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Abstract This study employs the regional Climate-
Weather Research and Forecasting model (CWRF) to first
investigate the primary physical mechanisms causing
biases in simulating summer precipitation over the
Yangtze River Basin (YRB), and then enhance its
predictive ability through an optimal multi-physics
ensemble approach. The CWRF 30-km simulations in
China are compared among 28 combinations of varying
physics parameterizations during 1980—2015. Long-term
average summer biases in YRB precipitation are remotely
correlated with those of large-scale circulations. These
teleconnections of biases are highly consistent with the
observed correlation patterns between interannual
variations of precipitation and circulations, despite minor
shifts in their primary action centers. Increased YRB
precipitation aligns with a southward shifted East Asian
westerly jet, an intensified low-level southerly flow south
of YRB, and a south-eastward shifted South Asian high,
alongside higher moisture availability over YRB.
Conversely, decreased YRB precipitation corresponds to
an opposite circulation pattern. The CWRF control con-
figuration using the ensemble cumulus parameterization
(ECP), compared to other cumulus schemes, best captures
the observed YRB precipitation characteristics and
associated circulation patterns. Coupling ECP with the
Morrison or Morrison-aerosol microphysics and the
CCCMA or CAML radiation schemes enhances the overall
CWREF skills. Compared to the control CWREF, the ensem-
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ble average of these skill-enhanced physics configurations
more accurately reproduces YRB summer precipitation’s
spatial distributions, interannual anomalies, and associated
circulation patterns. The Bayesian Joint Probability calibra-
tion to these configurations improves the ensemble’s
spatial distributions but compromises its interannual
anomalies and teleconnection patterns. Our findings
highlight substantial potential for refining the representa-
tion of climate system physics to improve YRB precipita-
tion prediction. This is notably achieved by realistically
coupling cumulus, microphysics, and radiation processes
to accurately capture circulation teleconnections. Further
enhancements can be achieved by optimizing the multi-
physics ensemble among skill-enhanced configurations.

Keywords physics parameterization, regional climate
model, downscaling skill enhancement, multi-physics
ensemble, teleconnection, bias reduction

1 Introduction

Summer precipitation over the Yangtze River Basin
(YRB) is crucial because this region is an important
economic belt in China with nearly 40% of the Chinese
population and contributing over 40% of the country’s
total GDP (Li and Lu, 2017). Affected by highly variable
East Asian summer monsoon, frequent floods and
droughts observed in the YRB have caused severe
socioeconomic losses (Liand Lin, 2015). Greater future
risks are projected under global warming, with increasing
summer precipitation and more intense and frequent
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extremes (Zhai et al., 2005; Piao etal., 2010; Maetal.,
2015; Sun et al., 2018; Jiang et al., 2021). However, pre-
dicting YRB summer precipitation accurately remains
challenging, given the intricate and complex nature of the
underlying regional climate systems (Ding and Chan,
2005; Huang et al., 2012; Wang et al., 2015; Fremme and
Sodemann, 2019).

General circulation models (GCMs) worldwide conti-
nue to exhibit considerable biases in simulating summer
YRB precipitation, despite decades of efforts (Song and
Zhou, 2014b; Kusunoki and Arakawa, 2015; Jiang et al.,
2016, 2020; Xin et al., 2020). Significant underestimation
of precipitation has been identified, particularly due to the
absence of the major monsoon rainbands (Chen et al.,
2010; Fengetal., 2014; Song and Zhou, 2014a; Chen
etal., 2018). Overestimation has been shown in the
Sichuan Basin, situated in the upper reach of YRB (Chen
and Frauenfeld, 2014; Bao and Feng, 2016; Zhang and
Chen, 2016; Lietal., 2021). Most GCMs in the recent
Coupled Model Intercomparison Project phase 6 (CMIP6)
still poorly simulate YRB precipitation interannual
variability (Li et al., 2021). Increasing model resolution
has been proposed to reduce these biases, but it cannot
completely solve the problem (Kan et al., 2015; Kusunoki
and Arakawa, 2015; Linetal., 2019). Large biases re-
main in GCMs and regional climate models (RCMs) with
grid spacing of 10—50 km (Feng et al., 2011; Bao et al.,
2015; Jiangetal., 2020; Huetal,, 2021) and even in
convection-permitting models at grid spacing of 4-km or
less (Zhuetal., 2018; Lietal., 2020a; Yun et al., 2020).
These model biases in present-day simulations may
impair the reliability of climate projections, underestimat-
ing future YRB rainfall changes (Liang et al., 2008b;
Chen et al., 2018; Jiang et al., 2021).

It is crucial to comprehend and rectify the fundamental
physical processes responsible for errors in regional
precipitation prediction. Numerous studies have focused
on the sensitivity of summer precipitation prediction over
east China to cumulus parameterization, exploring
relationships between long-term mean biases in regional
precipitation and large-scale atmospheric circulations. For
instance, Bao (2013) demonstrated that the Tiedtke
scheme outperforms the Grell scheme in replicating the
distribution of summer monsoon precipitation, owing to
its better simulation of the Western Pacific Subtropical
High (WPSH) and the south-westerly low-level jet.
Zhang et al. (2015) showed that the Tiedtke scheme
produced smaller precipitation biases over eastern China
than other three schemes, linking to its smaller errors in
the East Asian summer monsoon index. Yang et al.
(2015) found large impacts of the parameters in the
Kain—Fritsch scheme on simulated precipitation and
associated atmospheric profiles of the East Asian summer
monsoon. Gui et al. (2020) demonstrated that cumulus
parameterization significantly affects the summer rainfall
distribution by primarily modulating biases in

atmospheric circulation systems.

Interannual variations of YRB summer rainfall have
also been identified with changes in large-scale systems,
including the tropical western North Pacific circulation
(Wang et al., 2001; Kosaka et al., 2011), the East Asian
westerly jet (EAJ) (Liang and Wang, 1998; Xuan et al.,
2011; Wang and Zuo, 2016), and the South Asian High
(Huang and Qian, 2004; Jiang et al., 2011; Wei et al,,
2015). Errors in simulating interannual anomalies of YRB
summer rainfall extremes were linked to those of
moisture convergence and convective available potential
energy (Zhang et al., 2023). Our recent study (Zhao and
Liang, 2023) demonstrated the significant potential for
enhancing YRB extreme rainfall prediction by refining
the physics representation in the Regional Climate-
Weather Research and Forecasting model (CWRF; Liang
etal., 2012). The improvement is notable by coupling
appropriate  cumulus, microphysics, and radiation
schemes, along with optimizing the multi-physics
ensemble. The enhanced performance can be primarily
attributed to a more accurate representation of the EAJ
and its associated regional circulation patterns.

