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Abstract: The KPZ fixed point is a 2d random field, conjectured to be the universal
limiting fluctuation field for the height function of models in the KPZ universality class.
Similarly, the periodic KPZ fixed point is a conjectured universal field for spatially pe-
riodic models. For both fields, their multi-point distributions in the space-time domain
have been computed recently. We show that for the case of the narrow-wedge initial con-
dition, these multi-point distributions can be expressed in terms of so-called integrable
operators. We then consider a class of operators that include the ones arising from the
KPZ and the periodic KPZ fixed points, and find that they are related to various matrix in-
tegrable differential equations such as coupled matrix mKdV equations, coupled matrix
NLS equations with complex time, and matrix KP-II equations. When applied to the KPZ
fixed points, our results extend previously known differential equations for one-point
distributions and equal-time, multi-position distributions to multi-time, multi-position
setup.

Contents

1. Introduction . . . . ... ... . ... 1754
Statement of MainResults . . . . . . ... ... 000 1757
2.1 Cubic integrable operators and differential equations . . . . . . . .. 1757
2.2 Fredholm determinants of cubic integrable operators . . . . . . . . . . 1761
2.3 The (periodic) KPZ fixed point and cubic integrable operators . . . . . 1762
2.4 Organization of the restof the paper . . . . . . . . . ... ... ... 1764

3. Discussions on the Differential Equations and Comparison with Existing Works . . 1764
3.1 The case m = 1: self-similar solutions . . . . .. .. ... ...... 1764
3.2 The case of equal times: reductionof KP-II . . . . . ... ... ... 1765
3.3 The case of equal times: matrix ODE system . . . . . ... ... ... 1765

3.4 Differential equations related to the Adler and van Moerbeke PDE . . 1766
3.4.1 A scalar PDE for cubic admissible determinants. . . . . .. . .. 1766


http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-023-04683-z&domain=pdf
http://orcid.org/0000-0002-7649-2326

1754 J. Baik, A. Prokhorov, G. L. F. Silva

3.4.2 Invariance of strongly cubic admissible determinants . . . . . . . 1767

3.4.3 Scalar PDEs for the two-time and one-time cases - Adler and van
Moerbeke PDE . . . . . . ... oo o 1768
4. Derivation of Differential Equations . . . . . .. ... ... ... ..... 1769
4.1 A review of integrable operatorsand RHP . . . . . .. ... ... .. 1769
42 Laxequations . . . . . . . oot it 1770
4.3 NLS and mKdV: proof of Lemma 2.4 and Theorem2.5 . . . . . . .. 1771
4.4 The matrix KP equation: proof of Theorem2.6 . . .. ... ... .. 1774
4.5 Multi-component KP hierarchy . . . . . ... ... ... ... .... 1775

4.6 Matrix ODE system a la Tracy and Widom: proof of Theorem 2.7 and
Corollary 2.8 . . . . . . e 1780

4.7 Deformation formulas for cubic admissible determinants: proof of Propo-
sition2.10 . . . .o 1781
5. A Class of Fredholm Determinants . . . . . ... ... .......... 1783
5.1 Aclassofoperators . . . . . . . .. ... 1784
5.2 A reformulation of a class of Fredholm determinants . . . . . .. .. 1785
5.3 Proof of Theorem 5.3 . . . . . . . . . .. .. ... ... . ... . 1787
5.4 Alemma on trace class operators . . . . . . ... ... ... 1792
6. Cubic Integrable Operators for the KPZ and the Periodic KPZ Fixed Points 1793
6.1 KPZ fixed point - proof of Theorem 2.11 (i) . . . .. ... ... ... 1793
6.2 Periodic KPZ fixed point - proof of Theorem 2.11 (i) . . . . . . . .. 1797
7. Large Height Limits and the Proof of Proposition2.12 . . . . . . ... .. 1799
8. Adler and van Moerbeke PDE and a Non-equal Time Extension . . . . . . 1801

1. Introduction
The KPZ fixed point
Hy,1), (,1) € RxRyY,

is a 1+1 dimensional random field that is conjectured to be the universal limit for the
height fluctuations of the random growth models belonging to the KPZ universality
class. Many remarkable properties of the KPZ fixed point were obtained over the last two
decades, and several models are proved to converge to it in various senses. The field itself
was constructed relatively recently by Matetski et al. [24]. Another construction was also
obtained by Dauvergne et al. [11]. In this paper we focus on the multi-point distribution
functions and study their connections to deterministic (integrable) differential equations.
Such connections may depend on the initial condition of the KPZ fixed point. We consider
the most well-studied initial condition, the narrow wedge initial condition given by
H(y,Tr =0) =0fory = 0and H(y,r = 0) = —oo for y # 0. In this case, the
1 : 2 : 3 invariance property,

— d
(' H @y D) £,
holds for all € > 0.
Many differential equations are known for the one-time distributions and the equal-
time, multi-position distributions. Some of them (for the narrow-wedge initial condition)
are the following.
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e The one-point distribution reduces to the GUE Tracy-Widom distribution Fgyg. For
each fixed y, t,

P (H(y,7) <h) = F h (1.1)
V’T p— - GUE ‘[1/3 14/3 ’ .

where Fgug is the GUE Tracy-Widom distribution. It satisfies [29]

¢ logF = 2
a2 ogFGue(§) = —u(é)",

where u solve the Painlevé II equation
W' =&u’ +2u° (1.2)

with the boundary condition u (&) ~ Ai(§) as § — +o0.
e The equal-time, multi-position distribution is a scaled and shifted version of the

Airy, process' introduced by Prihofer and Spohn [25]. In 2005, two differential

equations were obtained for the multi-point distribution of the Airy, process.

— Tracy and Widom [31] found a system of matrix ordinary differential equations
(ODEs) with respect to a combination of the height variables.

— On the other hand, Adler and van Moerbeke [3] obtained a nonlinear third order
partial differential equation (PDE) for the case of the 2-point distribution with
respect to the (shifted and scaled) height and spatial variables. Their result was
extended to multi-point distribution by Wang [32].

In these two results, the time variable was kept as a constant and did not appear in

the equations.

e Quastel and Remenik [26] also considered the equal-time, multi-point distribution,
butincluded the time t as an evolution variable instead of a fixed parameter. Thus, they
regarded the equal-time m-point multi-position distribution as a function on 2m + 1
variables. They derived a matrix version of the second Kadomtsev-Petviashvili (KP-
II) equation with respect to these 2m + 1 variables. If we specialize their result to
the m = 1 case, it implies that (1.1), viewed as a function of three scalar variables
h, y, 7, is related to the scalar KP-II equation. Remarkably, the result of Quastel and
Remenik applies to general initial conditions far beyond the narrow wedge initial
condition.

One of the goals of this paper is to extent the above results to multi-time, multi-
position distributions of the KPZ fixed point with the narrow-wedge initial condition.
Fix a positive integer m and consider the function of 3m variables

FE M,y 1) =P (ﬂ{H(m, T) < hi}> : (1.3)

i=1

where T = (Tlv e »fm)T € RT’)/ = (ylv IR Vm)T € R’n7andh = (hla B hm)T €
R™ represent time, position, and height, respectively. We prove that this function is
related to the following differential equations.

! The Airy, process is often regarded as an evolution. The time in the Airy, process corresponds to the
position of the KPZ fixed point.
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1. As a function of y and h, we obtain a system of coupled m x m matrix nonlinear
Schrodinger (NLS) equations with complex time iy .

2. Asafunction of 7 and h, we obtain a system of coupled matrix modified Korteweg-de
Vries (mKdV) equations.

3. As a function of all 3m variables, we obtain matrix Kadomtsev-Petviashvili (KP)
equations that generalizes the matrix KP-II equation obtained by Quastel and Re-
menik [26] for the case 11 = --- = 1,,,. We also show a connection to the multi-
component KP hierarchy.

4. As afunction of h, we obtain a matrix ODE system that generalizes the matrix ODE
system of Tracy and Widom [31] for the Airy; process.

For the case m = 2, we also derive several PDEs with the aid of symbolic computa-
tions. If we take the special case 71 = 12, then a combination of two of them becomes
the PDE of Adler and van Moerbeke [3] for the Airy; process.

We also study a periodic version of the KPZ fixed point. If we consider random growth
models in the KPZ universality class on a periodic domain (instead of the infinite line)
and take a large time, large period limit in a certain critical way, then a new (1+1)
dimensional random field emerges. This field, which we call the periodic KPZ fixed
point, is expected to interpolate between the Brownian motion and the KPZ fixed point
[5,7]. This interpolation property was proved for the one-point distribution in [8]. Even
though the periodic KPZ fixed point is not yet constructed as a field, its multi-point
distributions were obtained recently as limiting distributions for the totally asymmetric
simple exclusion process on aring [7]. It was shown in [8] that the one-point distribution
of the periodic KPZ fixed point with the narrow step initial condition is related to a
coupled NLS (with complex time), a coupled mKdV, and a KP-II equation. In this paper,
we extend this result to the multi-point distributions and show that they are related to
the same equations as the KPZ fixed point mentioned in 1-3 above. However, the Tracy-
Widom type ODE system is not expected to hold for the periodic KPZ fixed point. In
particular, the one-point distribution is not the Tracy-Widom distribution; it depends
non-trivially on the time.

The multi-time, multi-position distributions of both the KPZ fixed point and the pe-
riodic KPZ fixed point have been computed explicitly and are expressible in terms of
integrals of Fredholm determinants [7,19,23]. We will show that the Fredholm determi-
nants for both fields are equal to the Fredholm determinants of so-called IIKS integrable
operators [12,15]. These integrable operators have a certain common structure which
we call cubic integrable. We derive the differential equations 1-3, and also 4 in some
cases, for general cubic integrable operators. Such cubic integrable operators can be
either defined on contours, which is the case of the KPZ fixed point, or on discrete sets
in the complex plane, which is the case of the periodic fixed point.

IIKS integrable operators have a special algebraic structure that associates them to
Riemann-Hilbert problems in a canonical way. In turn, Riemann-Hilbert problems are
deeply integrated in the theory of integrable differential equations, providing inverse
transform methods for the latter [1,13,16]. In particular, if a Riemann-Hilbert problem
depends on parameters and the jump/residue matrix for the Riemann-Hilbert problem
has a certain decomposition structure, then one can derive linear matrix differential
equations, called Lax equations, for its solution. The compatibility of a pair of Lax
equations often yields nonlinear differential equations in those parameters.

For the case of cubic integrable operators, we find Lax equations for each of the
parameters, h, y, t. The compatibility between the Lax equations in the variables h and y
yields the coupled NLS equation mentioned in 1 above, the compatibility between t and
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h yields the coupled mKdV mentioned in 2, and the compatibility between the equations
on the three variables yield the KP-II equation and multi-component KP hierarchy from
3. If we impose an additional property on the cubic integrable operators, that we call
strong cubic integrability, we obtain an additional Lax equation with respect to the so-
called spectral variable. This additional equation allows us to obtain the equation in 4.
We will see that the cubic integrable operator for the KPZ fixed point is strongly cubic
integrable hence the equation 4 holds.

In the next section we introduce the cubic integrable operators formally, and state
our main results. See Sect. 2.4 for the organization of the rest of the paper.

2. Statement of Main Results

In the first subsection, we define cubic integrable operators and state various differential
equations associated to them. In the next subsection we introduce the Fredholm deter-
minants of cubic integrable operators. The following subsection then discusses how the
multi-time, multi-position distributions of the KPZ and the periodic KPZ fixed points
are related to cubic integrable operators. We finish this section with a roadmap of the
organization of the rest of the paper.

2.1. Cubic integrable operators and differential equations. Let Q C C be either a finite
union of disjoint simple contours or a discrete set without accumulations points. If it is
a union of contours, we further assume that each contour is either closed or extends to
infinity, so in particular none of these contours have finite endpoints. Let

1 be the counting measure if €2 is discrete and diu =dz if 2 consists of contours, (2.1)
so that

22(Q) if Q is discrete,

) oo and (2.2)
L~(2,dz) if © is a union of contours.

LA(Q, p) = {

Fix an integer m > 1 and consider 3m parameters
t=(y,...,t,) € R", Y=, Y, € R", X=(X{,...,Xn) € R™.

In the (periodic) KPZ fixed point, they will correspond to time, spatial location, and
height variables. Define the cubic exponential functions

m;(z) := exp (th3 + ij2 + ij) , z€C, (2.3)
and introduce the (m + 1) x (m + 1) diagonal matrix-valued function
A(z) = Az | X, Y, t) = diag(My(z), Ma(2), ..., My (), 1). (2.4)
Let, fori € {1.--- ,m+ 1},

E;be the(m + 1) x (m + 1) matrix whose (i, i) entry island all other entries are 0.
(2.5)
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An integral operator H : L?(2, u) — L*(2, ) is called integrable in the sense of
Its, Izergin, Korepin and Slavnov (or, shortly, an IIKS operator, or an integrable operator)
if its kernel is of the form>

_ fw’g)
- u—uv

H(u, v) foru #v and H@u,u) =0 foru,ve, (2.6)

for some vector-valued functions f and g (see [12,15]). The operators of relevance to us
possess an additional structure on the vector functions f and g.

Definition 2.1 (Cubic integrable operator). A bounded integral operator H : L2(Q2, n) —
L?(Q2, p) is called cubic integrable if it is integrable in the sense of (2.6) and the vector
functions are of the form

f) =t Xy, 1) == c@) A [ X,y, hU(u),

1
9) = gu | X, ¥, 1) = — A | X, ¥, )" 'V(u) (2.7)
c(u)

for u € @, where A is as in (2.4), with the following additional structures:

e U and V are (m + 1)-dimensional column vector functions which do not depend on
X, Y, t and satisfy

Uw) E;V@w) =0 foreveryu € Qandi € {l,--- ,m+1}; (2.8)

e C is a non-vanishing scalar function on €2 (which may depend on X, Y, t);
of.ge L3(Q, 1) NL¥(Q, ).

If, in addition, the set L2 is a union of disjoint contours and the vectors U, V are constants
on each connected component of 2, then we say that H is a strongly cubic integrable
operator.

If we change the scalar ¢, the operator is a conjugate of the original operator H. Since
we will be mostly interested in properties of the operators that are invariant under such
conjugations, such as the Fredholm determinant and the trace, the scalar ¢ does not play
a major role in our results. However, including it in the definition as a free parameter is
useful, as it provides an extra layer of flexibility that we explore in examples, to prove
that H is not only bounded but also a trace class operator.

The term cubic comes from the cubic dependence of the kernel of H on the parameters
X, Y, t through the factor A in (2.7).

For a cubic integrable operator, we define the following matrix function.

Definition 2.2. Let H be a cubic integrable operator on L2(£2, 1) and assume that 1 —H
is invertible. Define the (m + 1) x (m + 1) matrix

¢ =d1(X,y, 1) = /Q((‘I —H)'H()g(s) du(s) (2.9)

where recall (2.1) for .

2 The condition H(u, u) = 0 is not strictly necessarily. We included it here to simplify technical details in
the theory, especially when 2 is a discrete set. This simplification is enough for our purposes regarding the
(periodic) KPZ fixed points.
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The subscript 1 is used in (2.9) since @ is the first element of a sequence of matrix
functions; see (4.5) below. Observe that the integral (2.9) is unchanged even if we change
the scalar ¢ in the definition of f, g to a different scalar.

A non-empty set S C {l, -+, m} induces a permutation 7 on {1, --- , m + 1} that
fixes the element m + 1; this permutation is given by 7 (i) = k; for 1 < i < m and
m(m+1) =m+1, where ky < --- < kig| are elements of S and k541 < - -+ < k, are

elements of {1, - - - , m}\S. Foranon-empty setS C {1, --- , m},let NS = (877(5),])1{’;;1
denote the (m + 1) x (m + 1) permutation matrix for 7. Note that the (m + 1, m + 1)
entry of the matrix nsis 1.

