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Clustering of Diverse Multiplex Networks
Marianna Pensky and Yaxuan Wang

Abstract—The paper introduces the DIverse MultiPLEx Gener-
alized Random Dot Product Graph (DIMPLE-GRDPG) network
model where all layers of the network have the same collection
of nodes and follow the Generalized Random Dot Product Graph
(GRDPG) model. In addition, all layers can be partitioned into
groups such that the layers in the same group are embedded in the
same ambient subspace but otherwise all matrices of connection
probabilities can be different. In a common particular case, where
layers of the network follow the Stochastic Block Model, this set-
ting implies that the groups of layers have common community
structures but all matrices of block connection probabilities can
be different. We refer to this version as the DIMPLE model.
While the DIMPLE-GRDPG model generalizes the COmmon
Subspace Independent Edge (COSIE) random graph model, the
DIMPLE model includes a wide variety of SBM-equipped multi-
layer network models as its particular cases. In the paper, we intro-
duce novel algorithms for the recovery of similar groups of layers,
for the estimation of the ambient subspaces in the groups of layers in
the DIMPLE-GRDPG setting, and for the within-layer clustering
in the case of the DIMPLE model. We study the accuracy of those
algorithms, both theoretically and via computer simulations. The
advantages of the new models are demonstrated using simulations
and real data examples.

Index Terms—Community detection, multiplex network,
spectral clustering, stochastic block model.

I. INTRODUCTION

A. Multiplex Network Models

S TOCHASTIC network models appear in a variety of appli-
cations, including genetics, proteomics, medical imaging,

international relationships, brain science and many more. While
in the early years of the field of stochastic networks, research
mainly focused on studying a single network, in recent years the
frontier moved to investigation of collection of networks, the so
called multilayer network, which allows to study relationships
between nodes with respect to various modalities (e.g., rela-
tionships between species based on food or space), or consists
of network data collected from different individuals (e.g., brain
networks). Although there are many different ways of model-
ing a multilayer network (see, e.g., an excellent review article
of [1]), in this paper, we consider the case where all layers have
the same set of nodes, and all the edges between nodes are drawn
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within layers, i.e., there are no edges connecting the nodes in
different layers. Many authors, who work in a variety of research
fields, study this particular version of a multilayer network (see,
e.g., [2], [3], [4], [5], [6]). MacDonald et al. [6] called this type
of multilayer network models the Multiplex Network Model and
argued that it appears in a variety of real life situations.

B. Popular Stochastic Network Models

In this paper, we shall consider two types of network models.
The most popular Stochastic Block Model (SBM), introduced
in [7], assumes that all nodes of the network can be divided into
the communities, and that the connection probability between a
pair of nodes is fully determined by the communities to which
those nodes belong. Denote [n] = {1, . . . , n}. If n nodes are
divided into K communities, then there exists a community
assignment function z : [n] → [K], and the block probability
matrixB, such that the probability of connection between nodes
i and j is P(i, j) = B(z(i), z(j)). Alternatively, one can intro-
duce a clustering matrix Z ∈ {0, 1}n×K such that Z(i, k) = 1 if
node i belongs to community k and Z(i, k) = 0 otherwise, and
set P = ZBZT .

The popularity of the SBM is due to the fact that the SBM,
according to [8], provides a universal tool for description of time-
independent stochastic network data. It is also very common
in applications. For example, [9] argues that stochastic block
models provide a powerful tool for brain studies (see also [10],
[11], [12]).

Nevertheless, the SBM fails to describe many real life net-
works that exhibit high degree of heterogeneity between the
nodes. For this reason, in the last two decades a variety of more
flexible models were introduced. All those models, however,
can be viewed as particular cases of the so called Generalized
Random Dot Product Graph (GRDPG) model [13] which as-
sumes that the matrix of connection probabilities P can be
presented as P = XIp,qX

T where X ∈ R
n×K is the latent

position matrix and Ip.q is the diagonal matrix with p ones
and q negative ones on the diagonal, p+ q = K. Matrix X
is assumed to be such that P ∈ [0, 1]n×n. If X = VDXVX

is the Singular Value Decomposition (SVD) of X, then P
can be alternatively presented as P = VQVT , where Q =
DXVXIp,q(VX)TDX . Here, V is the basis of the ambient
subspace of the GRDPG model and Q is the loading matrix.
Since in the SBM, matrix V = Z((Z)TZ)−1/2 has orthonormal
columns, it is evident that the SBM is a particular case of GRDPG
with Q = ((Z)TZ)1/2B((Z)TZ)1/2 and V given above.

In what follows we shall consider a multiplex network with
layers that follow either GRDPG or SBM In addition, we shall
allow diversity between the layers.
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C. DIverse MultiPLEx (DIMPLE) Network Models
Frameworks

Consider an L-layer network on the same set of n ver-
tices, where the tensor of probabilities of connections P ∈
[0, 1]n×n×L is formed by layers P(l), l ∈ [L], that can be par-
titioned into M groups with the common subspace structure or
community assignment. The latter means that there exists a label
function c : [L] → [M ] which identifies to which of M groups
a layer belongs.

If the layers of the network follow the GRDPG model, we
assume that each group of M layers is embedded in its own
ambient subspace but all loading matrices can be different.
Specifically, P(l), l ∈ [L], are given by

P(l) = V(m)Q(l)
(
V(m)

)T

, m = c(l), m ∈ [M ], (1)

where Q(l) = (Q(l))T and V(m) ∈ R
n×Km is a basis matrix of

the m-th group of layers’ subspace, (V(m))TV(m) = I, such
that all entries of P(l) are in [0,1]. We shall call this model the
DIverse MultiPLEx Generalized Random Dot Product Graph
(DIMPLE-GRDPG).

In the case, when layers of the network follow the SBM,
the groups of layers have common community structures but
matrices of block connection probabilities can be all different.
Then,

P(l) = Z(m)B(l)
(
Z(m)

)T

, m = c(l), m ∈ [M ], (2)

where Z(m) is the clustering matrix in the layer of type m =
c(l), that partitions n nodes into Km communities, and B(l) =
(B(l))T is a matrix of block probabilities, l ∈ [L]. In order to
distinguish this special case, we shall refer to (2) as simply the
DIMPLE model.

In both models, one observes the adjacency tensor A ∈
{0, 1}n×n×L with layers A(l) such that A(l)(i, j) = A(l)(j, i)
and, for 1 ≤ i < j ≤ n and l ∈ [L], where A(l)(i, j) are the
Bernoulli random variables withP(A(l)(i, j) = 1) = P(l)(i, j),
and they are independent from each other. The objective is to
recover the layer clustering function c : [L] → [M ], and the
community assignment matrices Z(m) or subspace bases ma-
trices V(m) in the case of models (2) or (1), respectively.

Note that, since the SBM is a particular case of the GRDPG,
(2) is a particular case of (1). Nevertheless, the problems associ-
ated with (1) and (2) are somewhat different. While recovering
matricesV(m) is an estimation problem, finding communities in
the groups of layers, corresponding to clustering matrices Z(m),
is a clustering problem. For this reason, we study both models,
(1) and (2), in this paper.

Our paper makes several key contributions.
1) To the best of our knowledge, our paper studies the most

general multiplex network model which has been exam-
ined in the statistical network literature so far. In particular,
we allow the layers of the network to be equipped with the
most flexible GRDPG model where layers have M ver-
sions of the subspace structures and all loading matrices
are different.