Limited research has thus far addressed the dependence
of YRB rainfall mean biases and interannual anomalies
on diverse physics parameterization schemes, alongside
identifying the key underlying mechanisms. Linkages of
precipitation with circulation features have been studied
separately in terms of mean biases and interannual
anomalies. However, factors contributing to summer
rainfall errors may differ from mean conditions to
interannual variations or extreme events (Liang et al.,
2001, 2002; Wangetal.,2011; Sun and Liang, 2020a,
2020b), requiring a systematic investigation to improve
model representation across scales. Critical issues that
need further investigation for YRB summer precipitation
prediction include: 1) the physical processes and
mechanisms causing its mean biases and interannual
errors; 2) the major physics parameterizations sensitive
for these biases and errors; 3) the interlinkages between
model abilities in simulating mean conditions and
interannual anomalies; 4) the improvements from
coupling the advanced physics schemes and optimizing
their multi-physics ensemble.

The multi-physics ensemble is often used to mitigate
uncertainty stemming from diverse model physics
representations (Liang et al., 2012). However, not all
schemes excel uniformly in simulating all variables
across all regions. Optimal ensemble skill can be
achieved by combining the top-performing schemes,
which surpasses the simple average of all available
members (Jiang et al., 2015). Thus, it is desirable to select
from 28 CWRF configurations (Zhao and Liang, 2023)
the superior members for building an optimal ensemble to
improve YRB precipitation prediction. Additionally,
statistical methods have been populated to correct
systematic biases (e.g., Zhang et al., 2017). Among these,
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the Bayesian Joint Probability (BJP) (Wang and
Robertson, 2011) method is widely used for calibrating
mean climate  predictions  (Schepen et al., 2020).
However, it is unclear whether applying the BIJP
calibration can also enhance the optimal ensemble
prediction for interannual anomalies of YRB summer
precipitation.

Therefore, the main objectives of this study are to
uncover the physical mechanisms behind errors in
simulating YRB summer precipitation, encompassing
mean conditions and interannual anomalies, and whereby
to improve prediction skills by constructing an optimal
multi-physics ensemble from CWRF simulations with
diverse physics representations. Our evaluation
emphasizes the identification of key physical processes/
mechanisms causing errors by linking them with large-
scale atmospheric circulation deficiencies in both summer
means and interannual variations. Rather than focusing
solely on precipitation, this study incorporates a broader
set of covarying circulation metrics grounded in our
understanding of the underlying physical processes.
Additionally, we examine whether the BJP calibration
can further enhance the optimal ensemble prediction of
both summer means and interannual variations.

In the following, Section 2 describes the model,
experiments, observations, and methods used. Section 3
examines the impact of CWRF physics representations on
YRB summer precipitation mean biases and interannual
anomalies. Section 4 delves into the connections between
YRB precipitation and circulation features in both mean
biases and interannual anomalies, identifying the key
physical mechanisms causing model errors. Section 5
identifies the superior physics configurations that best
capture both precipitation characteristics and associated
circulation features. Section 6 constructs the optimal
multi-physics ensemble from the superior members,
evaluates its consistent improvement in circulation
patterns, and explores the possible enhancement by the
BJP calibration. Section 7 presents the summary and
conclusions.

2 Model, data, and methodology

2.1 CWRF model and experiments

CWRF, a climate extension of the Weather Research and
Forecasting model (WRF; Skamarock et al., 2008), has
been continuously improved in key physical processes
and comprehensive system interactions among all process
modules (Liang et al., 2005a, 2005b, 2012, 2019a; Choi
etal., 2007, 2013; Choi and Liang, 2010; Yuan and
Liang, 2011a; Xuetal, 2014; Ganetal,2015; Ling
etal., 2015; Sun etal., 2020a, 2020b; Sun and Liang,
2023). A crucial component is the incorporation of the
Ensemble Cumulus Parameterization (ECP; Qiao and

Liang, 2015, 2016, 2017), modified from Grell and
Dévényi (2002), for simulating deep convection.
Additionally, the inclusion of a Cloud-Aerosol-Radiation
ensemble model (CAR) addresses intricate interactions
among cloud and aerosol properties, along with radiation
transfers (Liang and Zhang, 2013; Zhang et al., 2013).
These enhancements contribute to CWRF’s outstanding
performance in reproducing seasonal to interannual
precipitation and extreme statistics in both United States
and China (Yuan and Liang, 2011b; Liang et al., 2012,
2019a; Chen et al., 2016; Sun and Liang, 2020a, 2020b;
Li et al., 2020b; Jiang et al., 2021).

In the downscaling experiments, 28 CWRF ensemble
simulations are generated using multiple physical
parameterization schemes (Table S1), as outlined by Sun
and Liang (2020b). This ensemble comprises one control
simulation (CTL) and 27 sensitivity simulations, each of
which replaces the control with an alternative scheme
representing one of the six major physical processes
(cumulus, microphysics, radiation, boundary layer,
surface, and cloud). Comparing these ensemble simula-
tions can facilitate our comprehensive sensitivity studies
and enhance our understanding of wvarious physical
processes (Sun and Liang, 2020a).

The CWRF computational domain, as defined by Liang
etal. (2019a), covers China and adjacent oceans
(approximately 8°—59°N, 58°—162°E) under the Lambert
conformal map projection centered at (35.18°N, 110°E),
and includes 14 grids along each of the four edges within
the buffer zones. The model features a horizontal grid
spacing of 30 km and is equipped with 36 vertical levels
extending up to 50 hPa. The lateral boundary conditions
are refreshed every 6 h using data from the European
Centre for Medium-Range Weather Forecasts (ECMWF)
Interim Reanalysis with a grid spacing of approximately
80 km (ERI, Dee etal.,, 2011). All simulations are
initialized on October 1, 1979 and run continuously until
December 31, 2015, with the first two months dedicated
to a spin-up period. Subsequently, the results from June
to August (JJA) spanning the years between 1980 and
2015 are utilized for the following analysis. The YRB is
defined according to Liang et al. (2019a), who devided
subregions with distinct climate regimes and topographic
characteristics.

2.2 Data

To evaluate the model’s performance, daily precipitation
observations are obtained from the CNO0S5.1 data set,
which integrates in situ measurements from 2416
monitoring stations and transforms them into 0.25° grids
in China using objective analysis (Wu and Gao, 2013).
The ERI data are employed for evaluating the CWRF
downscaling skill. The latest fifth-generation reanalysis
by ECMWF (ERAS, Hersbach et al., 2019), with a grid
spacing of 31 km, serves as the reference proxy for



observational circulation features (Sun and Liang, 2020a,
2020b). These circulation variables include wind speed,
specific humidity, and geopotential height at different
pressure levels. To maintain consistency, these observa-
tional and reference data are remapped onto the CWRF
30 km grid using a conservative interpolation method.

