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ABSTRACT

This study investigates skill enhancement in operational seasonal forecasts of Beijing
Climate Center's Climate System Model through regional Climate-Weather Research and
Forecasting (CWRF) downscaling and improved land initialization in China. The
downscaling mitigates regional climate biases, enhancing precipitation pattern correlations by
0.29 in spring and 0.21 in summer. It also strengthens predictive capabilities for interannual
anomalies, expanding skillful temperature forecast areas by 6% in spring and 12% in
summer. Remarkably, during seven of ten years with relative high predictability, the
downscaling increases average seasonal precipitation anomaly correlations by 0.22 and 0.25.
Additionally, substitution of initial land conditions via a Common Land Model integration
reduces snow cover and cold biases across the Tibetan Plateau and Mongolia-Northeast

China, consistently contributing to CWRF's overall enhanced forecasting capabilities.

Improved downscaling predictive skill is attributed to CWRF’s enhanced physics
representation, accurately capturing intricate regional interactions and associated
teleconnections across China, especially linked to the Tibetan Plateau's blocking and thermal
effects. In summer, CWREF predicts an intensified South Asian High alongside a strengthened
East Asian Jet compared to CSM, amplifying cold air advection and warm moisture transport
over central to northeast regions. Consequently, rainfall distributions and interannual
anomalies over these areas experience substantial improvements. Similar enhanced
circulation processes elucidate skill improvement from land initialization, where accurate
specification of initial snow cover and soil temperature within sensitive regions persists in
influencing local and remote circulations extending beyond two seasons. Our findings
emphasize the potential of improving physics representation and surface initialization to

markedly enhance regional climate predictions.
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1. Introduction

Regional climate models (RCMs) are widely recognized for added value to their driving
general circulation models (GCMs) from more realistic physics representation at higher
resolution (Roads et al. 2003; Liang et al. 2004a,b, 2006, 2019; Diffenbaugh et al. 2005;
Prein et al. 2015; Rummukainen 2016; Giorgi 2019). RCM downscaling has demonstrated
skill enhancement for seasonal predictions in North America (Cocke et al. 2007; Lim et al.
2007; Yuan and Liang 2011a; Liu et al. 2016), South America (De Sales and Xue 2006),
Europe (Diez et al. 2011; Patar¢i¢ and Brankovi¢ 2012; Sangelantoni et al. 2019), and Asia
(Sun et al. 2006; Ding et al. 2006a,b; Yuan et al. 2012; Van et al. 2014; Ma et al. 2015).
Enhanced skill for surface air temperature and precipitation was often attributed to RCMs’
better representation of orographic effects with higher resolution. However, RCM
downscaling performance is highly sensitive to physics parameterization schemes,
highlighting the critical importance of consistent representation of cumulus, microphysics,
radiation, planetary boundary layer, and surface processes as well as their interactions (Liang

et al. 2004b, 2007; Yuan et al. 2012; Sun and Liang 2020a,b; Zhang et al. 2023).

China features complex topography and spans multiple climate zones with distinct
physical processes. In summer, prevailing large-scale circulations include the East Asian Jet
(EAJ), the South Asian High (SAH), the Western Pacific Subtropical High (WPSH), and the
Intertropical Convergence Zone (Liang et al. 1995; Lau and Yang 1996; Liang and Wang
1998; Samel et al. 1999; Yang et al. 2004; Wang et al. 2011) along with mesoscale features
such as low-level jets and vortices (Wang 1987; Ding and Chan 2005; Luo et al. 2013). They
collectively shape China's climate characteristics, making seasonal predictions, particularly
for interannual anomalies, more challenging (Wang et al. 2015, 2022; Ren et al. 2019).
However, the combined influences of planetary and regional processes render RCMs more
effective for application in China. Liang et al. (2019) demonstrated that the Climate extension
of the Weather Research and Forecasting model (CWREF, Liang et al. 2012) outperforms its
driving global reanalysis and a popular RCM in reproducing China climate characteristics,
including monsoon rain bands, diurnal temperature ranges, surface winds, interannual
precipitation and temperature anomalies, and extreme precipitation. The CWRF has recently
been adopted by Beijing Climate Center (BCC, designated by the World Meteorological
Organization as the Regional Climate Centre for Asia) to make operational seasonal

forecasts. Its initial testing operation for the last three years has shown persistent performance
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in summer precipitation prediction superior to other existing dynamical and statistical
products. While Zhang et al. (2023) provided a preliminary evaluation of the CWREF skill
enhancement over the BCC Climate System Model (BCC_CSM) for China summer
precipitation hindcasts during 1991-2010, this study offers a more systematic assessment and
process understanding of its performance for spring-summer forecasts in the operational

framework and examine the sensitivity to land surface initialization.

Global oceans and land are identified as two major sources of seasonal predictability. As
GCMs integrate and transfer oceanic forcing (or predictive) signals into planetary circulations
that form the lateral boundary conditions driving RCMs, the downscaling incorporates the
predictability from the land source (surface and deep soil) that occurs as initial anomalies
within the computational domain and coupled land-atmosphere memory evolving during the
prediction. Koster et al. (2004) and Notaro (2008) discovered that strong land-atmosphere
coupling in certain regions over North America enables deep soil predictability for local
summer surface temperature up to two months in advance. Prodhomme et al. (2016) reported
that using accurate land-surface initial conditions improves seasonal predictions in Europe.
Orsolini et al. (2013), and Thomas et al. (2016) showed that a more realistic initialization of
snow cover enhances sub-seasonal to the seasonal climate predictive skill through feedback
mechanisms. Snow cover in Eurasia and high mountains can produce lagged remote
influences on precipitation in China (Liang et al. 1995; Zuo et al. 2011; Wang et al. 2017;
Broxton et al. 2017). Most recently, Xue et al. (2021) proposed the Impact of Initialized Land
Surface Temperature and Snowpack on Subseasonal to Seasonal Prediction Project (LS4P) to
focus on the remote effects of initial land surface temperature and subsurface conditions over
high mountains. Xu et al. (2022) revealed that early spring deep soil temperature in the
Tibetan Plateau acts as a charged capacitor, modulating the SAH and EAJ, leading to
significant spring-summer precipitation anomalies in eastern China. Xue et al. (2022, 2023)
highlighted that high-mountain land temperature could produce 40% of observed anomalies
for sub-seasonal to seasonal precipitation, a contribution comparable to that of sea surface

temperature.

However, few RCM studies have examined the downscaling skill enhancement and
sensitivity to land surface initialization on seasonal climate prediction within the actual
operational forecast framework. The present study addresses this topic based on the CWRF

downscaling seasonal predictions over China from the global BCC_CSM operational
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forecasts in the China Meteorological Administration. Section 2 presents the model
description, observational data, and experiment design. Section 3 evaluates the results,
including the skill enhancement from the CWRF downscaling and land initialization on
seasonal mean climate and interannual variation for regional temperature and precipitation in
China. Section 4 discusses the key physical processes and underlying mechanisms that are

responsible for the prediction improvements. Section 5 gives the conclusion.

2. Model, Data, and Experiment Design

A two-tier-nested method is used for making seasonal climate predictions. The first tier
uses a coupled GCM to make the first-guess forecast of global circulation conditions. The
second tier uses an RCM to downscale the global forecast into regional climate prediction in
China with higher resolution. In the control prediction, the RCM takes initial atmospheric and
land conditions as well as time-varying lateral boundary and sea surface conditions directly
from the GCM’s output. An experimental prediction is also made to substitute the initial land

conditions with the output from a standalone land model integration driven by a reanalysis.

a. Model Description

The GCM used is the BCC_CSM version 1.1m (hereafter referred to as CSM), which
fully couples atmosphere, land, ocean, and sea ice components (Wu et al. 2014). The
atmosphere component (AGCM2.2) uses a horizontal grid of T106 (triangular truncation at
grid spacing about 110 km) and 40 layers of hybrid sigma pressure, with the top to 0.5 hPa.
The land component (AVIM1.0) shares the same T106 horizontal resolution as the
atmosphere (Ji et al. 2008). The ocean component (MOM4) uses a tripolar grid with variable
horizontal grids of 1/3°-1° and 40 vertical layers (Griffies et al. 2005). The sea ice component
(SIS) shares the same ocean horizontal grid with 3 vertical layers (Winton 2000).

