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Tropical cyclones have far-reaching impacts on livelihoods and population health
that often persist years after the event'™*. Characterizing the demographic and
socioeconomic profile and the vulnerabilities of exposed populations is essential to
assess health and other risks associated with future tropical cyclone events®. Estimates
of exposure to tropical cyclones are often regional rather than global® and do not
consider population vulnerabilities”. Here we combine spatially resolved annual
demographic estimates with tropical cyclone wind fields estimates to construct a
global profile of the populations exposed to tropical cyclones between 2002 and 2019.
We find that approximately 560 million people are exposed yearly and that the number
of people exposed has increased across all cyclone intensities over the study period.
The age distribution of those exposed has shifted away from children (less than 5 years
old) and towards older people (more than 60 years old) in recent years compared with
the early 2000s. Populations exposed to tropical cyclones are more socioeconomically
deprived than those unexposed within the same country, and this relationship is more

pronounced for people exposed to higher-intensity storms. By characterizing the
patterns and vulnerabilities of exposed populations, our results can help identify
mitigation strategies and assess the global burden and future risks of tropical cyclones.

Health risks owing to substantial natural hazards such as tropical
cyclonesareacentral concern of climate science and public health' 2,
Notable tropical cyclones, such as Hurricane Katrina and Hurricane
Maria, affect regional mortality and population health, both directly
and indirectly, and for many years after the event®'°. Fundamental to
understanding the population-health hazards of tropical cyclones is
characterizing the populations exposed to these storms: the number
of people experiencing tropical cyclones over time, the demographic
composition of the populations and the vulnerabilities of those popu-
lations. As such, the United Nations ‘Sendai Framework for Disaster
Risk Reduction’ notes that understanding the current and historical
distributions of population exposure to tropical cyclonesis akey input
for policy prioritization to protect vulnerable populations®. This paper
aims to use the best available data and methods to characterize the
populations exposed to tropical cyclones. Indoing so, we address ques-
tions about the evolving risks of tropical cyclones, the vulnerabilities
of exposed populations and the relative contributions of population
growth and climate in shaping tropical cyclone exposure.

When tropical cyclones pass over populated regions, the com-
bination of high winds, low-pressure systems, heavy rainfalls and
storm surges can lead to large-scale destruction and increased risk
of mortality and diseases™". There are concerns that these harmful
effects could be more widespread in the future as sea temperature
rises and population vulnerability increases>™. Tropical cyclone expo-
sure may be more consequential in areas with fewer resources, which

are generally less equipped to effectively mitigate the impacts of
storms'®**, Despite the importance of identifying populations vulner-
able to tropical cyclones, the demographic structure and socioeco-
nomic status of exposed populations remain unclear. Furthermore,
the trade-offs between the economic opportunities offered by coastal
accessandtheincreased risk of destructive tropical cyclones make it
ambiguous whether exposed populations are more or less economi-
cally vulnerable than those unexposed®. The relative demographic
composition of groups particularly susceptible to impacts from
tropical cyclone exposure, such as children and the elderly, is also
unknown'®?,

Previous studies on global population exposure to tropical cyclones
have provided partial insights. First, disaster databases widely used
in policy formulation and disaster research'®2°, such as EM-DATZ,
include only limited demographic information and may fail to cap-
ture the impact of frequent, smaller, yet still destructive, events.
Second, traditional parametric wind models used to simulate tropi-
cal cyclone exposure did not account for asymmetry in wind speed
induced by land features. Third, previous work has used relatively
low-resolution population data, limiting the scope for assessing
demographic patterns in exposure. Studies by Peduzzi et al.*? and
Geiger et al.” provide the fullest available accounts of global tropical
cyclone exposure, but rely on older wind models and provide only
limited characterizations of the populations exposed beyond the total
counts. A detailed population profile of those exposed to tropical
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Fig.1| Global distribution of annual person-days exposure to tropical
cyclonesin2002-2019. Stormtracks are shown by light-blue curves. a-f, Six
sub-regions with high exposures are enlarged: Atlantic coastal North and
Central America (a); the Caribbean (b); the Korean peninsula and Japan (c);

cyclones, including vulnerable groups such as children or older adults,
and socioeconomic distribution, isimportant for understanding risk
and for future planning. Here we provide evidence documenting the
characteristics of the exposed populations and how this is evolving
over time.