2) For this reason, our paper generalizes a multitude of pub-
lications that investigate multiplex stochastic networks.
We describe the types of models that DIMPLE-GRDPG
generalizes in the next section. The advantage of our
approach is that the methodologies of this paper can be
successfully applied to all those particular cases without
making a particular choice of a model, but the reverse is
not true. We confirm this via simulations.

3) Our paper develops a novel between-layer clustering algo-
rithm that works for both DIMPLE and DIMPLE-GRDPG
network model and derive expressions for the clustering
errors under very simple and intuitive assumptions. Our
simulations confirm that the between-layer and the within-
layer clustering algorithms deliver high precision in a finite
parameter settings. In addition, if M = 1, our subspace
recovery error compares favorably to the ones in [14]
and [15], due to employment of a different algorithm.

4) Since the DIMPLE-GRDPG and the DIMPLE network
models generalize a multitude of more restrictive models,
our paper opens a gateway for testing/model selection. In
particular, one can test whether subspaces /communities
persist throughout the layers of the network, or whether
layers should be partitioned into several groups, which
is equivalent to testing the hypothesis that M = 1 in (1)
or (2).

D. Justification of the Model and Related Work

In the last few years, a number of authors studied multiplex
network models. The vast majority of the paper assumed that all
layers of the network follow the SBM.

While the scientific community considered various types of
multiplex networks in general, and the SBM-equipped multiplex
networks in particular (see e.g., [16], [17] among others), the
theoretically inclined papers in the field of statistics mainly
have been investigating the case where communities persist
throughout all layers of the network while the matrices of block
connection probabilities can take arbitrary values (see, e.g., [18],
[19], [20], [21] and references therein). This case corresponds
to M = 1 in (2).

In the GRDPG-equipped networks, the COmmon Subspace
Independent Edge (COSIE) random graph model of [14]
and [15] follows a similar approach and assumes that every layer
of the network is embedded into the same ambient subspace,
which corresponds to M = 1 in (1).

Nevertheless, there are many real life scenarios where the
assumption, that all layers of the network have the same commu-
nities or are embedded into the same subspace is too restrictive.
For example, it is known that some brain disorders are associated
with changes in brain network organizations (see, e.g., [22]).

One of the possible approaches here is to assume that both,
the community structures and the probabilities of connections in
the network layers, will be identical under the same biological
condition and dissimilar for different conditions. This type of
setting, called the Mixture MultiLayer Stochastic Block Model
(MMLSBM) assumes that all layers can be partitioned into a few
different types,such that each distinct type of layers is equipped
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with its own community structure and a unique matrix of block
connection probabilities, and that both are identical within the
same type of layers.

Specifically, if M = 1, then the DIMPLE model (2) reduces
to the multiplex models in [18], [19], [20], [21], [23] with the
persistent communities, and it becomes the MMLSBM of [24],
[25] and [26], if B(l) takes only M distinct values, i.e., B(l) =
B(m) for c(l) = m. Similarly, if M = 1, the DIMPLE-GRDPG
model in (1) reduces to the COSIE model in [14] and [15]. and
it reduces to a low rank tensor estimation of [27] and [28] if all
matrices Q(l) are identical within a group of layers.

Hence, so far authors considered two complementary types of
settings for multiplex networks. In the first of them, all layers of
the network are embedded into the same subspaces in the case
of the GRDPG, or have the same communities if the layers of
the network are equipped with SBMs. In the second one, the
layers may be embedded into different subspaces, but the tensor
of connection probabilities has a low rank, which reduces to
MMLSBM if layers follow the SBM.

Therefore, the natural generalization of those two scenarios
would be the setting, where the layers of the network can
be partitioned into groups, each with the distinct subspace or
community structure. Such multiplex network can be viewed as
a concatenation of several multiplex networks that follow COSIE
model or Stochastic Block Models with persistent community
structure. On the other hand, such networks will reduce to a low
rank tensor or the MMLSBM if networks in the group of layers
have identical probabilities of connections.

The real data examples in Section V show advantages of the
setting where layers of the network are partitioned into groups
rather than being embedded in the same subspace while simul-
taneously demonstrate that the assumption of the MMLSBM,
that each of these groups of layers have identical matrices of
connection probabilities is equally problematic.

The new DIMPLE-GRDPG model requires development of
new algorithms, since the probability tensor P associated with
the DIMPLE-GRDPG model in (1) does not have a low rank,
due to the fact that all matrices Q(l) are different. For this
reason, techniques and theoretical assessments developed for
low rank tensors do not work in the case of the DIMPLE-GRDPG
model. Similarly, since the matrices of the block connection
probabilities take different values in each of the layers, tech-
niques employed in [25] and [26] cannot be applied in the new
environment of DIMPLE.

In Section IV we show that while our methodology works well
for the MMLSBM (although, as it is expected, it is less efficient
for small values of n and L since it cannot take advantage of the
more restricted structure of the MMLSBM), the MMLSBM-
based algorithms fail in the case of our, more flexible model.

Indeed, the TWIST algorithm of [25] relies on the fact that the
tensor of connection probabilities is truly low rank in the case of
MMLSBM. This, however, is not true for the DIMPLE model,
where the matrices of block connection probabilities vary from
layer to layer. On the other hand, the ALMA algorithm of [26]
exploits the fact that the matrices of connection probabilities
are identical in the groups of layers with the same community
structures. This is no longer true in the environment of the

DIMPLE model, where matrices of connection probabilities are
all different for different layers.

E. Notations

For any integer n, we denote [n] = {1, . . ., n}. We denote
tensors by calligraphy letters and matrices by bold letters. De-
note by MN,K the set of the clustering matrices for N objects
partitioned into K groups

MN,K =
{
X ∈ {0, 1}N×K , X1 = 1, XT1 �= 0

}
,

where X ∈ MN,K are such that Xi,j = 1 if node i is in cluster
j and and Xi,j = 0 otherwise. For any matrix X, denote the
Frobenius, the infinity and the operator norm by ‖X‖F , ‖X‖∞
and ‖X‖, respectively, and its r-th largest singular value by
σr(X). The column j and the row i of a matrix Q are denoted
by Q(:, j) and Q(i, :), respectively. Denote the identity and the
zero matrix of size K by, respectively, IK and 0K (where K is
omitted when this does not cause ambiguity). Denote

On,K =
{
X ∈ R

n×K : XTX = IK
}
, On = On,n. (3)

Let vec(X) be the vector obtained from matrix X by sequen-
tially stacking its columns. Denote by X⊗Y the Kronecker
product of matrices X and Y. Denote n-dimensional vector
with unit components by 1n. Denote diagonal of a matrix A by
diag(A). Also, denote the M -dimensional diagonal matrix with
a1, . . ., aM on the diagonal by diag(a1, . . ., aM ).

For any matrix X ∈ R
n1×n2 , denote its projection on the

nearest rankK matrix byΠK(X). For any matricesX ∈ R
n1×n2

and U ∈ On1,K , K ≤ n1, projection of X on the column space
of U and on its orthogonal space are defined, respectively, as
ΠU(X) = UUTX, ΠU⊥(X) = (I−ΠU)X. Following [29],
we define the following tensor operations. For any tensor X ∈
R

n1×n2×n3 and a matrix A ∈ R
m×n3 , their product X ×3 A

along dimension 3 is a tensor in R
n1×n2×m with elements

[X ×3 A](i1, i2, j) =

n3∑
i3=1

A(j, i3)X (i1, i2, i3), j ∈ [m].