Definition 2.3. Let ®; be the matrix in (2.9). For a non-empty set S C {l1,---,m},
introduce matrix-valued functions q, p, r, S through the formula
Mo, (NS’ = (? 2) (2.10)

with g and s being of sizes |S| x |S| and (m + 1 — |S]) x (m + 1 — |S]), respectively.
Also, introduce the differential operators

h=00 = B, dy=0dp=) dy, and By=0g =) . (211)
keS keS keS

The matrices q, p, I, S depend on the permutation S, but we do not display this
dependence explicitly to simplify the notations. We note that the functions q, p, r, S are
complex-valued matrices. The following are basic relations between them.

Lemma 2.4. Under the notations of Definition 2.3,
Tr(Q)+Tr(s) =0, 0xGQ=—pr, 0IxS=1p.

We now state three main theorems on differential equations. The first theorem con-
cerns the pair p and r, which are matrices of sizes |S| x (m+1—|S|) and (m+1—|S|) x|S]|,
respectively.

Theorem 2.5 (Coupled matrix NLS with complex time and mKdV). Let H be a cubic
integrable operator and assume that 1 — H is invertible for the parameters (X, y, 1) in
an open set of R3™. Then, the following results hold.

(a) As functions of X and Y, the matrices p and r satisfy a system of coupled matrix
nonlinear Schrodinger (NLS) equations with complex time Y +— iy,

dyp = d2p+2prp,  dyr= —dir—2rpr. (2.12)

(b) As functions of t and X, the matrices p and r satisfy a system of coupled matrix
modified Korteweg-de Vries (mKdV) equations

3p = 030+ 3(IxP) P +3Pr(xp),  dr= d3r+ 3(dxN)pr+3ro(dxn. (2.13)

These equations were obtained for the (periodic) KPZ fixed point when m = 1 in
[8]. The coupled NLS equations with complex time with m = 1 also appeared in the
recent work [21] on the weak noise theory of the KPZ equation.

The next differential equations involve all 3m variables t, y and X.
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Theorem 2.6 (Matrix KP). Let Hbe a cubic integrable operator and assume that 1— H
is invertible for the parameters (X, ¥, 1) in an open set of R*". Then, the following result
holds.

(a) The |S| x |S| matrices u:= prand q satisfy the matrix KP-II equation®
— 401U+ d3U + 60x(U°) — 30,G+6[U, dyql =0,  0xq=—u.  (2.14)

(b) The (m+ 1 —|S|) x (m +1 — |S|) matrices v:= rp and S satisfy the matrix KP-1I
equation

— 401V + 03V + 60x(V)) + 30,5+ 6[v, dyS] =0, dxS=V. (2.15)

If we insert U = —0x(Q, (2.14) becomes a fourth order differential equation for the
matrix g only. If we take S = {I,---,m} and sett; = --- = t,,, Equation (2.14)
becomes the matrix KP-II equation obtained in [26] for the KPZ fixed point; see Sect. 3
below for further discussion on this end.

We also obtain a connection to the so-called multi-component KP hierarchy in Propo-
sition 4.5 below.

For the next result, define (m + 1) x (m + 1) matrices

Mt = diag(ti, -+ , 1y, 0), My :=diag(yy, -+ ,¥,,,0), My:=diag(X;, -, Xn,0),
(2.16)

and the differential operator

m
9= tidx,. (2.17)
k=1
We take S = {1, ..., m} in Definition 2.3 so that MS is the identity matrix, and q, p, I,

and s are matrices of sizesm x m,m x 1,1 x m,and 1 x 1, respectively.

Theorem 2.7 (ODE system). Let H be a strongly cubic integrable operator and assume
that 1 — H is invertible for the parameters (X, y, V) in an open set. Then, ®; in (2.9)
satisfies

39%d; = 2[00, Myl + [Py, My], 30D —2[®, My] — My]. (2.18)
Furthermore, the additional relation
0s=rip (2.19)
also holds, where tis the matrix defined in (2.20) below.

If we write the block form (2.18) (recall that NS = lin this case) and use (2.19), then
we find the following matrix ODE system for q, p, r. Introduce the m x m matrices

t:=diag(ty, ..., t,), y :=diag(y, ..., Yp)s X = diag(Xy, ..., Xm)-
(2.20)

3 The usual KP-II equation is dy (9w +6wdyw + dxxxw) + 3dyyw = O for a scalar function w. When
m = 1, the x-derivative of Equation (2.14) becomes this equation if we set w(t, y, x) = 2u(—4t, y, x).
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Corollary 2.8. Under the same conditions of Theorem 2.7, q, p, rsatisfy the matrix ODE
system

39%q — 2[3q, Y1 — 3[[q, fl, 3q] + 3tpdr+3(dp)rt+2[[q, I, [q, Y11

—2tpry +2yprt+[[q. 1], X] =0,
39%p+2yap — 3(3q)tp — 3[q, flap+ 3tprip — 2(yqt — tqy)p+ xtp = 0,
39%r— 20ry —3rtaq+30M1q, 1] + 3riprt — 2r(yqt — tqy) + rix = 0. (2.21)

In the particular case when ty = - - - = t,, =t they satisfy the reduced ODE system
Ixqg+pr=0,
3t92p + 2ydxp + 6torp — 2[y, qlp + xp = 0,
3t8)%r— 2(axnNy + 6trpr — 21y, gl + rx = 0. (2.22)

where Ox:= Y /L Ox.

As we discuss in Sect. 3.3 below, the system (2.22) is equivalent to the ODE system
found by Tracy and Widom for the Airy, process [30].

We also derive a scalar PDE of Adler-van Moerbeke [3] when m = 2 for strongly
cubic integrable operators (see Sect. 3.4 and Sect.8), and find a connection with the
multi-component KP hierarchy (see Sect. 4.5).

2.2. Fredholm determinants of cubic integrable operators. When the operator H is trace
class, the Fredholm determinant of H is related to the matrix ®; in (2.9), and thus to the
differential equations of the last subsection.

Definition 2.9 (Cubic admissible determinant). For a (strongly) cubic integrable oper-
ator H that is trace class, we call its Fredholm determinant

D(X, Y, 1) :=det(1 — H)
a (strongly) cubic admissible determinant.
Recall the definition (2.5) of E;.

Proposition 2.10. Let H be a cubic integrable operator. Let D (X, y, f) = det(1 — H) be
the associated cubic admissible determinant and ®1 be the matrix from (2.9). Then,

Oy, log®D(x, y,H =—-Tr(¢1E), iefl,---,m}
Recalling Definition 2.2 and Lemma 2.4, this result implies that
oxlog® = —Tr(q) = Tr(s) and 8)% log® = Tr(pr) = Tr(rp),

where dx = ) 0y, is as in (2.11). Thus, for example, we find from Theorem 2.6 that if
keS

we take S = {1, -+ ,m}, thens = dxlog® and v = 8)% log ® satisfy the matrix KP-II
equation (2.15), see Sect. 3.4.1.

In (4.7) and Proposition 4.7 below, we also find the derivatives of log ® with respect
toy and t.
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2.3. The (periodic) KPZ fixed point and cubic integrable operators. We are now discuss
how the multi-point distributions of the KPZ and the periodic KPZ fixed points with the
narrow wedge initial condition are related to cubic admissible determinants.

Johansson and Rahman [19] and also independently Liu [23] obtained explicit formu-
las for the multi-point distributions of the KPZ fixed point. These results were preceded
by two-time distribution formulas by Johansson [17,18]. The formula of Liu is the
following. Let y = (y1,--- , ¥m) be position parameters, T = (t1,--- , T;,) time pa-
rameters, and h = (hy, - - - , hy,) height parameters. Arrange the time parameters so that
71 < --- < 1), and arrange the location parameters further so that y; < y;+1 whenever
T; = Tti+1. Then, [23, Theorem 2.20 and Definition 2.23] states that the multi-point
distribution in (1.3) for the KPZ fixed point with the narrow wedge initial condition is
given by

m—1

1 dg;
(KPZ) _ L. (KPZ) | |
§r = <2ni)m-l7g ?ﬁ oo U (229

Here, the integrals are over disjoint circles centered at the origin and of radii smaller
than 1, and the term CD(KPZ)(h, y,T | ¢) is a Fredholm determinant that depends on
the parameters h, y and t, and also on ¢ := (g1, -+, {m—1). We will recall its precise
definition in Sect. 6.1.

In [7], the authors computed the so-called relaxation time limit of the multi-point
distributions of the periodic totally asymmetric simple exclusion process, extending
their earlier work [6] on the one-point distribution. The limit obtained in [7, Theorem
2.1, Definition 2.5] is expected to be the multi-point distribution of the conjectured
periodic KPZ fixed point. Due to the spatial periodicity, we may assume that the location
variables satisfy y = (yq,---, )/m)T € [0, 1)™. As before, arrange the parameters so
that 7y < --- < 7,,. If 7; = 7j41, we assume that h; < hj,;. Then, for the step initial
condition, it was shown that

1

(per) (h —
S (h,y, 1) an

1

T % .. .%Q(per)(g)@(per)(h, T,y ¢ 1_[ % (2.24)
i=1

where the integration contours are circles about the origin satisfying 0 < 1| < -+ <
|Zm| < 1, the function €D (¢) is simple and explicit, and P (h, 7, y | ¢) is again a
Fredholm determinant. We discuss the precise formula in Sect. 6.2.

One main difference between ®®P%) and DPe") s that the operator for the former
acts on an L? space of contours while the one for the latter acts on an ¢ space of a
discrete set. The underlying operators, as originally obtained, share some similarities
but the formulas are somewhat involved. It turns out that we can recast them to cubic
admissible determinants, as we state as our next result.

Theorem 2.11 (KPZ fixed point).

(i) For each ¢ = (&1, , Cm—1) € C" 1 satisfying 0 < |¢1], -+, |Gm_1] < 1, the
function (X, y, t) — DKPD(h y 1| ¢) is a strongly cubic admissible determinant
with the identification

t=-%/3, Yi=v, X =h. (2.25)

Furthermore, the associated matrix ¢§KPZ) = O satisfies the symmetry relation

Lo (x, y, L7t = oD (x, —y, T (2.26)
where L := diag(Ly, -+, Ly, 1) with Ly = —(1 — ¢1) and for j > 2,
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A= =0)---(1-¢)
(=g =g) (=g

(ii) (Periodic KPZ fixed point) For each ¢ = ({1, -+ , &m) € C" satisfying 0 < 1| <
- < |&m| < 1, the function (X, y, f) — DP(h, y, 1t | ¢) is a cubic admissible
determinant with the identification

=-75/3, Y, =v/2, X =h. (2.28)

We will describe the cubic integrable operators explicitly in Sect. 6. This theorem
implies that Proposition 2.10, Lemma 2.4, Theorems 2.5, and 2.6 apply to (the cubic
integrable operators H&P2) and H®®D for) ©KPZ) and ®®en), The operator HXF?) also
satisfies Theorem 2.7 since it is strongly admissible. These differential equation results
assume that the Fredholm determinant is non-zero. Since the Fredholm determinant for
the (periodic) KPZ fixed point is analytic in the parameters, this condition holds in an
open set of the space of parameters. For the case of the equal-time distributions of the
KPZ fixed point, Quastel and Remenik [26] obtained the same matrix KP-II equation as
in Theorem 2.6 although the quantities that solve the equation are different than ours.*
When m = 1, Theorems 2.5, 2.6 and 2.6 for the periodic KPZ fixed point and the KPZ
fixed point were obtained in (8]

The equal-time slice of the KPZ fixed point is a simple change of the Airy; process.
However, due to the integrals in the formula (2.23), the function DEPZ) is not directly
related to the multi-point distribution of the Airy, process. Nonetheless, a different
Fredholm determinant formula for the Airy, process is known and it can also be turned
into the cubic admissible determinant formalism. Thus, the matrix NLS system with
complex time in Theorem 2.5 will hold for the Airy, process. This discussion will be
carried out in a separate paper.

For the periodic KPZ fixed point, when m = 1 it was shown in [8, Theorem 1.2] that

10Y g (per 10 :
(0 1>¢(p”( y,t)< ) P (x, -y, b7

However, it is not clear if a symmetry relation holds for m > 1.
Proposition 2.10 relates log derivatives of © P2 and ©Pe") with & which, in turn,
satisfies differential equations. Integrating the log derivatives, we obtain the next formula.

L= (-1’

(2.27)

Proposition 2.12. Set
a=(1,2,---,m). (2.29)

Let ® denote either © P2 or PN Assume that the parameters (X, y, t) € R>™ satisfy
D(x+E&a,y, ) #0forevery & > 0. Then,

©(xy,t)—exp[ / ZTr q;(x+&a, y,t))dé}

0o M

= exp [ / D Tr(si(x+&a,y.h)ds (2.30)
0 =

where q; and S; denote the matrices q and S in (2.10) with the choice of the index set

S=S5:={1,...,i}foreachi =1,--- ,m

4 The paper also obtained the result for general initial conditions.
5 In the paper [8], the roles of r and p are switched.
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2.4. Organization of the rest of the paper. In Sect.3 we discuss a few special cases of the
differential equations and compare with previous works in the literature. The proofs of
the differential equations are given in Sect.4 using a connection between integrable op-
erators and Riemann-Hilbert problems, applied to cubic integrable operators. In Sect. 5,
we introduce operators of a certain structure, which is not restricted to but does arise in
the multi-point distributions for the KPZ and periodic KPZ fixed points. We then show
that the corresponding Fredholm determinants can be recast as cubic admissible deter-
minants. A special case of this result recasts Theorem 2.11 for the KPZ and periodic
KPZ fixed points, and Sect. 6 is devoted to this application. The remaining two sections
are short. Section 7 is about simple asymptotic properties of cubic integrable operators
and a proof of Proposition 2.12. In Sect. 8, we discuss scalar PDEs that extend a work
of Adler and van Moerbeke, which we first state in Sect. 3.4.

3. Discussions on the Differential Equations and Comparison with Existing Works

We compare the differential equations in Sect.2.1 with various results in the literature.

3.1. The case m = 1: self-similar solutions. When m = 1, the equations (2.12), (2.13),
(2.14) and (2.22) become equations for scalar-valued functions. We show that they admit
self-similar solutions constructed out of Painlevé II transcendents.

Suppose that w(§) is a single-variable function that satisfies the Painlevé II equation
(1.2)

w' = Ew+2w.

Then, it is straightforward to check that for any non-zero constant «, the functions
Gy %) = — Ly + =y ) wee)
v Yo = 7 X I 0 ’
Py Canis TP\ TRV Y )V

1 1 2,
rt,y, x) = T (3 exp (ﬁxy — Wy ) w(§)

with
= X + y2
(—=3H13 7 (=313

satisfy the NLS system with complex time (2.12) and the mKdV system (2.13). They
also satisfy the Tracy-Widom ODE system (2.22). It is also straightforward to check that
the function

at,y,x) = —(=3H7130() and uct,y,x) = (-3 w(E)?

solve the scalar KP equation (2.14) (observe that the commutator drops out [U, dyq] =
0, since the functions are scalar-valued). The functions s(t,y,X) = —q(t,y, X) and
v(t, y, X) = u(t, y, X) also solve the equation (2.15). Thus, these equations have solutions
constructed out of a Painlevé II transcendent..