In this study, we characterize global population exposure to tropi-
calcyclones from2002 to 2019. We use a tropical cyclone parametric
wind model that combines inner and outer storm dynamics? and use
anew wind modelling approach to explicitly consider the asymmetry
of storms over land**. We simulate wind fields for each tropical cyclone
and then rasterize global wind fields at 30-arcsec spatial resolution
(approximately1x1km?). Then we overlay these wind fields ongridded
age-specific and sex-specific population estimates (approximately
1x1km??* and ameasure of relative deprivation® to analyse the global
distribution of population exposure over time, across ages and by
relative vulnerability (see Methods for more details on wind model-
ling and exposure analysis). We also quantify the degree to which
the patterns in tropical cyclone population exposure are driven by
population growth versus changing tropical cyclone frequency and
intensity. Our estimates of population exposure trends and the extent
to which tropical cyclones affect vulnerable demographic groups
are a foundation for assessing the global burden and future risks of
tropical cyclones.
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coastal eastern Asia (d); South East Asia (e); and eastern India and Bay of Bengal
(f). Countries/regionsincluded ineach subplotarelisted in Extended Data
Tablel. Country outlines were obtained from Global Administrative Areas,
version 2.0 (http://www.gadm.org).

Global population exposurein2002-2019

Tropical cyclones affected populations in 117 countries and regions
between2002 and 2019, with afew regions accounting for most of the
exposure. We estimate that 95% of all person-days exposure (defined
asthe product of annual tropical cyclone days and population size; see
Methods) during the study period come from Atlantic coastal North
and Central America (5%), the Caribbean (3%), the Korean peninsula
and Japan (6%), coastal eastern Asia (43%), South East Asia (24%) or
eastern India and Bay of Bengal (14%) (see Fig. 1; countries/regions
included are listed in Extended Data Table 1). The top five countries/
regions with the highest person-days exposure are coastal China (33%
of total person-days), Japan (19%), the Philippines (10%), Taiwan (9%)
and the USA (4%), which collectively make up more than 75% of all
exposed person-days. The next five countries/regions are allin Asia (see
Supplementary Table1).

Forallstormintensities, we observe anincrease in population expo-
sure during the 18-year study period of2002-2019 (see Fig. 2). We find
similar patternsin person-days exposure (see Extended Data Fig.2). We
estimate that, during this period, approximately 560 million people on
average were exposed to tropical cyclones with maximumwind speed
of atleast 63 km h™ (thatis, tropical storm or more intense) each year.
Although our study periodis not sufficiently long for inferences about
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Fig.2|Global population exposure to tropical cyclones, 2002-2019. Top,
middle and bottom curves represent exposure to tropical storms or larger

(>63 km h maximumwind speed), Category1or moreintense (>119 kmh™
maximumwind speed) and Category 3 or more intense (>178 km h™ maximum
wind speed), respectively. Solid lines represent population exposure assuming
upto12hofsustained wind overland, the dashed curvesassumeupto 6 hand
the dotted linesassume no limit on duration of overland sustained wind. Point
estimates represent raw dataand curves represent the best fit of locally
estimated scatterplot smoothing (LOESS). Population exposures to Category 3
windsin 2004 (15 million), 2007 (14 million),2009 (<1,000), 2013 (10 million) and
2016 (11 million) are omitted for clarity but are included in the LOESS estimation.
Most exposures occur within the first12 h after landfall, especially for intense
wind levels. For tropical storms, assuming 6 hand 12 hsustained wind over land
are,onaverage, respectively 17% and 9% lower than assuming no limit of
sustained winds over land. For Category 1and Category 3 tropical cyclones,
more than90% populationexposure occurred within the first 6 h after the storm
made landfall, and almost all exposures occurred within12 h after landfall.

long-term trends?, we observe that population exposure increased
from 408 million people in 2002 to 792 million people in 2019 using
smooth estimates (raw estimates range from 354 million people in
2010t0 936 million peoplein2019). The size of the estimated exposed
population varied on the basis of storm intensity. Around 115 million
people were exposed to tropical cyclones of at least Category 1severity
(maximum wind speed greater than 119 km h™%; with a range of 35 mil-
lionin2010 and 215 millionin2018) per year and 5.8 million people on
average were exposed to high-intensity tropical cyclones of at least
Category 3 severity (>178 km h™ maximum wind speeds; fewer than
1,000in2009 and 17 million people in 2004). These estimates do not
represent unique individuals, as people exposed over several years
would be counted for each respective year of exposure.

