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ABSTRACT 

This study investigates skill enhancement in operational seasonal forecasts of Beijing 

Climate Center's Climate System Model through regional Climate-Weather Research and 

Forecasting (CWRF) downscaling and improved land initialization in China. The 

downscaling mitigates regional climate biases, enhancing precipitation pattern correlations by 

0.29 in spring and 0.21 in summer. It also strengthens predictive capabilities for interannual 

anomalies, expanding skillful temperature forecast areas by 6% in spring and 12% in 

summer. Remarkably, during seven of ten years with relative high predictability, the 

downscaling increases average seasonal precipitation anomaly correlations by 0.22 and 0.25. 

Additionally, substitution of initial land conditions via a Common Land Model integration 

reduces snow cover and cold biases across the Tibetan Plateau and Mongolia-Northeast 

China, consistently contributing to CWRF's overall enhanced forecasting capabilities. 

Improved downscaling predictive skill is attributed to CWRF’s enhanced physics 

representation, accurately capturing intricate regional interactions and associated 

teleconnections across China, especially linked to the Tibetan Plateau's blocking and thermal 

effects. In summer, CWRF predicts an intensified South Asian High alongside a strengthened 

East Asian Jet compared to CSM, amplifying cold air advection and warm moisture transport 

over central to northeast regions. Consequently, rainfall distributions and interannual 

anomalies over these areas experience substantial improvements. Similar enhanced 

circulation processes elucidate skill improvement from land initialization, where accurate 

specification of initial snow cover and soil temperature within sensitive regions persists in 

influencing local and remote circulations extending beyond two seasons. Our findings 

emphasize the potential of improving physics representation and surface initialization to 

markedly enhance regional climate predictions. 
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1. Introduction

Regional climate models (RCMs) are widely recognized for added value to their driving

general circulation models (GCMs) from more realistic physics representation at higher 

resolution (Roads et al. 2003; Liang et al. 2004a,b, 2006, 2019; Diffenbaugh et al. 2005; 

Prein et al. 2015; Rummukainen 2016; Giorgi 2019). RCM downscaling has demonstrated 

skill enhancement for seasonal predictions in North America (Cocke et al. 2007; Lim et al. 

2007; Yuan and Liang 2011a; Liu et al. 2016), South America (De Sales and Xue 2006), 

Europe (Diez et al. 2011; Patarčić and Branković 2012; Sangelantoni et al. 2019), and Asia 

(Sun et al. 2006; Ding et al. 2006a,b; Yuan et al. 2012; Van et al. 2014; Ma et al. 2015). 

Enhanced skill for surface air temperature and precipitation was often attributed to RCMs’ 

better representation of orographic effects with higher resolution. However, RCM 

downscaling performance is highly sensitive to physics parameterization schemes, 

highlighting the critical importance of consistent representation of cumulus, microphysics, 

radiation, planetary boundary layer, and surface processes as well as their interactions (Liang 

et al. 2004b, 2007; Yuan et al. 2012; Sun and Liang 2020a,b; Zhang et al. 2023). 

China features complex topography and spans multiple climate zones with distinct 

physical processes. In summer, prevailing large-scale circulations include the East Asian Jet 

(EAJ), the South Asian High (SAH), the Western Pacific Subtropical High (WPSH), and the 

Intertropical Convergence Zone (Liang et al. 1995; Lau and Yang 1996; Liang and Wang 

1998; Samel et al. 1999; Yang et al. 2004; Wang et al. 2011) along with mesoscale features 

such as low-level jets and vortices (Wang 1987; Ding and Chan 2005; Luo et al. 2013). They 

collectively shape China's climate characteristics, making seasonal predictions, particularly 

for interannual anomalies, more challenging (Wang et al. 2015, 2022; Ren et al. 2019). 

However, the combined influences of planetary and regional processes render RCMs more 

effective for application in China. Liang et al. (2019) demonstrated that the Climate extension 

of the Weather Research and Forecasting model (CWRF, Liang et al. 2012) outperforms its 

driving global reanalysis and a popular RCM in reproducing China climate characteristics, 

including monsoon rain bands, diurnal temperature ranges, surface winds, interannual 

precipitation and temperature anomalies, and extreme precipitation. The CWRF has recently 

been adopted by Beijing Climate Center (BCC, designated by the World Meteorological 

Organization as the Regional Climate Centre for Asia) to make operational seasonal 

forecasts. Its initial testing operation for the last three years has shown persistent performance 
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in summer precipitation prediction superior to other existing dynamical and statistical 

products. While Zhang et al. (2023) provided a preliminary evaluation of the CWRF skill 

enhancement over the BCC Climate System Model (BCC_CSM) for China summer 

precipitation hindcasts during 1991-2010, this study offers a more systematic assessment and 

process understanding of its performance for spring-summer forecasts in the operational 

framework and examine the sensitivity to land surface initialization. 

Global oceans and land are identified as two major sources of seasonal predictability. As 

GCMs integrate and transfer oceanic forcing (or predictive) signals into planetary circulations 

that form the lateral boundary conditions driving RCMs, the downscaling incorporates the 

predictability from the land source (surface and deep soil) that occurs as initial anomalies 

within the computational domain and coupled land-atmosphere memory evolving during the 

prediction. Koster et al. (2004) and Notaro (2008) discovered that strong land-atmosphere 

coupling in certain regions over North America enables deep soil predictability for local 

summer surface temperature up to two months in advance. Prodhomme et al. (2016) reported 

that using accurate land-surface initial conditions improves seasonal predictions in Europe. 

Orsolini et al. (2013), and Thomas et al. (2016) showed that a more realistic initialization of 

snow cover enhances sub-seasonal to the seasonal climate predictive skill through feedback 

mechanisms. Snow cover in Eurasia and high mountains can produce lagged remote 

influences on precipitation in China (Liang et al. 1995; Zuo et al. 2011; Wang et al. 2017; 

Broxton et al. 2017). Most recently, Xue et al. (2021) proposed the Impact of Initialized Land 

Surface Temperature and Snowpack on Subseasonal to Seasonal Prediction Project (LS4P) to 

focus on the remote effects of initial land surface temperature and subsurface conditions over 

high mountains. Xu et al. (2022) revealed that early spring deep soil temperature in the 

Tibetan Plateau acts as a charged capacitor, modulating the SAH and EAJ, leading to 

significant spring-summer precipitation anomalies in eastern China. Xue et al. (2022, 2023) 

highlighted that high-mountain land temperature could produce 40% of observed anomalies 

for sub-seasonal to seasonal precipitation, a contribution comparable to that of sea surface 

temperature. 

However, few RCM studies have examined the downscaling skill enhancement and 

sensitivity to land surface initialization on seasonal climate prediction within the actual 

operational forecast framework. The present study addresses this topic based on the CWRF 

downscaling seasonal predictions over China from the global BCC_CSM operational 
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forecasts in the China Meteorological Administration. Section 2 presents the model 

description, observational data, and experiment design. Section 3 evaluates the results, 

including the skill enhancement from the CWRF downscaling and land initialization on 

seasonal mean climate and interannual variation for regional temperature and precipitation in 

China. Section 4 discusses the key physical processes and underlying mechanisms that are 

responsible for the prediction improvements. Section 5 gives the conclusion. 

2. Model, Data, and Experiment Design

A two-tier-nested method is used for making seasonal climate predictions. The first tier

uses a coupled GCM to make the first-guess forecast of global circulation conditions. The 

second tier uses an RCM to downscale the global forecast into regional climate prediction in 

China with higher resolution. In the control prediction, the RCM takes initial atmospheric and 

land conditions as well as time-varying lateral boundary and sea surface conditions directly 

from the GCM’s output. An experimental prediction is also made to substitute the initial land 

conditions with the output from a standalone land model integration driven by a reanalysis. 

a. Model Description

The GCM used is the BCC_CSM version 1.1m (hereafter referred to as CSM), which

fully couples atmosphere, land, ocean, and sea ice components (Wu et al. 2014). The 

atmosphere component (AGCM2.2) uses a horizontal grid of T106 (triangular truncation at 

grid spacing about 110 km) and 40 layers of hybrid sigma pressure, with the top to 0.5 hPa. 