For the KPZ fixed point, we can check that the functions p, r,q, s for m = 1 are
indeed given by above forms with w chosen to be the Hastings-McLeod solution to the
Painlevé II equation. However, the functions for the periodic KPZ fixed point are not

§
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expected to be given by the above forms associated to the Painlevé II equation due to
the fact that the space for the operator is discrete, which then implies that the relevant
Riemann-Hilbert problem is of discrete type instead of of continuous type (see Sect.4),
the solutions are associated to solitons, and no self-similarity can be recast.

3.2. The case of equal times: reduction of KP-II. If we take S = {1, .- ,m}, set 1| =
- = 1, = —t/3, and change the notations y;, X;, U, q to x;, r;, g, —Q, then (2.14)
becomes

120,q + 82q +69,(¢>) +302Q +6[q, 8, Q1 =0, 8,0 =gq,

where 8, = Y /" | 95, and 9y = > ;- . This is the same matrix KP equation obtained
in [26, (1.6)] by Quastel and Remenik. However, the functions g, Q considered in [26]
are different from what we considered in this paper. Namely, the functions in [26] are
directly related to the multi-point distributions F®F%)(h, y, t) while in this paper, the
functions are related to D ®P2) (h, y, v | ¢) which is a part of the formula (2.23) for the
multi-point distribution. It is puzzling that they satisfy the same KP-II equation. If we
compare the result of [26] and Eq. (2.30) with formula (2.23) in mind, we obtain the
identity

1 o &
Tr(g(h, y,t)) = 8,% log [W f ‘e % exp |:/O ;Tr (si(x+é&a,y,t) d5:|
m—1

I1 L} (3.1)
g (=G
between a single solution g to the KP equation on the left-hand side and a superposition
on the right-hand side of families of solutions s; = SfKPZ) to different KP-II equations
corresponding to different permutations S = S; = {1, ..., i}. It is unclear whether this
identity holds because the KP-II solutions related to the KPZ fixed point are very special,
or if such an identity holds for a broad class of solutions. We note that g on the left-hand
side is a real solution while S; are complex-valued solutions.

3.3. The case of equal times: matrix ODE system. Tracy and Widom obtained in [30]
a matrix ODE system for the Airy, process, which is a simple transformation of the
equal-time slice of the KPZ fixed point. We show here that the ODE system (2.22) for
the equal-time case of the cubic integrable operator is the same as the matrix ODE system
of Tracy and Widom.

The ODE system (2.22) involves matrix functions p, r, g, and derivatives with respect
to the variables X;. We rename t to —% sothatt) =.--- =1, = —%. The ODE system
contains t and y,; as parameters. Change the variables X; to & by

2
Xk Yi
ék = m + m

Set & = diag(€1, -+, &n) = gX+ Y’ where y == diag(y, ..., Y,,) and X =

diag(Xi, ..., Xp), and also & :== (&1, -+, &n), O = Z’;’zl dg;. Define P, R, Q from p,
r, q by setting
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1—1/3 1 2 3
Py, x) =it™ /7 exp A ?y P®),

Y 1 2
rt,y, x) = it”'PR(&) exp (—;xy - ¥y3) :

1 2 1 2
_ _—1/3 - 3 _ _ 3
qd,y, x) = —it exp(txy+3tzy)0($)exp< XY 3t2y>,
Then, with y := t=%/ 3y, the system (2.22) becomes

%Q=—[y.Q] - PR, 9;P=&P+2PRP+2[y,Q|P,3;R =R&+2RPR+2R[y.Q].
(3.2)

Equations (1)—(3) of [30]® form an ODE system for three m x m matrices r, ¢, .

For the m-dimensional vector € := (1, ..., l)T considerthe m x m,m x 1,and 1 x m
matrices r, ge, and eTc}. Then, equations (1)—(3) of [30] changed for these functions are
precisely (3.2) with the identification

Q=r, P=ge, R=el§g and 7=ty =V,

3.4. Differential equations related to the Adler and van Moerbeke PDE. For the equal-
time, 2-position distributions of the KPZ fixed point (i.e. the Airy, process), Adler
and van Moerbeke also obtained a PDE [3]. We discuss how this PDE arises from our
analysis.

3.4.1. A scalar PDE for cubic admissible determinants. Assume that the cubic inte-
grable operator H is trace class and consider the log determinant

M :=log®(X,Y,1) =logdet(1 — H).

The KP-II equation in Theorem 2.6, which is for matrix functions p, r, q, S, yields a scalar
partial differential equation for M in the following way. Choose the set S = {1, ..., m}
so that s and vV = rp become scalar functions. Then, the commutator in (2.15) disappears,
and from Proposition 2.10 and Lemma 2.4, we find that odyM = s and BEM = V. Thus,
the Eq. (2.15) becomes

Ox(—40x M + 05 M + 6((dx M)*) + 30, M) = 0.
If M decays fast enough as X; — oo, which is the case for the (periodic) KPZ fixed

points, integrating the above equation we obtain a fourth order nonlinear differential
equation for M,

— 40x M + 0 M + 6((dx M)*) + 30, M = 0. (3.3)

6 The published version of the system from [30] has a typo which was later fixed in the ArXiv version
(arXiv:ArXiv:0302033v4, see Equations (1)—(3) and the last two displayed equations in page 3 therein). Our
discussion here uses the latest Arxiv version.


http://arxiv.org/abs/ArXiv:0302033v4
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3.4.2. Invariance of strongly cubic admissible determinants Let 2 be a union of con-
tours, and suppose that H is a strongly cubic integrable operator that is trace class with
parameters X, Y, t. Let ' be a scaled and translated contour of Q2 given by

Y1
(=3t)%/3°

Using the fact that the functions U, V are constants on each connected component of Q
(since H is strongly cubic integrable), it is straightforward to check that

Q = (—3t)iQ —

1 1 1
H( M_L v—£|x,y,t>=H(u,v|x,y,t), u,ve,

(-3tps \(=3tps 33y 3h
(3.4)
for the parameters x = (x1, -« , Xp), ¥y = V1, » Ym), t = (t1, -+ - , tyy) given by
1 2 y?
X = 1Xi+ Y 4yi_ 14 ti,
(=313 (=313 (=3t)3ty
1 1
yi = Vi — b, = —t, (35)
(=3tn3 (=3t —3
fori =1,---,m. Note that fori =1,
=0 = :
y1 =0, 1= 3

The left-hand side of (3.4) is a change of variables of the kernel H(u, v | X, y, t),u, v €
2, and hence its Fredholm determinant is equal to det(1 — H(X, y, 1)) 12()- On the other
hand, the Fredholm determinant of the right-hand side of (3.4), det(1 —H(x, y, 1)) 12>
isequaltodet(1—H(x, y, 7)) 2(q) by the Cauchy’s theorem using the fact that restrictions
of H(u, v | x, y, t) for u and v on connected components of " extends to entire functions
in 4 and v. Thus, we find a relationship

M =det(1 —H(X,y,1) = det(1 — H(x, y, 1)).

Under the change of variables given by (3.5), the Eq. (3.3) evaluated att; = —1/3 and
y; = 0 becomes the following equation in x, y, t:

m m
12) (1= 1):0,M — 8 yidx0y, M
i=2 =2

m
4342 (x,»t,? + 3y,.2) By, M — 40, M + 9* M + 6(32M)?
i=1

m m m m
3 N A= 1) (1= 1))dy 0y, M+ 123 3 "yt (1= 1))dy, 0., M
j=2i=2 j=2i=1
m m
+12 ) yiyjt 7 00, M 46y 17 9, M = 0. (3.6)

i,j=1 i=1

Note that if t; = —1/3 and y; = 0, then (X,y,1t) = (x, y, ). Thus, we find that
M(x,y,t) witht; = —1/3 and y; = O satisfies the differential Eq. (3.6) with respect to
the original variables (X, y, t).
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3.4.3. Scalar PDEs for the two-time and one-time cases - Adler and van Moerbeke PDE
Let H be a strongly cubic integrable operator that is trace class, and consider the case
whenm =2 andt; = —1/3 andy; = 0. Then, M = det(1 — H) satisfies the Eq. (3.6)
with m = 2 with respect to the variables (X, Yy, t). Motivated by the work of [3] on the
Airy; process, introduce the change of variables

b=—2, X Xy = . Ya=. 3.7

3 2 2
Then (3.6) with m = 2 becomes

t _E+W E—-W y?
- t

24(1—1)179p 0 M+16t>0 5 M+961> (9 M)*+3(1—1)*129; M+4yt (3—T1)0p 3, M
+12y1(t—1)dy 9w M—4QEt*+3y*) 95 M
—8Wr2dgdw M+12y? 9%, M+2t 3—1)dg M
+61 (t—1)dw M =0. (3.8)

In the further special case when ¢+ = 1 so that t; = t, the above equation becomes
simpler. If we consider 4—118 £ (3.8), then we arrive at

(407 +2WoRaw + Gy +2E)03 — 352050, — 0F +4y0}0, ) M — 4302 MOLM = 0.

This PDE is the same as the one derived by Quastel and Remenik [26, Theorem 2.5]
for the 2-point distribution of the KPZ fixed point with equal time’, except for a flipped
sign in the term 8%.

In Sect. 8, we derive the Eq. (3.8) in a different way using arguments on the underlying
Lax pairs, supported by symbolic calculations in linear algebra. As we also indicate
therein, such arguments allow us to obtain three additional PDEs. One of them is

3(t — DAEM — 8(1 + 1)d3dwM +6(r — 1)d205 M
+(1 — 1)y M + 12Waz M + 8EdpdwM
—4W a5 M +3t(1 — O] M — 8ydwdy M — 40w M
+18(t — 1) (02 M)* +24(1 — 1)(dpdwM)?
+6(1 — 1) (35 M)* + 12(r — DAZ M3 M — 48(1 + 1)dz MdgdwM = 0. (3.9)
If we set + = 1 in this equation, the equation again simplifies, and 1]—28W (3.8) +1]—2 0E
(3.9) becomes
(y2(33V — 929w) — W(@gdd — 93) — 2yaEaWay) M
—8(dgdw M) (33 M) + 803 M) (323w M) = 0. (3.10)
This is the same PDE obtained by Adler and van Moerbeke [3, Corollary 1.3] for the
2-point distribution of the Airy, process. Thus, Eq. (3.9) is a non-equal time extension
of the Adler-van Moerbeke PDE. We note that the Eq. (3.10) was also re-derived in [9]

using a Riemann-Hilbert approach, and the Adler-van Moerbeke PDE was extended to
general m > 2 (single time, multi-point) in [32].

7 The correspondence of terms between [26, Theorem 2.5] and here is = dx M, ¥ = M, r = x, and the
variables y coincide.
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As we just discussed, the multi-time multi-location differential equations we ob-
tained reduce in the one-time multi-location case to several different equations obtained
previously. We stress that although the differential equations admit such reductions, the
solutions themselves are not directly comparable: all the previous works we mentioned
obtain equations for the (log derivatives of the) distributions themselves, whereas in our
case the solutions to the equations enter into the distribution through the integration in
the ¢-variables in (2.23) (recall for instance the discussion on (3.1)). It is interesting that
the underlying equations are nevertheless the same.

4. Derivation of Differential Equations

In this section we prove the results stated in Sects. 2.1 and 2.2. In order to derive
differential equations, we use a known connection between IIKS integrable operators and
Riemann-Hilbert problems (RHPs), and then exploit the structure of the Riemann-Hilbert
problem for the case of cubic integrable operators. We follow the general methodology,
often called the dressing method, which derives so-called Lax equations from a Riemann-
Hilbert problem when the jump/residue matrix does not depend on parameters. The Lax
equations are then combined appropriately to derive our claimed differential equations.

4.1. A review of integrable operators and RHP. An operator H of the form (2.6) for
general vectors f and g is called an (IIKS) integrable operator, after its introduction by
Its et al. [15]. Their general theory is discussed in [12,15] for integrable operators acting
on continuous contours and [10] for those on discrete sets. In this subsection we review
some of their properties that we will use.

Let €2 be a union of contours or a discrete set as described in Sect. 2.1, and let i and
L%(Q, w) be asin (2.1) and (2.2).

Let f and g be (mm + 1)-dimensional column vector-valued functions (not necessarily
of the form in Definition 2.1) in L2($2, ) N L®(2, n) satistying

fu)'gu) =0, ueQ, andset H(u,v) =

T
79w cal
u—v

Observe that for f and g of the form in Definition 2.1, the assumption (2.8) implies this
orthogonality. Assume that 1 — H is invertible. With |, being the identity matrix of size
k, define (m + 1)-dimensional column vectors

F=1-H™" G=01-H)"g, (4.1)

and the (m + 1) x (m + 1) matrix-valued function
F T
P@) = s — / %du(m, zeC\Q. 4.2)
o _

An important property of integrable operators is that ¢ is the unique solution to the
following Riemann-Hilbert problem (RHP).

RHP (a) ¢ : C\ Q — CO+Dxm+D g apalytic.
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RHP (b) In the case when €2 is a union of contours, ® satisfies the jump condition
d,(u) =d_(w)du), ueg, where J(u) := |y — 27if(u)g(u)’. (4.3)

In the case when 2 is a discrete set, the matrix ¢ has simple poles at the
points u € €2, and its residues satisfy

Res®(2) = lim ®()Rw)  with  R@) = fwgw” (4.4)

The convergence of the limit is a part of the condition.
RHP (c) ¢ has an asymptotic series

o0
Pn
@) ~ s+ Y — 4.5)

n=1
as z — oo uniformly away from .

It can be shown that det (z) = 1 for all z and
o f(u)Gu)”
S(2)" =lpr+ u—zdu(u), zeC\Q. (4.6)
o —

Note that (4.2) and (4.6) imply that ®(z) ~ lps1+Y ey % and ®(2)7" ~

-1
+y 07 @N—n)” as 7 — oo where

d>,,=/ u”_lF(u)g(u)Tdu(u),(Cb_l)n:—/ )G dpuw), n=1,2, .. ..
Q Q
4.7

The notation ®; is consistent with Definition 2.2.

4.2. Lax equations. The discussion in the last subsection is valid for general integrable
operators. For the rest of Sect. 4, we further assume that H is a cubic integrable operator
as introduced in Definition 2.1.

From (2.7), f = cAU and g = ¢! A~!V for vector functions U and V that do not
depend on X, y, t. Hence, the jump matrix and the residue matrix for the RHP in (4.3)
and (4.4) take the form

Jw) = Aw)dow)Aw)™"  and  R@u) = Aw)Row)Aw)™ !, (4.8)

where the matrices Jo(ut) = lys1 — 27iU@)V(@)T and Ro(x) = Uw)V(@)T do not
depend on X, y, t. We follow the standard dressing method of deriving Lax equations
for RHPs when the jump or residue matrix is a conjugation of a parameter-independent
matrix. We think of J and R as dressed-up versions of the matrices Jy and Rg which are
constant in the parameters.

Recall that E; denotes the (m + 1) x (m + 1) matrix whose (i, i)-entry is 1 and all
other entries are 0. The linear ODEs (4.10) below are called Lax equations for .
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Lemma 4.1 (Lax equations). Let ®(z) be the solution, which is given by (4.2), of the
Riemann-Hilbert problem associated to the cubic integrable operator H. Then, the ma-
trix

V() := P(2)A(2) (4.9)

satisfies

0, V(@) =D (W), 8, V() =Dy ()V(),

9, V(z) = D (2)W (), (4.10)
forie{l,.-. m}, where

(Z)(Z) — zE; +C(1) (l)(Z) _ Z2E +ZC(Z) +C(l)

Dg')(z) = E; +z2C(1') +ng) + Cg'),

with

Cl)i=[¢1,El. CY =[¢:, E]-C{ o,
<l> = [®3, Ei] — c<;>¢2_cg>¢1. (4.11)

Proof. From (4.8), the jump/residue condition for the new matrix becomes

WV, () =V_(u)do(u) or IZ{:es\U(z) = ZIE)IL V(z)Ro(u).