Age and sex profile

Certain groups, including young children and older populations,
are thought to be particularly vulnerable to natural disasters***. To
assess the extent towhich vulnerable age groups are affected by tropi-
cal cyclones and how this is changing over time, we analyse the age
composition of those exposed to the wind level of tropical storm or
greater and compare annual exposure across two periods: 2002-2006
and 2015-2019. Figure 3 shows an overall shiftin the age distribution of
those exposed away from children (less than 5 years old) to older adults
(morethan 60 yearsold). Onaverage, around 109.4 million older adults
were exposed per yearin2015-2019 (95.0 millionin Asia, 8.4 millionin
North Americaand 0.3 millionin Africa) compared with 52.6 million per
yearin2002-2006 (44.0 millionin Asia, 5.9 millionin North Americaand
0.34 millionin Africa),amore than doubling of exposure. The number of
childrenless than 5 years of age exposed to tropical cyclonesincreased
from 57.3 millionto 87.9 million per year,a53%increase. Intotal, around
197 million children and elderly were exposed to tropical cyclones annu-
ally between 2015 and 2019. These shifts mirror the general population
ageing patterns in Asia, North America and Europe®.
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Fig.3|Agedistribution of populations exposed to tropical cyclones. An
overall shiftinage distribution fromyoungto old is observed globally when
comparingthe periods 2002-2006 and 2015-2019. The global shift mirrors the
shiftsin Asiaand North America, which have the most people exposed. No
notable changes were observedin Africa, probably because of the rapid growth
ofits young population. The xaxes represent age groups with a 5-year interval
fromOto75yearsand theyaxes represent the probability density function of
agedistributions. Globally, 57 million more older people (>60 years old) are
exposed to tropical cyclones compared with the earlier study period.

The male-to-female ratiois similar between exposed and unexposed
populationsinallage groups and throughout the study period (results
not shown).

Poverty and deprivation profile

Next we characterize the exposed population in terms of socioeco-
nomic vulnerability as represented by the relative deprivation index*
(RDI; details in Methods). We assess relative deprivation by calculat-
ing the RDI ratio as the quotient of the population-weighted RDI for
the exposed population in a country and the population-weighted
RDI for the unexposed population in the same country. An RDI ratio
above lindicates that the exposed population is more deprived than
the unexposed population. Figure 4 shows the result of this exercise
for countries exposed to Category 1 or more intense storms between
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Fig.4 | Population-weighted RDIratioin each country/region. The
population-weighted RDI for both exposed and unexposed populations (top
axis, coloured bars), as well as the ratio of RDIbetween exposed and unexposed
populations (bottom axis, white dots) in each country/region. Theresults are
based on29 countries/regions that have been exposed to Category1or more
intense stormsin 2010-2019. Countries/regions with atotal populationless
than100,000 or areasmaller than 8,000 km?were omitted for clarity. Countries/
regionsareorderedin the RDIratio rankinascending order. Countries/regions
above China (20/29) have RDIratio greater than1, for which exposed populations
aremore deprived than unexposed populations. Figure for all countries/regions
without filtering by population or areais shownin Extended DataFig. 7c.

2010and 2019, organized by adecreasing RDIratio. We find that, in 20
out of 29 countries/regions, exposed populations are relatively more
deprived (RDI ratio > 1) and the average RDI ratio across all countries
is 1.13. In other words, exposed populations, on average, have a13%
higher RDIthan those unexposed in the same country.

This patternis accentuated withincreasing storm severity (see Fig. 5).
Although the RDI of those exposed to the wind level of tropical storm
is similar to those unexposed (median RDI ratio: 1.02; interquartile
range: 0.91-1.18), the ratio increases with higher storm intensities. In
countries exposed to Category 5 or more intense tropical cyclones,
those exposed liveinareas with RDI measures roughly 45% greater than
those unexposed (median RDIratio: 1.45; interquartile range: 1.35-1.65).