The land component (AVIM1.0) shares the same T106 horizontal resolution as the 

atmosphere (Ji et al. 2008). The ocean component (MOM4) uses a tripolar grid with variable 

horizontal grids of 1/3°-1° and 40 vertical layers (Griffies et al. 2005). The sea ice component 

(SIS) shares the same ocean horizontal grid with 3 vertical layers (Winton 2000). 

The RCM used is the CWRF (Liang et al. 2012), which has been continuously developed 

and systematically evaluated for regional climate downscaling and applications in the United 

States, including seasonal climate prediction (Yuan and Liang 2011a; Chen et al. 2016; Liu et 

al. 2016), and most recently, extreme precipitation improvement (Sun and Liang 2020a,b), 

longstanding bias correction (Sun and Liang 2022, 2023), and agricultural decision support 

(Liang et al. 2024). The CWRF has also been rigorously evaluated in China with superior 

performance (Liang et al. 2019). It has been increasingly used in China for sensitivity 

analysis, process understanding, present climate simulation (Wei et al. 2021; Li et al. 2021; 
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Shi et al. 2021; Xu et al. 2022; Zhang et al. 2023; Zhao and Liang 2024; Zhao et al. 2024), 

and future projection (Liu et al. 2013; Jiang et al. 2021). In 2018, BCC adopted CWRF as the 

core of the regional prediction system and has since been making operational seasonal 

forecasts with a promising skill for summer precipitation outlook in China. 

The CWRF physics configuration used is identical to that designed by Liang et al. (2019), 

which includes the Ensemble Cumulus Parameterization (ECP, Qiao and Liang 2015, 2016, 

2017), the GSFCGCE Microphysics (Tao et al. 2003), the XRL diagnostic Cloud (Xu and 

Randall 1996; Liang et al. 2004), the prescribed MISR Aerosol (Kahn 2005; Kahn et al. 

2007; Zhao et al. 2009), the GSFCLXZ Radiation (Chou and Suarez 1999; Chou et al. 2001) 

as coupled in the Cloud-Aerosol-Radiation ensemble model (Zhang et al. 2013a,b), the 

improved CAM plus ORO Planetary Boundary Layer parameterization (Holtslag and Boville 

1993; Rontu 2006; Liang et al. 2006b), and the Conjunctive Surface-Subsurface Process 

(CSSP, see below for details). Since RCM downscaling performance is sensitive to the 

domain configuration (Liang et al. 2001; Xue et al. 2014), we adopt the same domain (Figure 

S1) as tested by Liu et al. (2008) and well evaluated by Liang et al. (2019). The domain uses 

a Lambert conformal projection with a center at 35.18°N and 110°E and a grid spacing of 

30km, totaling 272 EW×172 SN grids. The model has 36 terrain-following sigma levels with 

the top at 50 hPa. 

The CSSP is originated from the early version of the Common Land Model (CoLM, (Dai 

et al. 2003, 2004) with significant improvements. The major CSSP advances from CoLM 

include surface-subsurface flow interaction (Choi et al. 2007, 2013; Choi and Liang 2010; 

Yuan and Liang 2011b), representation of subgrid topographic control on soil moisture, and, 

most relevant to this study, an improved land surface albedo parameterization (Liang et al. 

2005). Rooted in the Biosphere-Atmosphere Transfer Scheme (BATS, Dickinson et al. 1993), 

the albedo scheme consists of three components: bare soil, vegetation, and snow. The soil 

albedo depends on static soil properties (sand, clay, organic content) and time-varying soil 

moisture, while the vegetation albedo is a function of leaf and stem area indices and dominant 

vegetation type. When snow is absent, the albedo is a linear combination of the soil and 

vegetation albedos as weighted by the vegetation cover fraction. When snow is present, its 

albedo depends on snow age and zenith angle and the total albedo is determined as a linear 

combination of the three component albedos as weighted by the snow and vegetation cover 

fractions. This albedo parameterization enables CSSP to characterize the local thermal-water 
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feedback process combined with the snowmelt infiltration process and soil-vegetation 

evapotranspiration process (Liang et al. 2005). Besides these advances, CSSP shares many 

features with CoLM, including the internal initialization method and vertical structure, 

resulting in a comparable performance of soil temperature and moisture prediction. The 

similarity between CSSP and CoLM for model setup and performance is the reason we 

choose CoLM to provide the standalone reanalysis-driven land initialization. 

The CoLM combines the advantages of the Land Surface Model (Bonan 1996), the 

Biosphere-Atmosphere Transfer Scheme (Dickinson et al. 1993), and the Institute of 

Atmospheric Physics, Chinese Academy of Sciences Land Surface Model (Dai and Zeng 

1997; Dai et al. 1998). It incorporates key land surface processes such as a two-big-leaf 

model (Wang and Leuning 1998), a two-stream approximation for radiative transfer (Coakley 

and Chylek 1975), and a topography-based runoff parameterization (Beven and Kirkby 1979; 

Ambroise et al. 1996). The CoLM integrates interactions among the atmospheric boundary, 

vegetation canopy, snow cover, and soil processes. Extensive standalone and coupled model 

studies have demonstrated that the CoLM can reasonably estimate land surface energy fluxes 

and characteristics (Dai et al. 2003; Li et al. 2012, 2017; Xin et al. 2019). This study uses the 

CoLM version 2014 at a globally uniform 0.5° grid spacing. 

b. Experiment Design

Table 1 lists the three forecast experiments compared in this study. All forecasts are

initialized each year on March 2 and end on August 31 from 1991 to 2014, encompassing two 

seasons. The respective workflow of these forecasts is as follows: 

1. The CSM forecasts begin on February 1 with fast nudging toward the NCEP-NCAR-

R1 reanalysis (Kistler et al. 2001) continuously till March 1 and are then integrated forward 

freely. The nudging applies to only atmospheric circulation variables, including winds, 

geopotential height, air temperature, and vapor mixing ratio. The land component has no 

nudging treatment but uses the climatology as the initial condition. It is acknowledged that, 

NCEP-NCAR-R1 is not as advanced as newer reanalysis datasets such as the NCEP/DOE R2 

(Kanamitsu et al. 2002), the NASA MERRA-2 (Gelaro et al. 2017), or the ECMWF ERA5 

(Hersbach et al. 2020). However, it has a faster timeline of data availability (2 days behind 

real time) than those latest reanalysis datasets, and therefore was chosen by China 

Meteorology Administration as the initial nudging dataset for the CSM operational forecast. 
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As an extension of the present operational practice, this study follows the same procedure in 

all experiments. 

2. The CWRF control (CTL) forecast begins on March 2 with initial conditions of both

the atmosphere and land directly from the corresponding CSM forecast and integrates 

forward with time-varying 6-hourly lateral boundary conditions from the same CSM forecast. 

3. The CWRF experiment (EXP) forecast is identical to the CTL forecast except that

initial land conditions are substituted from a standalone CoLM continuous integration driven 

by an observation-reanalysis fused dataset CRUNCEP (Viovy 2018) from January 1, 1975, to 

December 31, 2014. Taking from this CoLM integration after a well spin-up for 16 years, the 

initial land conditions, including surface and soil temperatures, soil liquid and ice water 

contents, and snow water equivalent (SWE), on March 2 of each year between 1991-2014 

have reached a quasi-equilibrium with the observed atmospheric forcing. 