The RCM used is the CWRF (Liang et al. 2012), which has been continuously developed
and systematically evaluated for regional climate downscaling and applications in the United
States, including seasonal climate prediction (Yuan and Liang 2011a; Chen et al. 2016; Liu et
al. 2016), and most recently, extreme precipitation improvement (Sun and Liang 2020a,b),
longstanding bias correction (Sun and Liang 2022, 2023), and agricultural decision support
(Liang et al. 2024). The CWRF has also been rigorously evaluated in China with superior
performance (Liang et al. 2019). It has been increasingly used in China for sensitivity

analysis, process understanding, present climate simulation (Wei et al. 2021; Li et al. 2021;
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Shi et al. 2021; Xu et al. 2022; Zhang et al. 2023; Zhao and Liang 2024; Zhao et al. 2024),
and future projection (Liu et al. 2013; Jiang et al. 2021). In 2018, BCC adopted CWREF as the
core of the regional prediction system and has since been making operational seasonal

forecasts with a promising skill for summer precipitation outlook in China.

The CWRF physics configuration used is identical to that designed by Liang et al. (2019),
which includes the Ensemble Cumulus Parameterization (ECP, Qiao and Liang 2015, 2016,
2017), the GSFCGCE Microphysics (Tao et al. 2003), the XRL diagnostic Cloud (Xu and
Randall 1996; Liang et al. 2004), the prescribed MISR Aerosol (Kahn 2005; Kahn et al.
2007; Zhao et al. 2009), the GSFCLXZ Radiation (Chou and Suarez 1999; Chou et al. 2001)
as coupled in the Cloud-Aerosol-Radiation ensemble model (Zhang et al. 2013a,b), the
improved CAM plus ORO Planetary Boundary Layer parameterization (Holtslag and Boville
1993; Rontu 2006; Liang et al. 2006b), and the Conjunctive Surface-Subsurface Process
(CSSP, see below for details). Since RCM downscaling performance is sensitive to the
domain configuration (Liang et al. 2001; Xue et al. 2014), we adopt the same domain (Figure
S1) as tested by Liu et al. (2008) and well evaluated by Liang et al. (2019). The domain uses
a Lambert conformal projection with a center at 35.18°N and 110°E and a grid spacing of
30km, totaling 272 EWx172 SN grids. The model has 36 terrain-following sigma levels with
the top at 50 hPa.

The CSSP is originated from the early version of the Common Land Model (CoLM, (Dai
et al. 2003, 2004) with significant improvements. The major CSSP advances from CoLM
include surface-subsurface flow interaction (Choi et al. 2007, 2013; Choi and Liang 2010;
Yuan and Liang 2011b), representation of subgrid topographic control on soil moisture, and,
most relevant to this study, an improved land surface albedo parameterization (Liang et al.
2005). Rooted in the Biosphere-Atmosphere Transfer Scheme (BATS, Dickinson et al. 1993),
the albedo scheme consists of three components: bare soil, vegetation, and snow. The soil
albedo depends on static soil properties (sand, clay, organic content) and time-varying soil
moisture, while the vegetation albedo is a function of leaf and stem area indices and dominant
vegetation type. When snow is absent, the albedo is a linear combination of the soil and
vegetation albedos as weighted by the vegetation cover fraction. When snow is present, its
albedo depends on snow age and zenith angle and the total albedo is determined as a linear
combination of the three component albedos as weighted by the snow and vegetation cover

fractions. This albedo parameterization enables CSSP to characterize the local thermal-water
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feedback process combined with the snowmelt infiltration process and soil-vegetation
evapotranspiration process (Liang et al. 2005). Besides these advances, CSSP shares many
features with CoLLM, including the internal initialization method and vertical structure,
resulting in a comparable performance of soil temperature and moisture prediction. The
similarity between CSSP and CoLM for model setup and performance is the reason we

choose CoLM to provide the standalone reanalysis-driven land initialization.

The CoLM combines the advantages of the Land Surface Model (Bonan 1996), the
Biosphere-Atmosphere Transfer Scheme (Dickinson et al. 1993), and the Institute of
Atmospheric Physics, Chinese Academy of Sciences Land Surface Model (Dai and Zeng
1997; Dai et al. 1998). It incorporates key land surface processes such as a two-big-leaf
model (Wang and Leuning 1998), a two-stream approximation for radiative transfer (Coakley
and Chylek 1975), and a topography-based runoff parameterization (Beven and Kirkby 1979;
Ambroise et al. 1996). The CoLM integrates interactions among the atmospheric boundary,
vegetation canopy, snow cover, and soil processes. Extensive standalone and coupled model
studies have demonstrated that the CoLM can reasonably estimate land surface energy fluxes
and characteristics (Dai et al. 2003; Li et al. 2012, 2017; Xin et al. 2019). This study uses the
CoLM version 2014 at a globally uniform 0.5° grid spacing.

b. Experiment Design

Table 1 lists the three forecast experiments compared in this study. All forecasts are
initialized each year on March 2 and end on August 31 from 1991 to 2014, encompassing two

seasons. The respective workflow of these forecasts is as follows:

1. The CSM forecasts begin on February 1 with fast nudging toward the NCEP-NCAR-
R1 reanalysis (Kistler et al. 2001) continuously till March 1 and are then integrated forward
freely. The nudging applies to only atmospheric circulation variables, including winds,
geopotential height, air temperature, and vapor mixing ratio. The land component has no
nudging treatment but uses the climatology as the initial condition. It is acknowledged that,
NCEP-NCAR-RI1 is not as advanced as newer reanalysis datasets such as the NCEP/DOE R2
(Kanamitsu et al. 2002), the NASA MERRA-2 (Gelaro et al. 2017), or the ECMWF ERAS
(Hersbach et al. 2020). However, it has a faster timeline of data availability (2 days behind
real time) than those latest reanalysis datasets, and therefore was chosen by China

Meteorology Administration as the initial nudging dataset for the CSM operational forecast.

File generated with AMS Word template 2.0

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-23-0565.1.

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 07/08/24 03:08 PM UTC



As an extension of the present operational practice, this study follows the same procedure in

all experiments.

2. The CWREF control (CTL) forecast begins on March 2 with initial conditions of both
the atmosphere and land directly from the corresponding CSM forecast and integrates

forward with time-varying 6-hourly lateral boundary conditions from the same CSM forecast.

3. The CWREF experiment (EXP) forecast is identical to the CTL forecast except that
initial land conditions are substituted from a standalone CoLM continuous integration driven
by an observation-reanalysis fused dataset CRUNCEP (Viovy 2018) from January 1, 1975, to
December 31, 2014. Taking from this CoLM integration after a well spin-up for 16 years, the
initial land conditions, including surface and soil temperatures, soil liquid and ice water
contents, and snow water equivalent (SWE), on March 2 of each year between 1991-2014

have reached a quasi-equilibrium with the observed atmospheric forcing.

4. The IST and ISN experiments are identical to CTL except that the initial soil
temperature and SWE states were replaced from EXP for IST and ISN respectively. In CoLM
and CSSP, snow cover fraction (SCF) is diagnosed following Niu and Yang (2007):

SNP
SCF = tanh( WE )a> Eq (1)

Z'SZOQ(SNP-pmw

where SNP is snow depth [m], SWE is snow water equivalent [m], ppe.w = 100 is fresh snow
density [kg m™], Zog = 0.01 is ground roughness [m], and @ = 1 is a melting factor. While
SWE is predicted as the balance of snowfall, interception, and melt rates, SNP is initialized
from SWE dividing by snow density (250 kg m>) and integrated forward with snow
accumulating, compacting, and melting processes. Thus, the substitution of SWE changes

entirely the initial snow states, including both SCF and SNP.