Role of population growthin tropical cyclone exposure

The growth in tropical cyclone population exposure over the study
period reflects a combination of population growth and changes in
tropical cyclone hazards. To decompose their relative contributions,
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Fig.5|Therelative deprivationis accentuated withincreasingstorm
severity. Populations exposed to tropical cyclones are socioeconomically
more deprived than unexposed populations and this trend is accentuated with
increasing stormseverity. In countries/regions exposed to Category S tropical
cyclones, exposed populations have an average deprivationindex 45% higher
thanunexposed populations. The upper, middle and lower boundaries of each
box correspondtothe 75th percentile, median and 25th percentile, respectively,
of the RDIratios among all countries affected by specific tropical cyclone
wind intensities. The dotsin eachbox represent the mean RDI ratio for the
corresponding wind level. Dots outside the boxes represent outliersineach
wind category.Intotal, 70,48, 33,20,16 and 5 countries/regions with population
size greater than100,000 were exposed to tropical storms, Category1,
Category 2, Category 3, Category 4 and Category Swind speeds, respectively.
Thefive countries/regions exposed to Category 5or more intense storms are
the Philippines, Mexico, the Bahamas, Fiji and Cuba.

we hold population size constant at 2002 levels and re-estimate expo-
sure over time (see Extended Data Fig. 8). Holding population fixed,
the smoothed change in population exposure from 2002 to 2019 is
33% lower than our base estimates that include population growth.
Thisimplies that one-third of the change in exposureis attributable to
population growth, whereas the other two-thirds is because of changes
intropical cyclone hazards. A similar distribution is also observed for
Category 1tropical cyclones, in which changes in tropical cyclone cli-
matology contribute 71% of the total increase. However, for Category
3 and larger storms, changes in tropical cyclone hazards contribute
only 29% of the observed increase. The conclusions are similar when
we use person-days exposure rather than population exposure (see
Extended Data Fig. 8).

Sensitivity analyses

We assess the uncertainty in our primary findings in several ways. First,
we use alternative wind modelling approaches (further detailsin Meth-
ods). Extended Data Fig. 3 shows the range of estimated population
exposure using these different approaches. This figure shows that,
althoughthelevels vary by modelling approach, the trends are similar
across modelling approaches. We also assess the sensitivity of the age
distribution and relative deprivation to modelling approaches. These
areshownin Extended DataFig. 4 (for age distribution), Extended Data
Fig. 6, Extended Data Fig. 7 and Extended Data Table 2 (for relative
deprivation). Although some estimates change fromone approach to
another (forexample, the country with the greatest RDIratio changes
based on the modelling approach), the overall patterns (of shifting
agedistribution from young to old and of greater relative deprivation
among the exposed in most countries) are robust to how wind fields
aremodelled.

Finally, Fig. 2 also shows the range in exposure estimates based on
assumptions about the duration of sustained winds over land. Our main
modelling approach assumes that exposure stops 12 h after landfall,
and we test sensitivity by assuming 6 h and unlimited sustained wind



duration. Figure 2 shows that most exposure occurs within the first
12 h after landfall (that is, assuming that unlimited sustained wind
does notadd muchexposure), especially for more intense wind levels.
Estimates of exposure to larger storms (such as Category 3 or more
intense storms) are more sensitive to assumptions about sustained
wind speed duration than that for weaker storms, which is consistent
with the greater uncertainty in modelling the tropical cyclone inner
core wind field®.

Discussion and conclusions

In the first two decades of the twenty-first century, approximately
560 million people per year on average were exposed to tropical
cyclones. This analysis provides a detailed profile of exposed popula-
tions and we identify five key findings: (1) the number of people exposed
to tropical cyclones has increased between 2002 and 2019; (2) these
increases hold for low-intensity and high-intensity cyclones, across
different measures of exposure and nearly all affected world regions
(Extended Data Fig. 1); (3) the age distribution of the exposed popu-
lation has been shifting from young to old, mirroring demographic
shiftsin North Americaand Asia; (4) exposed populations are relatively
more disadvantaged than unexposed populations; and (5) thisrelative
disadvantage of the exposed populationis more pronounced for more
intense tropical cyclones.

Between 6% and 12% of the global population is exposed to tropi-
cal cyclones yearly. A large portion of exposure occurs at lower wind
velocities. Although more intense storms, characterized by high wind
velocities and precipitation, have received more attention from the
research and policy communities, recurrent tropical storm and Cat-
egory 1stormsare more common and extensive, with unknown human
and economicburdens®. This more common exposure can have a dis-
proportionate impact on low-income and middle-income countries,
especially inregions in which resilience is limited and vulnerability
is high.