Since Jo(u) and Ro(u) do not depend on X, V, t, we find that a partial derivative 9V with
respect any one of the parameters satisfies the same jump/residue condition as WV itself.
Hence, (W (z))W(z)~! is continuous across €2, and thus it is an entire matrix function.
From the definition (4.9),

QWY = @Ge)o !+ dOA) AT O (4.12)
Also, from the formula of A in (2.4),
WA =zEAR), 3yAR@ =EAR), AR =EAR).

Hence, using the fact that & ~ |41 as z — oo, Liouville’s Theorem implies that the
matrix functions (dy, W(2))W(z) ™!, (dy, W(2))W(z) !, and (3, W(z))W(z) ! are polyno-
mials in z of degrees 1, 2, and 3, respectively. Inserting (4.5) into (4.12), we obtain the
coefficients of these polynomials in terms of ®1, ®, and ®3, and find (4.10). O

4.3. NLS and mKdV: proof of Lemma 2.4 and Theorem 2.5. Recall that in Definition 2.2
S c {1,...,m}is agiven set, and the associated differential operators d, dy, and Oy are
given in (2.11) such as 9y = ) ;g dx,. Set

E=ES =Y E:. (4.13)
ieS

We first derive the following differential equations for ®1, ®,, ®3 (recall (4.7)).
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Proposition 4.2. The matrix ®| satisfies the differential equations

9P+ [3y®1, E]+ [9x1, [01, E]l =0,
dxdy®Py + [0/Py, E] + [0yPy, [®1, E]] = 0,
3,1 — 3dxP1 — [0yP1, 0xP1] = 0. (4.14)

Furthermore, the three matrices ®1, 2, O3 are related by

P = —[D2, E] + [Py, E]Py,
P = —[P3, E] +[P1, E]Py — (3xP1) ;. (4.15)

Proof. The matrix V(z) := ®(z)A(z) of (4.9) satisfies the Lax equations (4.10). Sum-
ming over i € S,

BX\U(Z) = (ZE + C])\I}(Z)v
WV (2) = (PE+2C1 +C)V(2),
®V(2) = (°E +2°Cy +2C5 + C3)VW(2), (4.16)

with

Ci=1[®,El, GCr=[d,E]-Ci®;, C3:=[P3,E]-CiP,—-Cro;.
(4.17)

Inserting W(z) = ®(z) A(z), these equations become equations for ®(z). We then insert
the asymptotic series (4.5) and consider the coefficients of Ok, Collecting the co-
efficients, we obtain a sequence of equations relating the matrices ®,,. In particular, the
O(z~ 1) terms of the first two equations of (4.16) become

oxd; = —[Do, E] + Clq)], Byq)] = —[¢3, E] + Cl(bz + Czq)]. (4.18)

Using these relations, we find that the three matrices in (4.17) can all be expressed in
terms of ®; as

Ci=[P,El, Co=-&d, C3=-0o;. 4.19)

Inserting the formulas of C; and C; into (4.18), we obtain (4.15).

To obtain the differential Eq. (4.14), we look at the so-called zero curvature equations
for each pair of equations from (4.16). These conditions are obtained inserting (4.16)
in the identities dyotW = oy WV, dxdtW = 0tdxV, and dxdyV = 0dydxW. These three
equations become

8y(Z201 +zC2 +C3) — 31(zC1 + Cy) +Zz[C3, E]+z[C3,C1]+[C3,C]1 =0,
0x(2°C1 +2C2 + C3) — %Cy +2°[C, E1 +2[C3, E1+2[C2, C11+1[C3, C11 =0,
0x(zC1 +C2) — 9yCy +z[C2, E] +[C5, Cy] = 0.

These equations hold for all z. Considering the coefficients of z', we obtain 8 identities.
The 2 identities from the last equation follow from the remaining equations. We also
observe from (4.19) that ByCz = 0xCs. Using this, we see that the identity from the
coefficients of z of the first equation and the identity from the constant terms of the
second equation are equivalent. Thus, we are left with 5 identities. Two of them are
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9xC1+[Cy, E] = 0and dyC; +[C3, E] = 0, but these follow from (4.19). Summarizing,
the zero curvature conditions yield 3 new identities, which are

xC2 — 3yC1 +[C2,C1]1 =0,  9C3 —3C; +[C3,C1]1 =0,
dyC3 — 9tCy +[C3,Ca]1 = 0. (4.20)

Inserting (4.19), these equations become (4.14). O

We now show how the last result implies Lemma 2.4 and Theorem 2.5. Let NS be
the (m + 1) x (m + 1) permutation matrix as introduced before Definition 2.2 and |; the
identity matrix of size j. Note that

NSEMS)T = diag(l), 0, - - , 0)
with E as in (4.13).

Corollary 4.3. Decompose HS¢1 (HS)T as the sum of diagonal and off-diagonal block
matrices,

s S\T _ _(q0 _(0p
sy 0. (39, 0= (%).

where we used the notations of (2.10). Define the (m + 1) x (m + 1) diagonal matrix
V = diag(ls), —ln+1-15)-
Then,

L = —VO?, dyL = O(3x0) — (3xO) O,
30 = V(3;0+20°), 30 = 3;0+3(3x0)0* +307(3x0).  (4.21)

In terms of the matrices q, p, I, S from (2.10), the first two equations become
0xq=—pr, xS=1p, dyq=p@OxnN — (xpP)r,  dyS = rdxp) — (IxNP,

the third equation becomes the coupled matrix NLS equation with complex time (2.12),
and the fourth equation becomes the coupled matrix mKdV equations (2.13). Finally,
the additional relation

Tr(s) = — Tr(q)
also holds.

Proof. Foreachn = 1,2, 3, write in diagonal/off-diagonal block form,
* 0 0 x*
nsq)n(nS)T = Ln +Ol’l’ Ln = <0 *> s On = (* O) .

In particular, L; = L and Oy = O. In the calculations that come, we make use of the
identities

mse, S’ NSem$)’1=0,V=-V0,, LV=VL, V>=l,,

which are straightforward to check.
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Conjugate the Egs. (4.14) and (4.15) by NS and consider the diagonal and off-
diagonal blocks. The diagonal blocks of the first equation of (4.15) give the identity

L = —VO?. (4.22)

This is the first equation in (4.21).
The off-diagonal blocks of the first equation of (4.15) and the diagonal blocks of the
second equation yield

%01 =VO, —VOiL;, 3yl =—-VO,0; — (L)L — (xO1)O;y.

Using V2 = |41, the first equation implies Oy = VaxO; + O1L;. Inserting this into the
second equation and also using (4.22), we find dyL; = O1(9xO1) — (3xO1)O;. This is
the second equation in (4.21).

The off-diagonal blocks of the first equation in (4.14) give us

—VayO; + 3501 — [xL1, VO] = 0.

Inserting (4.22) and multiplying V on the left, we find 3yO; = V320, + 2VO3, which
is the third equation in (4.21).
The off-diagonal blocks of the second equation of (4.14) imply

—VatOI + 8X8y01 — [3yL1, VO]] =0.

We remove dyL; and 8y01 using the second and the third equations in (4.21), and find
#0; = 3]0, + 3(8)(01)0% + 30%(3)(01). This is the fourth equation in (4.21).
The equations for q, p, r, s follow by inserting the formulas of L and O.

Finally, since 1 = det ®(z) = det(l,;,+1 + Z;il %) as z — 0o, we have Tr & = 0,
implying the identity Tr(q) + Tr(s) = 0. O

Thus, we proved Lemma 2.4 and Theorem 2.5.

4.4. The matrix KP equation: proof of Theorem 2.6. We derive the matrix KP equation
from the Eq. (4.21).

Proof of Theorem 2.6. We keep using the matrices O, L, V from Corollary 4.3, which
satisfy OV = —VO, LV = VL, and V2 = l,ps1. Letu = pr and v = rp. Denote

A2 _f(pr0Y) _[(u0
U=0 _(Orp)_(OV).

We first derive four equations for U, O, and L. The first claimed equation follows from
the definition of U,

33U = (3;0)0 + O(3;0) + 3(320)(8x0) + 3(3x0) (320). (4.23)
To obtain the second equation, we use the second equation of (4.21) to get
83L = (8y0)(3x0) + O(3y3x0) — (3y3x0)O — (3x0)(3yO).

Using the third equation of (4.21), this implies our second equation,
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— VgL = (3;0)0 + O(3;0) — (3;0)(3x0) — (3x0)(3g0) +40(3,U))O.
(4.24)

Next, we multiply the fourth equation of (4.21) by O to the right, and separately to the
left, and add both equations. The result is our third equation,

U = (3;0)0 + O3 0) + 305 (U?). (4.25)

Finally, for the fourth and last one, we compute [U, dyL] with the second equation of
(4.21), obtaining

— [U, dyL1 + 8x(U%) = 20(3xU)O0. (4.26)

We combine the above four equations to eliminate O and obtain an equation of U
and L as follows: Multiplying the Eq. (4.24) by 3 and adding it to the Eq. (4.23), and
then subtracting the equation (4.25) multiplied by 4 and also the Eq. (4.26) multiplied
by 6, we obtain

35U — 3VagL — 43U + 6[U, dyL] + 60x(U*) = 0.

If we insert U = (g 8) and L = (g 2), we obtain the first equations in (2.14) and (2.15).

The second equations of them follow from dxL = —VU, which is the first equation of
(4.21). Thus the result is proved. |

4.5. Multi-component KP hierarchy. In this subsection, we show that the three Lax
equations (4.10) with respect to the parameters are related to multi-component KP hi-
erarchy theory. This will give us another proof of Theorem 2.6. The article [20] gives a
thorough exposition on the multi-component KP hierarchy theory, see also [28]. For the
scalar KP hierarchy theory, a helpful overview is found in [14]. Multi-component KP
hierarchy theory are already known to be connected with models related to the Airy;
process and random matrix theory, see [2,4] and references therein. We can also notice
that cubic admissible determinant is multi-component KP tau function, but we don’t use
this fact in this paper.

The cubic integrable operator H contains 3m parameters Xi, -+, Xu, Vi, = » Yoo
ty, - - -, t,,. We relabel them as
x{i)zx,-, xéi):yi, xgi):t,-, ief{l,...,m}
Recall the matrices ®; for k& > 1 from (4.7). Fix n € {1, ---, m} and write in block
form®
_ (9% P«
o) = <rk Sk) ) 4.27)

)

; be the k x k matrix with 1 in the

where q, is a matrix of size n x n. Fork > 1, let E
Jj-th diagonal entry and zero in the other entries.

8 We can also consider |_|S¢k (|_|S)T similar to (2.10). Then the discussions below still hold if we define
the parameters x‘(zl), i=1,---,|8|,¢ = 1,2, 3 appropriately. For the convenience of presentation, we state

results only when |_|S ={1,---,n}here.
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Now define the formal n x n matrix-valued pseudo-differential operators on the

variables x{l), . ,xi"),
n o0
= Z 0,  and P=1,+ Z a9k, (4.28)
j=1 k=1
and for j € {l,--- ,n}and £ € {1, 2, 3} also introduce

By == (PE9'P~)).,. (4.29)

We stress that this convention for 9 is only valid for this subsection. The subindex +
in (4.29) means that we take the part of the term between brackets that contains only
non-negative powers of d, and the inverse P~! is in the sense of pseudo-differential
operators, so that

Pl =1, =107 +(af —a)8 7%+ (—0a7 — G;(0)) + 9%y + G0y — A3)d " +---
From the definition, we have’
BY = E®d+[q,.E"l,
BY = E("9? +[a,.E{"10 + [a,, E1 — [q;. EM"1q; — 2EY” (3q)
BY =E9 +[q,.E{"10% + (195, E"1 — [, E"1a; — 3E}” (3q))a
+gs, E{"1+[a;, EY”1at — [y, E{1d, — [, E{1a,
—3E(" (9q,) — 3EV" (9%q;) — 2[q,. EY”1(9q,) + 3E”(8q,)q;
(4.30)

These are particular combinations of q;, d,, 43 and their derivatives.
There are several equivalent formulations for multi-component KP hierarchy. Remark
4.4 of [20] gives a good summary of their relations. Here, we prove the following version.

Proposition 4.4 (Sato equations for multi-component KP hierarchy). Fix 1 <n < m.
The n x n matrix-valued pseudo-differential operators P and BEJ ) from (4.28) and (4.30)

satisfy the following equations, known as the Sato equations'® for the n-component KP
hierarchy:

oP
@)
dx,

=BP—PE™3" forie(l,---,njand €€ (1,2,3).  (431)

9 To compute it, note, for example, that 33ud =2 = ud + 3(3u) + 3(02w)d ! + (03u)9~2 and 3~ 1ud? =
ud — (du) + (3%u)d~! — - - from the product rule of derivatives, and thus, (33ud~")y = 1d? + 3(du)d and
(0 'ud2)+ = ud — (Ju) for any function u.

10° This equation is the special case when o = 0 in equation (113) of [20]. The full Sato equations involve
pseudo-differential operators parametrized by o € Z"~!. The multi-component KP hierarchy may also involve

infinitely many parameters xéi), iefl,---,n}, € e {1,2,---}. Here we have the special case when ¢ €
{1,2,3}.
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Proof. Recall the Lax equations (4.10). Inserting ¥ = ®A into (4.10) and collecting
coefficients of O(z ) we obtain the identities

9P = —[Spar, EMV 4+ C oy,
8x£i>¢k =[O0, E"V1 4 CV by + CP oy,
axg)(bk = —[Dps3, EEVHI)] + C(li)¢k+2 + Cg)q)kﬂ + Cgi)(bk’ (4.32)

fork € {1,2,---}andi € {1, --- , n}, where Cgi) are given by (4.11). Using the formula
of Cg’) and inserting the block form (4.27), the first equation of (4.32) yields

0,00 = ~[Qks1 E™1+19y, EM e — Epyri (4.33)
and
0Py = E/pyer + a1, EMVIp, — Epy i
3x§f>|‘k = 1 E™ +1E™qy,
0,08 =nE"py,
Summing overi = 1, -- - , n and noting Eﬁ") 4o +EM =1, we find
99, = —P1fk (4.34)
and

0Pr = Pyt — P1Sks  Ofk = —Tig1 + 110, 98k = rpy.