IfY ∈ R
m×n2×n3 is another tensor, the product between tensors

X and Y along dimensions (2,3), denoted by X ×2,3 Y , is a
matrix in R

n1×m with elements

[X ×2,3 Y](i1, i2) =

n2∑
j2=1

n3∑
j3=1

X (i1, j2, j3)Y(i2, j2, j3),

for i1 ∈ [n1], i2 ∈ [m]. The mode-3 matricization of tensor X ∈
R

n1×n2×n3 is a matrix M3(X ) = X ∈ R
n3×(n1n2) with rows

X(i, :) = [vec(X (:, :, i))]T . Please, see [29] for a more extensive
discussion of tensor operations and their properties.

We use the sinΘ distances to measure the separation
between two subspaces with orthonormal bases U ∈ On,K

and Ũ ∈ On,K , respectively. Suppose the singular values
of UT Ũ are σ1 ≥ σ2 ≥ . . . ≥ σK >> 0. Then Θ(U, Ũ) =
diag(cos−1(σ1), . . ., cos

−1(σK)) are the principle angles. Quan-
titative measures of the distance between the column spaces of
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U and Ũ are then∥∥∥sinΘ(
U, Ũ

)∥∥∥ =

√
1− σ2

min

(
UT Ũ

)
,

∥∥∥sinΘ(
U, Ũ

)∥∥∥
F
=

√
K − ‖UT Ũ

)
‖2F . (4)

Some convenient characterizations of those distances can be
found in Section 8.1 of [30].

Finally, we shall use C for a generic positive constant that
can take different values and is independent of L, n, M , K and
graph densities.

II. FITTING THE DIMPLE AND THE DIMPLE-GRDPG
MODELS

In this paper, we consider a multiplex network with L layers
of M types, where Lm is the number of layers of type m ∈ [M ].
Let C ∈ M(L,M) be the layer clustering matrix. A layer of
type m has an ambient dimension Km. In the case of model (2),
a layer of type m has Km communities, and nk,m is the number
of nodes of type k ∈ [Km] in the layer of type m, so that

D(m)
z =

(
Z(m)

)T

Z(m) = diag(n1,m, . . ., nKm,m). (5)

A. Between-Layer Clustering

First, we note that model (2) is a particular case of model
(1). Indeed, denote U

(m)
z = Z(m)(D

(m)
z )−1/2, where matrices

D
(m)
z are defined in (5). Since U(m)

z ∈ On,Km
, matrices P(l) in

(2) can be written as

P(l) = U(m)
z B

(l)
D

(
U(m)

z

)T

, B
(l)
D =

√
D

(m)
z B(l)

√
D

(m)
z .

(6)
Therefore, (2) is a particular case of (1) with V(m) = U

(m)
z and

Q(l) = B
(l)
D . For this reason, we are going to cluster groups of

layers in the more general setting (1) of DIMPLE-GRDPG.
In order to find the clustering matrix C, observe that matrices

P(l) in (1) can be written as

P(l) = V(m)O
(l)
Q S

(l)
Q

(
O

(l)
Q

)T (
V(m)

)T

, l ∈ [L], (7)

where

Q(l) = O
(l)
Q S

(l)
Q

(
O

(l)
Q

)T

, l ∈ [L], (8)

is the singular value decomposition (SVD) of Q(l) with O
(l)
Q ∈

On,Km
, m = c(l), and diagonal matrix S

(l)
Q . In order to extract

common information from matrices P(l), we consider the SVD
of P(l), l ∈ [L],

P(l) = UP,lΛP,l(UP,l)
T , UP,l ∈ On,Km

, m = c(l), (9)

and relate it to the expansion (7). If, as we assume later,
matrices Q(l) are of full rank, then O

(l)
Q ∈ OKm

, so that

O
(l)
Q

(
O

(l)
Q

)T

=
(
O

(l)
Q

)T

O
(l)
Q = IKm

, m = c(l). Therefore,

V(m)O
(l)
Q ∈ On,Km

, and expansion (7) is just another way of

Algorithm 1: The Between-Layer Clustering.

Input: Adjacency tensor A ∈ {0, 1}n×n×L; number of
groups of layers M ; ambient dimension K(l) of each layer
l ∈ [L]; parameter ε

Output: Estimated clustering matrix Ĉ ∈ ML,M

Steps:
1: Find the SVDs ΠK(l)(A(l)) = ÛA,lΛ̂P,l(ÛA,l)

T ,
ÛA,l ∈ On2,K(l) , l ∈ [L]

2: Form matrix Θ̂ ∈ R
n2×L with columns

Θ̂(:, l) = vec
(
ÛA,l(ÛA,l)

T
)

3: Construct the SVD of Θ̂ using (14) and obtain matrix
Ŵ = W̃(:, 1 : M) ∈ OL,M

4: Cluster L rows of Ŵ into M clusters using
(1 + ε)-approximate K-means clustering. Obtain
estimated clustering matrix Ĉ

writing the SVD ofP(l). Hence, when c(l) = m, one hasUP,l =

V(m)O
(l)
V where O

(l)
V ∈ OKm

is a Km-dimensional rotation.

Since matrices O(l)
V are unknown, we introduce alternatives to

UP,l:

UP,l (UP,l)
T = V(m)

(
V(m)

)T

, m = c(l), (10)

which depend on l only via m = c(l) and are uniquely defined
for l ∈ [L]. The latter implies that the between-layer clustering
can be based on the matrices UP,l(UP,l)

T , l ∈ [L], or rather on
their vectorized versions. Denote

Dc = CTC = diag(L1, . . ., LM ), W = C(Dc)
−1/2, (11)

where W ∈ OL,M .
Consider matrices Θ ∈ R

n2×L and Ψ ∈ R
n2×M with re-

spective columns Θ(:, l) = vec(V(c(l))(V(c(l)))T ) = vec(UP,l

(UP,l)
T ) andΨ(:,m) = vec(V(m)(V(m))T ), wherem ∈ [M ],

l ∈ [L]. Then,

Θ = ΨCT , Ψ = ΘCD−1
c , (12)

so that clustering assignment can be recovered by spectral clus-
tering of columns of an estimated version of matrix Θ.

For this purpose, consider layers A(l) = A(:, :, l) of the ad-
jacency tensor A and construct the SVDs of their rank Km

projections ΠKm
(A(l)), m = c(l), l ∈ [L]:

ΠKm

(
A(l)

)
= ÛA,lΛ̂P,l

(
ÛA,l

)T

, ÛA,l ∈ On,Km
(13)

Then, replace matrix Θ by its proxy Θ̂ with columns
Θ̂(:, l) = vec(ÛA,l(ÛA,l)

T ). The major difference between
Θ and Θ̂, however, is that, under assumptions in Section III-A,
rank(Θ) = M while, in general, rank(Θ̂) = L � M . If the
SVD of Θ̂ is

Θ̂ = ṼΛ̃W̃ , Ṽ ∈ On2,L, W̃ ∈ OL, (14)

then, we can form reduced matrices

V̂ = Ṽ(:, 1 : M) ∈ On2,M , Ŵ = W̃(:, 1 : M) ∈ OL,M ,
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and apply clustering to the rows of Ŵ rather than to the
rows of W̃ . The latter results in Algorithm 1. We use (1 + ε)-
approximate K-means clustering to obtain the final clustering
assignments. There exist efficient algorithms for solving the
(1 + ε)−approximate K-means problem (see, e.g., [31]). We
denote

D̂c = ĈT Ĉ, Ŵ = ĈD̂−1/2
c ∈ OL,M . (15)

Observe that clustering procedure above relies on the knowledge
of the ambient dimension Km, which is associated with the
unknown group membershipm = c(l). Instead of assuming that
Km are known, as it is done in [25] and [26], we assume that
one knows the ambient dimension K(l) of the GRDPG in every
layer l ∈ [L] of the network. This is a very common assumption
and is imposed in almost every paper that studies latent position
or block model equipped networks (see, e.g., [13], [32], [33],
[34]). In this case, one can replace Km in (13) by K(l). We
further discuss this issue in Remark 2.