We contextualize our exposure estimates relative to three sources.
First, the Emergency Event Database estimates that about 24 million
people per year were affected by tropical cyclones between 2001 and
2020 (ref.11). These estimates are based on news sources, insurance
claims and public reports. In that sense, it underscores the point that
tropical cyclones receiving media attention are an underestimate of
populationexposure, especially for populations without reliable news
or publicreporting systems and which may not have material damages
collected through insurance claims.

Second, Peduzzi et al.”? estimate population exposure to tropical
cyclonesbased onadecade-long average of tropical cyclone frequency
and gridded total population estimates. During the period from 2002
to 2009, our estimates are, on average, 320% (4.2-fold) larger than
Peduzzi et al.s estimates for the decade 2000-2009. Third, Geiger
etal.’, using total population counts and an older tropical cyclone wind
modelwith greater outer cyclone wind speeds, generate estimates that
are, onaverage, 29% higher than ours. Our study uses wind modelling
approaches that havebeen calibrated to account for stormasymmetry
and terrain features after landfall, which improves the outer cyclone
wind speed estimations (see Methods for an extensive discussion).

Over the study years considered, we observe anincrease in overall
population exposure across all wind intensity levels. However, there
was substantial year-to-year variability in population exposure to the
mostintense storms, whichis consistent with the findings of Wang and
Toumi®, Increased exposure is attributed more to changes in tropi-
cal cyclone hazards than to population growth, and this is more pro-
nounced for moderate-intensity storms. During the study period, the
main characteristic of tropical cyclones that has changedis anincrease
inthe intensity of the storm at landfall®>. The rate of inland decay after
landfall may also change, although this remains unclear® ¢, Storm
size has not changed substantially and is not expected to change with

the warming climate®?. In terms of population growth, the global
population experienced not only a general increase of 22% but also
amore substantial growth in urban and coastal populations®, which
has played arole inincreased exposure. As noted, the time period of
our study limitsinferring about longer-term trendsin tropical cyclone
exposure. However, if the projections of the Intergovernmental Panel
on Climate Change are correct, indicating an expected increasein the
proportion of strong tropical cyclones in the future, along with an
increase in the maximumwind speed of intense storms**, itis reason-
able to expect a continuing upward trend in population exposure to
the most intense storms.

We document a shift in the age distribution of the exposed popula-
tion, reflecting relatively fewer childrenand more elderly being exposed
over time. Both young and old people are atincreased risk of adverse
consequences, includinglack of access to essential healthcare, destruc-
tion of facilities and roads, power outages and insecure access to water
and food'***2, Older populations, more than young, may also face
mobility problems that hinder their ability to respond to disasters by
evacuating landfall areas'.

Wealso document thatexposed populations are more socioeconomi-
cally deprived than unexposed populations, especially those exposed
to high-intensity storms. One possible mechanism for thisis selection:
people with more means move away fromregions at highrisk ofintense
storms, leaving high-risk areas for those with lower socioeconomic
status. Another mechanism is that storms, especially high-intensity
storms, have a negative impact on socioeconomic development. The
RDIratio shows substantial heterogeneities, which could reflect resil-
ience to natural disasters (greater resilience may reduce selection of
residence based onexposurerisk), exposure patterns (greater exposure
may increase risk, but may alsoincrease resilience) or the capacity for
population adaptation. These mechanisms may operate to different
extentsand we are not able to disentangle these effects. Nevertheless,
recognizing the relatively higher deprivation of those living in areas
at risk for tropical cyclones may help give priority to adaptation and
mitigation resources. This may be particularly salient in countries in
which coastal regions at risk of tropical cyclones are more impover-
ished for other reasons, such as having few economic opportunities
for seafaring occupations.

This study has several limitations. First, the population estimates
provided by WorldPop are annual and do not reflect intra-annual popu-
lation mobility. If individuals leave high-risk areas during the tropi-
cal cyclone season, resulting in a lower population count in exposed
regions at the time of the event, then the annual average we use may
overestimate actual population exposure. Although we cannot quantify
the extent of this effect on our population exposure estimates, existing
studies estimating short-term displacement (such as seasonal migra-
tion) indicate that only a minor portion of the population leave®. The
factthat our population estimates do not capture seasonal migration
could also have implications for the age and socioeconomic profiles
we report. Those capable of moving away from the path of a tropical
cyclone might be younger and of higher socioeconomic status than
those notdisplaced, further accentuating the patterns we find for the
age skew and socioeconomic deprivation of those actually exposed.