Using these four equations we can also compute higher derivatives of q:

970G = —Palk +PySiMk +Pileer — P1r10s,
3Gy = 2P S1M Gy + P11 Gyt +P1r20 — 2Par1 Gy — P10 G — 2P SiMksd
+PSalk + PaSiTk — pls%rk — Pilk+2 + 2P lke1 — P3Tk + 2P 1Py M. (4.35)

In addition, the top left blocks of the second and third equation of (4.32) are
8,00 = Q. BT+ 100 B 001 — EPiTiar + 10, E g

—E§")p2rk —[ay, Eﬁ”)]qlqk + EE")plrlqk —[a;, E§")]p1rk + E,(n)plslrk
(4.36)

and
3,(;")% = —[Qg43, E,@]"'[QM EEn)]qk+27E§n)plrk+2 +[9, Efn)]CIkn

—E{"pyrie1 —1ay. BV 101 Gt +EL P11 Gt — (01 BV 1D e

+E,€")P131rk+1+[Q3, EE”)]qk—Ef")psrk—[ql, EEH)]QZQk’rE,(n)Pl (pIo3

—[a;. E{"1pore+E{pysare — E{”pysinia+a . E{ pysine+Epari o

—[a2, E{"1p1e—E{"p1110 e+lay, B Toyriag+Hay, B 1arpy 1k + EfVpsine
—E"psirn—E piripire+EL"”. apla;q+ay . EV1a7 s (4.37)
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Using (4.34), and (4.35), the right-hand side of (4.33), (4.36), and (4.37) can be expressed
using only q;’s. We obtain

9,000 = ~[Ge1. E™]+[a;, E™ g, + E™aqy, (4.38)
3x§f>Qk = —[Qg42; E,(n)] +1qy, E,(n)]QkH —[a;, Eﬁ”)]qlqk +[ay, E,@]Qk
+[a;. E{M 190, + EV 0%, + 2BV 00y, — 2B (Bapar,  (4.39)

and

9,09 = ~[93. 71+ 101 E 1000 + (92, B/ 10 — (91 B 1019

—[q, Ef'”]Qsz +[03. E,(n)]Qk —[q. EE")]qlqk +[qy, E,gn)]Q%Qk
+3E§")BQk+2 + 3E§”)3ZQk+1 + EE”)83qk +2[q, EE")]?’QkH

+q, El(n)]32Qk +[d, EE”)]aqk - 3E§")G9Q1)Qk+1

—3E{" (0a)) (9ap) — 3E{"” (9920

—3E" (0%a)a — [a;, E™ 10100, — 2[ay, V109, qx +3E (991)q G-
(4.40)

Now consider again (4.31). In its the left-hand side, we use the definition P :=

P
" We then insert the formulas (4.38),
ax
[
(4.39), and (4.40). For the right-hand side, we insert the definition of P and the formula
(4.30). A tedious computation shows that the two sides are equal, and concluding the

result. O

I + 372, qxd % and take the derivative,

Sato equations imply the following equations.

Corollary 4.5 (Zakharov-Shabat equations for multi-component KP hierarchy). Fix

1 < n < m. The n x n matrix-valued pseudo-differential operators By ) from(4.30)
satisfy the following equations, known as the Zakharov-Shabat equations for the n-
component KP hierarchy:

aB(i) 88({) ) )
— ¢ —BY,B), i jefl,---.n), £,€€{1,2,3). 441
8x(1) Bxél)

Z/

Proof. Proposition 4.4 of [20] proved that if P and By) satisfy the Sato equations (4.31),
then Bg) satisfy (4.41). O

Sato equations also give another proof of the matrix KP equation (2.14). The proof
of the next result shows that Zakharov-Shabat equations (4.41) yield the matrix KP
equation modulo an “integration constant” 0: see (4.45) below. We can then show that
6 = 0 using one of Sato equations.
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Corollary 4.6. Set
U:= —0dxq where q:= Q.
Then, the matrix KP equation (2.14) holds:
— 404+ D3 U+ 6dx(U%) — 39,9 + 6[u, 0yq] = 0.
@) (@) (@)
1

Proof. We use the notations x;"" = X;, x,  =Y;, x;  =1;, and

n n n
= o, dy= dy, k=D k=0
i=1 i=1 i=1
Set By := Y.1_; By for ¢ € {1, 2,3}. From (4.30), we find that

Bi=d, By=09"-2(0q), B3=09>-3(3q)) —3(0q) - 3(3°q)) +3(q))q;-
Setting
o = —(9q,) +(39)q;
and using U := —0dxq, these expressions become
Bi=9, B,=09’>+2u B3=209%+3ud+30u+a). (4.42)

Consider the £/ = 3 and £ = 2 case of the equations (4.41). Taking the sum over
i,j=1,---,n,it becomes

B2 — 9yB; = [B3, B2l

Inserting (4.42) and considering the terms of 3! and 3° we obtain two equations, namely

dyU = d2U + 20 (4.43)
and
200U — 39y dxU + 33U — 6UdU = 3dya — 307 + 6[dxU + o, U]. (4.44)
Since U := —0x(, (4.43) implies that there is a function 0 such that

1
o = _E (axu + ayql +9) and axe =0.

Inserting it into (4.44), we obtain
— 40U + 03U + 63, (U?) — 3(dyq + dy0) + 6[u, dyq + 6] = 0. (4.45)

Now, the case of £ = 2 of Sato equations (4.31) is precisely (4.39). The sum of this
equation over i implies that —(3qy) + (39,)q; = —3 (dxu + dyq,). This shows that
6 = 0 in (4.45), completing the proof. O
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4.6. Matrix ODE system a la Tracy and Widom: proof of Theorem 2.7 and Corollary 2.8.
In this section, we assume that H is a strongly cubic integrable operator as in Definition
2.1. Thus, Q2 is a finite union of simple contours without endpoints and, furthermore,
the matrix Jg in (4.8) is constant on each connected component of 2. The last property
allows us to derive an additional Lax equation for the derivative with respect to the
variable z, which is often called the spectral variable. Because this equation will have
coefficients which are polynomial in z, the corresponding Lax pairs are usually associated
to isomonodromic deformations [13], but we will not explore this fact explicitly.

Proof of Theorem 2.7. Recall that

m
0=ty
j=l

was defined in (2.17). Taking a weighted sum of the first equation of (4.10), we find that
oV(z) = zMt+ D)V (2) with Dp = [, Mi].

where recall My := diag(ty, - - - , t;, 0) from (2.16). Inserting W(z) = ®(z)A(z), using
the asymptotic series (4.5), and comparing the terms of O(z~!), we obtain
0d; = —[,, Mt] + [P, Mt]q)l. (4.46)

The lower-right block of this identity is exactly (2.19).
On the other hand, consider the differentiation 9, with respect to the variable z. We
have

0.0 =327t +2zy; +X)E; A = B3> My +2zMy + My)A. (4.47)
j=1

Since Jy is independent of z on each connected component of the contour, 9,V satisfies
the same jump condition as ¥, and hence, (3, W)W ! is an entire function. Considering
the large z asymptotic formula again, we obtain

.V (z) = (312Mt +2(3D1 +2My) + (3D2 +2D3 + My)) V¥ (z) (4.48)
with D; := [®;, M] as before, and
Dy = [®2, Mt] — [®1, M{]®) = —3dy, D3 :=[$y, My],

where we used (4.46) for the last equality.

Thus, W is a common solution to the d and 9, differential equations, and the com-
patibility of these two equations, namely 90,V = 9,0V, implies the zero curvature
equation

z2(3[M, D21 + 2[M, C3]1 + 2[Dy, My] — 3dDy) + (3[Dy, D7]
+2[D1, D3] + [Dl, MX] — 38D2 — 28D3) =0.
Using the formulas for Dy, D, and D3 and the cyclicity of the commutator, we obtain

that the coefficient of z is trivially identically zero. The constant term, on the other hand,
is non-trivial and gives the equation

3[D1, D2] + 2[D1, D3] + [Dl, Mx] — 33D2 — 28D3 =0.

Inserting the formula of Dy, D;, D3, we obtain (2.18). O
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Proof of Corollary 2.8. The equation (2.21) follows by inserting ®; = (9%) into (2.18)
afterremoving ds using (2.19).Ift; = - - - =, =: 1, the m xm upper left corner of (4.46)
yields dxyq = —pr. This was also already proved in Lemma 2.4. Using this equation, the
bottom two equations of (2.21) become the bottom two equations of (2.22). O

4.7. Deformation formulas for cubic admissible determinants: proof of Proposition 2.10.
Assume that H is cubic integrable and 1 — H is invertible, and consider the Fredholm
determinant ® = det(1 — H). We compute the derivatives of log ® with respect to the
variables X;, y;, 1;.

Proof of Proposition 2.10. Recall that E; is the (m+1) x (m+1) matrix whose (i, i) entry
is 1 and all other entries are 0. From (2.3) and (2.4), we have A(z) = diag (m;(z), M2 (z),

L My (2), 1) with m; (2) = e T2 Thys,
Ix, A(z) = zE; A(2).
Hence, the vector functions f and g satisfy

BX,‘ C(Z)

ax, f(2) = zE;f(2) + a(2)f(2), x;9(z) = —zE;9(2) —a(2)9(z)  where a(z) := @

Thus, for z # w,
_ Oxf@)"g(w) +1(2)" 8 g(w)

Z—w

=) E;g(w) + a(2)H(z, w) — H(z, w)a(w).
(4.49)

oy, H(z, w)

For z = w, since H(z, z) = 0 by definition, we have dx, H(z, z) = 0. On the other hand,
noting that A is a diagonal matrix, the condition (2.8) implies that f(z)TEig(z) = 0.
Thus, the right-hand side of (4.49) is zero when z = w. Therefore, the equation (4.49)
is valid for all z, w € Q.

For vector functions u# and v, let # ® v be the integral operator given by the kernel
u(z)Tv(w). Let o be the operator of multiplication by «(z). Then, the equation (4.49)
can be written in the operator form dx,H = f ® (E;g) + [H, o] with [, -] being the
commutator of operators. Thus,

dx, logdet(1 — H) = —Tr((1 — H) "o, H)
=-—Tr(1 —H)® Eg)+Tr(1 — H)~![H, a]). (4.50)
Since (1 — H)"'"H = H(1 — H)~!, we use cyclicity of the trace and obtain
Tr((1 — H)"'[H, «]) = Tr((1 = H) " 'Ha)) — Tr(@H(A —H)™) = 0. (4.51)

Therefore, using (4.1),

dx; logdet(1 —H) = —Tr(F® E;9) = / F(Z)TEig(Z)d/L(Z)
Q

_ f T [F0ue) E ] du. 452)
Q

where the last equality follows from the identity vIw = Tr(wTw) = Tr(vw?) which is
valid for any two column vectors v, w. The proof is now complete recalling the definition
of ®; in (4.7). |
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In a similar spirit, we also obtain deformation formulas with respect to the other
parameters. This result will be used in Sect. 8.

Proposition 4.7. Under the same conditions as Proposition 2.10,
3y, logdet(1 — H) = Tr [(cb% - 2¢2)5] ,
9 logdet(1 — H) = Tr [(—qﬁ +20, By + rdy — 3¢3)E,-] . (453)

where ®1, ©y, and ®3 are defined in (4.7).
Proof. Since dy, A(z) = 22E; A(2) and o A(z) = Z2E;i A(z), we find that

dy,f(x) = 22Eif(2) + B (2), dy,9(x) = —2°Eig(2) — B(2)9(2),
af2) = 2Ef@) + ¥ @), 3 9(x) = —2’Eig(2) — ¥ (9(2),
where B(z) = a)g(cz (>Z) and y(z) = 8‘(’:?;; ). As in the proof of Proposition 2.10, we find

that
oy, H(z, w) = (z + w)f()TEig(w) + B(2)H(z, w) — H(z, w) B(w),
I Hz w) = (2 +zw + wHiR) E;gw) + ¥ (2)H(z, w) — H(z, w)y (w),

for z # w. As in the last proposition, this identity also extends to z = w because both
sides are equal to 0 in this case. Let M; be the multiplication by z, (Mzf)(z) = zf(z). In
operator forms, the equations become

dy,H = MzEf® g+ ® MzE;g +[B. HI,
H = ME;f® g+ M, f®M,E;g+f®ME;g+[y, HI.

Calculating as in (4.50)-(4.51), we find

dy, logdet(1 — H) = = Tr((1 — H)"'M;E;f ® @) — Tr((1 — H)~'f ® M, E;9),
3, logdet(1 —H) = — Tr((1 — H)"'M2E;,f ® ) — Tr((1 — H)~'M,f ® M,E; Q)
—Tr((1 — H)~'f® M2E;g).

We now relate each such term with the matrices ®,, from (4.7). First, proceeding similarly
to (4.52),

Tr((1 — H)~'f ® MZE;g) = Tr(F ® MIE;g) = / Tr [z”F(z)g(z)TEi] du(z) = Tr [, E;]
Q

for all n > 1. The identity Tr(Ku ® v) = Tr(u ® (KT v)) is true for any vectors v and
v and trace class operator K. Using this identity and (4.1) and (4.7), we find

Tr((1 — H)'MIEf ® g)
= Tr(M'Eif @ (1 — HT)"g) =/ Tr [z”Eif(z)G(z)T] du(2)
Q

=Tr [Ei f an(Z)G(Z)Td,bL(Z)] =-Tr [Ei (¢_1)n+1] .
Q
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Finally, note that

My, (1= H) ™= = H)™'[1 = H Mal(d = H) ™ = (1 = H)"'[H, M, ](1 — H)™!
=(1-Hfegl-H'=1-Hfed-H)g=FeG.

This identity implies that (1 — H)"!M, = M,(1 — H)~! — F ® G, and thus acting on
7', we find

(A —H)'"MAT =M,FT —FT </Q G(z)f(z)sz> =M,FT +FT(o~1HT,
Hence,
T —H MA@ MEQ) = [ GFOT +Fo @7 )]eEg@u:
= [ m[(F@+ @ F@) g0 E ]
—Tr [¢3Ei + (¢—1)1¢2E,-] .
Combining the above calculations, we obtain
3y, logdet(1 — H) = Tr [((CD_I)Q - ¢2)E,~] ,
%Mg®u1—H)=ﬂ{«¢*h—2¢y—@‘M¢ﬁEﬂ-

o,

Since ®(z) ~ I+ = Zf+%+---asz—>oo,weseethat

S D2—dy, DI — DDy — DD+ D
@) =l- e 1%

0™,

Z

which determines (d>_1)j for j = 1,2,3 in terms of 1, P, 3, and we conclude
(4.53). O

5. A Class of Fredholm Determinants

The formulas (2.23) and (2.24) of the multi-point distributions for the KPZ and the
periodic KPZ fixed points involve certain Fredholm determinants. The multi-point dis-
tributions of other models such as continuous-time and discrete-time totally asymmetric
simple exclusion processes (TASEPs) on the line and the ring also have similar Fred-
holm determinants [7,22,23]. The operators for these determinants all have a common
structure. In this section, we consider a class of operators with this common structure
and show that their Fredholm determinants are equal to the Fredholm determinants of
integrable operators with more transparent structure. The main result is Theorem 5.3.
In the special case of the KPZ and the periodic KPZ fixed point, the new integrable op-
erators will be cubic integrable, and we prove this statement in Sect. 6. In a subsequent
paper, we will consider the application of Theorem 2.11 to other models in the KPZ
universality class, and derive differential equations for them.
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5.1. A class of operators. We introduce a class of operators which arise in the study of
the multi-point distributions of various models in the KPZ universality class.

Fix a positive integer m. Suppose that Q21 1, - -+, Q1m, 22,1, - - , Q2. are 2 m pair-
wise disjoint subsets of C. We assume that they are either all finite unions of contours
or all discrete sets. Set

Q= Q11 U--‘UQLm and Q= Q1 U~-'U§22’m, (5.1
and
{,u is the counting measure if 2,  are discrete,

du = dz if Qg are contours.

Let Ai(z), - ,An(z) and B (2), - - - , B,,,(z) be functions of z € 2 U 5, and define
the m x m diagonal matrices

Az) = diag (Aj())7_; and  B(z) = diag (B; () _,. (5.2)

Finally, suppose that mj(z), - - - , M, (z) are non-vanishing functions of z € Q1 U 3,
and set

mi(z) mM3(z) M3(z) Ms(z) Ms(z)
M2 (2)" Ma(z)’ Ma(z)’ My(z)” Me(z)’
Definition 5.1. With the notions (5.1)—(5.3), define integral operators

Ki: L2, dp) — L2(Q1,dw)  and Ko : L2y, du) — LA, du)
by their kernels

M(E) = diag M ), = diag (o) -) 63

Y . Mi u Al' u)B;(v .

Riw, v = (5:07) 41+ () NI ey oy ve s,
and
o -\ M; () 7A; ()B; (v i
Ko(u,v) = <5i(j)+5i(j - (—1)1)) ®) ” —(v) i ), ifueQ;, veQy;,
fori, j e{l,---,m}.