Remark 1: Unknown number of layers. While Algorithm 1
assumes M to be known, in many practical situations this is
not true, and the value of M has to be discovered from data.
Identifying the number of clusters is a common issue in data
clustering, and it is a separate problem from the process of
actually solving the clustering problem with a known number
of clusters. There are many ways for estimating the number of
clusters, for instance, by evaluation of the clustering error in
terms of an objective function, as in, e.g., [35], or by monitoring
the eigenvalues of the non-backtracking matrix or the Bethe
Hessian matrix, as it is done in [36].

Remark 2: Unknown ambient dimensions. In this paper, for
the purpose of methodological developments, we assume that
the ambient dimension (number of communities in the case
of the DIMPLE model) K(l) of each layer of the network is
known. This is a common assumption, and everything in the
Remark 1 can also be applied to this case. Here, K(l) = Km

with m = c(l). One can, of course, can assume that the values
ofKm,m ∈ [M ], are known. However, since group labels are in-
terchangeable, in the case of non-identical subspace dimensions
(numbers of communities), it is hard to choose, which of the
values corresponds to which of the groups. This is actually the
reason why [25] and [26], who imposed this assumption, used it
only in theory, while their simulations and real data examples are
all restricted to the case of equal number of communities in all
layers Km = K, m ∈ [M ]. On the contrary, knowledge of K(l)

allows one to deal with different ambient dimensions (number of
communities) in the groups of layers in simulations and real data
examples. Specifically, one can infer the ambient dimension in
each group of layers using the ScreeNOT technique of [37].

B. Fitting Invariant Subspaces in Groups of Layers in the
DIMPLE-GRDPG Model. Within-Layer Clustering in the
DIMPLE Model

If we knew the true clustering matrix C and the true prob-
ability tensor P ∈ R

n×n×L with layers P(l) given by (1), then
we could average layers with identical subspace structures. In
the case of real data, however, precision of estimating V(m)

Algorithm 2: Estimating Invariant Subspaces (DIMPLE-
GRDPG Model) and Within-Layer Clustering (DIMPLE
Model).

Input: Adjacency tensor A ∈ {0, 1}n×n×L; number of
groups of layers M ; ambient dimensions Km, m ∈ [M ],
of each group of layers; estimated clustering matrix
Ĉ ∈ ML,M

Output: For m ∈ [M ], estimated invariant subspaces
V̂(m), (DIMPLE-GRDPG model); estimated clustering
matrices Ẑ(m) (DIMPLE model)

Steps:
1: Construct tensor Ĝ with layers Ĝ(l) given by (16),
l ∈ [L]

2: Construct tensor Ĥ using formula (17)
3: Construct the SVDs of layers
Ĥ(m) = Ũ

(m)
̂H

Λ̂
(m)
̂H

(Ũ
(m)
̂H

)T , m ∈ [M ]

4: Find V̂(m) = Ũ
(m)
̂H

(:, 1 : Km) = ΠKm
(Ũ

(m)
̂H

),
m ∈ [M ]

5: For the DIMPLE model, cluster rows of V̂(m) into Km

clusters using (1 + ε)-approximate K-means clustering.
Obtain clustering matrices Ẑ(m), m ∈ [M ]

depends on the lowest nonzero eigenvalue of the sum of of Q(l)

with c(l) = m. Since eigenvalues of Q(l) can be negative and
positive, the lower bound on the latter is not guaranteed. Alter-
natively, one can add the squares G(l) = (P(l))2, obtaining, for
m ∈ [M ],∑
c(l)=m

G(l)=
∑

c(l)=m

(
P(l)

)2

=
∑

c(l)=m

V(m)
(
Q(l)

)2 (
V(m)

)T

.

In this case, the eigenvalues of (Q(l))2 are all positive which
ensures successful recovery of matrices V(m).

Note that, however, (A(l))2 is not an unbiased estimator of
(P(l))2. Indeed, while E((A(l))2)i,j = ((P(l))2)i,j for i �= j,
for the diagonal elements, one has
E((A(l))2)i,i = (P(l))2i,i +

∑
j [(P

(l))i,j − (P(l))2i,j ].
Therefore, following [19], we evaluate the degree vector
d̂(l) = A(l)1n and form diagonal matrices diag(d̂(l)) with
vectors d̂(l) on the diagonals. We construct a tensor Ĝ ∈ R

n×n×L

with layers Ĝ(l) = Ĝ(:, :, l) of the form

Ĝ(l) =
(
A(l)

)2

− diag(d̂(l)), l ∈ [L]. (16)

Subsequently, we combine layers of the same types, obtaining
tensor Ĥ ∈ R

n×n×M

Ĥ = Ĝ ×3 Ŵ
T , (17)

where Ŵ is defined in (15). After that, V(m), m ∈ [M ], can
be estimated using the SVD. The procedure is described in
Algorithm 2.

After the matrices V(m) have been estimated, in the case of
the DIMPLE model, one can find the clustering matricesZ(m) in
(2) by approximateK-means clustering. Indeed, up to a rotation,
V(m) is equal to U

(m)
z = Z(m)(D

(m)
z )−1/2, where Z(m) is the
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clustering matrix of the layer m. Hence, there are only Km

distinct rows in the matrix V(m), and clustering assignment can
be obtain using step 5 of Algorithm 2.

III. THEORETICAL ANALYSIS

In this section, we study the between-layer clustering error
rates of the Algorithm 1, the error of estimation of invariant
subspaces for the DIMPLE-GRDPG model and and the within-
layer clustering error rates of Algorithm 2. Since the clustering
is unique only up to a permutation of cluster labels, denote the
set of K-dimensional permutation functions of [K] by ℵ(K)
and the set of K ×K permutation matrices by F(K). The
misclassification error rate of the between-layer clustering is
then given by

RBL = (2L)−1 min
P∈F(M)

‖Ĉ−CP‖2F . (18)

Similarly, the local community detection error in the layer of
type m ∈ [M ] is

RWL(m) = (2n)−1 min
Pm∈F(Km)

‖Ẑ(m) − Z(m) Pm‖2F . (19)

Note that, since the numbering of layers is defined also up
to a permutation, the errors RWL(1),..., RWL(M) should be
minimized over the set of permutationsℵ(M). The average error
rate of the within-layer clustering is then given by

RWL = M−1 min
ℵ(M)

M∑
m=1

RWL(m). (20)

We shall measure the differences between the true and the
estimated subspace bases matrices V(m) and V̂(m) using the
average sinΘ distances defined in (4). Here, again we need to
seek the minimum over permutations of labels. We measure the
error as RS,ave

RS,ave =
1

M
min
ℵ(M)

M∑
m=1

∥∥∥sinΘ(
V(m), V̂(ℵ(m))

)∥∥∥2
F
. (21)

A. Assumptions

In order the layers are identifiable, we assume that matrices
V(m) in (1) or Z(m) in (2) correspond to different linear sub-
spaces for different values of m. Furthermore, the performance
of Algorithm 2 depends on the success of the between-layer
clustering in Algorithm 1, which, in turn, relies on the fact that
matricesV(m)(V(m))T in (1) orZ(m)(Z(m))T in (2),m ∈ [M ],
are not too similar to each other for different values of m.