Forecast name Initialization Forecast period Goal
CSM Nudged to the Each year initialized | Make global
NCEP-NCAR-R1 on March 2 and end | circulation
reanalysis on August 31 during | forecasts to
atmospheric 1991-2014 provide driving
conditions during conditions for
CWRF
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February 1 to March

1

CTL Both atmospheric and Make CWRF
land initial conditions downscaling
are directly from prediction driven
CSM by CSM

EXP Initial atmospheric Determine the
conditions are from effect of land
CSM, while land initialization on
conditions are from CWREF prediction
the standalone CoLM performance

integration driven by

CRUNCEP

IST Initial conditions are Identify the
kept same with CTL, influence of initial
while soil soil temperature

temperature is same

as EXP
ISN Initial conditions are Identify the
kept same with CTL, influence of initial
while SWE is same snow states
as EXP

Table 1. Experiment design.
c. Observational Data

The NCEP-NCAR-R1 reanalysis (Kistler et al. 2001) is used to nudge atmospheric
circulation conditions as observed in the prior month (February) to obtain the initial states on
March 2 for the CSM forecasts. The CRUNCEP v7.0 (Viovy 2018) 6-hourly forcing data,
which combines the CRU TS3.2 observations and NCEP-NCAR-R1 reanalysis (Harris et al.
2014), is used to drive the standalone CoLM integration that provides initial land states for

the CWRF EXP forecasts.
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For model evaluation, daily data of surface air temperature at 2m (T2M) and precipitation
(PR) are from the CN05.1 (Wu and Gao 2013). The CNO05.1 dataset is an observational
analysis at a grid spacing of 0.25° in China based on measurements at 2416 standard ground
stations. The provider uses the thin-plate spline method and angular distance weight method
to interpolate quality-controlled measurement data to a uniformed 0.25° grid. The CNO5.1 is
not only widely used in regional climate modeling research (Liang et al. 2019; Jiang et al.
2023, Gu et al. 2023; Zhao and Liang 2024), but also adopted by China Meteorological
Administration as the reference data to verify and evaluate its operational forecasts. This
study uses CNO5.1 over mainland China with a supplement outside by the Asian
Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation
(APHRODITE, Yatagai et al. 2007). Monthly mean land surface temperature (LST) is from
the All-weather MicroWave Land Surface Temperature (MW-LST) global data (Fennig et al.
2017) at a grid spacing of 0.25°. Monthly mean SCF is from the MODIS products
MODI0CM at a grid spacing of 0.05° (Hall and Riggs 2021). All observational data are

bilinearly mapped onto the CWRF grid for subsequent model evaluations.

3. Results

a. Initialization Effects on the Land State of the Initial Month

By design EXP differs from CTL only in initialization, specifying initial land conditions
from the observation-driven CoLM integration rather than directly from the CSM output. In
both cases, initialization brings initial shocks due to formulation differences among the land
components CSSP, CoLM, and AVIM1.0. In addition, observational land/soil data are limited
or contain large uncertainty. In particular, satellite products have many missing or poor-
quality data on a daily basis due to cloud contamination, while the other assimilation or
reanalysis datasets are still model products using land components different from CSSP or
CoLM. Therefore, it is more appropriate to evaluate the initialization effects on the initial
land state by comparing the average conditions of the first month (March) rather than the
instant values on the first day of the forecast. Due to the lack of credible SWE observations
and the more direct SCF effect on surface radiation, we use SCF rather than SWE as a proxy

for snow states in the subsequent model evaluation or experiment comparison.

Figure 1 compares CTL and EXP predicted March mean biases in SCF, LST, and surface

air temperature at 2m (T2M). Two major biases over broad regions are identified with land
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surface conditions. First, on the Tibetan Plateau, CTL substantially overestimates SCF in
most areas by 30.3% on average, while EXP essentially eliminates the overestimation in the
eastern areas, shrinking the regional average bias to 21.5%. More snow cover causes colder
LST biases in the corresponding areas, and EXP reduces the CTL biases from -6.7 to -4.2 °C
as averaged on the Tibetan Plateau; the respective T2M biases are reduced from -6.8 to -5.4
°C. Note that the CNO05.1 data for T2M contain substantial uncertainty on the Tibetan Plateau
with rare ground observations (Wu and Gao 2013). Basically, there is no ground truth to
define actual model “biases”. We keep using this phrase subsequently just for simplicity with
large uncertainty implied over the Plateau. Nonetheless, it is important to see that the
difference between EXP and CTL is 1.4 °C on average over the entire Tibetan Plateau, which
is statistically significant at the 5% significance level and consistent with the snow removal.
Second, over large areas across Mongolia and Northeast China, CTL broadly overestimates
SCF by 19.9% on average and hence produces colder LST and T2M biases by -2.8 °C. These
CTL regional biases are mostly corrected in EXP. Overall, EXP shows systematic
improvements over CTL for snow cover and surface temperatures. However, EXP tends to
produce warmer LST than CTL by 2 °C across southeastern to northern China, whereas both
EXP and CTL predict colder LST than the satellite product MW-LST by 2-4 °C in the desert
regions across Xinjiang to western Inner and southern Mongolia, and reversely by 4-8 °C
warmer in the wet monsoon regions across eastern India to southern Asia. No obvious biases
are shown in T2M over these regions. This disconnection between surface skin and air
temperatures may indicate LST inconsistency as represented in the model versus MW-LST or

uncertainty in satellite retrievals.
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Figure 1. The kernel density and geographic distribution of long-term mean biases of SCF
[%] (a-d), LST [°C] (e-h), and surface air temperature at 2-meter (T2M [°C], i-l) in March
predicted by CTL and EXP and their differences (EXP minus CTL) as well as soil
temperature differences [°C] in four layers (m-p). Statistics of SCF and LST are based on
2000-2014 as limited by observational data. In each kernel density plot (a, e, i), the left bar
chart depicts the proportion of grids having EXP-CTL increased (b/ue) versus decreased (red)
RMSE while the right inset shows the kernel density of EXP-CTL RMSE differences. For
SCF’s kernel density estimation, grid points with its climatological mean fraction less than
10% are filtered out to capture key bias statistics. The differences colored on the maps are
statistically significant at the 5% significance level with a student's t-test.

Lacking reliable direct observations, Figure 1(m-p) compare EXP minus CTL differences
(rather than biases) in soil temperature among 4 layers. In the Tibet Plateau, EXP is warmer
than CTL by 4-5°C in the top layer (0-7cm) and 6-8°C covering broader areas in deeper
layers. In Mongolia and northern China, EXP is about 2-3°C warmer than CTL in upper
layers (0-28cm) and has little difference in deeper layers. In eastern China, EXP is about 2-
3°C warmer than CTL in deep layers (28-200cm) but has little difference in upper layers. As

discussed below, some soil thermal differences directly resulted from initial shocks may
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dissipate shortly, while others can have persistent impacts on land-atmosphere interaction

beyond a few months.

Tibetan Plateau Mongolian Plateau Eastern China

100 100

Depth [cm]
Depth [cm]
Depth [cm]

11801 h) 1id0 i)

Depth [cm]
Depth [cm]
Depth [cm]

i T 2817

Depth [cm]
Depth [em]
Depth [em]

172,80 + T T 172.80 172.80 N
Mar2 Aprl Mayl junl Jull Augl Mar2 Aprl Mayl junl Jull Augl Mar2 Aprl Mayl Junl Jull Augl
-4.0 -3.6 -3.2 -2.8 -2.4 -2.0 =16 -12 -0.8 -0.4 0.0 0.4 08 12 1.6 2.0 24 2.8 32 36 4.0

Difference in soil temperature [ C)

Figure 2. The time evolution during the entire forecast period of daily mean SCF [%] and
LST [°C] from CTL, EXP, IST, and ISN (a-c) as well as differences in soil temperature [°C]
(d-f: EXP-CTL, g-i: IST-CTL, j-l: ISN-CTL) averaged in the Tibetan Plateau (a, d, g, j), the
Mongolian Plateau (b, e, h, k), and eastern China (c, f, i, 1) between 1991-2014. The color
shaded area in (a-c) indicates the 99% confidence interval.

