput

metric, meanwhile the others implement latency metric. To

solve this problem we propose a novel approach to design

an equilibrium in a such heterogeneous network and, in par-

ticular: (a) it is proven that each user in the heterogeneous

network implementing latency metric always has a unique

equilibrium strategy that reflects stability in their communi-

cation, (b) it is proven that in such a heterogeneous network

the users implementing throughput metric might have multiple

equilibrium strategies. Moreover, the conditions, when they

are unique, are established. Also, it is shown that even in

such particular bifurcation cases where multiple equilibrium

strategies arise, stability in communication can be maintained

via either cooperation of such users or their switching to

latency metric.

The most related works on MAC problems to this re-

search are [4,8]. In [4], for a single cell multi-user CDMA

(code-division multiple access) system where each user has

throughput as communication metric equilibrium strategies are

found in closed form and their uniqueness is proven under

assumption that the spreading gain coefficient of the system

is greater than one. In [8], for homogeneous network where

each user has latency as communication metric modeled by

the inverse SINR, equilibrium strategies are found in closed

form and their uniqueness is proven.

The organization of this paper. In Section 2, multi-

user communication model is formulated as a non-zero sum

game, and existence of equilibrium is proven. In Section 3,

dependence of each user’s equilibrium strategy on the total

power of the interference generated by all users implementing

equilibrium strategies is established. In Section 4, auxiliary

notations and results to support the derivation of the equilib-

rium are introduced. In Section 5, equilibrium strategies are

found in closed form. In Section 6, numerical illustrations on

a joint use of latency and throughput metrics in multi-user

communication are provided. Finally, in Section 7, conclusions

are offered.

2. Communication model

We consider a time-slotted flat-fading MAC in a single

cell network [4], in which each mobile terminal (user) from

the set N ≜ {1, . . . , n} of n users is simultaneously sending

data to a BS. Let the strategy of user i be its transmit power

level Pi , with Pi ∈ [0, P i ] and P i is the maximal feasible

power level. Let (Pi , P−i ) be the i th users’ strategy profile,

with P−i ≜ (P1, . . . , Pi−1, Pi+1, . . . , Pn). Let N−i denote the

set of all users except user i .

In this paper we consider heterogeneous communication in-

volving the users belonging to a BS having different communi-

cation purposes reflected by different metrics. Specifically, reg-

ular and fast data transmission communication purposes will

be modeled by throughput and latency metrics, respectively.

The throughput of user i at the BS is given as follows:

Ti (Pi , P−i ) = ln

(

1 +
hi Pi

N +
∑

j∈N−i
h j Pj

)

, (1)

Fig. 1. The communication model between four users, i.e., N = {1, 2, 3, 4},
and the BS where throughput and latency metrics are implemented by two

users, respectively, i.e., NT = {1, 2} and NL = {3, 4}.

where hi is the path gain of user i to the BS, and N is the

ambient noise in the network.

Latency as a communication metric for user i is modeled

here by the inverse throughput [9], i.e.,

L i (Pi , P−i ) = 1/Ti (Pi , P−i ). (2)

Let NT and NL be subsets of users who has throughput and

latency as communication metrics, and they consist of nT and

nL users, respectively (Fig. 1), i.e.,

nT + nL = n and NT ∪ NL = N . (3)

By (3), without loss of generality we can assume that

NT = {1, . . . , nT } and NL = {nT + 1, . . . , n}. (4)

The user with throughput metric, which we call an TM

user, i.e., user i , i ∈ NT , faces a trade-off between an increase

in throughput for the signal received by the BS, and the price

that the user pays for using a specific amount of power that

causes interference in the system which is a linear function of

the user’s power level [4], i.e., Ci Pi for user i , with Ci > 0

being the price per unit power level. The payoff to the user i

is defined as

Vi (Pi , P−i ) = Ti (Pi , P−i ) − Ci Pi for i ∈ NT . (5)

The user with latency metric, which we call an LM user,

i.e., user i , i ∈ NL , faces a trade-off, reflected by payoff

given in (6) below, between a decrease in latency for the signal

received by the BS, and the price that user pays for using a

specific amount of power that causes interference in the system

Vi (Pi , P−i ) = −L i (Pi , P−i ) − Ci Pi for i ∈ NL . (6)

Each user wants to maximize its payoff. Thus, we look

for a (Nash) equilibrium. Recall that (P1, . . . , Pn) is a (Nash)

equilibrium if and only if each of these strategies is the best

response to the others, i.e., the following relations hold

Pi = argmax
{

Vi (P̃i , P−i ) : P̃i ∈ [0, P i ]
}

for i ∈ N . (7)

Denote this non-zero sum game by Γ .