2.3 Methodology

Section 3 assesses how physics parameterizations impact
YRB’s summer precipitation mean biases and interannual
anomalies (from its long-term average), using measures
such as bias, spatial and interannual correlation, root-
mean-square-error (RMSE), and the percentage of areas
in the region with significant interannual correlations
(SCA). The SCA is determined by applying a density
function that illustrates the frequency distribution of
interannual correlations across all CWRF grids within the
YRB, following Liang et al. (2019b). Section 4 employs
correlation analysis to explore the relationship between
YRB precipitation and associated circulation features,
addressing both mean biases and interannual anomalies.
This method helps identify teleconnections and define
circulation and its mean bias indices for comparing the
modeled and observed patterns. Section 5 ranks CWRF
configurations using a comprehensive ranking measure
(MR) that integrates regional precipitation and circulation
indices for both mean conditions and interannual
anomalies. Applying metrics individually or on specific
variables may deviate the choice of good performers.
Thus, we apply the precipitation-circulation covariant
metrics to determine the top ranked configurations.
Section 6 then develops an optimal ensemble and a BJP-
calibrated ensemble from these skill-enhanced configura-
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tions, investigating model performance improvements
from a climate system perspective. Our method provides
a systematic examination of the model’s abilities,
highlighting the critical utility of the composite MR for
physically based evaluation. Detailed descriptions of
these methodologies can be found in the Supplementary
Materials. See Appendix A for the key acronyms and
abbreviations.

3 Physics dependence of YRB precipitation
errors

3.1 Summer mean biases
Figure 1 compares the spatial pattern correlation (PCC),
RMSE, and mean bias against observations among
ERAS, ERI and 28 CWRF physics configurations in
replicating the observed long-term average summer
precipitation (PRA) over the YRB. Figure S1 shows the
geographical distributions of PRA biases. ERI shows wet
biases around 1-3 mm-day !, concentrated in the upper
reach of the YRB. ERAS5 improves ERI on PCC by 0.16,
but features an expanded coverage of wet biases
exceeding 1 mm-day™!, increasing RMSE by 8%. In
contrast, the CWRF CTL simulated PCC, RMSE, and
bias are 0.45, 2 mm-day !, and 0.3 mm-day !, respec-
tively. It captures the rainband with an adequate precipita-
tion amount and a reasonable spatial pattern (Liang et al.,
2019a). Compared to ERI, CWRF reduces the average
wet bias by 0.4 mm-day !, but decreases PCC by 0.1 and
increases RMSE by 54%.

Figure 1 illustrates that the PRA bias is largely affected
by the selection of cumulus and radiation parameteriza-
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Fig. 1 The spatial pattern correlation coefficient (PCC), RMS error (RMSE), and average bias (Bias) between observations and
ERAS, ERI, and 28 CWRF physics configurations for 1980—2015 mean summer precipitation (PRA, mm-day~!) over the YRB.
Hatches denote statistically significant differences at the 5% significance level.
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tion schemes. The CTL using the ECP cumulus scheme
stands out as the top performer, demonstrating a high
PCC, low RMSE, and minimal wet bias among all eight
cumulus schemes. KFeta produces a larger wet bias up to
6 mm-day ! over extensive areas, particularly in the
southern YRB (Fig. S1), increasing average bias by
1.8 mm-day ! and RMSE by 50% compared to ECP. The
other six cumulus schemes (BMJ, Grell, Tiedtke, NSAS,
Donner, Emanuel) all generally exhibit lower PCCs
around 0.23—0.33 and produce dry biases. In particular,
BMIJ produces the largest dry bias, exceeding 4 mm-day !,
predominantly along the major rainband.

Among the six experiments with varying radiation
schemes coupling ECP, the CCCMA and CAML stand
out, exhibiting both adequate precipitation intensity and
precise core location (Fig. S1), with only a minor wet bias
(0.4 and 0.1 mm-day ') and higher PCC (0.54 and 0.60)
compared to the CTL. The remaining four schemes
exhibit lower PCCs than the CTL, accompanied by dry
biases around 1.3-2.7 mm-day !. Additionally, the
Morrison and Morrison plus 3d aerosol microphysics
schemes exhibit higher PCCs (0.48 and 0.46) and smaller
RMSEs than CTL, with dry biases (0.4 and 0.5 mm-day!).
The NOAH surface scheme attains a higher PCC (0.59)
and similar RMSE, but exhibits a more pronounced dry
bias by an average of 1.2 mm-day 1.

We elaborate in the Supplementary Materials on the
skills concerning the number of rainy days (NRD) and
daily rainfall intensity (DRI) to enhance the validity of
our precipitation analysis. In summary, CWRF CTL
notably mitigates the drizzle problem and more accurately
depicts rainfall intensity compared to ERI, despite the
latter’s assimilation of surface data. Among the six major
physical processes, cumulus parameterization is identified
as the most influential in simulating regional climate
mean precipitation characteristics. The ECP cumulus
scheme in the control configuration excels in representing
the main rainband, rainy days, and rainfall intensity
across the YRB, especially in terms of magnitude,
location, and coverage, when compared to the other seven
cumulus schemes. Integrating the ECP cumulus scheme
with the Morrison or Morrison plus 3d aerosol microphy-
sics and the CCCMA or CAML radiation schemes further
enhances CWRF's overall proficiency in capturing the
summer mean precipitation characteristics.

3.2 Interannual anomalies

Figure 2(a) compares the geographic distributions of
summer mean precipitation interannual correlations with
observations during 1980—-2015 among 28 different
CWRF physics configurations. Figure 2(b) shows the
YRB-average temporal correlation (TCC) and RMSE
values, alongside the SCA values. A greater number of
grids exhibiting skillful correlations, along with a larger
SCA value, signifies a higher level of predictive skill.

The CTL most realistically reproduces observed
precipitation interannual variations, as shown by a large
coverage of SCA over 43.2% of the YRB, a basin average
TCC of 0.58, and the smallest RMSE of merely 0.8
mm-day ! (Fig. 2(b)). The regions displaying significant
signals are mainly concentrated to the south of the middle
and lower reaches of the Yangtze River, while the regions
with limited skills are between the Yellow and Yangtze
Rivers (Fig. 2(a)).

Interannual variation errors also display notable
sensitivity to the parameterization schemes. Among the
eight cumulus schemes, KFeta distinguishes itself with a
37.1% higher SCA and a larger TCC of 0.70 compared to
CTL, but its RMSE is substantially higher by 206%.
Other cumulus schemes generally show much smaller
SCAs around 11%—42% of the YRB, lower TCCs in 0.18—
0.55, and larger RMSEs between 1.3 and 3.1 mm-day 1.
The BMIJ, Grell, Tiedtke, and Emanuel schemes even
have insignificant TCCs.