As shown in Figure 1, SCF noticeably differs between EXP and CTL on the Tibetan and
Mongolian Plateaus. To investigate how such initial perturbations evolve with local and
remote impacts, Figure 2 compares daily mean variations of regional average SCF, LST, and
soil temperature profiles during the entire forecast period. Regional means are calculated
separately on the two Plateaus over all grids with initial SCF differences larger than 25%.
The variations in eastern China, averaged over all grids regardless of SCF, are also compared
to demonstrate how the result differences over remote areas with no significant differences in
initial conditions. On the Tibetan Plateau, EXP shows persistently lower SCF and warmer

LST than CTL until early June, while its warmer soil temperature differences from CTL
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continue throughout March to August with two distinct features. First, the CoLM
initialization has systematically warmer soil in all layers than CSM and the initial
perturbations gradually weaken as snow cover keeps decreasing in March and April. Second,
the removal of excessive snow cover causes increasingly more solar radiation heating to
warm land surface and penetrating deeper soil layers with a clear downward propagating and
strengthening signal. A warm core of 3.8°C appears around 1m depth in the mid-August and
remains strong into September. Comparing CTL and EXP with IST and ISN clearly shows
that the initial snow states pose persistent influences on soil temperature on the Tibetan
Plateau. However, only when both initial soil temperature and snow cover states are replaced
as in EXP, a noticeable warm center emerges in the deep soil in summer. This implies a

nonlinear interaction between deep soil and atmosphere on the Tibetan Plateau.

On the Mongolian Plateau, EXP also has lower SCF and warmer LST than CTL until
mid-May, but the differences are much smaller in magnitude and end about a month earlier
than those on the Tibetan Plateau. Consistent with ISN and IST, smaller initial snow amounts
induce smaller (1-2°C) soil warming perturbations, which are limited only to upper layers (0-
30cm) before mid-April; after that, a similar downward propagation of warmer soil
perturbations results from the increased solar radiation heating caused by the decreased snow
cover. This propagating signal persists into September, albeit much weaker than that on the
Tibetan Plateau and negligible in upper layers. In eastern China, given no snow cover change,
EXP differs from CTL mainly because of initial warmer soil perturbations, which decay
continuously to negligible values before April in upper layers and August in deeper layers;
there is no propagating signal as in the two Plateaus. Given that IST shows much smaller
changes from CTL, the LST differences between EXP and CTL result mostly from the

differences in initial snow (rather than soil temperature) states.

The long memory of large deep soil thermal perturbations may cause significant regional
impacts and teleconnections through land-atmosphere interaction and large-scale circulation
(Xu et al. 2022; Xue et al. 2022). Since soil perturbations are much stronger when and where
snow cover is altered, skill differences in seasonal climate prediction between EXP and CTL
can be primarily attributed to changes in snow cover. As discussed below, the impacts of
initial land conditions over the Tibetan and Mongolian Plateaus can continue beyond July,

while those in eastern China are trivial. The impacts from the Tibetan Plateau are expected to
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be especially large as it provides persistent heating sources elevated above 3000 meters to

significantly alter continental to global circulations with teleconnections.

Mongolian Plateau

a) b)
;1 Clem 7 Tleo
© R g
<) d)
o e 7 o
!
!
!
.
e) f)
= £
3 3
QO 10 O
o = SWE Diff vs LST Diff
b3 W Morch 2nd
w
-
-
(&)

CTL-EXP Difference: LST["C]

CTL-EXP Difference: LST["C]

n o1 80

4 B 12 16 20 24 28 32 36 40 44 48 52 56 60 64
CTL-EXP Difference: SWE [mm]

B 12 16 20 24 28 32 36 40 44 48 2 %
CTL-EXP Difference: SWE [mm]

Figure 3. The proportions (left subpanel) of the initial SWE grids grouped in three ranges
(50-35, 35-20, 20-5 mm) and the time evolution (right subpanel) during the entire forecast
period of daily mean SWE [mm] averaged over these initially grouped grids, LST [°C]
averaged over snow free, snow covered, and all grids as well as SCF [%] over all grids on the
Tibetan (a, ¢) and Mongolian (b, d) Plateaus for CTL (a-b) and EXP (c-d). All statistics are
based on averages between 1991-2014. The histogram (top subpanel) of the CTL minus EXP
differences in SWE connected with the boxplot (bottom subpanel) for the corresponding
differences in LST on the initial date March 2 for the Tibetan (e) and Mongolian (f) Plateaus.

It is important to distinguish the relative effects of SCF versus SWE perturbations. As
depicted by Eq (1), adding more snow amount (SWE) on existing snow cover increases SNP
linearly but SCF by little or much slowly. Figure 3 compares daily mean variations of total
SCF, LST averages over snow-free, snow-covered and all grids, and SWE averages over the
grids with initial SWE in the ranges of 50-35, 35-20, and 20-5 [mm], as well as relationships
of the CTL minus EXP differences in LST versus SWE on all grids with the corresponding
initial SCF differences larger than 25%. On the Tibetan Plateau, compared to EXP, CTL has
7% and 8% more grids of the thick and medium SWE ranges, and conversely 15% less grids
of shallow snow (20-5 mm). As snow begins to melt in mid-spring, the thick SWE diminishes
much more rapidly in EXP than CTL. The differences in LST decrease linearly with those in

SWE when the latter ranges from small to medium magnitudes (between -8 and 20 mm).
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However, this tendency saturates quickly for larger ranges, approaching a mean LST
difference of 5 or -10 °C for SWE differences exceeding -8 or 20 mm. While initial thick
SWE grids continue to experience longer effects due to slower meltdown, grids with small-
medium SWE differences contribute the most to LST differences. Similar results, albeit with
varying magnitudes, are seen on the Mongolian Plateau. Given the positive snow-albedo

feedback, LST warms more over these shallow SWE grids on both Plateaus.
b. Improved Skill for Spring and Summer Predictions

1) CLIMATOLOGICAL BIASES

Figure 4 compares long-term (1991-2014) average seasonal mean T2M biases and their
spatial pattern predicted by CSM, CTL, and EXP. In spring, CSM produces large systematic
cold biases (2-8°C) in most regions except for warm biases along steep-slope mountain ridges
and small biases in southern-southeast China. CTL also has cold biases, with much reduced
magnitudes in Xinjiang and northeast China but a much enhanced magnitude in the Tibetan
Plateau. These cold biases correspond to the significant LST underestimation and SCF
overestimation in March (Figure 1). Since CTL is initialized directly from the CSM output,
the result indicates a strong and sustained impact on seasonal climate forecasts due to the
CSM’s excessive snow cover on March 2. Note that observations are very rare on the Tibetan
Plateau, especially in the western to central parts. Thus, the observational uncertainty in these

regions is very large.

Spring
)

!
‘ EXP-CTL Z,q

h)
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Figure 4. Geographic distributions of spring (a-d) and summer (e-h) seasonal mean biases
averaged between 1991-2014 for surface air temperature (T2M [°C]) predicted by CSM,

16
File generated with AMS Word template 2.0

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-23-0565.1.

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 07/08/24 03:08 PM UTC



CTL, EXP, and EXP minus CTL differences. The color shaded area is statistically significant
at the 5% significant level based the student’s t test.