Proposition 1. In game Γ there exists an equilibrium.
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Proof. For i ∈ NT , by (1) and (5), we have that

∂2Vi (Pi , P−i )

∂P2
i

= −h2
i

/

(N +
∑

j∈N
h j Pj )

2 < 0, (8)

meanwhile, for i ∈ NL , by (2) and (5), we have that

∂2Vi (Pi , P−i )

∂P2
i

= −
h2

i

ln3

⎛

⎜

⎜

⎜

⎝

1 +
hi Pi

N +
∑

j∈N−i

h j Pj

⎞

⎟

⎟

⎟

⎠

×

⎛

⎜

⎜

⎜

⎝

2 + ln

⎛

⎜

⎜

⎜

⎝

1 +
hi Pi

N +
∑

j∈N−i

h j Pj

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

(N +
∑

j∈N
h j Pj )

2
< 0.

(9)

Thus, payoff Vi (Pi , P−i ) of user i , i ∈ N , is concave on

Pi . Then, since the set of feasible strategies of each user is

compact, there exists at least one equilibrium [10]. ■

3. Equilibrium strategies and the total power of the

interference generated by all users

In this section we establish the dependence of the users’

equilibrium strategies on the total power of the interference

generated by all users implementing equilibrium strategies.

First, to avoid bulkiness in the formulas, let us introduce an

auxiliary notation for the ratio of fading gain and power cost

as follows:

Hi ≜ hi/Ci for i ∈ N . (10)

Proposition 2. Let (P1, . . . , Pn) be an equilibrium and let P

be the total power of the interference generated by all users

implementing these equilibrium strategies, i.e.,

P =
∑

j∈N
h j Pj . (11)

Then, for each LM user, i.e., for each user i with i ∈ NL , the

following relation holds:

Pi = Pi (P) ≜ min
{

F (N + P, Hi ) /hi , P i

}

, (12)

where

F(x, a) ≜ x
(

1 − exp
(

−
√

a/x
))

. (13)

Proof. Since i ∈ NL , by (1), (2) and (6), we have that

∂Vi (Pi , P−i )

∂Pi

=

hi/(N +
∑

j∈N
h j Pj )

ln2

⎛

⎝1 + hi Pi

/

(N +
∑

j∈N−i

h j Pj )

⎞

⎠

− Ci .

(14)

Then,

∂Vi (Pi , P−i )/∂Pi is decreasing on Pi (15)

such that

lim
Pi ↓0

∂Vi (Pi , P−i )

∂Pi

= ∞ and lim
Pi ↑∞

∂Vi (Pi , P−i )

∂Pi

= −Ci . (16)

Thus, payoff Vi (Pi , P−i ) with i ∈ NL achieves its maximum

in [0,∞) at the unique Pi > 0 such that

∂Vi (Pi , P−i )/∂Pi = 0. (17)

By (10) and (14), Eq. (17) is equivalent to

ln2

⎛

⎜

⎜

⎜

⎝

N +
∑

j∈N
h j Pj

N +
∑

j∈N−i

h j Pj

⎞

⎟

⎟

⎟

⎠

⎛

⎝N +
∑

j∈N
h j Pj

⎞

⎠ = Hi . (18)

By (11), we have that
∑

j∈N−i

h j Pj = P − hi Pi . (19)

Substituting (11) and (19) into (18) implies:

ln2

(

N + P

N + P − hi Pi

)

(N + P) = Hi . (20)

Solving this equation on Pi implies that Pi = F (N + P, Hi ) /hi

with F given by (13). This and (15)±(17) imply that Vi (Pi , P−i )

achieves its maximum in [0, P i ] at Pi given by (12), and the

result follows. ■

Proposition 3. Let (P1, . . . , Pn) be an equilibrium. Then for

each TM user, i.e., for each user i with i ∈ NT , the following

relations hold with P given by (11):

(a) if Hi < P + N then Pi = 0,

(b) if P + N < Hi then Pi = P i ,

(c) if P + N = Hi then each user from users’ subset

Ii ≜ { j ∈ NT : H j = Hi } can have any feasible strategies

such that
∑

j∈Ii

h j Pj = Hi − N −
∑

j ̸∈Ii

h j Pj . (21)