The m-point distributions of several models of the KPZ universality class are ex-
pressible in terms of the Fredholm determinant det(1 — K;K;) for some K, Ky of the
above form. The main differences among the models are the function m;. For the KPZ
and the periodic KPZ fixed points, m; are cubic exponential functions Sl T g
in (2.3); see Sect. 6 for details. For other models, the cubic exponential functions are
changed to

¢'*zki (z + 1) for continuous-time (periodic) TASEP,

(1+ pz)t"_k" Zki (z+1)" for discrete-time (periodic) TASEP,

Zhiebiz*ai/z for (periodic) PNG model,
where a;, b;, ki, n;, t; and p are parameters of the models. These results are found in [7,
Section 3.4] and [23, Section 2.1.1] for the continuous-time TASEP, in [22, Sections 2.5
and 2.6] for the discrete-time TASEP [22, Sections 2.5 and 2.6], and in work in progress
by Tejaswi Tripathi for the PNG model.

In the next subsection, we show that det(1 — K;K3) is equal to the Fredholm deter-
minant of an integrable operator with a more convenient structure.
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5.2. A reformulation of a class of Fredholm determinants. Set
Q= Q1 UQs.
We introduce m x m diagonal matrices of indicator functions
X, = diag (XQLj)l;lzl for¢ =1, 2,
which, due to the pairwise disjointness of the sets €2 , satisfy
Xe(z)ee” Xp (z) = Xe(2)8¢0 (5.4)
for ¢, ¢ =1, 2. Define the 2 x 2 matrix

- (1)

and introduce the m x m matrices

diag(U, --- ,U), m even, diag(1,U,---,U, 1), m even,
—— ——
A=)  m2 and  Np=1 (m=2)/2 (5.5)
diag(U, ---,U, 1), m odd, diag(1, U, --- ., U), m odd.
— —
(m—1)/2 (m—1)/2

Furthermore, define an m x m matrix, an (m+ 1) x (2m) projection matrix, and a column
vector given by

Eij = diag(1,0,---,0), P=(lus10), e=(1---,D" eR", (5.6)

respectively. Recall the m x m diagonal matrices A(z) and B(z) from (5.2), and define
the (m + 1)-dimensional column vector-valued functions of z € €2,

_p(MMN—Ein\ (A)X(z)e
V@ =P < 0 En ) (A(Z)Xz(z)e> ’
_p(MM—En) (B@X(z)e
V@ =P <o Enl ) <B(Z)X1(z)e) : (5.7)
Finally, introduce the (m + 1) x (m + 1) diagonal matrix-valued function
A(z) == diag (M1 (z), M2(2), ..., Mp(2), 1), z €K,

where m; (z) are the functions in (5.3).

Definition 5.2. Let c(z) be a non-vanishing scalar function of z € Q. Define the (m +1)-
dimensional column vector-valued functions

f(z) = (1(2), ..., w17 = c()A)U(2),

1
9 = (91, -+ 91 @) = — AR V() (5.8)

c(2)

for z € Q, and the integral operator H : L2(Q, ) — L2, 1) by its kernel

H(u, v) :

T
= M foru,v e Qwithu #v, and H@u,u):=0, uecqQ. 5.9)
u—v
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The following result is the main outcome of this section.

Theorem 5.3. Let R] and Rz be operators in Definition 5.1, and H in Definition 5.2. If
the Fredholm determinant of det(1 — K| Ky) is well defined as a series expansion and H
is a trace class operator, then

det(1 — KiKa) = det(1 — H). (5.10)
Furthermore,
fi(2)9;(z) =0 foreveryz € Qandi € {l,---,m+1}. (5.11)

The proof of Theorem 5.3 is given in Sect.5.3.

The scalar function c(z) in (5.8) is arbitrary, and changing it does not affect the series
expansion of det(1 — H). However, in Sect. 6, we choose it appropriately in applications
so that H becomes a trace class operator.

The main difference of H from K; and K3 is that the matrix A(z) does not involve the
ratios of m; (z) unlike M(z). Thus, the above identity “uncouples" m; (z)s in the kernel
formula. This is useful when we derive differential equations as in Sect.4.

The formulation (5.8) is useful in deriving differential equations. However, for other
purposes, namely in proving that the operator is trace class and in obtaining asymptotic
formulas, we find that alternative representations of f and g are more suitable, and we
state them next.

Lemma 5.4. Define the m x m matrix

1/2 1/2 1/2 1/2
12 M@Y7T my@)7° m) " ms(z) ) ceQ

§(2) = diag (m] @™ m )2 my()V/2° my(2)1/2” ma(z)V/?’ o

(5.12)
for some fixed branch of the square-root. Choose the conjugating constant as
o) = & (X1 (@) + X)) diag( : L. 1 )e. (5.13)
' VM@ /m@m@ My (@)ma ()

Then the functions fand g in (5.8) can be written as

_ p(M M= En\ (ADS@)Xi(2) 0 e
f=Pp (o En )( 0 A(Z)S(z)_lxz(z)> <e>

(M A= En (B)S@) T Xa(2) 0 e
9@ = P<0 En ) < 0 B(Z)S(z)xl(z)) (e) - G19

Before proving the lemma, we first introduce the m x m diagonal matrices

MO(Z) = diag(ml(z)v ml(Z)a m3(Z)a m3(Z)’ mS(Z)v e )s
Me(z) = diag(1, ma(z), M2(z), M4(z), Ma(z), - - ), (5.15)

which we will also use later in this section.
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Proof of Lemma 5.4. Define the m x m matrix A = diag (my, my, ..., m,,). Note that
+ip _ tm b (A 0\ _ o (AR* 0
AP = (AG) O)_P< 070 )=p(PET ).

It is straightforward to check that

AN = MM, A@* (M —En) = (M — EjMe(2)*,

and E1; = E{1Me(z) = E11Me(z)~". Applying these identities to (5.8), we find that

f) = P </\1 Ny — E11> <Mo(Z)A(z)X1(z)e> o)

0 En Me(2)A(2)X2(2)e
oM A —En (Mo(2)7'B(2)Xa(2)e) I
9@ =P ( 0 Eyp ) (Me(z)_lB(z)Xl(z)e> R (5.16)

In terms of (5.15), the conjugating constant chosen in (5.13) can be written as
c(z) = e’ (Xi(2) + X2(2)Mo(2) " *Me(2) "'/ %e,

and, due to the indicator functions, it satisfies

L 6T X1(2) + Xa ()Mo (2) Mo (2) 6.
c(z)

Now using (5.4), we find that
Xe(z)ec(z) = Xe(z)ee! (X1(z) + X2(2))Mo(2) ~V/*Me(2) /%€

= Xe(2)Mo(2) " *Me(2)'%e,
x(@e% = X¢(x)ee” (X1 (2) + X2(2)Mo (2)*Me (2)/*e
= Xe(2)Mo(2)*Me(2)' e
for £ = 1, 2. Thus, using S(z) = Mo (2)'/*Me(z)~'/2, we find, for example,
Mo (2)A(R)X1(2)6C(z) = A()X1(2)Mo(2)'*Me ()26 = A(2)S(2)Xi (2)e.

The other three vectors in (5.16) are computed in a similar way. O

5.3. Proof of Theorem 5.3. In this Subsection we prove 5.3. Replacing the kernels in
Definition 5.1 by

X2 WK (u, 1) xa, () and  xq, )Ka(u, v)xq, (v)

foru,v € Q, we can extep\d Rl and Rz to operators from Lz(Q, ) to L2(Q , ). We use
the same Eof\ation K and K to denote the extended operators. The Fredholm determinant
det(1 — K{Kj) is unchanged by this modification.
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Lemma 5.5. For each ¢ = 1, 2, the kernel of R@ can be written as

)by (v)
u—v

veQ,

)

Ko, v) =

with the m x 1 column vectors
a1(2) = MARM@) X (2)e,
) = MAWM@) ' Xo(w)e,
Proof. Set xq,, = XQuu = 0for £ = 1,2 and By = By;41 = 0. Due to indicator
functions, the kernels in Definition 5.1 can be written as

bi(z) = MBR)Xa(2)e,
by(2) = MB) X (2)e.

= 0K @,v) = > xa,, @M @AW (Be() Xy, (v) + Bt (1) X, ()

k=1
k odd

+ Z XQk (M)Mk(M)Ak (u) (Bk(v)XQz_k (U) + Bk—l(v)Xqukq (U))

k=1
k even

and
= Ko, v) = Z X2, WM ()~ A () (Bi(v) xg, , (v) + Bro1 () xg, -, (v))
Ko
+ Z X0k (M)Mk(u)_lAk(u) (Bk(v)XQLk (U) + Bk+l (U)XQL/H.[ (U)) .
k=1
k even

It is direct to check that for any column vectors o = («q, ..., am)T e R"and g =

B, ) €R™,

m m
a’ATA B = Z (B + Br+1) + Z ar(Br + Bk—1)
k=1 k=1
k odd k even
and
m m
al NI B = Z ar(Bk + Br—1) + Z ar(Bk + Br+1),
kkozdld kke?én

where we set Bg = Bm+1 = 0. The result then follows. O

For the next lemma, recall the matrices My and Mg defined in (5.15). Also introduce
m x m diagonal matrices
D] (Z) = dlag(m] (Z)’ 19 m3(z)9 17 m5(Z)7 e )5
DZ(Z) = dlag(lv m2(1)7 ]1 m4(Z)1 17 tt )
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Lemma 5.6. Define the m x 1 vector-valued functions

ai(z) .= NMA@Mo(z2) Xi(z)e = D1 ()M A() X1 (2) e,

a(2) == MA@DMe(2) X2(z)e = Dy(2)MA(R) Xa(2) e,

bi(z) = M B(2)Mo(z) "' Xo(z)e = Dy (2) '\ B(2) Xa () e,

b(2) == MaB(2)Me(z) ' Xi ()€ = Dy (2) ' MaB() X1 (2)e. (5.17)

for z € Q. Then, there is a non-vanishing scalar function € on Q such that for each
£=1,2,

- - —~ 1
ay(z) =C(x)ag(z) and by(z) = %be(z)-

Proof. Define the scalar function
€@ = e’ Me(2)"'X1(2) + Mo(2) ™' Xa(2))e.

Due to the indicator functions, we find that

1
= = e’ (Me(2)X1(2) + Mo (2)X2(2))e.

19~

holds for any complex numbers a and *. Using this identity, we find that

Observe that

AMMo(2)*! = D12\, MMe(2)*! = Da()*! A,

Since the matrices A, B, Mo, Mg, and X, are all diagonal, they commute. Since M =
MoMg !, we find, using (5.4), that

~ 1
31(2)% = MAW)Mo(2)Me(2) ™' X1 (n)ee” (Me(2)Xi(2) + Mo(2)X2(2))e

= MA@)Mo(2)X;(z)e = D1 () AMA(D)X (z)e = a;(2).
The results for the other vector functions by, a, and b, follow similarly. O

For the next result, observe that (5.17) and (5.4) imply that

bi(z)ai(z)" =ba(z)ax(z)” = 0. (5.18)

Lemma 5.7. Let ay, ax, by, by be the vectors defined in (5.17). Let ¢(z) be an arbitrary
non-vanishing scalar function on Q. For £ = 1, 2, define the operator Ky : L*(2, 1) —
L%(Q, W) by its kernel

cwag ) be(v) gy

Ky (u, v) := foru,v € Qwithu # v, and  Kp(u,u):=0, ueQ.

u-—v

If the series definition of det(1 — Rle) is well-defined and K| and K, are trace class
operators, then

det(1 — K Ky) = det(1 — K — K»).



1790 J. Baik, A. Prokhorov, G. L. F. Silva

Proof. Lemma 5.5 and 5.6 show that foreach £ = 1, 2,

Retw = 0 ) S0
Ke(u, v) = ) Ko (u, v),d(v).

Hence, from the series definition of Fredholm determinants, det(1 — le\z) = det(1 —
KiKy).
Equation (5.18) implies that K% =0for¢ =1, 2, and thus

1-— K]Kz = (1 + K])(1 — K] — K2)(1 + Kz).

Now for £ = 1, 2, we have Tr Ky = 0 because Ky («, u) = 0, and Tr K;’ =0O0foralln > 2

since K% = 0. Thus, the Plemelj-Smithies formula for Fredholm determinants, which is
valid for trace class operators, implies that det(1+Ky) = 1. Therefore, det(1 —K;K;) =
det(1 — K; — K3), and we obtain the result. O

We are ready to prove Theorem 5.3. Introduce the (2m) x (2m) permutation matrix

M= (;’* E) where M, = diag(1,0,1,0,---), n_ = diag(0,1,0,1,---).
— My

The diagonal matrices Q4 are of size m x m. Recall the matrices A; and A, from (5.5)
and the matrix E1; = diag(1, 0, - - - , 0) from (5.6). It is easy to check that

A O _ N N —Eqg
oy )= (4. 519

Proof of Theorem 5.3. Let K| and K be the operators in Lemma 5.7. We first show that
K] + Kz =H.

We need to show that

1
c(u)a(u)wa)@ = fu) g(v),

where we denote a(z) = (a;(z), @2(z))” and b(z) :== (b (z), b2(2))”. Since PTP =
diag(l,,;, Eq1), we find from (5.19) that

AN O _ prp(MMA—En\ _ pr A O
|‘|<0 /\2>_P P(O E, >_P PI‘I(O /\2>.
Hence, from the first formulas of b; and b, in (5.17), PTP nb(z) = rb(z). Using
n'n=1l,,, we find
aw)’b) =aw)! N’ mb(v) = a@w)” " PTPnbw) = (Pnaw)’Prnb).

We now insert the second formulas of a; and a; in (5.17) to compute P ra(u). The
relations

M:D1(z) = Ay, N-Di(z) =n-, MDa(z) =r; and M- Da(z) = A(x)r-
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are straightforward, and yield

Diz) O _
P|—|< 0 DZ(Z)>|—|—A(z)P|—|.

Thus, using (5.19) again, we obtain

Pra(z) = AP n (Qiﬁgéigg)

_ A A —En (A@Xi(x)e) _ 1
=A@P ( 0 En ) (A(Z)Xz(Z)e> =@
A similar computation yields

Pb() = A@)~'PH (Qig%ifgg)

=A()"'P (/Bl Mo E_1F“> (Egi?gg) =¢(2)9(2).

Hence, K; + K, = H.
Since

xo (WH@, V) x, ) =Ki(u,v),  xo, @Hu, v)xq, (v) = Ky(u, v),

if we assume that H is a trace class operator, then K; and K are trace class operators.
Thus, Lemma 5.7 applies and we obtain

det(1 — K|Ky) = det(1 — K| — Ky) = det(1 — H),

and this proves (5.10).

Finally, we check that f; (z)g;(z) = O fori € {1, --- ,m + 1}, as claimed in (5.11).
Since E; is the (m + 1) x (m + 1) diagonal matrix which has 1 on the i-th diagonal entry
and the other entries are all zero, we have f;(2)g;(z) = (f(z)T E;g(2));;. Inserting the
formula (5.8) of f and g and noting that A(z)E; A(z)~! = E;, we find that f(z)" E;g(z)
is equal to, with certain diagonal matrices «, 8, determined from PTE,- P,

X1 (A a1 X (2) X1 @A a(Ay — E1Xi(2)
X2(2) (N = E1DaXa(2) Xa()(ANS — Erpa(Ay — E1DXi(2) + X2 (ET BE11X1 (2)

multiplied by the row vector ((A(z)e)”, (A(z)e)T) on the left and by the column vector
(B(z)e, B(z)e)T on the right. It is direct to check that /\lTa(/\z —Ej1) =0and (/\2T —
Eia(Ay — Ej1) = 0 for every diagonal matrix «. Thus, the off-diagonal blocks are
zero. On the other hand, due to the characteristic functions, the diagonal blocks are also
zero. Thus, f;(2)7g; (z) = 0. ]
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5.4. A lemma on trace class operators. In order to apply Theorem 5.3, we need to check
that H is a trace class operator. We will use the following lemma in the next section. We
use |v]| to denote the usual Euclidean norm of a vector v.