Compared with CTL, EXP predicts similar spring cold biases in the western part of the
Tibetan Plateau but essentially eliminates the biases in the eastern part. EXP is also warmer
than CTL in northeast China. These regions of large cold bias reduction in spring match well
with the areas of warmer LST and less SCF in March (Figure 1), primarily due to the removal
of initial excessive snow cover in EXP. In contrast, EXP overpredicts spring T2M in eastern
China by 2.5°C on average, which is larger than 1.5°C in CTL. EXP also produces overall the
lowest mean absolute errors of 2.2°C in China, as compared to 2.5°C by CTL and 2.9°C by
CSM.

Summer T2M biases in all three forecast experiments decrease from spring, especially on
the Tibetan Plateau in CTL and EXP. The big reduction of cold biases on the Tibetan Plateau
results from snowmelt after spring due to rising temperatures. The CWRF forecasts are more
similar in summer than spring, leading to closer mean absolute errors in China between 1.4°C
(EXP) and 1.6°C (CTL), which are significantly reduced from 2.4°C (CSM). They share the
same atmospheric forcing through lateral boundary conditions predicted by CSM. The bigger
differences between CSM and CWRF suggest that the large-scale conditions play a less
important role than regional processes on T2M in summer as compared to spring. In contrast,
EXP in summer is still warmer than CTL by 0.5-1°C on the eastern Tibetan Plateau, which
corresponds to the warmer LST and soil temperatures in March (Figure 1), indicating the
persistent impact from land initialization. As discussed earlier, initial perturbations in snow
cover and soil temperatures can have sustained effects into summer (Figure 2) and hence their
impact on T2M remains detectable (from lateral forcing) beyond two seasons, in agreement

with Xu et al. (2022).
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Figure 5. The geographic distributions of spring (a-d) and summer (h-k) seasonal mean
precipitation (PR [mm day']) averaged between 1991-2014 as observed (OBS) and predicted
by CSM, CTL, and EXP, as well as the corresponding EXP minus CTL differences (g, n).
The spatial pattern correlation coefficients (PCC) of predictions with observations are labeled
by red on each map. Also shown are their equitable threat score (e, I) and kernel density (f,
m).

Figure 5 compares long-term seasonal mean precipitation distributions observed and
predicted by CSM, CTL, and EXP. In spring, observations show two main rainbands in
southeast China: immediate south of the Yangtze River and north of the Pearl River. CSM
predicts poorly for not only underestimating the magnitude but also distorting the spatial
distribution, having a pattern correlation with observations of only 0.53. Both CTL and EXP
generally overestimate the magnitude but much better capture the spatial distribution,
increasing the pattern correlation to 0.82, aligning precipitation centers more closely with
observations. EXP produces 6%-20% more precipitation than CTL in the upper and lower
reaches of the Yangtze River. The equitable threat score (ETS), a measure of forecast skill

relative to chance (Gandin and Murphy 1992), suggests that CSM's performance deteriorates
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quickly as rainfall surpasses approximately 2 mm day™'. In contrast, CTL and EXP exhibit a
significantly higher skill in predicting heavier rainfall ranging from 1 to 8 mm day™'. CSM’s
predictions suffer from the drizzling problem, a recognized issue caused by its limited
resolution (Chen et al. 2021). Specifically, CSM tends to overestimate light rainfall events
but inadequately forecasts moderate to heavy rainfall. On the other hand, both CTL and EXP
overestimate the heavy rainfall (>7 mm day') coverage and maximum intensity. Note that the
observational data used here are derived from rain gauges at monitoring stations coarser than
the 0.25° analysis grid, most of which are located at low elevations (Liang et al. 2019). Thus,
observations may likely underestimate heavy precipitation events, especially in areas with

high mountains.

In summer, CSM performs even worse, with the spatial pattern correlation dropping to
0.49, as the primary rainband along the southern and eastern sides of the Tibetan plateau is
incorrectly positioned and the main rainbands as observed over eastern China are absent.
CTL better predicts the spatial distribution with a much higher pattern correlation of 0.70, but
generally underestimates precipitation in the Yangtze River basin. EXP further improves the
prediction by adding precipitation of 1 mm day™! to CTL in the middle-lower reaches of the
Yangtze River and subtracting a similar amount to its south - a realistic northward shift of the
monsoon rainband. Given summer rainfall in eastern China decreases northward, the EXP
difference from CTL accounts for up to 20-30% of total precipitation in the middle reach of
the Yangtze River. Similar to spring, the summer ETS measure indicates that both CTL and
EXP significantly outperform CSM in predicting most rainfall ranging from 1 to 9 mm day"'.
In particular, CSM demonstrates little skill for rainfall heavier than 4 mm day!, whereas CTL

and EXP maintain significantly higher ETS demonstrates low skill 9 mm day.

Both spring and summer results highlight the important skill enhancement of the CWRF
downscaling prediction to the CSM operational forecasts of the climatological distributions,
especially for precipitation. The CoLM-based land surface initialization largely eliminates
CSM’s March excessive snow cover and cold biases, especially on the Tibetan Plateau and
secondary the Mongolian Plateau. This improved initialization enables EXP to predict more
realistic distributions of seasonal mean surface air temperature and precipitation climatology.
The result indicates that initial perturbations in snow cover and soil temperature in the highly

sensitive regions can have persistent impacts on climate prediction beyond two seasons.

2) INTERANNUAL ANOMALIES
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The spatial anomaly correlation coefficient (ACC) is commonly used in operational
practice to evaluate the skill of forecasting interannual variations. It measures the spatial
similarity between predicted and observed anomalies with the long-term (1991-2014) mean
climatology removed. Figure 6 compares ACC interannual variation and overall statistics of
T2M and precipitation predicted by CSM, CTL and EXP. For the average of all years, ACC
for spring T2M prediction increases slightly from 0.18 (CSM), 0.20 (CTL) to 0.22 (EXP),
indicating marginal improvements from CSM to CTL, CTL to EXP, and CSM to EXP at p-
values of 0.32, 0.17, and 0.12, respectively. The average ACC for spring precipitation
prediction is relatively small: 0.01 (CSM), 0.0 (CTL), and 0.02 (EXP), which differ little.
Interestingly, among the ten years of relative high rainfall predictability (defined as any ACC
of the three forecasts exceeding 0.2), both CTL and EXP forecasts have much higher scores
than CSM in seven years (1992, 1995, 1998, 2000, 2004, 2008, 2010) with average ACC of
0.35 and 0.37 versus 0.13. In the previous winters of these years, six of them were identified
with clear ENSO phases (defined as the Nino3.4 index magnitude greater than 0.5°C),
indicating that CWREF can better represent regional rainfall responses to planetary circulation
anomaly forcings. CSM does significantly better only in 2002 with ACC of 0.34 versus -0.26
(CTL) and -0.22 (EXP), slightly better in 1997, and almost the same in 2011.
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Figure 6. The spatial anomaly correlation coefficient (ACC) of predicted (CSM, CTL,
EXP) with observed surface air temperature and precipitation in spring (MAM) and summer
(JJA). While the left plot depicts ACC’s interannual variation during 1991-2014 with a
horizontal line at a threshold of 0.2 for relative high predictability, the right plot represents its
interquartile range and related statistics: the mean is labeled with a cross marker; the whisker
extends between the minimum and maximum; the p-value indicates the significance of the
differences between two groups determined by a two-tailed paired-t-test.
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In summer, the average ACC for T2M prediction increases from CSM (-0.0) to CTL and
EXP (0.07), indicating significant improvements from CSM to CTL and EXP at p-values of
0.09 and 0.08, respectively. Both CTL and EXP improve the interquartile range, avoiding
large negative ACCs in CSM. Among the ten years of high T2M predictability, CSM
performs much worse than CTL and EXP in (1992, 1997, 1998, 2007), similar in (1993,
1995, 2002, 2003), but better in (2008, 2009). The average ACC for precipitation prediction
increases from CSM (-0.04), CTL (0.05) to EXP (0.08), indicating significant improvements
from CSM to CTL, CTL to EXP, and CSM to EXP at p-values of 0.03, 0.02, and 0.01,
respectively. Among the ten years of relatively high rainfall predictability, both CTL and
EXP forecasts have much higher scores than CSM in seven years (1996, 1998, 2001, 2005,
2006, 2011, 2012) with an average ACC of 0.23 and 0.26 versus -0.02; CSM did significantly
better only in 2003 with an ACC of 0.32 versus 0.09 (CTL) and 0.20 (EXP) and slightly
better in 1991 and 1993. CTL substantially outperforms CSM rainfall for 15 of 24 years and
underperforms marginally in the rest 9 years, resulting in improved mean and interquartile
range of ACCs. The improvements of EXP over CTL for precipitation are not large but