Among the six radiation schemes, both CCCMA and
CAML exhibit excellent predictive skills in interannual
variation, showcasing comparable higher SCAs and
TCCs to KFeta, along with similar lower RMSEs
compared to CTL. The Morrison and Morrison plus 3d
aerosol microphysics schemes slightly elevate TCCs,
albeit somewhat reducing SCAs and increasing RMSEs
compared to CTL.

The above results affirm the major impact of cumulus
parameterization on regional precipitation simulation for
both summer mean conditions and interannual anomalies,
followed by radiation and microphysics parameteriza-
tions. The CWRF control configuration integrating the
ECP cumulus scheme, along with the Morrison or
Morrison plus 3d aerosol microphysics and the CCCMA
or CAML radiation schemes, excels in simulating YRB
precipition’s summer mean distribution and also
demonstrates a robust ability to capture its interannual
variation.

4 Mechanisms causing YRB precipitation
errors

Figure 3 presents the summer mean geographic distribu-
tions of the observed precipitation and ERAS circulation
characteristics, including 200-hPa zonal wind (U200),
850-hPa meridional wind (V850), total precipitable water
(TPW), and 200-hPa geopotential height (H200). Figure 4
illustrates the teleconnection patterns between the long-
term mean biases in CWRF simulated YRB-average
summer precipitation and those in point-wise key
circulation features. Figure 5 further shows the observed
teleconnection patterns between interannual anomalies of
the YRB-average summer monthly precipitation and
those of the ERAS circulation distributions. We assume
individual model independence for the -correlations
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Fig. 2 (a) Geographic distributions of 1980—2015 summer precipitation interannual correlations between observations and 28
CWREF physics configurations. (b) YRB-average temporal correlation coefficient (TCC) and RMS error (RMSE, mm-day ™), and the
percentage of areas in the YRB that have significant interannual correlations (SCA x 100, %). Correlations exceeding 0.28 as column
hatched denote the 5% significance level under the one-tail Student’s #-test. The YRB region is enclosed by the thick black outline.

among mean biases (Fig. 4) and monthly independence
for the observed patterns (Fig. 5). Below we identify the
physical processes and underlying mechanisms causing
biases and linking anomalies.

The YRB is located to the right of the exit region of the
strong westerly jet stream, with the core centered over
Xinjiang (Fig. 3(a)). Significant positive correlations
between precipitation and U200 biases among ERI and 28
CWREF physics configurations are situated along the jet
exit, while significant negative correlations are concentra-
ted over north-east China (Fig. 4(a)). Corresponding to a
positive precipitation bias in the YRB is a positive
westerly wind bias along the jet exit. A similar pattern is
found in the relationship between observed interannual

variations (Fig. 5(a)), with the center of significant
positive correlations extending southward into the
northern part of the YRB. A positive precipitation
anomaly in the YRB is associated with the southward
shift of the westerly jet stream, which is consistent with
previous studies (Liang and Wang, 1998). The southward
movement of the westerly jet stream induces the
ascending branch of the jet-induced vertical circulation
situated in the YRB, resulting in increased summer
precipitation over there (e.g., Xuan et al., 2011). Further-
more, significant negative correlations between precipita-
tion and U200 biases are evident over the Indian Ocean,
the South China Sea, and the western Pacific (Fig. 4(a)).
This pattern also corresponds well to the observed
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Fig.3 Geographic distributions of 1980-2015 mean observed summer precipitation (PRA, mm-day~'), overlaid with ERAS
(a) 200-hPa wind vectors and zonal wind (U200, contours at 5 m-s™! intervals starting from 20), (b) 850-hPa wind vectors and
meridional wind (V850, contours at 1 m-s™! intervals starting from 3), (c) total precipitable water (TPW, 10 mm contour intervals),
and (d) 200-hPa geopotential height (H200, 100 gpm contour intervals).

interannual variation relationships (Fig. 5(a)), implying
that enhanced precipitation over the YRB is linked to a
weakened Hadley circulation (Wang et al., 2011). Hence,
a model placing EAJ to the south of observations and
producing a weaker Hadley circulation is prone to
generating increased YRB precipitation (Liang et al.,
2001).

Two low-level southerly wind branches from the Bay
of Bengal and South China Sea-western Pacific, transport
moisture across southern and eastern China (Fig. 3(b)),
leading to great moisture flux convergence south of the
Yangtze River (Fig. 3(c)). Significant positive correla-
tions between YRB precipitation and V850 biases exist
over south China and the South China Sea (Fig. 4(b)),
closely matching the observed interannual variation
relationship (Fig. 5(b)). Stronger southerly flow over
south China and the South China Sea associates with a
westward extension of the Subtropical high (Wang et al.,
2011; Zhao et al., 2015). Increased YRB precipitation is
also concurrent with a reinforced northerly flow to the
north of the YRB, as evidenced by the negative
correlation with V850 biases in the northern YRB (Fig.
4(b)). Meanwhile, significant positive correlations are
found between YRB precipitation and local TPW in both
simulated mean biases and observed interannual
variations (Figs. 4(c) and 5(c)), which can be attributed to

the increased low-level tropospheric convergence and
intensified upward motion within the YRB (Wang et al.,
2011; Li and Lu, 2017). Additionally, significant negative
correlations exist between observed precipitation and
TPW situated over the South China Sea-the western
Pacific (Fig. 5(c)). This indicates a weakened Hadley
circulation, coupled with the westward expansion or
intensification of the subtropical high (Kosaka et al.,
2011; Wang et al., 2011). Therefore, a model featuring a
stronger southerly flow to the south of the YRB or
northerly flow to the north of the YRB, along with
elevated TPW, is prone to producing increased YRB
precipitation.

The South Asian High (SAH), represented by the
12500-gpm contour at 200 hPa, covers the southern YRB
and south China (Fig. 3(d)). Significant positive correla-
tions between YRB precipitation and H200 biases
centered over South Tibet and encompass a broad region,
while significant negative correlations are present
remotely across north-east China and North Korea (Fig.
4(d)). This teleconnection pattern closely mirrors the
observed interannual variation relationships (Fig. 5(d)),
despite significant positive correlations are evident over
the subtropical South Asian continent. This indicates that
an anomalous south-eastward shift of SAH, often
accompanied by an intensified westward-stretching subtro-
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Fig. 4 Spatial distribution of correlations between long-term mean YRB-average summer precipitation biases (from observations)
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(c) TPW, and (d) H200. Colored areas indicate statistically significant correlations at the 5% significance level, assuming individual
model independence. The outlined regions with statistically significant high (positive or negative) correlations are defined as the core
correlation areas, which are used to compute the circulation bias indices.

pical high, promotes increased rainfall over the YRB
(Jiang etal., 2011; Wei et al., 2015; Ning et al., 2017).
Thus, a model with SAH biased south-east of the
observations is likely to generate increased YRB
precipitation.