4. The IST and ISN experiments are identical to CTL except that the initial soil

temperature and SWE states were replaced from EXP for IST and ISN respectively. In CoLM 

and CSSP, snow cover fraction (SCF) is diagnosed following Niu and Yang (2007): 

SCF = 𝑡𝑎𝑛ℎ ( SNP

2.5𝑧0𝑔( SWE
SNP∙𝜌new

)
𝛼) Eq (1) 

where SNP is snow depth [m], SWE is snow water equivalent [m], 𝜌new = 100 is fresh snow 

density [kg m−3], 𝑧0𝑔 = 0.01 is ground roughness [m], and 𝛼 = 1 is a melting factor. While

SWE is predicted as the balance of snowfall, interception, and melt rates, SNP is initialized 

from SWE dividing by snow density (250 kg m−3) and integrated forward with snow 

accumulating, compacting, and melting processes. Thus, the substitution of SWE changes 

entirely the initial snow states, including both SCF and SNP. 

Forecast name Initialization Forecast period Goal 

CSM Nudged to the 

NCEP-NCAR-R1 

reanalysis 

atmospheric 

conditions during 

Each year initialized 

on March 2 and end 

on August 31 during 

1991-2014 

Make global 

circulation 

forecasts to 

provide driving 

conditions for 

CWRF 
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February 1 to March 

1 

CTL Both atmospheric and 

land initial conditions 

are directly from 

CSM 

Make CWRF 

downscaling 

prediction driven 

by CSM 

EXP Initial atmospheric 

conditions are from 

CSM, while land 

conditions are from 

the standalone CoLM 

integration driven by 

CRUNCEP 

Determine the 

effect of land 

initialization on 

CWRF prediction 

performance 

IST Initial conditions are 

kept same with CTL, 

while soil 

temperature is same 

as EXP 

Identify the 

influence of initial 

soil temperature 

ISN Initial conditions are 

kept same with CTL, 

while SWE is same 

as EXP 

Identify the 

influence of initial 

snow states 

Table 1. Experiment design. 

c. Observational Data

The NCEP-NCAR-R1 reanalysis (Kistler et al. 2001) is used to nudge atmospheric

circulation conditions as observed in the prior month (February) to obtain the initial states on 

March 2 for the CSM forecasts. The CRUNCEP v7.0 (Viovy 2018) 6-hourly forcing data, 

which combines the CRU TS3.2 observations and NCEP-NCAR-R1 reanalysis (Harris et al. 

2014), is used to drive the standalone CoLM integration that provides initial land states for 

the CWRF EXP forecasts. 
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For model evaluation, daily data of surface air temperature at 2m (T2M) and precipitation 

(PR) are from the CN05.1 (Wu and Gao 2013). The CN05.1 dataset is an observational 

analysis at a grid spacing of 0.25° in China based on measurements at 2416 standard ground 

stations. The provider uses the thin-plate spline method and angular distance weight method 

to interpolate quality-controlled measurement data to a uniformed 0.25° grid. The CN05.1 is 

not only widely used in regional climate modeling research (Liang et al. 2019; Jiang et al. 

2023, Gu et al. 2023; Zhao and Liang 2024), but also adopted by China Meteorological 

Administration as the reference data to verify and evaluate its operational forecasts. This 

study uses CN05.1 over mainland China with a supplement outside by the Asian 

Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation 

(APHRODITE, Yatagai et al. 2007). Monthly mean land surface temperature (LST) is from 

the All-weather MicroWave Land Surface Temperature (MW-LST) global data (Fennig et al. 

2017) at a grid spacing of 0.25°. Monthly mean SCF is from the MODIS products 

MOD10CM at a grid spacing of 0.05° (Hall and Riggs 2021). All observational data are 

bilinearly mapped onto the CWRF grid for subsequent model evaluations. 

3. Results

a. Initialization Effects on the Land State of the Initial Month

By design EXP differs from CTL only in initialization, specifying initial land conditions

from the observation-driven CoLM integration rather than directly from the CSM output. In 

both cases, initialization brings initial shocks due to formulation differences among the land 

components CSSP, CoLM, and AVIM1.0. In addition, observational land/soil data are limited 

or contain large uncertainty. In particular, satellite products have many missing or poor-

quality data on a daily basis due to cloud contamination, while the other assimilation or 

reanalysis datasets are still model products using land components different from CSSP or 

CoLM. Therefore, it is more appropriate to evaluate the initialization effects on the initial 

land state by comparing the average conditions of the first month (March) rather than the 

instant values on the first day of the forecast. Due to the lack of credible SWE observations 

and the more direct SCF effect on surface radiation, we use SCF rather than SWE as a proxy 

for snow states in the subsequent model evaluation or experiment comparison. 

Figure 1 compares CTL and EXP predicted March mean biases in SCF, LST, and surface 

air temperature at 2m (T2M). Two major biases over broad regions are identified with land 
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surface conditions. First, on the Tibetan Plateau, CTL substantially overestimates SCF in 

most areas by 30.3% on average, while EXP essentially eliminates the overestimation in the 

eastern areas, shrinking the regional average bias to 21.5%. More snow cover causes colder 

LST biases in the corresponding areas, and EXP reduces the CTL biases from -6.7 to -4.2 ºC 

as averaged on the Tibetan Plateau; the respective T2M biases are reduced from -6.8 to -5.4 

ºC. Note that the CN05.1 data for T2M contain substantial uncertainty on the Tibetan Plateau 

with rare ground observations (Wu and Gao 2013). Basically, there is no ground truth to 

define actual model “biases”. We keep using this phrase subsequently just for simplicity with 

large uncertainty implied over the Plateau. Nonetheless, it is important to see that the 

difference between EXP and CTL is 1.4 ºC on average over the entire Tibetan Plateau, which 

is statistically significant at the 5% significance level and consistent with the snow removal. 

Second, over large areas across Mongolia and Northeast China, CTL broadly overestimates 

SCF by 19.9% on average and hence produces colder LST and T2M biases by -2.8 ºC. These 

CTL regional biases are mostly corrected in EXP. Overall, EXP shows systematic 

improvements over CTL for snow cover and surface temperatures. However, EXP tends to 

produce warmer LST than CTL by 2 ºC across southeastern to northern China, whereas both 

EXP and CTL predict colder LST than the satellite product MW-LST by 2-4 ºC in the desert 

regions across Xinjiang to western Inner and southern Mongolia, and reversely by 4-8 ºC 

warmer in the wet monsoon regions across eastern India to southern Asia. No obvious biases 

are shown in T2M over these regions. This disconnection between surface skin and air 

temperatures may indicate LST inconsistency as represented in the model versus MW-LST or 

uncertainty in satellite retrievals. 
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Figure 1. The kernel density and geographic distribution of long-term mean biases of SCF 
[%] (a-d), LST [°C] (e-h), and surface air temperature at 2-meter (T2M [°C], i-l) in March 
predicted by CTL and EXP and their differences (EXP minus CTL) as well as soil 
temperature differences [°C] in four layers (m-p). Statistics of SCF and LST are based on 
2000-2014 as limited by observational data. In each kernel density plot (a, e, i), the left bar 
chart depicts the proportion of grids having EXP-CTL increased (blue) versus decreased (red) 
RMSE while the right inset shows the kernel density of EXP-CTL RMSE differences. For 
SCF’s kernel density estimation, grid points with its climatological mean fraction less than 
10% are filtered out to capture key bias statistics. The differences colored on the maps are 
statistically significant at the 5% significance level with a student's t-test. 

Lacking reliable direct observations, Figure 1(m-p) compare EXP minus CTL differences 

(rather than biases) in soil temperature among 4 layers. In the Tibet Plateau, EXP is warmer 

than CTL by 4-5°C in the top layer (0-7cm) and 6-8°C covering broader areas in deeper 

layers. In Mongolia and northern China, EXP is about 2-3°C warmer than CTL in upper 

layers (0-28cm) and has little difference in deeper layers. In eastern China, EXP is about 2-

3°C warmer than CTL in deep layers (28-200cm) but has little difference in upper layers. As 

discussed below, some soil thermal differences directly resulted from initial shocks may 
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dissipate shortly, while others can have persistent impacts on land-atmosphere interaction 

beyond a few months. 