consistent, with higher ACCs in 17 of 24 years.
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Figure 7. The interannual temporal correlation coefficient (TCC) in spring and summer
during 1991-2014 between observed and predicted seasonal mean surface air temperature
anomalies by CSM (a, i), CTL (b, j), and EXP (c, k) as well as their differences (e-g, m-o);
the kernel density of TCC spatial frequency distribution (d, I) and the proportion of different
levels of the prediction skill (h, p). Dotted and crossed areas on the TCC maps (a-¢, i-k) are
statistically significant at the 5% and 20% significant level based on a one-tail student’s t test,
if useful TCCs are positive. Pink and green vertical lines in the kernel density indicate the
TCC threshold at the 5% and 20% significant level, respectively.

Figure 7 compares the geographic distribution and kernel density of interannual temporal
correlation coefficient (TCC) between observed and predicted seasonal mean T2M
anomalies. Statistically significant (at p-value of 5% and 20%) positive TCCs are considered
here respectively for skillful and informative forecasts, while negative TCCs indicate poor
forecasts with anomalies of the wrong sign. In spring, CSM makes skillful forecasts primarily
in a wide strip across the northern Tibetan Plateau to Qinghai and informative forecasts in
Xinjiang. While retaining the CSM skill (with a slight degradation in Qinghai and Xinjiang),
CTL achieves more significant positive TCCs in northeast and north China. CTL improves

over CSM in Inner Mongolia-northeast China and southwest-southern China strips, while
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degrading between the two strips. Overall, CTL increases the area of significant positive
TCCs from CSM’s 24.7% to 30.9%, while decreasing that of negative TCCs from CSM’s
14.7% to 10.6%. EXP enhances CTL’s TCCs in northern Xinjiang and Guangdong but

reduces those in parts of northeast China, northern Tibetan Plateau, Qinghai, and Sichuan.

In summer, CSM exhibits significant positive TCCs of T2M in northern and eastern
Xinjiang and across Da Hinggan Ling to Heilongjiang. While retaining these skillful regions
in CSM, CTL substantially enhances the prediction in a broad band spanning southwest to
northeast China and along the southeastern coast regions, increasing TCCs by 0.2-0.8. As
such, CTL recovers a large area of negative TCCs in CSM and turns them to positive
correlations in north and coastal south China. Overall, CTL increases the total area of skillful
(informative) forecasts from CSM’s 24.8% to 36.7% (23.9% to 35.8%), while decreasing that
of negative TCCs from CSM’s 30.5% to 12.8%. EXP slightly improves CTL in the eastern
Tibetan Plateau, southwest China, and middle-lower reaches of the Yangtze River, but
degrades in the southwestern Tibetan Plateau and over a wide band spanning Qinghai, Gansu,
western Inner Mongolia, north China, Jilin to Heilongjiang. Thus, EXP decreases the total
area of skillful forecasts by 2.1% from CTL but still increases that by 9.8% from CSM.
Comparing the kernel density, CTL and EXP avoid CSM’s large proportion of negative
TCCs and increase the proportion of positive TCCs between 0.1-0.5, exhibiting an improved

distribution.
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Figure 8. Same as Figure 7 except for precipitation.

Figure 8 compares the geographic distribution and kernel density of TCC between
observed and predicted seasonal mean precipitation anomalies. In spring, CSM exhibits
significant positive TCCs in limited areas of the Yangtze River Basin, Xinjiang, Ningxia, and
Guangxi. Overall, CSM captures only 6.4% (21.2%) area with skillful (informative)
forecasts, producing negative TCCs over 46.9% of China. While retaining these CSM’s
skillful regions, CTL largely increases TCCs in the Tibetan Plateau and along Sichuan to
Henan and Yunnan to the Perl River basin, where CSM produces generally large negative
correlations. As such, CTL increases from CSM the total area of skillful forecasts by 2.3%
while reducing that of negative TCCs by 7.3%. EXP skill is comparable to CTL, with a
marginal increase of the skillful area by 1.5%. Comparing the kernel density, EXP shows the
highest proportion among TCCs from the thresholds for informative and skillful forecasts to

0.6, surpassing CTL slightly and CSM by a larger margin.

In summer, CSM has skillful rainfall forecasts in limited areas of Zhejiang, eastern

Xinjiang, southwestern Tibetan Plateau, and eastern Sichuan, while producing negative TCCs
25
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over 67.4% of China. CTL greatly enhances TCCs over most regions in central and eastern
China, where CSM shows extensive negative correlations. Corresponding to the systematic
bias reduction (Figure 5), CTL reduces the total area of negative TCCs by 23.6% and
increases the area of informative and skillful forecasts respectively by 10.6% and 2.0%,
highlighting the added value of CWRF downscaling. EXP further refines CTL in south China
and the Yangtze River basin with more organized and larger positive TCCs, increasing the
area of informative and skillful forecasts respectively by 2.6% and 1.2%. Notably, these skill
enhancements by CTL and EXP occur mostly over the primary rainbands associated with the
summer East Asian monsoon. The systematic TCC increases in broad areas are likely caused
by CWREF’s improved (over CSM) representation of key physical processes that enable more

realistic capture of regional precipitation responses to large-scale circulation anomalies.

4. Process Understanding

Identifying and comprehending the physical mechanisms responsible for variations in
climate predictive skill among different forecast models remains a significant challenge. In
this section, we aim to explore the key processes that are associated with skill enhancement
through CWRF downscaling and land initialization. Both CTL and EXP forecasts are driven
by the same planetary circulation forcings as CSM, particularly in the upper troposphere,
through CWRF's dynamic relaxation of lateral boundary conditions across the buffer zones
(Liang et al. 2001). Consequently, forecast disparities within the CWRF computational
domain stem from differences in how the models represent regional processes due to
variations in resolution, physics, and initialization. By conducting this analysis, we hope to

gain valuable insights into potential avenues for enhancing the climate predictive skill.
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Figure 9. Seasonal mean distributions averaged between 1991-2014 for observed (OBS)
spring (a) geopotential height ([gpm], color shading) overlaid with wind ([m s™'], vector) at
500hPa and (e) specific humidity ([g kg™'], color shading) with wind ([m s™'], vector) at
850hPa, and their respective CSM (b, f) and CTL (¢, g) biases, as well as CTL minus CSM
differences (d, h). The corresponding summer distributions are shown in (i, m, j, n, k, o, i,

p)-
Figures 9 and S2 show the observed seasonal mean circulation characteristics and

compare the CSM and CTL predicted biases as well as their differences at 850hPa, 500hPa,
and 200hPa. In spring, observations at 500hPa reveal two dominant westerly branches, which
are divided by the mechanical blocking effect of the Tibetan Plateau. As a result of this
separation, two troughs form: one located over Northeast China and Eastern Siberia, and
another on the southern side of the Tibetan Plateau. Due to its coarse resolution, CSM
smooths high terrains, allowing more air flow to climb over the Plateau and causing a
northward shift of the southern branch. The shift strengthens the westerlies from Xinjiang to
Northeast China while weakening them in the south of the Plateau. This causes geopotential
height to decrease on the northern side of the westerly jet stream, leading to the westward
displacement of the East Asian trough. Simultaneously, the southern side experiences

increased geopotential height across the Plateau’s south foothill to South China, resulting in a
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decreased pressure gradient from the Indian Ocean and South China Sea inland, which
inhibits low-level water vapor transport. Consequently, CSM produces dry biases at 850hPa
and substantially underestimates precipitation across entire Central to South China (Figure 5).
In contrast, CWRF with an improved physics representation at a finer resolution (Liang et al.
2019) more effectively captures the Plateau’s blocking and thermal effects, preventing the
northward shift of the southern branch and rectifying the geopotential height overestimation.
However, the CTL predicted geopotential height still exhibits notable underestimates in
Mongolia to East Siberia and overestimates in the Sea of Japan. These biases resemble CSM
with reduced magnitudes and result from lateral boundary conditions. Nevertheless, the
CTL’s corrected southern trough reduces overall geopotential height overestimation and
guides the south-westerlies beneath it to transport more water vapor inland, resulting in more

realistic rainfall across Central to South China.