For the between layer clustering errors and the accuracy of the
subspaces recovery, we develop our theory for the general case
of the DIMPLE-GRDPG model (1). Subsequently, we derive
the within-layer clustering errors for the DIMPLE model (2).
Denote

K = M−1
M∑

m=1

Km, K = max
m∈[M ]

Km. (22)

Consider matrix Z ∈ R
n×MK , which is obtained as horizontal

concatenation of matrices V(m) ∈ R
n×Km , m ∈ [M ]. Let the

SVD of Z be

Z = [V(1)|. . .|V(M)] = U D V
T
,

U ∈ On,r,V ∈ OMK,r, r ≥ M + 1. (23)

Here, r is the rank of Z, and D is an r-dimensional diago-
nal matrix. In the case of the DIMPLE model (2), one has
Z = [U

(1)
z |. . .|U(M)

z ]. Since matrices V(m) represent different
subspaces, one has M + 1 ≤ r < n. We impose the following
assumptions.

A1. Clusters of layers are balanced, so that there exist absolute
positive constants CK , c and c̄ such that

CKK ≤ Km ≤ K, cL/M ≤ Lm ≤ c̄L/M, m ∈ [M ], (24)

where Lm is the number of networks in the layer of type m.
In the case of the DIMPLE model (2), local communities are
balanced, so that

cn/K ≤ nk,m ≤ c̄n/K, k ∈ [Km],m ∈ [M ],

where nk,m is the number of nodes in the k-th community in the
layer of type m.

A2. For some absolute constant κ0, one has σ1(D) ≤
κ0σr(D) in (23).

A3. The layers P(l) of the probability tensor P in (1) are such
that, for some absolute constant Cρ and any l ∈ [L]

P(l) = ρn,lP
(l)
0 , ‖P(l)

0 ‖∞ = 1, min
l∈[L]

ρn,l ≥ Cρ
log n

n
. (25)

In the case of the DIMPLE model (2), (25) reduces to B(l) =

ρn,l B
(l)
0 , ‖B(l)

0 ‖∞ = 1.
A4. Matrices Q(l) in (1) are such that, for some absolute

constant Cλ ∈ (0, 1), one has

min
l=1,....L

[
σKm

(
Q(l)

)
/σ1

(
Q(l)

)]
≥ Cλ, m = c(l). (26)

In the case of the DIMPLE model, (26) appears as
minl∈[L][σKm

(B
(l)
0 )/σ1(B

(l)
0 )] ≥ Cλ for m = c(l).

A5. There exist absolute constants cρ and c̄ρ such that

cρ ρn ≤ ρn,l ≤ c̄ρ ρn with ρn = (ρn,1 + · · ·+ ρn,L)/L.
(27)

A6. For some absolute constant C0,P one has∥∥∥P(l)
0

∥∥∥2
F
≥ C2

0,P K−1 n2. (28)

Assumptions above are very common and are present in many
other network papers. Specifically, Assumption A1 is identical
to Assumptions A3 and A4 in [25], or Assumption A3 in [26].
Assumption A2 is identical to Assumption A2 in [25]. Assump-
tion A3 is present in majority of papers that study community
detection in individual networks (see, e.g. [38]). It is required
here since we rely on similarity of the sets of eigenvectors
in the groups of similar layers, and, hence, need the sample
eigenvectors to converge to the true ones. We believe that this as-
sumption is necessary since it is also present in a majority of the
multilayer network papers such as [14] and [15]. Assumption A4
is equivalent to Assumption A1 in [25], Assumption A4 in [26]
and an equivalent assumption in [15]. Finally, Assumption A5
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requires that the sparsity factors are of approximately the same
order of magnitude. The latter guarantees that the discrepancies
between the true and the sample-based eigenvectors are similar
across all layers of the network. Hypothetically, Assumption A5
can be removed, and one can trace the impact of different scales
ρn,l on the clustering errors. This, however, will make clustering
error bounds very complicated, so we leave this case for future
investigation. Assumption A6 postulates that matrices P(l)

0 have
enough non-negligible entries. Assumption A6 naturally holds
in the case of the balanced DIMPLE model (2). Indeed, in this
case, ‖P(l)

0 ‖2F ≥ c2n2 K−2 ‖B(l)
0 ‖2F . Due to Assumption A3,

one has 1 = ‖B(l)
0 ‖∞ ≤ ‖B(l)

0 ‖ and, therefore, by Assump-
tions A1 and A4

∥∥∥B(l)
0

∥∥∥2
F
≥ Km σ2

Km

(
B

(l)
0

)
≥ C2

λ Km

∥∥∥B(l)
0

∥∥∥2 ≥ C2
λ CK K,

which implies ‖P(l)
0 ‖2F ≥ Cn2/K.

Note that Assumption A3 implies that n → ∞. In what fol-
lows, we assume that L can grow at most polynomially with
respect to n, specifically, that for some constant τ0

L ≤ nτ0 , 0 < τ0 < ∞. (29)

Condition (29) is hardly restrictive. Indeed, [25] assume that
L ≤ n, so, in their paper, (29) holds with τ0 = 1. We allow any
polynomial growth of L with respect to n.

B. The Between-Layer Clustering Error

Evaluation of the between-layer clustering error relies on the
accuracy, measured in sinΘ distance (4), of estimation of matrix
W by Ŵ in Algorithm 1. The latter, due to the Davis-Kahan
Theorem [39], depends on the lowest nonzero singular value of
matrix Θ. The structure of matrix Θ is given by the following
Lemma.

Lemma 1: Under Assumptions A1–A6, the SVD of Θ in (12)
can be written as

Θ = VΛWT , V ∈ On2,M ,W = WOW ∈ OL,M , (30)

where matrix W is defined in (11), OW ∈ OM and

σ2
M (Θ) = σ2

min(Λ) ≥ (c̄ κ4
0 M)−1 cCK K L. (31)

Representation (30) allows one to bound above the between-
layer clustering error.

Theorem 1: Let Assumptions A1–A6 and (29) hold. Then,
for any τ > τ0, there exists a constant C that depends only on
τ , CK , κ0, c̄, c, c̄ρ and cρ in Assumptions A1–A6, such that the
between-layer clustering error, defined in (18), satisfies

P
{
RBL ≤ C (nρn)

−1K2
} ≥ 1− Ln−τ ≥ 1− n−(τ−τ0).

(32)

C. The Subspace Fitting Errors in Groups of Layers in the
DIMPLE-GRDPG Model

In this section, we provide upper bounds for the divergence
between matrices V(m) and their estimators V̂(m), m ∈ [M ].
We measure their discrepancies by RS,ave defined in (21).

Theorem 2: Let Assumptions A1–A6 and (29) hold, M > 1
and matrices V̂(m),m ∈ [M ], be obtained by Algorithm 2. Let

lim
n→∞(nρn)

−1 MK2 = 0. (33)

Then, for any τ > 0, there exist constantsC that depends only on
constants in Assumptions A1–A6, and a set Ωτ,ε and constants
Cτ,ε that depend only on τ and ε, such that

P(Ωτ,ε) ≥ 1− Cτ,ε Ln1−τ , (34)

and, for ω ∈ Ωτ,ε, the subspace estimation error RS,ave defined
in (21), satisfies

RS,ave ≤ C

{
K5 M log n(nLρn)

−1 +K5n−2

+I(M > 1)K5M
[
(nρn)

−1+K2 log2 n(nρn)
−2
]}

.