Figure 2. The time evolution during the entire forecast period of daily mean SCF [%] and 
LST [°C] from CTL, EXP, IST, and ISN (a-c) as well as differences in soil temperature [°C]  
(d-f: EXP-CTL, g-i: IST-CTL, j-l: ISN-CTL) averaged in the Tibetan Plateau (a, d, g, j), the 
Mongolian Plateau (b, e, h, k), and eastern China (c, f, i, l) between 1991-2014. The color 
shaded area in (a-c) indicates the 99% confidence interval. 

As shown in Figure 1, SCF noticeably differs between EXP and CTL on the Tibetan and 

Mongolian Plateaus. To investigate how such initial perturbations evolve with local and 

remote impacts, Figure 2 compares daily mean variations of regional average SCF, LST, and 

soil temperature profiles during the entire forecast period. Regional means are calculated 

separately on the two Plateaus over all grids with initial SCF differences larger than 25%. 

The variations in eastern China, averaged over all grids regardless of SCF, are also compared 

to demonstrate how the result differences over remote areas with no significant differences in 

initial conditions. On the Tibetan Plateau, EXP shows persistently lower SCF and warmer 

LST than CTL until early June, while its warmer soil temperature differences from CTL 
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continue throughout March to August with two distinct features. First, the CoLM 

initialization has systematically warmer soil in all layers than CSM and the initial 

perturbations gradually weaken as snow cover keeps decreasing in March and April. Second, 

the removal of excessive snow cover causes increasingly more solar radiation heating to 

warm land surface and penetrating deeper soil layers with a clear downward propagating and 

strengthening signal. A warm core of 3.8°C appears around 1m depth in the mid-August and 

remains strong into September. Comparing CTL and EXP with IST and ISN clearly shows 

that the initial snow states pose persistent influences on soil temperature on the Tibetan 

Plateau. However, only when both initial soil temperature and snow cover states are replaced 

as in EXP, a noticeable warm center emerges in the deep soil in summer. This implies a 

nonlinear interaction between deep soil and atmosphere on the Tibetan Plateau. 

On the Mongolian Plateau, EXP also has lower SCF and warmer LST than CTL until 

mid-May, but the differences are much smaller in magnitude and end about a month earlier 

than those on the Tibetan Plateau. Consistent with ISN and IST, smaller initial snow amounts 

induce smaller (1-2°C) soil warming perturbations, which are limited only to upper layers (0-

30cm) before mid-April; after that, a similar downward propagation of warmer soil 

perturbations results from the increased solar radiation heating caused by the decreased snow 

cover. This propagating signal persists into September, albeit much weaker than that on the 

Tibetan Plateau and negligible in upper layers. In eastern China, given no snow cover change, 

EXP differs from CTL mainly because of initial warmer soil perturbations, which decay 

continuously to negligible values before April in upper layers and August in deeper layers; 

there is no propagating signal as in the two Plateaus. Given that IST shows much smaller 

changes from CTL, the LST differences between EXP and CTL result mostly from the 

differences in initial snow (rather than soil temperature) states.  

The long memory of large deep soil thermal perturbations may cause significant regional 

impacts and teleconnections through land-atmosphere interaction and large-scale circulation 

(Xu et al. 2022; Xue et al. 2022). Since soil perturbations are much stronger when and where 

snow cover is altered, skill differences in seasonal climate prediction between EXP and CTL 

can be primarily attributed to changes in snow cover. As discussed below, the impacts of 

initial land conditions over the Tibetan and Mongolian Plateaus can continue beyond July, 

while those in eastern China are trivial. The impacts from the Tibetan Plateau are expected to 
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be especially large as it provides persistent heating sources elevated above 3000 meters to 

significantly alter continental to global circulations with teleconnections. 

Figure 3. The proportions (left subpanel) of the initial SWE grids grouped in three ranges 
(50-35, 35-20, 20-5 mm) and the time evolution (right subpanel) during the entire forecast 
period of daily mean SWE [mm] averaged over these initially grouped grids, LST [C] 
averaged over snow free, snow covered, and all grids as well as SCF [%] over all grids on the 
Tibetan (a, c) and Mongolian (b, d) Plateaus for CTL (a-b) and EXP (c-d). All statistics are 
based on averages between 1991-2014. The histogram (top subpanel) of the CTL minus EXP 
differences in SWE connected with the boxplot (bottom subpanel) for the corresponding 
differences in LST on the initial date March 2 for the Tibetan (e) and Mongolian (f) Plateaus. 

It is important to distinguish the relative effects of SCF versus SWE perturbations. As 

depicted by Eq (1), adding more snow amount (SWE) on existing snow cover increases SNP 

linearly but SCF by little or much slowly. Figure 3 compares daily mean variations of total 

SCF, LST averages over snow-free, snow-covered and all grids, and SWE averages over the 

grids with initial SWE in the ranges of 50-35, 35-20, and 20-5 [mm], as well as relationships 

of the CTL minus EXP differences in LST versus SWE on all grids with the corresponding 

initial SCF differences larger than 25%. On the Tibetan Plateau, compared to EXP, CTL has 

7% and 8% more grids of the thick and medium SWE ranges, and conversely 15% less grids 

of shallow snow (20-5 mm). As snow begins to melt in mid-spring, the thick SWE diminishes 

much more rapidly in EXP than CTL. The differences in LST decrease linearly with those in 

SWE when the latter ranges from small to medium magnitudes (between -8 and 20 mm). 
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However, this tendency saturates quickly for larger ranges, approaching a mean LST 

difference of 5 or -10 C for SWE differences exceeding -8 or 20 mm. While initial thick 

SWE grids continue to experience longer effects due to slower meltdown, grids with small-

medium SWE differences contribute the most to LST differences. Similar results, albeit with 

varying magnitudes, are seen on the Mongolian Plateau. Given the positive snow-albedo 

feedback, LST warms more over these shallow SWE grids on both Plateaus. 

b. Improved Skill for Spring and Summer Predictions

1) CLIMATOLOGICAL BIASES

Figure 4 compares long-term (1991-2014) average seasonal mean T2M biases and their

spatial pattern predicted by CSM, CTL, and EXP. In spring, CSM produces large systematic 

cold biases (2-8°C) in most regions except for warm biases along steep-slope mountain ridges 

and small biases in southern-southeast China. CTL also has cold biases, with much reduced 

magnitudes in Xinjiang and northeast China but a much enhanced magnitude in the Tibetan 

Plateau. These cold biases correspond to the significant LST underestimation and SCF 

overestimation in March (Figure 1). Since CTL is initialized directly from the CSM output, 

the result indicates a strong and sustained impact on seasonal climate forecasts due to the 

CSM’s excessive snow cover on March 2. Note that observations are very rare on the Tibetan 

Plateau, especially in the western to central parts. Thus, the observational uncertainty in these 

regions is very large. 

Figure 4. Geographic distributions of spring (a-d) and summer (e-h) seasonal mean biases 
averaged between 1991-2014 for surface air temperature (T2M [ºC]) predicted by CSM, 
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CTL, EXP, and EXP minus CTL differences. The color shaded area is statistically significant 
at the 5% significant level based the student’s t test. 

Compared with CTL, EXP predicts similar spring cold biases in the western part of the 

Tibetan Plateau but essentially eliminates the biases in the eastern part. EXP is also warmer 

than CTL in northeast China. These regions of large cold bias reduction in spring match well 

with the areas of warmer LST and less SCF in March (Figure 1), primarily due to the removal 

of initial excessive snow cover in EXP. In contrast, EXP overpredicts spring T2M in eastern 

China by 2.5°C on average, which is larger than 1.5°C in CTL. EXP also produces overall the 

lowest mean absolute errors of 2.2°C in China, as compared to 2.5°C by CTL and 2.9°C by 

CSM. 