In summer, the observed 500hPa westerlies decelerate, and merge into one jet stream -
EAJ, which shifts northward compared to spring. Consequently, the WPSH strengthens and
moves over the northwestern Pacific Ocean. Stronger southerlies at 850hPa transport more
water vapor from the Indian Ocean and the South China Sea inland, providing abundant
moisture for summer East Asian monsoon rainfall. CSM continues to overestimate westerlies
from Xinjiang to the Northeast. A stronger EAJ further lowers the geopotential height on its
left side over East Siberia and raises it on its right side over the Sea of Japan, weakening and
shifting the WPSH northwards. As a result, CSM significantly underestimates 850hPa
southerlies in South China, leading to a considerable decrease in moisture transport from the
South China Sea inland and causing substantial rainfall deficits across entire Central to South
China (Figure 5). The general patterns of these CSM biases resemble each other between
summer and spring. Under the influence of lateral boundary conditions from CSM, CTL
inherits the overprediction of the EAJ and East Asian trough in the upper troposphere from
the northern buffer zone while experiencing insufficient 850hPa southerlies from the southern
buffer zone. These errors contribute to the underestimated rainfall in Central and North
China, as the weakened southerlies in South China decrease the meridional water supply to
the Yangtze River basin and North China. On the other hand, CTL notably reduces the
overestimation of the upper-level westerlies from Xinjiang to the Northeast and the
underestimation of the lower-level southwesterlies across the Indian Ocean to the South
China Sea. Partly because the latter brings more sustained moisture flux from the Indian-

Indochina Peninsula, CTL more accurately captures the summer monsoon rainbands across
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rainfall skill is critically attributed to its improved physics representations (Liang et al. 2019).

South to Central China. In addition to the increased resolution, CTL’s enhancement in
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Figure 10. March to August monthly mean distributions of EXP minus CTL differences

in geopotential height ([gpm], color shading) and wind ([m s™'], vector) at 200hPa (a
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and 925hPa (d-f, j-1), as well as daily variations of the geopotential height differences (m)
along the A-B-C route marked on (j). The purple and cyan contours show the corresponding
temperature differences [°C] at respectively 300hPa and 100hPa with intervals of 0.1 °C.



Figure 10 depicts the temporal evolution and spatial distribution of the major circulation
differences resulting from substituting the land initialization in EXP using the observation-
CoLM integration compared to CTL using the CSM direct output. In EXP, the reduction of
excessive snow cover over the Tibetan Plateau and across Mongolia-Northeast China causes
localized heating within an expanded vertical column. As a result, the geopotential height
increases in the upper layers and decreases in the lower layers. This leads to a perturbation of
an anticyclonic geostrophic circulation in the upper troposphere, creating a warming center
near 200hPa and a cooling center in the lower stratosphere. The finding aligns with earlier
theoretical studies (Hoskins and Karoly 1981). At the same time, a perturbated cyclonic
circulation develops in the lower troposphere, leading to the reinforcement of southerly winds
at 925hPa across the South China Sea and eastern China’s coastal areas. This circulation
pattern transports more moisture northward, causing a decrease in precipitation in South

China but an increase in the Yangtze River basin in both spring and summer (Figure 5g,n).

These circulation perturbations are most prominent in March and gradually diminish in
August. From the daily average along a cross-section from the Tibetan Plateau to Northeast
China and extending to the Sea of Japan (Figure 10m), we observe distinctive Rossby wave
patterns in the 200hPa geopotential height perturbations. Initially, these waves exhibit
oscillation in a northern expansion, progressing toward Northeast China, with the center
magnitude weakening as they approach the Yellow River’s Hetao region and North China.
This trend continues until early June, when a negative geopotential height perturbation center
forms over the Sea of Japan. Subsequently, the dipole oscillation structure strengthens until
the end of June, followed by a gradual weakening until mid-July, during which the Rossby
waves demonstrate an even clearer eastward propagation in summer. Accompanying this
wave activity, the SAH is intensified and the EAJ is shifted northward. Consequently, this
leads to the strengthening of southerly winds in eastern China and a northward shift of rain
bands. These findings are consistent with Wang et al. (2014), Xu et al. (2022) and Xue et al.
(2022), who found that introducing anomalous heating perturbations through increasing
initial soil temperatures in the Tibetan Plateau can produce similar changes in the SAH, EAJ,
and Rossby wave activity. The forcing-response pattern is a regional presentation of the
Tibetan Plateau-Rocky Mountain Circumglobal (TRC) wave train named by Xue et al.
(2023). Given the transient nature of Rossby waves, the associated disturbances may not line
up perfectly among years. However, the consistent propagation path of similar characteristics

contributes to a detectable signal in the long-term average, underlining the significant
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influence of initial snow perturbations over the Tibetan Plateau on atmospheric circulation

patterns and consequently regional climate conditions in eastern China.

Index SAHI EAJI TROI WPSHI | V8501
CSM 0.45" 0.42" 0.34 0.53" -0.15
CTL 0.61" 0.43" 0.44" 0.55" 0.36
EXP 0.63** 0.43" 0.42" 0.58" 0.38

Table 2. The temporal correlation coefficients between predicted and observed
interannual variations of summer regional mean circulation indices SAHI, EAJI, TROI,
WPSHI, and V8501, comparing CSM, CTL, and EXP forecasts. The regional boundaries for
these indices are shown in Figure 11b-e. The highest value among the three forecasts for each
index is bolded. Statistically significant values at the 5% and 1% significance levels by
student’s t-test are depicted by a single (*) and double (**) asterisk, respectively.

As elaborated above, significant differences in performance can be observed among
CSM, CTL, and EXP forecasts when reproducing climatological (1991-2014) mean
characteristics. These differences are more pronounced in spring than in summer, evident in
both regional forcing factors and local to remote responses, as depicted in Figures 1-5 and
identified with key physical processes in Figures 9-10. In contrast, the disparities in skill for
capturing observed interannual anomalies are notably smaller during spring compared to
summer, particularly for remote responses in eastern China, as shown in Figures 6-8. Despite
the challenges in identifying underlying mechanisms for the differences, our focus remains

on understanding the relatively large signals in forecasting summer interannual anomalies.
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Figure 11. The possible mechanisms between Tibetan Plateau’s mechanical and thermal
forcing to regional circulation anomalies in summer. (a) the schematic of the mechanisms;
(b) Mechanism 1 to 2: geographic distribution of temporal correlation between 200hPa zonal
wind (U200) and the South Asian High index (SAHi) calculated with ERAS. Dotted areas are
statistically significant at the 5% significance level based on a student’s t test. The SAHi is
defined averaged geopotential in the lower green polygon. (¢) Mechanism 2 to 3&4: Same as
(b), except for TCC between 500hPa geopotential (H500) and the East Asian Jet index (EAJ1)
defined in (b). (d) Mechanism 3 to 5: Same as (b), except for TCC between 500hPa trough
index (TRO1) and 850hPa meridional wind (V850). (e) Mechanism 4 to 5: Same as (b) except
for TCC between the Western Pacific Subtropical High index (WPSHi) and V850.