(35)

Note that, due to condition (29), if τ > τ0 + 1, then the
upper bound in (35) holds with probability at least 1−
C̃τ,ε n

−(τ−τ0−1).
Remark 3: Subspace estimation error for a homogeneous

multilayer GRDPG. Consider the case when M = 1, so that all
layers of the network can be embedded into the same invariant
subspace. It follows from Theorem 2 that, for ω ∈ Ωτ,ε, where
Ωτ,ε is defined in (34), one has much smaller subspace estimation
error

RS,ave ≤ C K5
[
(nρn L)−1 log n+ n−2

]
. (36)

D. The Within-Layer Clustering Error

Since the within-layer clustering for each group of layers is
carried out by clustering rows of the matrices V̂(m), the upper
bound for RWL defined in (20) can be easily obtained as a
by-product of Theorem 2. Specifically, the following statement
holds.

Corollary 1: Let assumptions of Theorem 2 hold. Then, for
any τ > 0, there exists a constant C that depends only on
constants in Assumptions A1–A6, and Cτ,ε which depends only
on τ and ε, such that for ω ∈ Ωτ,ε, where Ωτ,ε is defined in (34),

RWL ≤ C

{
K4 M log n(nLρn)

−1 +K4n−2

+I(M > 1)K4M
[
(nρn)

−1+K2 log2 n(nρn)
−2
]}

.

(37)

Note that in the case of M = 1, Corollary 1 yields, with high
probability, that

RWL ≤ C K4
[
(nρn L)−1 log n+ n−2

]
. (38)
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IV. SIMULATION STUDY

In order to study performances of our methodology for various
combinations of parameters, we carry out a limited simula-
tion study with models generated from the DIMPLE and the
DIMPLE-GRDPG models. We use Algorithm 1 for finding
the groups of layers and Algorithms 2 and 3, respectively,
for recovering the ambient subspaces in the DIMPLE-GRDPG
setting, and for finding communities in groups of layers for
the DIMPLE model. In addition, we carry out the simulation
comparison between the DIMPLE model and the MMLSBM.

Simulations settings: To obtain a multilayer network that
complies with our assumptions in Section III-A, we fix n,
L, M , K, the sparsity parameters c and d, the assortativity
parameterw, and the Dirichlet parameterα used for generating a
DIMPLE-GRDPG network. We use the multinomial distribution
with equal probabilities 1/M to assign group memberships to
individual networks.

In the case of the DIMPLE model, we generate K com-
munities in each of the groups of layers using the multino-
mial distribution with equal probabilities 1/K. In this manner,
we obtain community assignment matrices Z(m), m ∈ [M ], in
each layer l with c(l) = m, where c : [L] → [M ] is the layer
assignment function. Next, we generate the entries of B(l),
l ∈ [L], as uniform random numbers between c and d, and then
multiply all the non-diagonal entries of those matrices by w.
In this manner, if w < 1 is small, then the network is strongly
assortative, i.e., there is a higher probability for nodes in the
same community to connect. If w > 1 is large, then the network
is disassortative, i.e., the probability of connection for nodes
in different communities is higher than for nodes in the same
community. Finally, since entries of matrices B(l) are generated
at random, when w is close to one, the networks in all layers
are neither assortative or disassortative. After the community
assignment matrices Z(m) and the block probability matrices
B(l) have been obtained, we construct the probability tensor
P with layers P(:, :, l) = Z(m)B(l)(Z(m))T , where m = c(l),
l ∈ [L].

In the case of the DIMPLE-GRDPG setting, we obtain
matrices X(m) ∈ [0, 1]n×K , m ∈ [M ], with independent rows,
generated using the Dirichlet distribution with parameter α.
We obtain matrices B(l), in exactly the same manner as in
the case of the DIMPLE model and construct P with lay-
ers P(:, :, l) = X(m)B(l)(X(m))T , where m = c(l), l ∈ [L].
In this case, the matrices V(m) are obtained from the SVD
X(m) = V(m)Λ

(m)
X W

(m)
X of X(m). Matrices Q(l) are defined

as Q(l) = Λ
(m)
X W

(m)
X B(l)(W

(m)
X )TΛ

(m)
X in (1), l ∈ [L].

After the probability tensor P has been generated, the layers
A(l) of the adjacency tensor A are obtained as symmetric
matrices with zero diagonals and independent Bernoulli entries
A(l)(i, j) for 1 ≤ i < j ≤ n. Subsequently, we use Algorithm 1
for finding the groups of layers for both models, followed by
Algorithm 2 for estimating matrices V(m) in the case of the
DIMPLE-GRDPG network, or clustering nodes in each group of
layers of the network into communities for the DIMPLE model.
In both cases, we have two sets of simulations, one with fixed
L and varying n, another with the fixed n and varying L. In all

Fig. 1. Between-layer clustering error rates of Algorithm 1 (left) and the
within-layer error rates of Algorithms 2 (right), averaged over 500 simulation
runs, for the DIMPLE model with c = 0, d = 0.8 (top) and c = 0, d = 0.5
(bottom), L = 50 and n = 20, 25, 30, 40, 50, 60, 75, 100.

Fig. 2. Between-layer clustering error rates of Algorithm 1 (left) and
the within-layer error rates of Algorithms 2 (right), averaged over 500
simulation runs, for the DIMPLE model with c = 0, d = 0.8 (top)
and c = 0, d = 0.5 (bottom), n = 100 and L = 5, 10, 15, 20, 25,
30, 40, 50, 60, 75, 100, 150, 200, 250, 300, 350, 400.

simulations, we set M = 3 and Km = 3 for m = 1, 2, 3, and
study two sparsity scenarios, c = 0, d = 0.8 or c = 0, d = 0.5,
with four values of assortativity parameterw = 0.6, 0.8, 1.0 and
1.2. In all simulations, we set α = 0.1. We report the average
between-layer clustering errors RBL defined in (18), and also
the average within-layer clustering error RWL defined in (20) in
the case of the DIMPLE setting and the average sinΘ distance
RS,ave defined in (21) between the true and the estimated
subspaces in the case of the DIMPLE-GRDPG network. We first
present simulations results for the DIMPLE model followed by
the study of the DIMPLE-GRDPG model.

Simulations results: Both estimation and clustering are harder
when a network is more sparse, therefore, all errors are smaller
when d = 0.8 (top panels) than when d = 0.5 (bottom).
Figs. 1–4 show that the value of the assortativity parameter
does not play a significant role in the between-layer cluster-
ing. Indeed, as the left panels in all figures show, the smallest
between-layer clustering errors occur for w = 1.2 followed by
w = 1.0. The latter confirms that the difficulty of the between-
layer clustering is predominantly controlled by the sparsity of the
network. The results are somewhat different for the community
detection errors and the subspace estimation errors in, respec-
tively, the DIMPLE and the DIMPLE-GRDPG models. Indeed,
as the right panels in Figs. 1–4 show, the smallest errors occur
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Fig. 3. Between-layer clustering error rates of Algorithm 1 (left) and
the sinΘ distances RS,ave of Algorithms 2 (right), averaged over 100
simulation runs, for the DIMPLE-GRDPG model with α = 0.1, c = 0,
d = 0.8 (top) and c = 0, d = 0.5 (bottom), L = 50 and n = 20, 25,
30, 40, 50, 60, 75, 100, 120, 140, 160.