Clearly, significant correlations exist between the bias
in YRB precipitation and that in atmospheric circulation.
The fundamental features of the model mean bias
teleconnections and the observed interannual variation
relationships are highly consistent, indicating that
simulated precipitation biases are linked to errors in
atmospheric circulation predictions. When the EAJ is
biased to the south, the intensity of both low-level
southerly winds to the south of the YRB and the northerly
winds to the north of the YRB are overpredicted,
accompanied by the SAH south-eastward movement and
overestimated precipitable water within the YRB, the
YRB precipitation tends to enhance.

To evaluate how well the model simulates associated
key circulations in both summer means and interannual
variations, we employ corresponding circulation indices
(refer to the Supplementary Materials for details). Note
that minor shifts in the centers of these teleconnection
patterns would not notably impact the defined indices,
given the extensive coverage of significant correlations

(Liang et al., 2008a).

Figure 6 depicts scattering relationships between the
YRB regional mean summer precipitation biases (from
observations) and the circulation departures (from ERAS
analyses) averaged over their respective teleconnected
areas outlined in Fig. 4. These relationships are compared
among ERI and 28 CWREF physics configurations. The
model spread in precipitation biases is primarily
determined by deviations in these circulation features of
U200, V850, TPW, and H200. These factors account for
53%, 69%, 52%, and 84% of the variance in precipitation
biases, respectively. Moreover, ERI realistically captures
circulation features, while CWRF CTL generates slightly
larger biases, ranging from (0.2 m-s!, —0.4 m-s!,
0.8 mm, —0.3 gpm) to (-3.0 m's!, 0.8 m's™!, —4.7 mm,
—28.4 gpm). This surpasses the common anticipation for
models to closely replicate these variables at a skill level
comparable to ERI, which assimilates comprehensive
data to accurately capture interactions among precipita-
tion, land, and atmospheric processes (Liang etal.,
2019a).

The CWRF’s ability to replicate the key observed
circulation features varies significantly among different
physics configurations. The variation is most pronounced
among eight cumulus and seven radiation parameteriza-
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Fig.5 Spatial distribution of correlations between the interannual anomalies of the observed YRB-average summer monthly
precipitation and those of the ERAS5 pointwise circulation for (a) U200, (b) V850, (c) TPW, and (d) H200. Colored areas denote
statistically significant correlations at the 5% significance level, assuming monthly independence. The outlined regions with
statistically significant high (positive or negative) correlations are defined as the core correlation areas, which are used to compute

the circulation indices.

tions, covering a notably wide range of deviations such as
12 m/s for U200, 3 m/s for V850, 9 mm for TPW, and
136 gpm for H200. In contrast, the variations in circula-
tion departures among different microphysics, boundary
layer, surface, and cloud schemes are less pronounced,
with deviations of only 8 m/s, 1 m/s, 4 mm, and 70 gpm
for U200, V850, TPW, and H200, respectively.

Figure 7 presents the interannual correlations between
summer monthly precipitation anomalies averaged over
the YRB and anomalies in the circulation features
averaged over the observed teleconnected area outlined in
Fig. 5. The correlations are compared among observa-
tions, ERI, and CWRF simulations using 28 physics
configurations. Correlation coefficient exceeding 0.19 is
deemed statistically significant at the 5% significant
level. Significant positive correlations with observed
circulation features range from 0.38 (H200), 0.42 (U200),
0.44 (V850) to 0.63 (TPW), underscoring the consider-
able impact of these circulation variations on YRB
summer precipitation (Fig. 5). Compared to the observed
interannual variation relationships, ERI generally exhibits
weaker correlations, ranging from 0.25 (U200), 0.38
(V850), 0.42 (TPW) to 0.23 (H200). However, CWRF
CTL more accurately replicates the observed relation-
ships, with correlations of 0.51 (U200), 0.48 (V850), 0.72

(TPW), and 0.47 (H200), respectively. As such, CWRF
downscaling holds promise for incorporating enhanced
representations of physical processes to capture the
interannual variation of regional precipitation and
associated circulation characteristics.

For U200 (Fig. 7(a)), CWRF physics configurations
consistently yield significant positive correlations, except
for the BMJ cumulus and Fuliou radiation schemes. Note
that 22 out of the 28 configurations simulate the
correlations close to the observed 0.42, deviating by 0.1
and averaging around 0.45. For V850 (Fig. 7(b)), the
majority of configurations reveal significant positive
correlations, apart from the BMJ cumulus scheme. Only
17 among the 28 configurations simulate the correlations
near the observed 0.44, deviating by 0.1 and averaging
0.41. For both TPW and H200 (Figs. 7(c) and 7(d)), all
configurations show significant positive correlations.
Among them, 25 configurations generate the TPW
correlations matching the observed 0.63, with a deviation
of 0.1 and an average around 0.67. Likewise, 20
configurations demonstrate the H200 correlations that
align closely with the observed 0.38, deviating by 0.1 and
averaging around 0.42. In summary, CWRF demonstrates
superior performance in simulating the relationship
between summer precipitation anomalies in the YRB and
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large-scale circulation features. Most of its physics
configurations effectively capture observed interannual
variation relationships with U200, TPW and H200,
having some exceptions with V850.

5 System coupling among precipitation
and circulation deficiencies

Independent analyses have been conducted on the
mechanisms of mean precipitation biases and interannual
errors as in our previous sections. This section employs
precipitation-circulation covariant metrics to quantify
interconnections among these model deficiencies.
Focusing on models with high performance, we further
diagnose the physical processes underlying the YRB
precipitation mean biases and interannual errors. Figure 8
compares the models’ MR rankings for simulating
summer mean YRB precipitation and its key circulation
features (U200, V850, TPW, H200), against their ran-
kings in representing interannual variations. The strong
correlation of 0.70, surpassing the 5% significance level,
highlights the models’ proficiency in simultaneously

representing both the mean conditions and interannual
variations of YRB regional precipitation and related
circulation dynamics.

The rankings vary significantly across different models.
ERI ranks higher for mean conditions of precipitation and
circulation (0.83) compared to interannual variations
(0.53). This occurs because ERI uses data assimilation to
constrain precipitation variation, weakening the circula-
tion control. In contrast, CWRF CTL demonstrates more
balanced high MR values, scoring 0.67 and 0.62 for mean
conditions and interannual variations, respectively.
Among all eight cumulus schemes, the ECP scheme
emerges as the overall best performer in capturing both
regional precipitation and circulation features, achieving
the most balanced and highest MR values for summer
means and interannual variations. While NSAS ranks
slightly higher than ECP for mean conditions (0.68), but
ranks significantly lower for interannual variations (0.55).
This leads to reduced interannual agreement in
precipitation and circulations, corresponding to larger dry
biases (see Figs.1 and 2). Other cumulus schemes
perform considerably worse than ECP, particularly BMJ,
Grell, and Tiedtke rank the lowest with MR values
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consistently below 0.23.