Figure 11 illustrates the possible mechanisms and associated processes that explain the
CWRF downscaling advantage over CSM in predicting interannual anomalies of summer
precipitation in eastern China. CWRF demonstrates an improved representation of the
Tibetan Plateau’s mechanical blocking and thermal forcing effects, leading to an intensified
SAH and an accelerated EAJ on its northern flank (Figure 11b). The intensified upper-level
divergence to the left of the EAJ exit decreases 5S00hPa geopotential height, strengthening the
East Asian trough over the Hetao region, while the intensified convergence to the right
strengthens the WPSH (Figure 11c). Consequently, the stronger East Asian trough guides
more low-level cold air from high latitudes to Central China (Figure 11d), while the stronger

WPSH steers more southerly winds with increased moisture transport from lower latitudes

32
File generated with AMS Word template 2.0

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-23-0565.1.

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 07/08/24 03:08 PM UTC



(Figure 11e). CWRF more realistically captures the converging air masses, leading to
increased rainfall in eastern China, especially over the Central to Northeast regions,
compared to CSM. Specifically, CTL increases TCCs with observed 200hPa westerly winds
by 0.3 between the Yangtze and Yellow Rivers and 850hPa southerly winds by 0.6 in
Southeast China. This leads to obvious improvements in 500hPa vertical motion (Figure 12c)
and 1000-500hPa column moisture convergence (Figure 12d) across Central to North China.
EXP predicts even higher TCCs with observations than CTL for southerly winds along the
Yangtze River (Figure 12f), as well as vertical motion (Figure 12g) and moisture
convergence (Figure 12h) in many areas of eastern China. Consequently, EXP shows a higher
skill in predicting interannual anomalies of summer rainfall in eastern China compared to

CTL.

Skill Difference: CTL-CSM

Skill Difference: EXP-CTL
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Figure 12. (a-d) CTL minus CSM differences of the TCC skill in predicting 200hPa zonal
wind (U200), 850hPa meridional wind (V850), 500hPa vertical velocity (W500), and
moisture convergence (MC) integrated from 1000hPa to 500hPa. (e-h) same as (a-d), except
for EXP minus CTL skill differences.

Table 2 compares the TCCs of interannual anomalies of predicted regional circulation
indices with observations during the summer. Both CTL and EXP outperform CSM for all
indices, with particularly significant skill gains identified for SAH and V850 indices. CTL
increases TCC from CSM by 0.16 for SAH and 0.51 for V850, while EXP increases are 0.18

and 0.53, respectively. These consistent results demonstrate the systematic improvements of
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CWREF downscaling over CSM predictions, spanning from synoptic-mesoscale circulations to

regional precipitation processes.

5. Summary and Conclusions

This study evaluates the skill enhancement of CWRF downscaling and land initialization
from CSM operational seasonal forecasts in China and identifies the key mechanisms
underlying the improvements. All CSM and CWREF forecasts are initialized each year on
March 2 and end on August 31 from 1991 to 2014. As driven by time-varying lateral
boundary conditions from the CSM forecast, two parallel CWRF downscaling forecasts are
conducted, differing only in land initialization. The CWRF control (CTL) forecast uses initial
atmospheric and land conditions directly from the CSM forecast, while its experiment (EXP)
forecast substitutes initial land conditions from a standalone CoLM long integration driven by

the observational reanalysis.

The comparison demonstrates that CWRF downscaling significantly reduces CSM’s
regional climate biases in surface air temperature and precipitation in both spring and
summer. The bias reduction is particularly substantial for precipitation, increasing the spatial
pattern correlation with observations in China from 0.53 to 0.82 in spring and from 0.49 to
0.70 in summer. For both seasons, CSM totally misses the main rainbands in South and
Central China and produces a severe drizzling problem, while CWREF realistically restores
these rainbands and improves moderate to heavy (larger than 1 mm day') rainfall with much
higher ETS scores. Compared to CTL, EXP largely reduces excessive snow cover over the
Tibetan Plateau and across Mongolia-Northeast China and hence essentially eliminates large
cold biases there. The forecast circulation responses to the initialization correction are most
prominent in March and gradually diminish in August. As a result, EXP reduces CTL’s dry
biases in the Yangtze River basin in both spring and summer, with a realistic northward shift

of the summer monsoon rainband.

CWRF downscaling also significantly enhances CSM’s predictive capabilities for
interannual anomalies in surface air temperature and precipitation over China mainland. The
downscaling increases the factional area of skillful forecasts (defined as positive TCCs
exceeding the 5% significance level) by 6.2% in spring and 11.9% in summer for
temperature, and by 2.3% in spring and 2.0% in summer for precipitation. Moreover, the

downscaling reduces the area of negative TCCs (anomalies of the wrong sign) by 4.1% in
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spring and 17.7% in summer for temperature, and by 7.3% in spring and 23.6% in summer
for precipitation. Especially for precipitation prediction, the downscaling achieves markedly
higher scores in seven out of the ten years with relatively high predictability (defined as any
ACC of the three forecasts exceeding 0.2). On average, there is an average ACC increase of
0.22 in spring and 0.25 in summer, indicating substantial enhancements in predictive
accuracy of seasonal rainfall anomaly patterns during these years. While the improvements of
EXP over CTL for precipitation anomaly prediction are modest, they show consistency, with

higher summer ACC in 17 out of 24 years.

The predictive skill enhancements by CWRF downscaling can be linked to notable
improvements in the representation of key physical processes governing surface air
temperature and precipitation spatiotemporal variations across China. By employing an
improved physics representation at a finer resolution, CWRF more accurately captures the
complex interactions of the Tibetan Plateau’s blocking and thermal effects, as well as their
teleconnection patterns over China. Consequently, the downscaling depicts more realistic
SAH, EAJ, and WPSH circulation systems. These systems play a crucial role in determining
regional temperature and precipitation distributions, particularly in eastern China where they
jointly affect the weather patterns. Especially during summer, CTL shows notable
advancements over CSM. It predicts an intensified SAH with an accelerated EAJ on its
northern flank and a strengthened WPSH downstream. As a result, the CTL circulations steer
more cold air from high latitudes and facilitate enhanced moisture transport from lower
latitudes with stronger southerly winds. The more realistic representation of these converging
air masses in CTL leads to increased rainfall in eastern China, particularly over the central to
northeast regions, with a much more accurate prediction of mean distributions and

interannual anomalies than CSM.

Similar circulation processes can be identified for the skill enhancements of EXP over
CTL. The integration of observations in the CoLM substantially reduces excessive snow
cover and cold soil biases in the initial land conditions. Especially on the Tibetan Plateau,
EXP shows persistently lower snow cover until early June, while its warmer soil temperature
perturbations continue throughout March to August. This improved initialization leads to
localized heating within an expanded vertical column, enabling EXP to more realistically
predict intensified SAH and WPSH circulation systems. Consequently, the intensification

results in reinforced southerly winds across the South China Sea and eastern China’s coastal
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areas. This circulation pattern transports more moisture northward, causing a realistic
northward shift of the summer monsoon rainband, compared to CTL. The results indicate that
initial perturbations in snow cover and soil temperature within highly sensitive regions can
have persistent impacts on climate predictions for periods extending beyond two seasons.
Furthermore, these impacts may be more significant and manifest with a delay in remote

regions, facilitated by Rossby wave propagations and teleconnection patterns.

In conclusion, this study highlights the advancements achieved in seasonal climate
predictions through CWRF downscaling and enhanced land initialization. However, it is
essential to acknowledge that the predictive skill of interannual climate anomalies in China
remains unsatisfactory (Wang et al. 2022). As we move forward, it becomes increasingly
imperative to pursue further refinements in both global and regional models while embracing
the integration of land-atmosphere-ocean coupled data assimilation systems. By committing
to these avenues of research, we can pave the way for more accurate and robust climate
predictions at regional scales, offering longer lead times and enhancing our understanding

and preparedness to address challenges posed by climate anomalies and extremes.
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