Summer T2M biases in all three forecast experiments decrease from spring, especially on 

the Tibetan Plateau in CTL and EXP. The big reduction of cold biases on the Tibetan Plateau 

results from snowmelt after spring due to rising temperatures. The CWRF forecasts are more 

similar in summer than spring, leading to closer mean absolute errors in China between 1.4°C 

(EXP) and 1.6°C (CTL), which are significantly reduced from 2.4°C (CSM). They share the 

same atmospheric forcing through lateral boundary conditions predicted by CSM. The bigger 

differences between CSM and CWRF suggest that the large-scale conditions play a less 

important role than regional processes on T2M in summer as compared to spring. In contrast, 

EXP in summer is still warmer than CTL by 0.5-1°C on the eastern Tibetan Plateau, which 

corresponds to the warmer LST and soil temperatures in March (Figure 1), indicating the 

persistent impact from land initialization. As discussed earlier, initial perturbations in snow 

cover and soil temperatures can have sustained effects into summer (Figure 2) and hence their 

impact on T2M remains detectable (from lateral forcing) beyond two seasons, in agreement 

with Xu et al. (2022). 
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Figure 5. The geographic distributions of spring (a-d) and summer (h-k) seasonal mean 
precipitation (PR [mm day-1]) averaged between 1991-2014 as observed (OBS) and predicted 
by CSM, CTL, and EXP, as well as the corresponding EXP minus CTL differences (g, n). 
The spatial pattern correlation coefficients (PCC) of predictions with observations are labeled 
by red on each map. Also shown are their equitable threat score (e, l) and kernel density (f, 
m). 

Figure 5 compares long-term seasonal mean precipitation distributions observed and 

predicted by CSM, CTL, and EXP. In spring, observations show two main rainbands in 

southeast China: immediate south of the Yangtze River and north of the Pearl River. CSM 

predicts poorly for not only underestimating the magnitude but also distorting the spatial 

distribution, having a pattern correlation with observations of only 0.53. Both CTL and EXP 

generally overestimate the magnitude but much better capture the spatial distribution, 

increasing the pattern correlation to 0.82, aligning precipitation centers more closely with 

observations. EXP produces 6%-20% more precipitation than CTL in the upper and lower 

reaches of the Yangtze River. The equitable threat score (ETS), a measure of forecast skill 

relative to chance (Gandin and Murphy 1992), suggests that CSM's performance deteriorates 

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-23-0565.1.
� �#78"�"��C�#�2C�0��$� !�"C������ C:��4���3��:4���,�2 � C�D�0��#"8��"�3�"�4�D�
�B�:��4�4��� �	 �����
�	����0/�



19 

File generated with AMS Word template 2.0 

quickly as rainfall surpasses approximately 2 mm day-1. In contrast, CTL and EXP exhibit a 

significantly higher skill in predicting heavier rainfall ranging from 1 to 8 mm day-1. CSM’s 

predictions suffer from the drizzling problem, a recognized issue caused by its limited 

resolution (Chen et al. 2021). Specifically, CSM tends to overestimate light rainfall events 

but inadequately forecasts moderate to heavy rainfall. On the other hand, both CTL and EXP 

overestimate the heavy rainfall (>7 mm day-1) coverage and maximum intensity. Note that the 

observational data used here are derived from rain gauges at monitoring stations coarser than 

the 0.25º analysis grid, most of which are located at low elevations (Liang et al. 2019). Thus, 

observations may likely underestimate heavy precipitation events, especially in areas with 

high mountains. 

In summer, CSM performs even worse, with the spatial pattern correlation dropping to 

0.49, as the primary rainband along the southern and eastern sides of the Tibetan plateau is 

incorrectly positioned and the main rainbands as observed over eastern China are absent. 

CTL better predicts the spatial distribution with a much higher pattern correlation of 0.70, but 

generally underestimates precipitation in the Yangtze River basin. EXP further improves the 

prediction by adding precipitation of 1 mm day-1 to CTL in the middle-lower reaches of the 

Yangtze River and subtracting a similar amount to its south - a realistic northward shift of the 

monsoon rainband. Given summer rainfall in eastern China decreases northward, the EXP 

difference from CTL accounts for up to 20-30% of total precipitation in the middle reach of 

the Yangtze River. Similar to spring, the summer ETS measure indicates that both CTL and 

EXP significantly outperform CSM in predicting most rainfall ranging from 1 to 9 mm day-1. 

In particular, CSM demonstrates little skill for rainfall heavier than 4 mm day-1, whereas CTL 

and EXP maintain significantly higher ETS demonstrates low skill 9 mm day-1. 

Both spring and summer results highlight the important skill enhancement of the CWRF 

downscaling prediction to the CSM operational forecasts of the climatological distributions, 

especially for precipitation. The CoLM-based land surface initialization largely eliminates 

CSM’s March excessive snow cover and cold biases, especially on the Tibetan Plateau and 

secondary the Mongolian Plateau. This improved initialization enables EXP to predict more 

realistic distributions of seasonal mean surface air temperature and precipitation climatology. 

The result indicates that initial perturbations in snow cover and soil temperature in the highly 

sensitive regions can have persistent impacts on climate prediction beyond two seasons. 

2) INTERANNUAL ANOMALIES
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The spatial anomaly correlation coefficient (ACC) is commonly used in operational 

practice to evaluate the skill of forecasting interannual variations. It measures the spatial 

similarity between predicted and observed anomalies with the long-term (1991-2014) mean 

climatology removed. Figure 6 compares ACC interannual variation and overall statistics of 

T2M and precipitation predicted by CSM, CTL and EXP. For the average of all years, ACC 

for spring T2M prediction increases slightly from 0.18 (CSM), 0.20 (CTL) to 0.22 (EXP), 

indicating marginal improvements from CSM to CTL, CTL to EXP, and CSM to EXP at p-

values of 0.32, 0.17, and 0.12, respectively. The average ACC for spring precipitation 

prediction is relatively small: 0.01 (CSM), 0.0 (CTL), and 0.02 (EXP), which differ little. 

Interestingly, among the ten years of relative high rainfall predictability (defined as any ACC 

of the three forecasts exceeding 0.2), both CTL and EXP forecasts have much higher scores 

than CSM in seven years (1992, 1995, 1998, 2000, 2004, 2008, 2010) with average ACC of 

0.35 and 0.37 versus 0.13. In the previous winters of these years, six of them were identified 

with clear ENSO phases (defined as the Nino3.4 index magnitude greater than 0.5°C), 

indicating that CWRF can better represent regional rainfall responses to planetary circulation 

anomaly forcings. CSM does significantly better only in 2002 with ACC of 0.34 versus -0.26 

(CTL) and -0.22 (EXP), slightly better in 1997, and almost the same in 2011. 
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Figure 6. The spatial anomaly correlation coefficient (ACC) of predicted (CSM, CTL, 
EXP) with observed surface air temperature and precipitation in spring (MAM) and summer 
(JJA). While the left plot depicts ACC’s interannual variation during 1991-2014 with a 
horizontal line at a threshold of 0.2 for relative high predictability, the right plot represents its 
interquartile range and related statistics: the mean is labeled with a cross marker; the whisker 
extends between the minimum and maximum; the p-value indicates the significance of the 
differences between two groups determined by a two-tailed paired-t-test.  
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In summer, the average ACC for T2M prediction increases from CSM (-0.0) to CTL and 

EXP (0.07), indicating significant improvements from CSM to CTL and EXP at p-values of 

0.09 and 0.08, respectively. Both CTL and EXP improve the interquartile range, avoiding 

large negative ACCs in CSM. Among the ten years of high T2M predictability, CSM 

performs much worse than CTL and EXP in (1992, 1997, 1998, 2007), similar in (1993, 

1995, 2002, 2003), but better in (2008, 2009). The average ACC for precipitation prediction 

increases from CSM (-0.04), CTL (0.05) to EXP (0.08), indicating significant improvements 

from CSM to CTL, CTL to EXP, and CSM to EXP at p-values of 0.03, 0.02, and 0.01, 

respectively. Among the ten years of relatively high rainfall predictability, both CTL and 

EXP forecasts have much higher scores than CSM in seven years (1996, 1998, 2001, 2005, 

2006, 2011, 2012) with an average ACC of 0.23 and 0.26 versus -0.02; CSM did significantly 

better only in 2003 with an ACC of 0.32 versus 0.09 (CTL) and 0.20 (EXP) and slightly 

better in 1991 and 1993. CTL substantially outperforms CSM rainfall for 15 of 24 years and 

underperforms marginally in the rest 9 years, resulting in improved mean and interquartile 

range of ACCs. The improvements of EXP over CTL for precipitation are not large but 

consistent, with higher ACCs in 17 of 24 years. 
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Figure 7. The interannual temporal correlation coefficient (TCC) in spring and summer 
during 1991-2014 between observed and predicted seasonal mean surface air temperature 
anomalies by CSM (a, i), CTL (b, j), and EXP (c, k) as well as their differences (e-g, m-o); 
the kernel density of TCC spatial frequency distribution (d, l) and the proportion of different 
levels of the prediction skill (h, p). Dotted and crossed areas on the TCC maps (a-c, i-k) are 
statistically significant at the 5% and 20% significant level based on a one-tail student’s t test, 
if useful TCCs are positive. Pink and green vertical lines in the kernel density indicate the 
TCC threshold at the 5% and 20% significant level, respectively. 