Lemma 5.8. Let H be the operator in Definition 5.2. Suppose that each set Qg can be
split into a finite union of disjoint subsets

Q= =0, (5.20)
j=1

satisfying the following property: For every pair of indices (j1, j2) with je € {1, ..., N¢},
¢ € {1,2}, there is a simple contour Cj, j, such that (a) it is either closed or extends to
infinity, (b) it separates X j, and X3 j, in the sense that they are in different regions of
C\ Cj,, j», and (c) the estimates

/ / 2|d5\|dﬂ(“)| <oo and / / lg( )|2 ds|ld(u)] < oo (5.21)
Zej /Cj Zejy JCj

J1J2 J1:2

hold for ¢ = 1, 2. Then, His a trace class operator.

Furthermore, there is a union C of contours that is disjoint from 2 such that H can
be written as H = T, Ty for Hilbert-Schmidt operators Ty : L*(Q, u) — L*(C, dz),
T, : L?(C, dz) — L*(2, ) with Hilbert-Schmidt norms

2 1/2 2 12
||T1||z<<//cl'(”)‘|2|d e >|) and Tl <<// S aslidn )|> .

The decomposition H = T>T; will be used only in Lemma 7.1.

Proof. We express the kernel H in the form

Hw v) = > xs,,, @H@, v)xs, , @)+ Y x5, , @H@, v)xs, ; ©).
Ji.j2 Ji.j2
In this decomposition terms of the form xsy, i (w)H(u, v)Xs, p (v), £ € {1,2}, do not
! e

appear due to the structure of the kernel and the indicator functions in (5.7) and (5.9).
To show that H is trace class, it is enough to prove that each term in the sum defines a
trace class operator. We only show it for the terms in the first sum since for the terms in
the second sum the proof is analogous.

Foru € ¥y, and v € X3 j,, the separation assumption and the Cauchy integral
formula imply that

1+l ds
(s —u)(s —v)

u—v 2mi Civi

where the sign of the term %1 depends on the relative location of ¥ j, to Cj, j,. Thus,

s, u,v e .

+1 Xz, @i gW)xs, , @)
X% N (M)H(M U)XEZ T (v) /; 21 P

(s —u)(s —v)

o2 Joo
J1:J2
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This is the kernel of the product of two operators, one from L%(Q, dp) to L*(C i1 d2)
and the other in the opposite way. Assumption (5.21) implies that these two operators
are Hilbert-Schmidt, and thus H is a trace class operator.

Furthermore, taking the C to be the union of Cj, ;,, we find the decomposition
H = T,T;, with Ty, T, being Hilbert-Schmidt operators with the claimed Hilbert-
Schmidt norm bounds. |

We note that from the formula (5.14) and the definition of €2, the condition (5.21) is
satisfied if

(i) A,B e L*®°(Q2,du), and
(ii) forevery £1, €2 € {1, 2} with £; # £,, and every ji, jo,

m u) | |ds||d
f / J”( ) | 1ds]] M(bzl)| oo when ¢, — jg, is even, (5.22)
Qlk Jey /1 72 m (u |S B M|
m u ds||d
/ [ VM, @) | [ds]] Wz‘” < oo when £ — jg, isodd. (5.23)
Qe Y Cir mf+l(u) Is = ul

6. Cubic Integrable Operators for the KPZ and the Periodic KPZ Fixed Points

We state the Fredholm determinants (2.23) and (2.24) obtained in [7,23] explicitly, and
then apply Theorem 5.3 of the last section to express them in terms of new Fredholm
determinants which we show to be cubic admissible determinants. We also prove a
symmetry for the case of the KPZ fixed point, thus proving Theorem 2.11.

6.1. KPZ fixed point - proof of Theorem 2.11 (i). The paper [23, Definition 2.23] showed
that the function in (2.23) is given by

K(KPZ) K(KPZ)

DO (h y, 7] ¢) = det(1 — )

where the Fredholm determinant is defined through an absolutely convergent series

definition and the operators REKPZ) and REKPZ) are of the form in Definition 5.1 which
we now describe. The above formula is valid for the parameters satisfying

O0<7t <--- <71 where y < yi+1ifti = 7i41, (6.1)

which we can always assume by re-labeling the parameters. Note that the complex

numbers ¢q, - -, {u—1 are fixed complex numbers of different moduli satisfying 0 <
|¢i] < 1 foralli.
Let F;; EEE F2 Lo T F2 Lo n L be pairwise disjoint contours that are hor-

izontal translates of each other in the left half of the complex plane extending from
ooel?t to coel® for some angles 0 € (77/6, 57/4) and 6, € (37/4,57/6) and are
arranged as indicated in Fig. 1. In addition, let F;LR’ cee, F;,R’ TR ITogo TR
be the reflections of the above contours about the imaginary axis: see Fig. 1.

Set

F,L_FILUFL and FlR—FzRUF,R’ i=2,...,m.
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DIRS

2L FlLFu 3,L 2RF1RF2R

Fig. 1. Plots of contours when m = 3. The contours are oriented from the bottom to the top

In terms of the notations in Definition 5.1, define

Q(K.PZ) — Fj’|_, ifj is odd, Q(K.PZ) _ Fj,Ra ifj is odd,
Lj IR, ifj is even, 2.j L ifj is even,
and also QEKPZ) = U’j": 1 QEK].PZ) for ¢ = 1, 2. Note that QEKPZ) is equal to —QEKPZ) if

we reverse the orientation. The Hilbert spaces are LZ(QEKPZ), dz) fore =1, 2.

Foreachj =1, -- ,m, let,!!

Q) — ~(1=gxe,, @+ (1= 55)xe,, @), if jis odd,
(1 — q__l)XQI»J’(Z) +(1 = ¢j)xe,, (@), if jiseven,

with the convention that ¢y = 00, ¢, =0, and.!?

1

bt zeTly,
1 .
P;KPZ)(Z) = @, Z € F}-,L U F;,R’ j>1,
! " " ]
m, Zerj,LUFj,R’ j>1
Define the m x m diagonal matrix functions AKPD 4na BEPZ) i (5.2) with the functions
AP () =1 and B (z) = QI ()P (o). 6.2)
Finally, set
mKPD (2) = TN where = —11/3, yi=y xi=hi,  (6.3)

J

and define M®F? 4 (5.3). Here, 7; > 0, ¥; € R, h; € R are the time, position, and
height variable of the KPZ fixed point, respectively. This notation is consistent with
(2.25).

11" In [23, Definition 2.25] the formulas Q1(j) and Q7 (j) are used. Here, we use the function Q;KPZ) (z) =
—02(Dxey ;@ + C1()xay ; @)
12 The factor P;KPZ) is not present in the kernels in [23, Equation (5) and Definition 2.4] This is because

PZ)

the L2 space is weighted. Here we use L%(dz) space instead and include P;K as a part of the kernel.
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The operators ’K\EKPZ) and R(QKPZ) are given by the form in Definition 5.1 with the
above functions and matrices.

We now apply Theorem 5.3 to the above operators. Let H®P2) be the operator in
Definition 5.2 with the specific choice of the conjugating constant ¢(z) given by (5.13).

The operator acts on L2(QX&P2) | dz) where Q&P = QEKPZ) UQ&KPZ) .From the formula

of the kernel, in particular due to the formula (6.3) of m(/.KPZ), we see that HKP?) g a

cubic integrable operator. Furthermore, since ARF2 and B;KPZ) do not depend on the

parameters t, y, X, it is indeed strongly cubic integrable.

Corollary 6.1. The operator HXPD) s trace class on L2(Q¥PD) d7) and

DEPL (h y, v | £) = det(1 — H¥PD),
Proof. Ttonly remains to check that H®F) is trace class. We omit the superscript (KPZ)
to lighten the notations. We use Lemma 5.8. Decompose €2 so that each Xy ; is one of
the connected contours of ; see Fig. 1. If ¥ ;, and X, j, are in different half planes
(suchas I'; | and F3_,R)’ we take the separating contour to be C}, j, = iR. On the other
hand, if ¥ j, and X, j, are in the same half plane, then we take C}, j, to be a translation
of them that sits between them. To check condition (c), it is enough to check (i) and
(ii) in the discussion after Lemma 5.8. Since A and B are constants on each connected
component, they are in L°°(£2) and (i) holds. For (ii), due to the conditions (6.1) on the
parameters, we see that

VMi+1(2) — e%(ti*ti+1)13+%(Yi7yi+l)zz+%(xi*Xi+1)Z
~/M; ()

decays super-exponentially fast as |z| — oo for z in the sectors arg(z) € (7/6, w/4) U
(7m /4, 11 /6), and similarly, its reciprocal decays super-exponentially fast in the sectors
arg(z) € 3w /4,57x/6) U (T /6, S /4). From the geometry of the contours and this
exponential decay, we find that the decay condition (ii) is satisfied, and we obtain the
result. O

From the above result and the next lemma, Theorem 2.11 (i) is proved.
Lemma 6.2. The symmetry (2.26) holds true.

Proof. For simplicity, we omit the superscript (KPZ) in the notations. From (4.5) and
(4.7), we have @1 = lim;, o z2(P(z) — I). Thus, a symmetry of ¢; follows from a
symmetry of ®(z), the solution of the Riemann-Hilbert problem in Sect. 4.1. This further
follows from a symmetry of the jump matrix.

From (4.3) and (5.8), the jump matrix is

J(@) = a1 — 27if(2)9(2)T = lys1 — 271A()U)V ()T A2) ™! (6.4)

where the (m + 1)-dimensional vector functions U and V are given in (5.7) with A and
B given in (6.2). Since A = |, we have

T_p(MM—En 0 B@XI@) [(MMA-En\ pr
U@VE) —P<o Epl )(B(Z)Xg(z) 0 )(o Enl ) P
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It is tedious but straightforward from the definition (6.2), also noting that Xp(—z) =
X1(z), to check that

1
CI? . ..
B (—0)xay,(—2) =1 i—jglej(Z)XQLj(Z) ifj is odd, 63
2” o 5 . .. .
j 1_i Bj(2)xa, ,;(z) ifj is even,

¢j—1

forj=1,--- ,mand z € Q.

For arbitrary non-zero constants L1, - - - , L,,, it is straightforward to check that

diag(Ly, -, Ly)E'Ay = MLEY, diag(Ly, -+, L)*' (A — Eqp) = (A2 — EjpLE!,

with m x m matrices L, := diag(Ly, Ly, L3, L3, ---) and L. := diag(1, Lo, Lo, L4, L4,
---). Thus, with the (m + 1) x (m + 1) matrix

L:: diag(le". 7LWI7 1)7
we find, noting ElngIE = Ey, that

ot oM A E11> ( 0 LoLngwxl(z)) (/\1 Ay — E11>T r
LU@V(@) 'L = P(Q Eq LglLeB(z)Xz(Z) 0 "

0 Epn
Now for L; given in (2.27), we have

<]

s T 17_ _ s Tt
{2 1—5 1 ;4

1 1
g Li Ly Ly N oo mgy i om 1ma 17
Lol _dlag<L1,L2,L2,L4, =diag | —(1 — ¢1), .
Thus, from (6.5) we find that

Ly 'LeB(—=2)Xa(—2) = B(2)Xi (2),

LoL; 'B(=2)X1(—2) = B(2)X2(2)
and hence,

LU(—2)V(—) L' = U@)V@)DHT.

Noting that m;(—z | X, =y, )~! = m;(z | X,y,1), we have A(—z | x, =y, )"
A(z | X, ¥, 1). Thus, the jump matrix (6.4) satisfies

(LI(—z | x, =y, bD)T =Jz | x, v, b).

A symmetry of the jump matrix implies a symmetry of the solution of the RHP, in our
case here it reads

1 -T
(L<D(—z X, —y, L™ ) — Oz XY, b).

Finally, this implies the symmetry (2.26) for ;.
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A

Fig. 2. The nodes are S; | , S; R and the solid curves are the hyperbolas P; |, P; g fori = 1,2, 3 for certain

choices of ¢, ¢, ¢3. The black-filled nodes represent Q?p " While the gray-filled nodes represent Q;p er)

6.2. Periodic KPZ fixed point - proof of Theorem 2.11 (ii). For the periodic KPZ fixed
point, [7, Section 2.2.3] show that the formula in (2.24) is given by

PPN (h, y, 7 | ¢) = det(1 — KPPRE™),
for operators Klp ) and K(pe " of the form in Definition 5.1 which we now describe. The
series formula of the Fredholm determinant was shown to be convergent and the above
formula is valid for the parameters satisfying

O<11<---<71, and h; < hjyift; = 7;41. (6.6)

The fixed constants &1, - - - , &, are arbitrary complex numbers satisfying 0 < [¢1]| <
< |§m| < L. )

For eachi = 1, .-, m, consider the roots of the equation ¢~* /2 = i, which are

called Bethe roots, and define the discrete sets
SiL={seC| 2 = ¢, Res < 0}, Sr={seC| et = Zi, Res > 0}
Note that S; | = —S; R, and

SSRCPir and S;| C P,

where

Pip=1{s €C|le/?| =|g|, Res > 0} = {s € C| Res)? — (Ims)* = —2log|¢;], Res > 0}
(6.7)

and P; | == —P; R are hyperbolas. Thus, the sets S; g extend to oo along angles 7 /4
and 7 /4 and the sets S; | extend to oo with angles 57 /4 and 37 /4. See Fig.2.
In terms of the notation of (5.1), define the discrete sets

Q(per) . S;L, ifiisodd, Q(per) . S; R, ifiisodd,
SiR, if.iis even, 2, SiL, ifiiseven,

and

Q! (per) U Q(Per)
i=1
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for £ = 1, 2. Note that Qgper) = —Qéper). The Hilbert spaces are Kz(Qgper)) fort =1,2
with the counting measure.
Fori=1,---,m,set

Q(per) iy Q(per) iy

i i

with the convention that {y = ¢,+1 = 0. Define

exp < flfooo de) forRe(z) < 0,

Vi(z) =
exp< floo de> forRe(z) > 0.

100 w+z

The function V;(z) does not depend on the parameters, it is analytic and non-vanishing
on C \ iR, and satisfies V;(—z) = V;(z) and V;(z) — 1 as z — oo. Now, setting
Vo = V41 = 1, define

T 1 - .
A= o [l e

zV;(z) Vij_i(z) forzeS;np,

and

Vii(z) forzeS;|,
B(per) — (per) (p er) J+l J,
i @ (01 j 8@+ Q5 s, 2 )> Vj_i(z) forze SR,

for j = 1,...,m, and define the matrices A = A®*") and B = BP* by (5.2). Observe
that A;Per), B;per) are bounded on QP
Finally, define the functions

.3 2.y
mi.per)(z) = NEIIEND where t = —1;/3, Y, =vi/2 X =h,

and define the matrix M®”(z) as (5.3). Recall that 1; > 0,y € [0,1),h; e R
correspond to the time, position, and height variables, and which is consistent with

(2.28). With these formulas, we define the operators K(p e and K(per)
Definition 5.1.

Let QPer) .= Q(lper) U Qgper) and define the operator HP®" on éz(Qéper)) as Defini-
tion 5.2 with the specific choice of the conjugating constant C(z) given by (5.13). Then,
from the formula of mﬁper), we find that HP is a cubic integrable operator. The next
result proves Theorem 2.11 (ii).

by the formula of

Corollary 6.3. The operator H®™ above is trace class on Ez(Qéper)) and
PN (h, y, 7 | ¢) = det(1 — HP).