Proof. Since i ∈ NT , by (1) and (5), we have that

∂Vi (Pi , P−i )

∂Pi

= hi

/

⎛

⎝N +
∑

j∈N
h j Pj

⎞

⎠− Ci . (22)

Then, by (22), for a fixed P−i function Vi (Pi , P−i ) achieves

its maximum in [0, P i ] at Pi given as follows:

(i) if

hi

/

⎛

⎝N +
∑

j∈N−i

h j Pj

⎞

⎠ ≤ Ci (23)

then Pi = 0,

(ii) if

Ci ≤ hi

/

⎛

⎝N + hi P i +
∑

j∈N−i

h j Pj

⎞

⎠ (24)
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then Pi = P i ,

(iii) if

hi

N + hi P i +
∑

j∈N−i

h j Pj

< Ci <
hi

N +
∑

j∈N−i

h j Pj

(25)

then Pi ∈ (0, P i ) is such that

hi

/

⎛

⎝N + hi Pi +
∑

j∈N−i

h j Pj

⎞

⎠ = Ci . (26)

By (10) and (11), Eq. (26) is equivalent to N +P = Hi . This,

jointly with (i) and (ii), imply the result. ■

4. Auxiliary notations and results

In this section we introduce auxiliary notations and results

to support the derivation of the equilibrium in closed form in

Section 5.

First note that, by Proposition 3, the TM users’ equilibrium

strategies depend on ratio Hi . Based on this observation, let us

arrange the TM users, without loss of generality, in increase

order by this ratio, and then split such way arranged TM users’

set NT into K subsets N1, . . . ,NK consisting of m1, . . . ,mK

users, respectively, such that each of these subsets consists of

the users with equal ratio Hi . Then,

Hm1
< Hm2

< · · · < HmK
, (27)

with Hm0
≜ 0 and HmK+1

≜ ∞. Thus, NT = ∪k∈KNk with

K ≜ {1, . . . , K }, and for each k ∈ K we have that

Hi = Hĩ for all i ∈ Nk and ĩ ∈ Nk such that i ̸= ĩ . (28)

Let ρk be total fading power gain of users from set Nk , and

Rk be total fading power gain of users from sets Nk, . . . ,NK

implementing the maximal powers, i.e.,

ρk ≜
∑

i∈Nk

hi P i and Rk ≜

K
∑

i=k

ρi for k ∈ K, (29)

and R0 ≜ ∞ and RK+1 ≜ 0.

Let

Φ(x) ≜
∑

i∈NL

min
{

F (x, Hi ) , hi P i

}

(30)

with F given by (13).

Note that the intuition behind the function Φ(x) is that,

by (12), Φ(N + P) is the total fading power gain of all LM

users. In the following proposition we establish monotonicity

properties of this function.

Proposition 4. Function Φ(x) is continuous and concave

in [0,∞). Moreover, Φ(0) = 0, Φ(x) is strictly increasing

in [0, x] and Φ(x) =
∑

i∈NL
hi P i for x ≥ x with x ≜

max
{

F−1
(

hi P i , Hi

)

: i ∈ NL

}

, where for each fixed a > 0,

F−1(·, a) denotes the inverse function to F(·, a).

Proof. By (13), for x > 0 we have that

∂2 F(x, a)

∂x2
= −

a +
√

ax

4x2
exp

(

−
√

a/x
)

< 0, (31)

∂F(x, a)

∂x
= ψ

(

√

a/x
)

exp
(

−
√

a/x
)

, (32)

where ψ(t) ≜ exp(t) − 1 − t/2.

By (31), F(x, a) is concave on x . Note that ψ(0) = 0 and

dψ(t)/dt = exp(t) − 1/2 > 0 for t ≥ 0. Thus, ψ(t) > 0

for t > 0, and, so, by (32), F(x, a) also is increasing on x .

Moreover, by (13), we have that

F(0, a) = 0 and lim
x↑∞

F(x, a)/
√

x =
√

a. (33)

Thus, for fixed a > 0 and y > 0 there is the unique root of

equation F(x, a) = y. This and (30) imply the result. ■

Finally, let us introduce a sequence

Ξ0 ≜ 0, Ξk ≜ Hmk
−Φ(Hmk

) for k ∈ K and ΞK+1 ≜ ∞. (34)

Proposition 5. Rk is decreasing on k.