Figure 7 compares the geographic distribution and kernel density of interannual temporal 

correlation coefficient (TCC) between observed and predicted seasonal mean T2M 

anomalies. Statistically significant (at p-value of 5% and 20%) positive TCCs are considered 

here respectively for skillful and informative forecasts, while negative TCCs indicate poor 

forecasts with anomalies of the wrong sign. In spring, CSM makes skillful forecasts primarily 

in a wide strip across the northern Tibetan Plateau to Qinghai and informative forecasts in 

Xinjiang. While retaining the CSM skill (with a slight degradation in Qinghai and Xinjiang), 

CTL achieves more significant positive TCCs in northeast and north China. CTL improves 

over CSM in Inner Mongolia-northeast China and southwest-southern China strips, while 
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degrading between the two strips. Overall, CTL increases the area of significant positive 

TCCs from CSM’s 24.7% to 30.9%, while decreasing that of negative TCCs from CSM’s 

14.7% to 10.6%. EXP enhances CTL’s TCCs in northern Xinjiang and Guangdong but 

reduces those in parts of northeast China, northern Tibetan Plateau, Qinghai, and Sichuan. 

In summer, CSM exhibits significant positive TCCs of T2M in northern and eastern 

Xinjiang and across Da Hinggan Ling to Heilongjiang. While retaining these skillful regions 

in CSM, CTL substantially enhances the prediction in a broad band spanning southwest to 

northeast China and along the southeastern coast regions, increasing TCCs by 0.2-0.8. As 

such, CTL recovers a large area of negative TCCs in CSM and turns them to positive 

correlations in north and coastal south China. Overall, CTL increases the total area of skillful 

(informative) forecasts from CSM’s 24.8% to 36.7% (23.9% to 35.8%), while decreasing that 

of negative TCCs from CSM’s 30.5% to 12.8%. EXP slightly improves CTL in the eastern 

Tibetan Plateau, southwest China, and middle-lower reaches of the Yangtze River, but 

degrades in the southwestern Tibetan Plateau and over a wide band spanning Qinghai, Gansu, 

western Inner Mongolia, north China, Jilin to Heilongjiang. Thus, EXP decreases the total 

area of skillful forecasts by 2.1% from CTL but still increases that by 9.8% from CSM. 

Comparing the kernel density, CTL and EXP avoid CSM’s large proportion of negative 

TCCs and increase the proportion of positive TCCs between 0.1-0.5, exhibiting an improved 

distribution. 
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Figure 8. Same as Figure 7 except for precipitation. 

Figure 8 compares the geographic distribution and kernel density of TCC between 

observed and predicted seasonal mean precipitation anomalies. In spring, CSM exhibits 

significant positive TCCs in limited areas of the Yangtze River Basin, Xinjiang, Ningxia, and 

Guangxi. Overall, CSM captures only 6.4% (21.2%) area with skillful (informative) 

forecasts, producing negative TCCs over 46.9% of China. While retaining these CSM’s 

skillful regions, CTL largely increases TCCs in the Tibetan Plateau and along Sichuan to 

Henan and Yunnan to the Perl River basin, where CSM produces generally large negative 

correlations. As such, CTL increases from CSM the total area of skillful forecasts by 2.3% 

while reducing that of negative TCCs by 7.3%. EXP skill is comparable to CTL, with a 

marginal increase of the skillful area by 1.5%. Comparing the kernel density, EXP shows the 

highest proportion among TCCs from the thresholds for informative and skillful forecasts to 

0.6, surpassing CTL slightly and CSM by a larger margin. 

In summer, CSM has skillful rainfall forecasts in limited areas of Zhejiang, eastern 

Xinjiang, southwestern Tibetan Plateau, and eastern Sichuan, while producing negative TCCs 
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over 67.4% of China. CTL greatly enhances TCCs over most regions in central and eastern 

China, where CSM shows extensive negative correlations. Corresponding to the systematic 

bias reduction (Figure 5), CTL reduces the total area of negative TCCs by 23.6% and 

increases the area of informative and skillful forecasts respectively by 10.6% and 2.0%, 

highlighting the added value of CWRF downscaling. EXP further refines CTL in south China 

and the Yangtze River basin with more organized and larger positive TCCs, increasing the 

area of informative and skillful forecasts respectively by 2.6% and 1.2%. Notably, these skill 

enhancements by CTL and EXP occur mostly over the primary rainbands associated with the 

summer East Asian monsoon. The systematic TCC increases in broad areas are likely caused 

by CWRF’s improved (over CSM) representation of key physical processes that enable more 

realistic capture of regional precipitation responses to large-scale circulation anomalies. 

4. Process Understanding

Identifying and comprehending the physical mechanisms responsible for variations in

climate predictive skill among different forecast models remains a significant challenge. In 

this section, we aim to explore the key processes that are associated with skill enhancement 

through CWRF downscaling and land initialization. Both CTL and EXP forecasts are driven 

by the same planetary circulation forcings as CSM, particularly in the upper troposphere, 

through CWRF's dynamic relaxation of lateral boundary conditions across the buffer zones 

(Liang et al. 2001). Consequently, forecast disparities within the CWRF computational 

domain stem from differences in how the models represent regional processes due to 

variations in resolution, physics, and initialization. By conducting this analysis, we hope to 

gain valuable insights into potential avenues for enhancing the climate predictive skill. 
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Figure 9. Seasonal mean distributions averaged between 1991-2014 for observed (OBS) 
spring (a) geopotential height ([gpm], color shading) overlaid with wind ([m s-1], vector) at 
500hPa and (e) specific humidity ([g kg-1], color shading) with wind ([m s-1], vector) at 
850hPa, and their respective CSM (b, f) and CTL (c, g) biases, as well as CTL minus CSM 
differences (d, h). The corresponding summer distributions are shown in (i, m, j, n, k, o, i, 
p). 

Figures 9 and S2 show the observed seasonal mean circulation characteristics and 

compare the CSM and CTL predicted biases as well as their differences at 850hPa, 500hPa, 

and 200hPa. In spring, observations at 500hPa reveal two dominant westerly branches, which 

are divided by the mechanical blocking effect of the Tibetan Plateau. As a result of this 

separation, two troughs form: one located over Northeast China and Eastern Siberia, and 

another on the southern side of the Tibetan Plateau. Due to its coarse resolution, CSM 

smooths high terrains, allowing more air flow to climb over the Plateau and causing a 

northward shift of the southern branch. The shift strengthens the westerlies from Xinjiang to 

Northeast China while weakening them in the south of the Plateau. This causes geopotential 

height to decrease on the northern side of the westerly jet stream, leading to the westward 

displacement of the East Asian trough. Simultaneously, the southern side experiences 

increased geopotential height across the Plateau’s south foothill to South China, resulting in a 
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decreased pressure gradient from the Indian Ocean and South China Sea inland, which 

inhibits low-level water vapor transport. Consequently, CSM produces dry biases at 850hPa 

and substantially underestimates precipitation across entire Central to South China (Figure 5). 