Proof. Tt is enough to show that HP®" is trace class. We omit the superscript (per). We
use Lemma 5.8 and the discussion that follows. We already observed that A and B are
bounded on €.

We take the decomposition (5.20) of Q¢ using X, ; = Q??;r) for £ = 1,2 and

j =1,---,m.If the sets Q(lpj:) and Qépj’.;) are in different half planes, then we take
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Cj,,j» = iR for the separating contour, and this case is easy, and we skip the detail. If

the sets Qipjlr) and Qgp;;) are in the same half plane, then from the definition of the sets,
we see that ji # j2. Thus, [}, ] # [£j,]. We take the separating contour as

Cirie = {5 €C11e™ 2 = g1 +12,D/2}

Itis enough to check that (5.22) and (5.23) in the discussion after Lemma 5.8 are satisfied.
The hyperbola C}, ;, does not intersect the hyperbolas {s € C | [e™* 2/ 2| = [¢j,1} and

{seC| |e‘s2/ 2| = [£j,1} (see (6.7)) and all three hyperbolas have the same asymptotes.
From the geometry we can check that

|ds |
/C T (6.8)

J1:J2

is finite and grows at most like a polynomial as u — 00 on Qgpilr) or QEP;;). We have

ymis@ 2 Gt T3 (=Y )45 (X j)2 6.9)
vm;(z)

2 .
Note for z € QP we have e=% /2 = ¢; for some i, and thus,
1 2
|67(Yj—Yj+1)Z | = | YV

does not depend on z. Therefore, since the set QP has asymptotes to angles
/4,3 /4, 57 /4, T /4, the conditions on (6.6) on parameters imply that (6.9) decays

to zero exponentially fast on the set Qg’?) if it is on the right half plane. Similarly, the

reciprocal of (6.9) decays exponentially on Qép;r) if it is on the left half plane. Due to
£ NATRIO) or A/m;j(u)

m; (u) \/mj+1(u)
we find that (5.22) and (5.23) are satisfied, and we obtain the result. |

exponential decay o and the at most polynomial growth of (6.8),

7. Large Height Limits and the Proof of Proposition 2.12

It is interesting to consider the asymptotic properties of the solutions to the differential
equations in Sect. 2.1 as some of the parameters tend to infinity. In this paper, we only
consider one simple case and leave other cases for a future work. The next result shows
the asymptotic behavior of the Fredholm determinant and ®; for the (periodic) KPZ
fixed points as the height parameters X; = h; tend to positive infinity in a certain way.
Since the result for both the KPZ and periodic KPZ fixed points are the same, we use
the variables X, Y, t instead of the physical variables h, y, 7: see (2.25) and (2.28) for the
correspondence.

Lemma 7.1. Let cither ® = DK% and &) = &%) or D = D00 and &) = P,
Fix parameters X, y, t Let by, - - - , by, > 0 be constants and

a::(d1,a2,~.~,am), ai::bl+"'+bi.
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Set
Xe = X+Ea = (X +&ay, -, Xy +Eayn), EcR.

Then, there exist constants ¢ > 0 and & > O, independent of X, y, t, for which the
inequalities

D06y, )~ 1 <e™  and  max |(®1(xe. ¥, D) jl < e

_ X
i,j=1,m
hold true for all & > &.

Proof. We omit the superscripts (KPZ) and (per). We also indicate the variable z and
the parameter £, but omit other parameters. In this proof, we use the alternative formula
(5.14) of the vectors f and g. This formula involves S(z)X; (z) and S(z) X2 (z), which
we first consider.
From the definition in (2.3), m;(z | Xg) = m;(z | X)et%i% holds. Thus, the matrix S
in (5.12) satisfies
S(z %) =S WRE &)  with R(z|§) = diag(e®"?, 7507 3% ),
(7.1)

Using the identity (5.4) for indicator functions and noting that R and X, are diagonal
matrices, we find that

X1(xee” (X1 (DR | §) + X2 (DR [ £) e = X1 )Rz | £)e = R(z | £)X1(2)e,
X2(z)ee” (X1 (DR | §) + X2 (DR [ £) e =X )Rz | £) e =Rz | £) ' Xa(2)e.
(7.2)

The equations (7.1) and (7.2) imply that

S(z | X)X1(2)e = S(z | X1 (2)ed(z | £) and S(z|xe) ' Xa(x)e =S| %) ' Xa(x)ep(z | £).
where
Pz &) =e"Xi@Rz | €)+X (@R | §) e
is a scalar function. Since A and B do not depend on X, the formula (5.14) implies that
fz %) =1z [ X¢(1§) and gz |Xe) =9z [ X)¢(z ] §). (7.3)
Now, ¢(z | £) is a sum of e2i5%yq, (z) for€ = 1,2and j = 1,--- ,m with the

certain choice of the sign +. Being careful with the sign and noting that Qg ; is in either
of the two halves of the complex plane, we find that

Pz 1 §)] < e IR b= min{by, - bu), (7.4)
for every z € Q and every £ > 0. Since the sets in €2 are away from the imaginary axis

by a positive distance, say d, (see Fig. 1 and 2), this implies that |¢(z | §)| < ebdE for
every z € Q and every & > 0.



Differential Equations for the KPZ and Periodic KPZ Fixed Points 1801

LetT; = T1(Xg) and To = T2(Xe¢) be the Hilbert-Schmidt operators from Lemma 5.8.
From (7.3)—(7.4) we find

IHx)Il < Hxe) 1 < e P51 T1 0121 T2 (%) |12

where the norms are the operator norm, the trace class norm, and the Hilbert-Schmidt
norm, respectively. The norms || T1(X)||2 and || T2(X) ||, are finite and independent of &.
Thus, from the inequality || det(1 — H) — 1|} < IH|l;e"*IHI1 for trace class operators
(see [27, Theorem 3.4]), the claim on ® = det(1 — H) then follows. On the other hand,
from (2.9) and (7.3)—(7.4), we find

max @106 | < e ENA = HOED T IIC [ 0l2@ 0 19¢ 1020 40-

and the result for ¢ follows. O

Thus, in particular, the matrix functions g, p, r, S for the (periodic) KPZ fixed points,
which solve various differential equations, decay exponentially to zero as & — oo.
Using the above lemma, we prove Proposition 2.12.

Proof of Proposition 2.12. Let ® be a cubic admissible determinant and q; the matrix-
valued function in (2.10) corresponding to the choice of subset S = {1, 2, - - - , i}. Then,
from Proposition 2.10,

(8X1 +...+8Xl.)10g@ = _Tr(qi)'

Thus, for setting X == X+ &a witha = (1, --- ,m) asin (2.29) and § € R, we have
d m m m

E1og:o(x5) =) ki logD(xg) = Y (3x, + - +0x) logD(xg) = — > Tra;(xg).
k=1 i=1 i=1

(7.5)

By Lemma 2.4, the above term is also equal to ) ;- Tr (S,- (Xg)). Now, when D is

either DKP2) or P the last lemma shows that D(Xg) — land Trg;(xg) — 0
exponentially fast as £ — oo. Thus, integrating (7.5) we obtain Proposition 2.12. O

8. Adler and van Moerbeke PDE and a Non-equal Time Extension

Let H be a strongly cubic integrable operator which is also trace class. Assume that 1 —H

is invertible. Set M = logdet(1 — H) for the case when m = 2 and with the change of
variables given in (3.7),

t E+W E-W y?
ty = —=, =Yy, X1 = s Xy = - — 81
2 3 Yo=Y 1 > 2 > ; (8.1)
with t; = —% and y; = 0. Then, M is a function of 4 variables, ¢, E, W, and y. We

now discuss how we can obtain partial differential Egs. (3.8) and (3.9) for M. As we
discussed in Sect. 3.4, the special cases of these equations when ¢ = 1 yield the equal-
time differential equations for the Airy; process obtained by Adler and van Moerbeke
[3] and Quastel and Remenik [26].
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In the derivation of the differential equations for cubic integrable operators, we used
Lax equations obtained from a Riemann-Hilbert problem. For the NLS, mKdV, and KP
derivations, we used the Lax equations with respect to the parameters t, X, y, which in
terms of (8.1) become Lax equations with respectto ¢, E, W, and y. For the derivation of
Tracy-Widom type ODE, we also considered the Lax equation with respect to the spectral
variable z for the case of strongly cubic integrable operators, and used the compatibility
of z-Lax equation and x-Lax equation. In this section, we use the compatibility of the
z-Lax equation with each of the ¢-, y-, E-, and W-Lax equations.

We start with an analysis of the z-Lax equation. The solution ®(z) of the RHP in

Sect. 4.1 has the asymptotic series ®(z) ~ |+ % + % +--

series can be written uniquely as

00 (0) 00 (Dl({d)
d(z) ~ |+Z exp Zz—k (8.2)

k=1

- as z — 00. The asymptotic

for diagonal matrices ch({d) and off-diagonal matrices CD,(CO). Considering the O(z~!) and
0(z72) terms, we see that

1
¢ =0 +0[" and &y =0 + 070" + 00+ J(@")2 83)
Consider the Lax equation (4.48) with respect to the spectral parameter z, where
recall (2.4) that W(z) := ®(z) A(z). We can write it as
0V (2) = (Z?Qx+2Q1 + Q) V(2) (8.4)

where, thanks to (8.3), the coefficient matrices are

Q> =3M, Qp =2My +3[P”7, M1, Qo = My +2[\”, My] +3[DS, My] — 3[(”, My ',
and where we also recall (2.16) for the definition of M, My, and My. Inserting W(z) =
®(z)A(z), the equation becomes, using (4.47),

9,9(2) = (z°Qa +2Qi + Qo) P(2) — ®(2) Bz My +2zMy + My).

We insert the asymptotic series (8.2) and foreach k = 1, 2, - - - collect the coefficients of
2~ to obtain an equation for d>§0) and Cbl(d). It is useful to note that ¢§d), M, My, and My
are diagonal matrices and commute. We find, after inserting the formula of Qg, Q1, Q2,
that for k > 1,

3%, Ml + 2[00 My] — 3[0”, ML, — 3[0L7, M]d” + [0(”, My]

—<2[¢<">,My]—3[¢<‘”, ]d><”))<b,£") (k — 1o

= (k- 1o + Zu Do o0 (8.5)

j=2
Note that all matrices are of size 3 x 3 since m = 2. These equations are recursive
equations. Note that ® & +2 is the matrix of the highest index for the off-diagonal matrices
and <D,((_)1 is the matrix of the highest index for the diagonal matrices. It turns out that

the recursion determines all matrices if we know d)go) and some entries of CD;").
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Lemma 8.1. Suppose that ay, - - - , ayg, are 10 functions of t, E, W, y. Let
0 ay a3 0 a7 ¢
q)(l") =|a 0as], CD(ZU) =lag 0 ],
ag ag 0 ag ajp 0
where c1, ¢ are functions of ay, - - - , ajo given by
a3a taya tara 26{(1 ajrasa, ayra ara
61=—39—1a1a5+ 198 27_}’12+a1a5+236_18_27’
a, a4 as a4 a4 a4 a,
ajaga aja ara asa 2yaja 2ya ara aja ara
_a104a5 | g - U198 207 asdio | yaidy | 2yds  axd3 | aids | d2d7.
ae ae ag ae tag t t aet apt

(8.6)

Then, CD,({’), n > 3, and CDSL‘I), n > 1, are determined uniquely from the recursion (8.5).
Furthermore, all entries of del") and ¢,(1d) are Laurent polynomials of a1, - - - , ajo.

Proof. Since M is a diagonal matrix, the commutator of any matrix W with M is of the
form

0 * *
[W,M{] = [ *0x (8.7)
* % 0

and each * is a constant multiple of the entry of W at the same spot.
Consider the case k = 1 of (8.5). The right-hand side of the equation is zero, so it

becomes an equation of ¢§0), ¢§0) and <1>§0) only,

305, Myl +2[05”, My] — 3[01”, M1 — 305, Mjo|”
O, Mx] — [0, My] = 3[01”, Mi]o{™)d(” = 0.

Since CD(() appears only in the term [CD(”) M;], the diagonal entries of this (matrix)
equation yield 3 scalar equations involving only the entries of Cbgo) and Cbg]). Two of
them are (8.6) and they imply the third equation. Now if we consider the off-diagonal
entries of the equation, from (8.7) we see that all 6 off-diagonal entries of ¢ g”) are Laurent
polynomials of ay, - - - , ajo. Thus, 49(0), which is an off-diagonal matrix, is determined.

We now prove the lemma using an induction on k. For k > 2, suppose that ¢(0) SRR
CD,(({;)], and CD(ld), .- <1>(d)2 are known and their entries are Laurent polynomials of

ai,--- ,a. Itis enough to show that we can determine <1>(+2 and ¢1(<—)1 from the induc-

tion hypothesis, and their entries are Laurent polynomials of the quantities of the hypoth-

esis. These two matrices appear in the Eq. (8.5) only in 3[$ k +2, M;] and (k — 1)<D,((d)1,

Thus, considering the diagonal entries of the equation, we can solve <D,(C +)2 in terms of the
terms of the induction hypothesis, and the off-diagonal entries of the equation allows us
to solve [<D,(((i)2, M;], and thus d),(((fz from (8.7), in terms of the induction hypothesis. From

the solution, we find that they are polynomials of the terms of the induction hypothesis,
and thus the lemma is proved. O
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Consider the Lax equations (4.16) with respect to t, y, and X. With the choice (8.1)
of the parameters, they become four equations,

1 1 1 1
0gV(z) = (EZEI + EZEQ + ECLI + 5012) V(z),
owV(z) = ! E ! E, + 1C 1C V(z)
w Z) = 2Z 1 ZZ 2 ) 1,1 ) 1,2 ),

2 2
V() = (Z2E2 +2C10 — ZTyE2 +Con — Tycl,z) V(z),

1, 1, 1 y? 1 y?
V(z) = —3¢ E, - 3¢ Cio— ngz,z +zt—2E2 - §C3,2 + t—201,2 V(z),

where C; 1 and C; » are C; in (4.17) with E replaced by E; and Ej, respectively. For
each equation, consider the compatibility condition with the z-Lax equation (8.4). If
we consider the entries of these 4 equations (called zero-curvature equations; cf. the
derivation of (4.20)) yield 40 equations of the form

1 2 3 4
dpa; = P{'(a), dwa; =PP(a), dyaj=P@). da;=P" (),

for j = 1,---10, where P;k) (a) are Laurent polynomials. On the other hand, from
Propositions 2.10 and 4.7, the partial derivatives of M = log det(1 — H) are polynomials
of ®; and ®,, and hence, by Lemma 8.1, they and their higher partial derivatives are
Laurent polynomials of ay, - - - , ajo.

Motivated by the formula of the PDE of Adler and van Moerbeke, and of Quastel
and Remenik, we consider the 27 partial derivatives

ox,M, 0x,dx.M, 8xd3X83fo, 3xh3xhaxi3XjM, ox, dx, M dx,, dx, M,
M, dyox,M, M. M. 30x,M

with the indices a, b, c, - - - being either 1 and 2, and X; = E, X, = W. These are
Laurent polynomials of ay, - - - , ajg involving 163 Laurent monomials. We then asked
if there are linear relations between these 27 Laurent polynomials. We regarded each
of 163 Laurent monomials as independent vectors and considered the vector space of
Laurent polynomials spanned by them. Symbolic computations using Maple showed
that the above 27 Laurent polynomials are not linearly independent and furthermore,
the rank of their coefficient matrix is 23. As a result we obtain 4 linear relations of
these Laurent polynomials. Two of them are (3.8) and (3.9). The other two are more
complicated and we do not present them here.
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