Proof. The result follows from (29). ■

5. Equilibrium

In this section we derive equilibrium strategies in closed

form.

Theorem 1. In game Γ each LM user has the unique

equilibrium strategy. The TM users also have the unique equi-

librium strategies except the only case (b-ii-3) below where a

continuum of equilibrium strategies arise. Moreover,

(a) the LM users’ equilibrium strategies Pi , i ∈ NL are

given as follows:

Pi = Pi (P∗) for i ∈ NL (35)

with Pi given by (12) and P∗ uniquely given by (38) and (40);

(b) the TM users’ equilibrium strategies Pi , i ∈ NT are

given by (b-i) and (b-ii) with k∗ given by (36) and (39):

(b-i) if

Ξk∗−1 < N + Rk∗ < Ξk∗ (36)

then

Pi =
{

0, i ∈ ∪k∗−1
k=1 Nk,

P i , i ∈ ∪K
k=k∗Nk,

(37)

and P∗ is the unique root in (Hmk∗−1
− N , Hmk∗ − N ) of the

following equation

P∗ = Φ(P∗ + N ) + Rk∗ . (38)

This root can be found via the bisection method;

(b-ii) if

N + Rk∗ < Ξk∗−1 ≤ N + Rk∗−1 (39)

then

P∗ = Hmk∗−1 − N (40)

and

(b-ii-1) if i ∈ ∪k∗−2
k=1 Nk then Pi = 0,

(b-ii-2) if i ∈ ∪K
k=k∗Nk then Pi = P i ,
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(b-ii-3) each user i such that i ∈ Nk∗−1 can have any

feasible strategies such that
∑

j∈Nk∗−1

h j Pj = Ξk∗−1 − Rk∗ − N . (41)

Theorem 1 implies that each LM user always has a unique

equilibrium strategy. The TM users also have unique equilib-

rium strategies except the subset Nk∗−1 of users in case (b-ii-3)

when this set consists of at least two users. Although in this

case a continuum of equilibrium strategies arises, such users

still can maintain stability in communication via cooperation

implementing strategies Pi = (Ξk∗−1 − Rk∗ − N )/hi with

i ∈ Nk∗−1 which makes the throughput of each TM user of

subset Nk∗−1 to be equal to each other.

Proof of Theorem 1. Let (P1, . . . , Pn) be an equilibrium, and

P be given by (11). Also, let

PL ≜
∑

i∈NL

hi Pi and PT ≜
∑

i∈NT

hi Pi . (42)

Then, by (3), (11) and (42), we have that

P = PT + PL . (43)

Multiplying both sides of Eq. (12) by hi and summing up these

equations by i ∈ NL ,(30), (42) and (43) imply

PL = Φ(N + P). (44)

Note that, by Proposition 3, (27) and (28), there is a k∗ such

that two cases arise to consider:

Hmk∗−1
< P + N < Hmk∗ , (45)

P + N = Hmk∗−1
. (46)

(I) Let (45) hold. Then, by Proposition 3, (27) and (28),

equilibrium strategies Pi for i ∈ NT have to be given by (37).

Then, by (29), we have

PT =
K
∑

k=k∗

∑

i∈Nk

hi P i = Rk∗ . (47)

By (43) and (47), we have that

P = Rk∗ + PL . (48)

Adding up PT to both sides of Eq. (44), by (43), (47) and (48),

we have that

P = Φ(N + P) + Rk∗ . (49)

Note that left-side of Eq. (49) is the identity function P .

Meanwhile, by Proposition 4, right-side of Eq. (49) is an

upper-bounded non-decreasing and concave function which is

positive at the initial point P = 0. Thus, Eq. (49) has a root

in interval (Hmk∗−1
− N , Hmk∗ − N ) given by (45), and, it is a

unique one, if and only if

P < Φ(N + P) + Rk∗ for P = Hmk∗−1
− N , (50)

P > Φ(N + P) + Rk∗ for P = Hmk∗ − N . (51)

Substituting P , given by conditions in (50) and (51), into the

corresponding them inequalities, implies that (50) and (51) are

equivalent to

Hmk∗−1
− Φ

(

Hmk∗−1

)

< Rk∗ + N < Hmk∗ − Φ
(

Hmk∗

)

. (52)

By (34), (52) is equivalent to (36), and (b-i) follows.