Fig. 4. Between-layer clustering error rates of Algorithm 1 (left) and
the sinΘ distances RS,ave of Algorithms 2 (right), averaged over
100 simulation runs, for the DIMPLE-GRDPG model with α = 0.1,
c = 0, d = 0.8 (top) and c = 0, d = 0.5 (bottom), n = 100 and L = 5,
10, 15, 20, 25, 30, 40, 50, 60, 75, 100, 150, 200, 250, 300, 350, 400.

in the more assortative/disassortative models with w = 0.6 and
w = 1.2.

One can see from Figs. 1 and 3 that, when n grows, all errors
decrease. The influence of L on the error rates is more complex.
As Theorem 1 implies, the between-layer clustering errors are
of the order (nρn)−1 for fixed values of M and K. This agrees
with the left panels in Figs. 2 and 4 where curves exhibit constant
behavior for when L grows (small fluctuations are just due to
random errors). For the right panels in Figs. 2 and 4 this, however,
happens only when L is relatively large.

The explanation for such behavior lies in the fact that the
between-layer clustering error (corresponding to the left panels
in Figs. 2 and 4) is of the order K2 (nρn)

−1 and is independent
of L. On the other hand, for fixed K and M , the errors RWL and
RS,ave (corresponding to the right panels in, respectively, Figs. 2
and 4) are of the order (nρn)

−1 + log n (nρn L)−1. While L is
small the second term is dominant but, as L grows. the first term
becomes dominant and the errors stop declining as L grows.

The DIMPLE model versus the MMLSBM: In this paper, we
consider the DIMPLE model, which is a more general model
than the MMLSBM. Specifically, the MMLSBM has only M
types of layers in the tensor and, therefore, results in a low
rank tensor. On the other hand, all tensor layers in the DIMPLE
model can be different and, therefore, the tensor is not of low

Fig. 5. Between-layer clustering error rates of Algorithm 1 and Alternative
Minimization Algorithm of [26]. Data are generated using DIMPLE model with
L = 50, c = 0, d = 0.8 (top) and c = 0, d = 0.5 (bottom), and w = 0.7 (left
panel) or w = 1 (right panel).

Fig. 6. Between-layer clustering error rates of Algorithm 1 and Alterna-
tive Minimization Algorithm of [26]. Data are generated using DIMPLE
model with L = 100, c = 0, d = 0.8 (top) and c = 0, d = 0.5 (bottom),
n = 20, 40, 60, 80, 100, 120, 140, 160 and w = 0.7 (left panel) or w = 1
(right panel).

rank. In this section, we carry out a limited simulation study,
the purpose of which is to convince a reader that, while our
algorithms work in the case of the MMLSBM, the algorithms
designed for the MMLSBM produce poor results when data are
generated according to the DIMPLE models.

For facilitation of such comparisons, we generate data for
the DIMPLE model in exactly the same manner as it is done
above. In order to generate data according to the MMLSBM,
we note that the main difference between the MMLSBM and
the DIMPLE model is that, in MMLSBM, one has only M
distinct matrices B(l), since B(l) = B(c(l)), l ∈ [L]. Hence,
we generate M matrices B(m), m ∈ [M ], and then set B(l) =
B(c(l)), l ∈ [L]. We present only the between layer clustering
errors since the within-layer clustering in the MMLSBM and
the DIMPLE model can be carried out in a similar way. We
compare the performances of Algorithm 1 in this paper with
the Alternative Minimization Algorithm (ALMA) of [26]. This
choice, rather than the TWIST algorithm of [25], is motivated
by the fact that in [26] AMLA was shown to be more precise
than TWIST in majority of situations. Figs. 5–8 exhibit results
of application of Algorithm 1 and ALMA of [26] for K = 5,
M = 3 and various values of L, n, c, d and w.

Specifically, Figs. 5 and 6 show that, when data are generated
according to the DIMPLE model, Algorithm 1 in our paper
allows to reliably separate layers of the network into M types,
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Fig. 7. Between-layer clustering error rates of Algorithm 1 and Alterna-
tive Minimization Algorithm of [26]. Data are generated using MMLSBM
with L = 50, c = 0, d = 0.8 (top) and c = 0, d = 0.5 (bottom), n =
20, 40, 60, 80, 100, 120, 140, 160 and w = 0.7 (left panel) or w = 1 (right
panel).

Fig. 8. Between-layer clustering error rates of Algorithm 1 and Alternative
Minimization Algorithm of [26]. Data are generated using MMLSBM with L =
100, c = 0,d = 0.8 (top) and c = 0,d = 0.5 (bottom), andw = 0.7 (left panel)
or w = 1 (right panel).

while ALMA fails to do so. The reason for this is that ALMA
expects the matrices of probabilities to be identical in those
layers, although, in reality, they are not. As a result, when n
grows, the clustering errors do not tend to zero but just flatten.

Figs. 7 and 8 exhibit results of application of Algorithm 1 and
ALMA when data are generated according to the MMLSBM.
As it is expected, for small values of n, ALMA leads to a better
clustering precision. The latter is due to the fact that Algorithm 1
relies on the SVDs of the layers of the adjacency tensor A, that
are not reliable for small values of n. In addition, Algorithm 1
cannot take into account that the probability tensor is of a low
rank since this is not true for the DIMPLE model. However,
these advantages become less and less significant as n grows.
As Figs. 7 and 8 show, both algorithms have similar clustering
precision for larger values of n, specifically, for n ≥ n0, where
n0 is between 60 and 100, depending on a particular simulations
setting.

V. APPLICATION TO THE REAL WORLD DATA

In this section, we consider applications of the DIMPLE and
the DIMPLE-GRDPG models to real-life data, and its compar-
ison with the MMLSBM. Note that since the GRDPG includes
all other block network models as its particular cases, the latter
obviates making those choices. Algorithm 1 works equally well
for a multilplex network equipped with any type of such model.

In our examples, however, the DIMPLE model with its
SBM-imposed structures provided better descriptions of the
organization of layers in each group than its GRDPG-based
DIMPLE-GRDPG counterpart. This allowed us to compare data
analyses under the DIMPLE model with the similar analyses
under the simpler MMLSBM. MMLSBM is the only model
which we can use for comparison with our model since all other
multiplex network models assume that all layers follow the same
community structure.

In what follows, we examine two real data sets: the Global
Flights Network Data and the Worldwide Food Trading Net-
works data. Both examples demonstrate that application of
our much more flexible DIMPLE model leads to much more
intuitive description of the data which, in our view, validates the
introduction of the model and its analysis in this paper.

A. Global Flights Network Data

In this subsection, we applied our clustering algorithms to the
Global Flights Network data collected by the OpenFlights. As
of June 2014, the OpenFlights Database contains 67663 routes
between 3321 airports on 548 airlines spanning the globe. It
is available at https://openflights.org/data.html#airport.

These data can be modeled as a multiplex network, in which
layers represent different airlines, nodes are airports where air-
lines depart and land, and edges at each layer represent existing
routes of a specific airline company between two airports. To
avoid sparsity, we selected 224 airports, where over 150 air-
line companies have rights to depart and land in. Furthermore,
we chose 81 airlines that have at least 240 routes between
those airports, constructing a network with 224 nodes and 81
layers. We scrambled the 81 layers and applied Algorithm 1 for
the between-layer clustering. As it is described in Section II, we
found the number of communities in each of the layers by using
the ScreeNOT technique of [37].