In contrast, CWRF with an improved physics representation at a finer resolution (Liang et al. 

2019) more effectively captures the Plateau’s blocking and thermal effects, preventing the 

northward shift of the southern branch and rectifying the geopotential height overestimation. 

However, the CTL predicted geopotential height still exhibits notable underestimates in 

Mongolia to East Siberia and overestimates in the Sea of Japan. These biases resemble CSM 

with reduced magnitudes and result from lateral boundary conditions. Nevertheless, the 

CTL’s corrected southern trough reduces overall geopotential height overestimation and 

guides the south-westerlies beneath it to transport more water vapor inland, resulting in more 

realistic rainfall across Central to South China. 

In summer, the observed 500hPa westerlies decelerate, and merge into one jet stream - 

EAJ, which shifts northward compared to spring. Consequently, the WPSH strengthens and 

moves over the northwestern Pacific Ocean. Stronger southerlies at 850hPa transport more 

water vapor from the Indian Ocean and the South China Sea inland, providing abundant 

moisture for summer East Asian monsoon rainfall. CSM continues to overestimate westerlies 

from Xinjiang to the Northeast. A stronger EAJ further lowers the geopotential height on its 

left side over East Siberia and raises it on its right side over the Sea of Japan, weakening and 

shifting the WPSH northwards. As a result, CSM significantly underestimates 850hPa 

southerlies in South China, leading to a considerable decrease in moisture transport from the 

South China Sea inland and causing substantial rainfall deficits across entire Central to South 

China (Figure 5). The general patterns of these CSM biases resemble each other between 

summer and spring. Under the influence of lateral boundary conditions from CSM, CTL 

inherits the overprediction of the EAJ and East Asian trough in the upper troposphere from 

the northern buffer zone while experiencing insufficient 850hPa southerlies from the southern 

buffer zone. These errors contribute to the underestimated rainfall in Central and North 

China, as the weakened southerlies in South China decrease the meridional water supply to 

the Yangtze River basin and North China. On the other hand, CTL notably reduces the 

overestimation of the upper-level westerlies from Xinjiang to the Northeast and the 

underestimation of the lower-level southwesterlies across the Indian Ocean to the South 

China Sea. Partly because the latter brings more sustained moisture flux from the Indian-

Indochina Peninsula, CTL more accurately captures the summer monsoon rainbands across 
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South to Central China. In addition to the increased resolution, CTL’s enhancement in 

rainfall skill is critically attributed to its improved physics representations (Liang et al. 2019). 

Figure 10. March to August monthly mean distributions of EXP minus CTL differences 
in geopotential height ([gpm], color shading) and wind ([m s-1], vector) at 200hPa (a-c, g-j) 
and 925hPa (d-f, j-l), as well as daily variations of the geopotential height differences (m) 
along the A-B-C route marked on (j). The purple and cyan contours show the corresponding 
temperature differences [ºC] at respectively 300hPa and 100hPa with intervals of 0.1 ºC. 
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Figure 10 depicts the temporal evolution and spatial distribution of the major circulation 

differences resulting from substituting the land initialization in EXP using the observation-

CoLM integration compared to CTL using the CSM direct output. In EXP, the reduction of 

excessive snow cover over the Tibetan Plateau and across Mongolia-Northeast China causes 

localized heating within an expanded vertical column. As a result, the geopotential height 

increases in the upper layers and decreases in the lower layers. This leads to a perturbation of 

an anticyclonic geostrophic circulation in the upper troposphere, creating a warming center 

near 200hPa and a cooling center in the lower stratosphere. The finding aligns with earlier 

theoretical studies (Hoskins and Karoly 1981). At the same time, a perturbated cyclonic 

circulation develops in the lower troposphere, leading to the reinforcement of southerly winds 

at 925hPa across the South China Sea and eastern China’s coastal areas. This circulation 

pattern transports more moisture northward, causing a decrease in precipitation in South 

China but an increase in the Yangtze River basin in both spring and summer (Figure 5g,n). 

These circulation perturbations are most prominent in March and gradually diminish in 

August. From the daily average along a cross-section from the Tibetan Plateau to Northeast 

China and extending to the Sea of Japan (Figure 10m), we observe distinctive Rossby wave 

patterns in the 200hPa geopotential height perturbations. Initially, these waves exhibit 

oscillation in a northern expansion, progressing toward Northeast China, with the center 

magnitude weakening as they approach the Yellow River’s Hetao region and North China. 

This trend continues until early June, when a negative geopotential height perturbation center 

forms over the Sea of Japan. Subsequently, the dipole oscillation structure strengthens until 

the end of June, followed by a gradual weakening until mid-July, during which the Rossby 

waves demonstrate an even clearer eastward propagation in summer. Accompanying this 

wave activity, the SAH is intensified and the EAJ is shifted northward. Consequently, this 

leads to the strengthening of southerly winds in eastern China and a northward shift of rain 

bands. These findings are consistent with Wang et al. (2014), Xu et al. (2022) and Xue et al. 

(2022), who found that introducing anomalous heating perturbations through increasing 

initial soil temperatures in the Tibetan Plateau can produce similar changes in the SAH, EAJ, 

and Rossby wave activity. The forcing-response pattern is a regional presentation of the 

Tibetan Plateau-Rocky Mountain Circumglobal (TRC) wave train named by Xue et al. 

(2023). Given the transient nature of Rossby waves, the associated disturbances may not line 

up perfectly among years. However, the consistent propagation path of similar characteristics 

contributes to a detectable signal in the long-term average, underlining the significant 
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influence of initial snow perturbations over the Tibetan Plateau on atmospheric circulation 

patterns and consequently regional climate conditions in eastern China. 

Index SAHI EAJI TROI WPSHI V850I 

CSM 0.45* 0.42* 0.34 0.53** -0.15

CTL 0.61** 0.43* 0.44* 0.55** 0.36 

EXP 0.63** 0.43* 0.42* 0.58** 0.38 

Table 2. The temporal correlation coefficients between predicted and observed 
interannual variations of summer regional mean circulation indices SAHI, EAJI, TROI, 
WPSHI, and V850I, comparing CSM, CTL, and EXP forecasts. The regional boundaries for 
these indices are shown in Figure 11b-e. The highest value among the three forecasts for each 
index is bolded. Statistically significant values at the 5% and 1% significance levels by 
student’s t-test are depicted by a single (*) and double (**) asterisk, respectively. 

As elaborated above, significant differences in performance can be observed among 

CSM, CTL, and EXP forecasts when reproducing climatological (1991-2014) mean 

characteristics. These differences are more pronounced in spring than in summer, evident in 

both regional forcing factors and local to remote responses, as depicted in Figures 1-5 and 

identified with key physical processes in Figures 9-10. In contrast, the disparities in skill for 

capturing observed interannual anomalies are notably smaller during spring compared to 

summer, particularly for remote responses in eastern China, as shown in Figures 6-8. Despite 

the challenges in identifying underlying mechanisms for the differences, our focus remains 

on understanding the relatively large signals in forecasting summer interannual anomalies. 
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Figure 11. The possible mechanisms between Tibetan Plateau’s mechanical and thermal 
forcing to regional circulation anomalies in summer. (a) the schematic of the mechanisms; 
(b) Mechanism 1 to 2: geographic distribution of temporal correlation between 200hPa zonal
wind (U200) and the South Asian High index (SAHi) calculated with ERA5. Dotted areas are
statistically significant at the 5% significance level based on a student’s t test. The SAHi is
defined averaged geopotential in the lower green polygon. (c) Mechanism 2 to 3&4: Same as
(b), except for TCC between 500hPa geopotential (H500) and the East Asian Jet index (EAJi)
defined in (b). (d) Mechanism 3 to 5: Same as (b), except for TCC between 500hPa trough
index (TROi) and 850hPa meridional wind (V850). (e) Mechanism 4 to 5: Same as (b) except
for TCC between the Western Pacific Subtropical High index (WPSHi) and V850.