(II) Let (46) hold. Then, by Proposition 3 and (27)±(29),

equilibrium strategies Pi for i ∈ NT \Nk∗−1 have to be

given by (b-ii-1) and (b-ii-2). Meanwhile, for i ∈ Nk∗−1 the

following relation has to hold:

PT = Rk∗ + ρ with ρ ≜
∑

j∈Nk∗−1

h j Pj . (53)

By (29), we have that

0 < ρ ≤ ρk∗−1. (54)

Adding up PT given by (53) to both sides of Eq. (44), by (43)

and (46), we have that

Hmk∗−1
− N = Φ(Hmk∗−1

) + Rk∗ + ρ. (55)

Solving this equation by ρ implies

ρ = Hmk∗−1
− N − Φ(Hmk∗−1

) − Rk∗ . (56)

Combining (54) and (56) implies that such ρ exists if and only

if the following inequalities hold

N + Rk∗ < Hmk∗−1
− Φ(Hmk∗−1

) < N + Rk∗ + ρk∗−1 (57)

By (29), Rk∗ + ρk∗−1 = Rk∗−1. This and (34) imply that (57)

is equivalent to (39), and (b-ii) follows. (a) follows from (b)

and Proposition 2. ■

6. Numerical illustration

Here, we use a numerical example to illustrate a joint use of

latency and throughput metrics in multi-user communication.

Suppose that the total number of users is n = 12, i.e., nL +
nT = 12.

Note that the boundary case nL = 0 (i.e., nT = 12) corre-

sponds the network consisting only of the TM users, i.e., the

network where each user has throughput as communication

metric (please, see, Fig. 2(a) and Fig. 2(c) with nL = 0 for

throughput and TM user strategy). This is a limiting case of

the problem studied in [4] with spreading gain tending to one.

Moreover, in this limit case, the game is the potential one [11],

and, so, the equilibrium strategies also can be found via the

best response strategy algorithm.

The other boundary case nL = 12 (i.e., nT = 0) corre-

sponds the network consisting only of the LM users, i.e., the

network where each user has latency as communication metric

(please, see, Fig. 2(b) and Fig. 2(d) with nL = 12 for latency

and LM user strategy). This case has been studied in [8] for

latency modeled by the inverse SINR.

Let the ambient noise be N = 10 and the LM and TM users

differ by power cost, and be symmetric by maximal power
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Fig. 2. (a) Throughput of TM users, (b) latency of LM users, (c) strategies of TM users and (d) strategies of LM users.

resources and fading gains. Specifically, let power costs for

the LM and TM users be equal to CL = 10 and CT = 0.05,

respectively, and fading gain of each user, h, is taken as the

mean of a Rayleigh (fading) distribution with probability den-

sity function ρ(x, a) ≜ exp(−x2/(2a2))x/a2, x ≥ 0, where

a > 0 is the (Rayleigh) scale parameter. Let the maximal

power level of each user be P = 1.5. We observe, substituting

these data in Theorem 1, that a degradation in communication

condition, caused by a decrease in the fading gain reflected

by a decrease in Rayleigh scale parameter leads to a decrease

in throughput of the TM users (Fig. 2(a)) and an increase

in latency in communication of the LM users (Fig. 2(b)).

In spite on such degradation in quality of communication,

the LM users’ communication always is uninterrupted, and

it is maintained by an increase in their transmission efforts

(Fig. 2(d)), meanwhile, the TM users’ communication can be

interrupted, and it is reflected by a decrease in transmission

efforts which could vanish finally (Fig. 2(c)). An increase

in the number of LM users makes the TM users apply the

maximal power level for larger range of the Rayleigh scale

parameter, and it reflects a decrease in sensitivity of the TM

users’ strategies to network parameters. Presence of the TM

users also could reduce sensitivity of the LM users’ strategies,

which is reflected by their intermediate flat segments (see,

Fig. 2(c), (35) and (40)).

7. Conclusions

In this paper a heterogeneous MAC problem, where multi-

ple users being administered by a base station can use either

throughput and latency communication metrics, has been stud-

ied in a game-theoretic framework. A communication protocol

based on the derived equilibrium strategies maintaining sta-

bility in communication in such heterogeneous network is

suggested and illustrated. In particular, it is shown that the

users might benefit from communication in such heteroge-

neous network due to a decrease in sensitiveness of their

equilibrium strategies to the network parameters. A goal of

our future research is to generalize the suggested approach for

multi-carrier communication.
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