Choosing the number of groups of layers for this network
is, however, a very different story. In our experiments, we tried
various values ofM ranging fromM = 2 toM = 7. Each of this
arrangements makes perfect sense, and, as M grows, the parti-
tions of the airlines into groups exhibit higher and higher level
of differentiation. For example, if M = 2, one group consists of
the airlines based in China, South Korea and Japan while another
group consists of all other airlines. When M = 3, the latter
group splits into the airlines based in Europe/Middle East and
Americas. When M = 4, the airlines are further partitioned into
the ones based in China (group 1), in Asia and Australia (group
2), in Europe and middle East (group 3) and in US, Canada,
Mexico and South America (group 4). At M = 5, the airlines
based in Europe and Middle East separate into two clusters, one
primarily based in Northern Europe and another containing the
rest. At M = 6, the airlines based in South America form a new
group. At M = 7, the three airlines from India separate into a
distinct cluster.

In this paper, we display results of the between-layer clus-
tering for M = 4 in Table I. We use the consensus ambient
dimension K = 3 for each of the groups of layers. It is easy to
see that the airlines are naturally grouped by geographical areas
from where the flights are originated. Group 1 is constituted
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TABLE I
AIRLINES GROUPS, FOR THE DIMPLE MODEL, OBTAINED USING ALGORITHM 1 WITH K = 3 AND M = 4

by Chinese airline and one Japanese airline which has flights
predominantly in Far East. Group 2 consists of airlines that
belong to countries in Asia, such as India, Japan, South Korea
and Vietnam, Australia and New Zealand, and few big airlines
in Gulf States (Saudi Arabia, United Arab Emirates, Qatar) that
have a large number of flights to both Asia and Australia. Group 3
is formed by airlines originated from Europe and North Africa.
Group 4 is comprised of airlines that fly in or from North or
South America. Not surprisingly, this group includes two big
European airlines, KLM and Air France, since those airlines
are members of the SkyTeam alliance and share many flights
originated in USA with Delta airlines.

Furthermore, we compare the clustering assignments with
the ones obtained by the ALMA algorithm designed for the
MMLSBM. To this end, we applied ALMA algorithm of [26]
for the layer clustering, with the same parameters M = 4 and
K = 3. Results are presented in Table II. It is easy to see that
while the DIMPLE model ensures a logical geography-based
partition of the airlines, the MMLSBM does not. Indeed, the
MMLSBM lumps almost all airlines into Group 1, placing few

Chinese airlines into Group 2, few United States owned airlines
together with Air France, Alitalia and KLM into Group 3, and
Ryanair (Ireland), Transavia and Air Bourbon (France), easyJet
and Jet2.com (United Kingdom) into Group 4. On the contrary,
Algorithm 1 associated with the DIMPLE model delivers four
balanced (similar in size) groups. This is due to the fact that
MMLSBM groups airlines by the volume of operation rather
than the structure of roots.

We also partitioned airports in each of the groups of airlines
into communities. Results are presented in Fig. 9.

B. Worldwide Food Trading Network Data

We apply our algorithms to the Worldwide Food Trading Net-
works data collected by the Food and Agriculture Organization
of the United Nations. The data have been described in [40],
and it is available at https://www.fao.org/faostat/en/#data/TM.
The data includes export/import trading volumes among 245
countries for more than 300 food items. These data can be
modeled as a multiplex network, in which layers represent
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TABLE II
AIRLINES GROUPS, FOR THE MMLSBM, OBTAINED USING ALMA ALGORITHM OF [26] WITH K = 3 AND M = 4

Fig. 9. Communities for the four airlines groups. Group 1: airlines originated
in China. Group 2: airlines originated in Asia, Australia,New Zealand, and Gulf
States. Group 3: airlines originated in Europe and North Africa. Group 4: airlines
originated in North or South America.

different products, nodes are countries, and edges at each layer
represent trading relationships of a specific food product among
countries. A part of the data set was analyzed in [25] and [26].

Similarly to [25] and [26], we used data for the year 2010.
We start with pre-processing the data by adding the export and
import volumes for each pair of countries in each layer of the
network, to produce undirected networks that fit in our model.
To avoid sparsity, we select 104 countries, whose total trading
volumes are higher than the median among all countries. We
choose 58 meat/dairy and fruit/vegetable items and constructed
a network with 104 nodes and 58 layers.

While pre-processing the data, we observe that global trading
patterns are different for the meat/dairy and the fruit/vegetable
groups. Specifically, the trading volumes in meat/dairy group
are much smaller than the trading volumes in the fruit/vegetable
group. For this reason, we choose the thresholds that keep similar
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Fig. 10. Results of clustering of food networks layers into M = 2 clusters by
Algorithm 1 in the paper.

sparsity levels for the adjacency matrices. In particular, we set
threshold to be equal to 1 unit for the meat/dairy group and 300
units for the fruit/vegetable group, and draw an edge between
two nodes (countries) if the total trading volume between them
is at or above the threshold.

We scramble the 58 layers and apply Algorithm 1 for the
between-layer clustering. Since the food items consist of a
meat/dairy and a fruit/vegetable group, we set M = 2. We esti-
mated the ambient dimension in each layer using the ScreeNOT
procedure in [37], and obtained the between-layer clustering
assignments using Algorithm 1. Results of the between-layer
clustering are presented in Fig. 10. As it is evident from Fig. 10,
Algorithm 1 separates the food items into the meat/dairy and the
fruit/vegetable groups.

In order to describe the structures of the meat/dairy and the
fruit/vegetable groups of layers, we furthermore assume that
the layers of the network follow the SBMs which allows to
investigate the communities of countries that form trade clusters
in each of the two layers. Using the consensus K = 3 for the
number of layers in each of the two groups, we use Algorithm 2
and exhibit results of the within-layer clustering in Fig. 11. The
left panels in Fig. 11 show the number of nodes (countries) in
communities 1,2 and 3 in the meat/dairy and the fruit/vegetable
group, respectively. The right panels in Fig. 11 project those
countries onto the world map. Here, the red color is used for
community 1, the yellow color for community 2 and the green
color for for community 3. Since we only select 104 countries
to be a part of the network, some regions in the map are colored
grey.

Additionally, in order to justify application of the DIMPLE
model, we also carry out data analysis assuming that data were
generated using the MMLSBM. Specifically, we applied ALMA
algorithm of [26] to the layer clustering with parameters M = 2
and K = 3. Results are presented in Fig. 12. It is easy to see that
ALMA algorithm places some of the meat/dairy items into the
fruit/vegetable group. We believe that this is due to the fact that
MMLSBM is sensitive to the probabilities of connections rather
than connection patterns.

Fig. 11. Trading communities for the meat/dairy (top) and the fruit/vegetable
(bottom) groups. Left panels: community sizes; right panels: community mem-
berships.

Fig. 12. Results of clustering of food networks layers into M = 2 clusters by
ALMA algorithm of [26].

VI. DISCUSSION

In this paper, we introduce the GDPG-equipped DIMPLE-
GDPG multiplex network model where layers can be partitioned
into groups with similar ambient subspace structures while the
matrices of connections probabilities can be all different. In
the common case when each layer follows the SBM, the latter
reduces to the DIMPLE model, where community affiliations are
common for each group of layers while the matrices of block
connection probabilities vary from one layer to another. Our
real data examples in Section V show that our models deliver
more logical description of data than the MMLSBM, due to the
flexibility of the DIMPLE and DIMPLE-GDPG models.

IfM = 1, the DIMPLE-GDPG reduces to COSIE model, and
we believe that our paper provides some improvements due to
employment of a different algorithm for the matrixV estimation.
The detail comparison of convergence rates can be found in
Section A
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