Figure 11 illustrates the possible mechanisms and associated processes that explain the 

CWRF downscaling advantage over CSM in predicting interannual anomalies of summer 

precipitation in eastern China. CWRF demonstrates an improved representation of the 

Tibetan Plateau’s mechanical blocking and thermal forcing effects, leading to an intensified 

SAH and an accelerated EAJ on its northern flank (Figure 11b). The intensified upper-level 

divergence to the left of the EAJ exit decreases 500hPa geopotential height, strengthening the 

East Asian trough over the Hetao region, while the intensified convergence to the right 

strengthens the WPSH (Figure 11c). Consequently, the stronger East Asian trough guides 

more low-level cold air from high latitudes to Central China (Figure 11d), while the stronger 

WPSH steers more southerly winds with increased moisture transport from lower latitudes 
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(Figure 11e). CWRF more realistically captures the converging air masses, leading to 

increased rainfall in eastern China, especially over the Central to Northeast regions, 

compared to CSM. Specifically, CTL increases TCCs with observed 200hPa westerly winds 

by 0.3 between the Yangtze and Yellow Rivers and 850hPa southerly winds by 0.6 in 

Southeast China. This leads to obvious improvements in 500hPa vertical motion (Figure 12c) 

and 1000-500hPa column moisture convergence (Figure 12d) across Central to North China. 

EXP predicts even higher TCCs with observations than CTL for southerly winds along the 

Yangtze River (Figure 12f), as well as vertical motion (Figure 12g) and moisture 

convergence (Figure 12h) in many areas of eastern China. Consequently, EXP shows a higher 

skill in predicting interannual anomalies of summer rainfall in eastern China compared to 

CTL. 

Figure 12. (a-d) CTL minus CSM differences of the TCC skill in predicting 200hPa zonal 
wind (U200), 850hPa meridional wind (V850), 500hPa vertical velocity (W500), and 
moisture convergence (MC) integrated from 1000hPa to 500hPa. (e-h) same as (a-d), except 
for EXP minus CTL skill differences. 

Table 2 compares the TCCs of interannual anomalies of predicted regional circulation 

indices with observations during the summer. Both CTL and EXP outperform CSM for all 

indices, with particularly significant skill gains identified for SAH and V850 indices. CTL 

increases TCC from CSM by 0.16 for SAH and 0.51 for V850, while EXP increases are 0.18 

and 0.53, respectively. These consistent results demonstrate the systematic improvements of 
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CWRF downscaling over CSM predictions, spanning from synoptic-mesoscale circulations to 

regional precipitation processes. 

5. Summary and Conclusions

This study evaluates the skill enhancement of CWRF downscaling and land initialization 

from CSM operational seasonal forecasts in China and identifies the key mechanisms 

underlying the improvements. All CSM and CWRF forecasts are initialized each year on 

March 2 and end on August 31 from 1991 to 2014. As driven by time-varying lateral 

boundary conditions from the CSM forecast, two parallel CWRF downscaling forecasts are 

conducted, differing only in land initialization. The CWRF control (CTL) forecast uses initial 

atmospheric and land conditions directly from the CSM forecast, while its experiment (EXP) 

forecast substitutes initial land conditions from a standalone CoLM long integration driven by 

the observational reanalysis. 

The comparison demonstrates that CWRF downscaling significantly reduces CSM’s 

regional climate biases in surface air temperature and precipitation in both spring and 

summer. The bias reduction is particularly substantial for precipitation, increasing the spatial 

pattern correlation with observations in China from 0.53 to 0.82 in spring and from 0.49 to 

0.70 in summer. For both seasons, CSM totally misses the main rainbands in South and 

Central China and produces a severe drizzling problem, while CWRF realistically restores 

these rainbands and improves moderate to heavy (larger than 1 mm day-1) rainfall with much 

higher ETS scores. Compared to CTL, EXP largely reduces excessive snow cover over the 

Tibetan Plateau and across Mongolia-Northeast China and hence essentially eliminates large 

cold biases there. The forecast circulation responses to the initialization correction are most 

prominent in March and gradually diminish in August. As a result, EXP reduces CTL’s dry 

biases in the Yangtze River basin in both spring and summer, with a realistic northward shift 

of the summer monsoon rainband. 

CWRF downscaling also significantly enhances CSM’s predictive capabilities for 

interannual anomalies in surface air temperature and precipitation over China mainland. The 

downscaling increases the factional area of skillful forecasts (defined as positive TCCs 

exceeding the 5% significance level) by 6.2% in spring and 11.9% in summer for 

temperature, and by 2.3% in spring and 2.0% in summer for precipitation. Moreover, the 

downscaling reduces the area of negative TCCs (anomalies of the wrong sign) by 4.1% in 
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spring and 17.7% in summer for temperature, and by 7.3% in spring and 23.6% in summer 

for precipitation. Especially for precipitation prediction, the downscaling achieves markedly 

higher scores in seven out of the ten years with relatively high predictability (defined as any 

ACC of the three forecasts exceeding 0.2). On average, there is an average ACC increase of 

0.22 in spring and 0.25 in summer, indicating substantial enhancements in predictive 

accuracy of seasonal rainfall anomaly patterns during these years. While the improvements of 

EXP over CTL for precipitation anomaly prediction are modest, they show consistency, with 

higher summer ACC in 17 out of 24 years. 

The predictive skill enhancements by CWRF downscaling can be linked to notable 

improvements in the representation of key physical processes governing surface air 

temperature and precipitation spatiotemporal variations across China. By employing an 

improved physics representation at a finer resolution, CWRF more accurately captures the 

complex interactions of the Tibetan Plateau’s blocking and thermal effects, as well as their 

teleconnection patterns over China. Consequently, the downscaling depicts more realistic 

SAH, EAJ, and WPSH circulation systems. These systems play a crucial role in determining 

regional temperature and precipitation distributions, particularly in eastern China where they 

jointly affect the weather patterns. Especially during summer, CTL shows notable 

advancements over CSM. It predicts an intensified SAH with an accelerated EAJ on its 

northern flank and a strengthened WPSH downstream. As a result, the CTL circulations steer 

more cold air from high latitudes and facilitate enhanced moisture transport from lower 

latitudes with stronger southerly winds. The more realistic representation of these converging 

air masses in CTL leads to increased rainfall in eastern China, particularly over the central to 

northeast regions, with a much more accurate prediction of mean distributions and 

interannual anomalies than CSM. 

Similar circulation processes can be identified for the skill enhancements of EXP over 

CTL. The integration of observations in the CoLM substantially reduces excessive snow 

cover and cold soil biases in the initial land conditions. Especially on the Tibetan Plateau, 

EXP shows persistently lower snow cover until early June, while its warmer soil temperature 

perturbations continue throughout March to August. This improved initialization leads to 

localized heating within an expanded vertical column, enabling EXP to more realistically 

predict intensified SAH and WPSH circulation systems. Consequently, the intensification 

results in reinforced southerly winds across the South China Sea and eastern China’s coastal 
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areas. This circulation pattern transports more moisture northward, causing a realistic 

northward shift of the summer monsoon rainband, compared to CTL. The results indicate that 

initial perturbations in snow cover and soil temperature within highly sensitive regions can 

have persistent impacts on climate predictions for periods extending beyond two seasons. 

Furthermore, these impacts may be more significant and manifest with a delay in remote 

regions, facilitated by Rossby wave propagations and teleconnection patterns. 

In conclusion, this study highlights the advancements achieved in seasonal climate 

predictions through CWRF downscaling and enhanced land initialization. However, it is 

essential to acknowledge that the predictive skill of interannual climate anomalies in China 

remains unsatisfactory (Wang et al. 2022). As we move forward, it becomes increasingly 

imperative to pursue further refinements in both global and regional models while embracing 

the integration of land-atmosphere-ocean coupled data assimilation systems. By committing 

to these avenues of research, we can pave the way for more accurate and robust climate 

predictions at regional scales, offering longer lead times and enhancing our understanding 

and preparedness to address challenges posed by climate anomalies and extremes. 
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