Coupling the ECP cumulus scheme with the Morrison
or Morrison plus 3d aerosol microphysics scheme and the
CCCMA or CAML radiation scheme enhances the
CWREF’s ability to replicate observed regional precipita-
tion and associated circulation features, resulting in MR
values of 0.67 and 0.58 for mean conditions and
interannual variations, respectively.

Focusing solely on smaller mean biases, the five top-
ranked configurations are using the CTL, CAML, and
CCCMA radiation, the Thompson-aero and Morrison
microphysics schemes (Fig. 1). Whereas focusing on
higher interannual correlations (TCC), the leading

configurations are the KFeta cumulus, Morrison and
Morrison plus 3d aero microphysics, and CAML and
CCCMA radiation schemes (Fig. 2). This solo approach,
however, lacks stability and does not effectively link
precipitation and circulation biases or errors, as seen with
schemes like the KFeta cumulus scheme (Fig. 8). To
overcome the problem, we adopt a composite MR
method, combining multiple metrics {precipitation,
circulation, and both} for {mean bias, interannual
anomaly, and both}. This method consistently identifies
the same five top-ranked configurations: using the CTL,
the Morrison and Morrison plus 3d aerosol microphysics,
and the CCCMA and CAML radiation schemes (Figs. 8
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and 9). Such consistency confirms the coherence of the
precipitation system simulation and the objective ranking
based on the composite MR. These results highlight the
pivotal role of the system coupling, especially among
cumulus, radiation and microphysics processes in
predicting not only YRB extreme precipitation (Zhao and
Liang, 2023) but also mean precipitation and interannual
variations.

Figures 10 and 11 compare the geographic distributions
of 36-year mean summer circulation characteristics,
encompassing 200/850 hPa wind, 200/500 hPa geopoten-
tial height, column moisture flux, and precipitation,
among ERAS5, ERI, and the five top-ranked CWRF
configurations, using the CTL, Morrison and Morrison
plus 3d aerosol microphysics, and the CCCMA and
CAML radiation schemes. Compared to ERAS, ERI
shows a slight northward shift and a pronounced eastward
expansion of SAH (see Supplementary Materials for the
definition of its index), extending its eastern boundary
over the Pacific, and shrinks the EAJ exit westward
toward Hebei (Fig. 10), both contributing to weakened
upward motions and decreased precipitation across a wide
span from North to South China (Fig. S1). As discussed
in more detail below, the general SAH northward shift
and the underestimation of the EAJ exit intensity in the
CWRF simulations may originate from ERI forcing
errors.

CWRF CTL, compared to ERAS5, exhibits a noticeable
westward displacement in SAH’s eastern sector, along
with a northward shift similar to that of ERI (Fig. 10).
This weakens the westerlies on SAH’s north side,
underestimating EAJ by approximately 3 m/s in southern
North China and northern YRB and slightly displacing
the jet axis northward with its exit extended westward
toward Hebei. Consequently, upward motions increase
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Fig.9 Scatter diagram showing models’ MR of simulated YRB
summer precipitation mean conditions and interannual anomalies. Also
marked is the correlation coefficient (CC).

directly beneath the EAJ exit and over south China but
decrease in the southern YRB. Collectively, these
adjustments contribute to WPSH’s northward shift,
leading to intensified low-level south-westerly winds that
transport more moisture to the upper reaches of the
Yangtze and Pearl Rivers, with less moisture reaching
near the coast (Fig. 11). Thus, CWRF CTL alleviates
ERAS5’s wet biases in the YRB, but exacerbates them in
north and south China (Fig. S1).

Compared to CTL, the EAJ exit in both the Morrison
and Morrison plus 3d aerosol microphysics schemes
experiences a more pronounced westward displacement
toward Shanxi, resulting in larger EAJ underestimations
exceeding 4 m/s in southern north China and northern
YRB regions. This shift, along with a more realistic
presence of low-level southerlies over eastern China,
contributes to larger underestimations of moisture
convergence across an expanded YRB region. Collecti-
vely, these factors lead to weakened ascending motions
and decreased rainfall in north China and YRB, while
enhanced ascending motions and rainfall in south China.
As a result, these schemes reduce wet biases in north
China compared to CTL, but exacerbate them in south
China and introduce small dry biases in the YRB.
Overall, the Morrison scheme demonstrates smaller
circulation biases compared to its combination with the
3d aerosol effect, thereby providing a more accurate
portrayal of regional precipitation patterns.

The CCCMA radiation scheme produces a northward
shift of SAH, similar to CTL, with an eastward extension
toward the coast. The EAJ exit is displaced westward to
Shanxi, accompanied by a larger underestimation of
approximate 4 m/s in southern north China. Consequent-
ly, upward motions are weakened in north China but
strengthened in the southern YRB and south China,
compared to CWRF CTL. Intensified low-level south-
westerlies over southern YRB and south China also
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promote stronger moisture flux convergence to the south
of the Yangtze River but suppress it to the north. As a
result, when compared to CTL, the CCCMA radiation
scheme reduces wet biases in north China but simultane-
ously amplifies them in the YRB and south China.

The CAML radiation scheme simulates a similar
northward shift of SAH, expanding its ridge to cover a
larger portion of south-eastern China, with a weaker EAJ
extending its exit eastward toward Hebei. This leads to
weakened ascending motions north of the Yangtze River
but largely enhanced them south of the River. The
eastward shift of WPSH and the low-level south-

westerlies, accompanied with north-easterly flow
perturbations in north China and north of the Yangtze
River, weakens moisture fluxes in these regions but
intensifies them in south China. Consequently, compared
to CTL, the CAML scheme reduces wet biases in the
YRB but increases them in south China, with small dry
biases in north China.

Therefore, summer mean biases in YRB precipitation
are strongly associated with those in large-scale
atmospheric circulations. The wet biases simulated by
CWREF CTL, and those by using the CCCMA and CAML
radiation schemes, are linked to a subtle SAH northward
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shift and a slight EAJ weakening, which enhances the
low-level southerly wind and its moisture transport into
the YRB. Conversely, the dry biases simulated by the
Morrison and Morrison plus 3d aerosol microphysics
schemes are associated with a more significantly
weakened EAJ, leading to reduced moisture transport into
the YRB.

Figure 12 compares the teleconnection patterns
between summer monthly precipitation interannual
anomalies in the YRB and large-scale circulation features
among ERI and the five top-ranked CWRF physics
configurations. Relative to the observed U200

correlations (Fig. 5(a)), ERI struggles to replicate the
pattern by producing much weaker correlation cores that
are excessively biased toward the south (Fig. 12(a)). In
contrast, CWRF CTL more effectively captures these
cores, exhibiting a well-distributed and magnified pattern.
The Morrison and Morrison plus 3d aerosol microphysics
and CAML radiation schemes generally show weaker
correlations. Conversely, the CCCMA radiation scheme
exhibits higher correlation magnitudes compared to CTL.

For V850 correlations (Fig. 5(b)), all models generally
match the observed core location but vary in magnitude
(Fig. 12(b)). ERI produces lower correlations, whereas
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Fig. 12 Same as Fig. 5 except for interannual correlations of ERI and five CWRF physics configurations.

CWRF CTL exhibits higher correlations. The Morrison
and Morrison plus 3d aerosol microphysics and CCCMA
radiation schemes achieve similar correlation magnitudes
as CTL, comparable to observations. In contrast, the
CAML radiation scheme simulates higher correlations
than CTL. For TPW correlations (Fig. 5(c)), ERI shrinks
the core area with lower correlations, whereas CWRF
CTL expands it with higher correlations (Fig. 12(c)). All
the five top-ranked physics schemes perform comparably
to CTL.

For H200 correlations (Fig. 5(d)), ERI shifts the
positive core to the north-west of observations and misses
the negative core with much lower magnitudes (Fig.
12(d)). CWRF CTL outperforms ERI by better capturing
both positive and negative core areas with realistic
magnitudes. The Morrison and Morrison plus 3d aerosol
microphysics schemes produce negative correlations
weaker than CTL but close to observed values, while they
both exhibit significantly lower positive correlations. In
contrast, the CCCMA and CAML radiation schemes
improve over CTL with realistically higher positive
correlations, while CAML also better captures the
negative correlations.

Therefore, CWRF CTL outperforms ERI in capturing

more accurate interannual teleconnection patterns, both in
magnitude and spatial distribution. Incorporating the ECP
cumulus scheme with the Morrison or Morrison plus 3d
aerosol microphysics and CCCMA or CAML radiation
schemes enhances CWRF’s overall ability to capture the
observed circulation teleconnection for YRB precipitation
interannual anomalies.

6 Multi-physics ensemble to improve YRB
precipitation prediction

Figure 13(a) compares the geographic distributions of
summer mean precipitation among ERAS, ERI, CWRF
CTL and its best multi-physics ensemble (BMPE). The
BMPE is defined as the average of the five top-ranked
CWREF physics configurations. Also shown are the spatial
pattern correlation, RMSE, and mean bias over the YRB
compared to observations. The observed major rainband
exhibits peak values exceeding 7 mm-day ! along the
Yangtze River, particularly in the upper and lower
reaches (Fig. 3). ERAS produces excessive precipitation,
surpassing 8 mm-day~! over more extensive areas along
the Yangtze River. This leads to a high pattern correlation
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Fig. 13 (a) Spatial distributions of summer average precipitation as assimilated (ERA5 and ERI), CWRF control (CTL) and the
best multi-physics ensemble (BMPE). Listed with the corresponding spatial pattern correlation, RMS error (rmse) and bias over the
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(0.69) but a larger RMSE (1.5 mm-day!), with a
systematic wet bias of 1.2 mm-day ! averaged over the
YRB. ERI also produces intensive precipitation,
exceeding 7.5 mm-day ! in the upper reach of the River
and along the south-east coast. This results in a lower
correlation (0.53), a smaller RMSE (1.3 mm-day!) and
an average wet bias of 0.7 mm-day~!. While CWRF CTL
captures the primary rainband’s features with an average
wet bias reduced to 0.3 mm-day !, but has a lower
correlation (0.43) and a larger RMSE (2.0 mm-day™!).
Importantly, BMPE enhances CTL skills systematically,
showing a higher correlation (0.53), a reduced RMSE
(1.7 mm-day!), and a minimum average dry bias of
0.01 mm-day !,

Figure 13(b) compares precipitation bias frequency
distributions at all grids within the YRB among ERAS,
ERI, and CWRF CTL and BMPE. ERAS exhibits a
prominent peak at a bias of 1.2 mm-day™!, indicating an
overall overestimation. ERI displays a structure of double
peaks at biases of 1.3 and —0.1 mm-day™!, with frequent
occurrences of both overestimates and underestimates.
CWRF CTL shows a peak near —0.5 mm-day !, with
frequent small underestimates, accompanied by a flatter
distribution. BMPE resembles CTL in the distribution pat-
tern but exhibits a sharper peak around —0.7 mm-day~!.

Figures 14(a) and 14(b) compare the geographic distri-
butions of summer precipitation interannual correlations
with observations during 1980—-2015 simulated by CWRF

CTL and BMPE, as well as their frequency distributions
for all grids within the YRB and respective SCAs. CWRF
CTL captures observed interannual anomalies over 43.2%
area of the YRB, with two frequency peaks at the
correlations of 0.21 and 0.34. Different from the summer
mean simulation, BMPE significantly enhances the CTL
skill of interannual variation, with the frequency peak
shifting to the correlation of 0.36 and the area of
significant correlations expanding to 69.7%, primarily in
the southern region of the Yangtze River. Figure 14(c)
compares YRB-average summer precipitation interannual
anomalies observed and simulated by CWRF CTL and
BMPE. Clearly, BMPE elevates the CTL skill, enhancing
the interannual anomaly correlation by 0.13 and reducing
RMSE by 27%.

Figure 15 depicts BMPE summer mean circulations.
BMPE successfully reproduces SAH, WPSH, and the
low-level southerlies over eastern China, but shifts the
EAJ exit westward to Shanxi. This shift underestimates
the EAJ streak by 3 m/s across southern north China and
northern YRB and weakens ascending motions there,
while enhancing them across southern YRB and south
China. As such, BMPE simulates smaller (than CTL)
moisture fluxes into the YRB. Consequently, BMPE
simultaneously improves north China by reducing wet
biases and the YRB with negligible dry biases, albeit
south China remains too wet. The improvements made in
BMPE stem from the cancellation of errors across its
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Fig. 14 CWRF CTL and BMPE simulated (a) interannual correlations of summer precipitation with observations, along with the
percentage of basin areas that have significant interannual correlations (SCA). (b) frequency density functions of correlations at all
CWREF grids within the YRB. Correlations above 0.28 marked by the vertical line are statistically significant at the 5% significance
level, determined by a one-tail Student’s #-test. (c) YRB-average precipitation interannual anomalies, along with their interannual

correlation (corr) and RMS error (rmse) against observations.
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Fig. 15 CWRF BMPE simulated (left) summer mean 200-hPa wind (m-s™!, vectors) departures from ERAS, overlaid with
precipitation biases (color shadings), 200-hPa wind speeds (m-s~!, dashed contours starting from 20 at intervals of 5), and 200-hPa
geopotential height (solid contour at 12500 gpm with ridge as red dash contour). (right) 850-hPa wind (m-s~!, vectors) and vertically
integrated (1000-300 hPa) moisture flux (kg-m~!s71, color shadings) departures from ERAS, overlaid with the 500-hPa geopotential

height represented by solid contour at 5860 gpm.

member configurations.

Additionally, the BJP method is applied to correct
biases in the individual members of BMPE and then
construct a new ensemble mean BMPE bjp. As compared
in detail in the Supplementary Materials, BMPE_bjp, by
design, substantially improves BMPE for mean condi-
tions. However, BMPE bjp performs notably worse than

BMPE in predicting interannual variations of YRB
precipitation and associated circulations. Thus, the BJP
calibration reduces the BMPE advantage to represent
interannual anomalies and teleconnection patterns. To this
end, BMPE, simply averaging the high-performing multi-
physics configurations, significantly enhances the predic-
tion of both mean conditions and interannual anomalies.
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7 Summary and conclusions

This study aims to understand the fundamental physical
mechanisms responsible for the mean biases and interan-
nual errors in simulating YRB summer precipitation, and
develop a multi-physics ensemble from the top-performed
CWREF configurations that best represent these mechani-
sms to improve the prediction. We first analyze the
dependence of these precipitation biases and errors on 28
configurations of varying physics parameterization
schemes. The analysis focuses on teleconnections in long-
term mean biases between YRB precipitation and large-
scale circulations including 200-hPa zonal wind (U200),
850-hPa meridional wind (V850), total precipitable water
(TPW), and 200-hPa geopotential height (H200). We also
analyze the observed correlation patterns of interannual
anomalies between YRB summer monthly precipitation
and the corresponding circulations. We then define a
distinct set of the circulation indices based on the
dominant action centers in these simulated mean bias
teleconnections and observed interannual correlation
patterns. These distinct indices form the precipitation-
circulation covariant metrics for both summer means and
interannual variations. Finally, we use a comprehensive
ranking measure (MR) from the covariant metrics to
identify the superior configurations and construct the best
multi-physics ensemble (BMPE). Our key findings can be
summarized as follows.

First, CWRF control configuration (CTL) excels over
ERI in capturing summer mean rainband and rainfall
intensity and effectively addressing the drizzling problem,
even though ERI assimilates surface data. Cumulus
parameterization has the largest impact on the YRB precipi-
tation simulation, followed by radiation and microphysics
parameterizations. Especially, the ensemble cumulus
parameterization (ECP) used in CTL outperforms other
seven cumulus schemes in CWRF for both summer
precipitation mean conditions and interannual anomalies.
When coupling with ECP, the Morrison or Morrison plus
3d aerosol microphysics and the CCCMA or CAML
radiation schemes enhance the overall CWRF skills.

Second, model mean biases in YRB precipitation are
teleconnected with those in large-scale circulations.
Significant correlations include U200 positive centers
along the jet exit and negative centers in north-east China,
V850 positive centers over south China and the South
China Sea, TPW positive centers over the YRB, and
H200 positive centers over South Tibet and negative
centers across north-east China and North Korea. These
simulated bias teleconnections are consistent with the
observed correlation patterns of interannual anomalies
between YRB summer monthly precipitation and the
corresponding circulations. Despite minor changes in
their primary action centers, this alignment implies that
the underlying physical processes for the observed
interannual anomalies are also responsible for the

relationships among model biases. Specifically, YRB
precipitation is enhanced by a southward shift of the East
Asian westerly jet (EAJ), a south-eastward displacement
of the South Asian High (SAH), a strengthening of low-
level southerlies to the south of the YRB, and an increase
of moisture influx into the YRB. Conversely, reduced
YRB precipitation is associated with an opposite circula-
tion pattern.

Third, our developed covariant metrics and MR mea-
sure objectively quantify models’ overall performance in
consistently capturing mean conditions and interannual
variations of YRB summer precipitation and its
associated large-scale circulations. The integration of the
ECP cumulus scheme with the Morrison or Morrison plus
3d aerosol microphysics and the CCCMA or CAML
radiation schemes enhances the CWRF ability in
predicting YRB precipitation and its circulation teleconnec-
tion characteristics. These five physics configurations
constitute the top performers. CWRF CTL and its ECP
members coupling the CCCMA and CAML radiation
schemes simulate a slightly northward shifted SAH and a
mildly weakened EAJ, leading to increased upward
motions in the YRB. They also produce intensified low-
level south-westerlies with larger moisture transport,
causing wet biases in the YRB. In contrast, the ECP
members coupling the Morrison and Morrison plus 3d
aerosol microphysics schemes simulate a moderately
weakened EAJ and decreased upward motions with less
moisture transport, causing dry biases in the YRB.

Fourth, BMPE of the five top-ranked configurations
significantly enhances the CWRF ability in capturing
summer YRB precipitation and circulation teleconnection
in both mean distributions and interannual variations.
Compared to CTL, BMPE more faithfully reproduces the
associated circulations such as the SAH and WPSH. It
simulates a slightly attenuated EAJ, decreasing upward
motions in the north and increasing them in the south of
the YRB. It also generates a decreased moisture flux into
the YRB, resulting in minor dry biases. As expected,
Bayesian Joint Probability calibrations to the BMPE
members notably reduce the ensemble’s overall mean
biases, but unfortunately worsen the skills in predicting
interannual anomalies and teleconnection patterns.

In conclusion, this study develops a unique set of
precipitation-circulation covariant metrics to quantify the
physical linkages between YRB precipitation and its
associated circulations for both mean conditions and
interannual variations, and wuse these metrics to
systematically determine models’ precipitation errors and
contributing factors. The approach provides an objective
way to identify the top-skilled and physically consistent
model configurations. It also guides the formation of the
best multi-physics ensemble that maximizes the CWRF
ability to predict YRB precipitation seasonal-interannual
characteristics. Effectively coupling model representa-
tions of cumulus, microphysics, and radiation processes
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stands as the pivotal linchpin for accurately capturing
YRB precipitation and its influential dynamic climate
system.
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Appendix A Acronyms and abbreviations

BJP
BMPE

Bayesian Joint Probability

Best multi-physics ensemble

BMPE bjp Ensemble of BJP calibrations applied to the individual BMPE

members

CWRF Climate-weather research and forecasting model

CTL Control simulation

DRI Daily rainfall intensity

EAJ East Asian westerly jet

ECP Ensemble cumulus parameterization

ERI European Centre for Medium-Range Weather Forecasts
interim reanalysis

ERAS European Centre for Medium-Range Weather Forecasts fifth-
generation reanalysis

H200 200-hPa geopotential height

MR Comprehensive ranking measure

NRD Number of rainy days

PRA Average precipitation

SAH South Asian High

SCA Percentage of areas in the region with significant interannual
correlations

TPW Total precipitable water

U200 200-hPa zonal wind

V850 850-hPa meridional wind

WPSH Western Pacific Subtropical High

YRB Yangtze River Basin
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