Second, tropical cyclone parametric wind models use simplifying
assumptions based on storm structures over the ocean. When storms
move over land, their structure is disrupted by land features, result-
ing in uneven wind decay. The field of tropical cyclone modelling is
developing better representations of overland storm behaviour, but
this remains an area of uncertainty. We demonstrate that all of our main
results are robust to using several different modelling approaches.

Third, we represent socioeconomic vulnerability using a depriva-
tionindex, which reduces complexity to a single metric and does not
include factors such as social marginalization, healthcare resources,
criticalinfrastructures and governance, among others. Our deprivation
indexis not longitudinally available and does not capture population
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displacement or socioeconomic development. We therefore present a
cross-sectional view of the relationship of tropical cyclones to socioeco-
nomic deprivation and are unable to examine temporal trends. As the
work ongranular variationinglobal socioeconomic conditions evolves,
itsrelationship with tropical cyclones would be important future work.

Inthis study, we describe the composition of populations that have
been exposed to tropical cyclones globally from 2002 to 2019. Using
global gridded population and wind field data, we are able to capture
exposuretointense storms and storms of lesser intensity. Our analysis
indicates that population exposure to tropical cyclones increased
from 408 million to 792 million people annually over the study period
(560 million on average). The age compositionin the exposed popula-
tion has been transitioning from younger demographicsto older ones,
reflecting broader global demographic changes. We also find that popu-
lations exposed to tropical cyclones tend to be more disadvantaged
compared with those not exposed, suggesting that these events can
exacerbate existinginequalities and highlighting the need for targeted
interventions to support vulnerable populations.
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Methods

Tropical cyclone data from IBTrACS

Tropical cyclone tracks data usedin this study are taken fromthe Inter-
national Best Track Archive for Climate Stewardship (IBTrACS version
v04r00)***, This database includes 6-hourly latitude and longitude
tropical cyclone positions and maximum 1-min sustained wind of storm
centreat10 mabove the seasurface. We use global tropical cyclone data
between2002 and 2019. We chose the start year to align with availability
of dataonstormextentinIBTrACS and the end year to align with gridded
populationestimates. Storm observations with a missing maximumwind
speed or whose maximum wind speed is less than 34 knots (below the
tropical stormthreshold) are removed. Our storm dataset thus includes
1,808 tropical cyclone eventsin six global basins (North Atlantic, West-
ern Pacific, Eastern Pacific, South Pacific, North Indian, South Indian).

Primary tropical cyclone wind modelling approach

To estimate the extent of wind exposure associated with tropical
cyclones, we use a parametric model to estimate the complete wind
field of each storm.In general, parametric wind models generate com-
plete wind speed profiles with few inputs, making them suitable for
global analyses such as ours. Although parametric models were origi-
nally calibrated using mature storms over the ocean, recent models
account for the evolution of storms during landfall, and validation
with observational data indicates good overland performance®*,

In this work, we use an approach developed by Chen et al.?*, based
on the modelintroduced by Chavas et al. (referred to as ‘C15")>*”. The
C15wind field model mathematically merges aninner wind field model
(equation (36) in ref. 48) and a separate outer wind field (equations
(31)-(33) inref. 49), producing a complete azimuthal wind profile.
The parameters required by C15 are: storm maximum wind velocity
V.., radius of maximum wind speed R, for the inner region, radius
of a specific intensity Ry, (for example, radius of 34-knot wind, R5,),
Coriolis parameter f, exchange coefficients of momentum Cyand free
tropospheric subsidence rate w,,,,.

Theapproachweuseis based on Chenetal.**, which explicitly consid-
ers the asymmetry of storm structure after landfall. It applies the C15
modelto each earth-relative quadrant, using quadrant-specific storm
and surface parameters as model inputs. We refer to this approach as
‘Quad-by-Quad’. This approach has been validated with an observa-
tional dataset of post-landfall storm wind speeds.

InC15, V,,and the storm latitude ¢ are taken from IBTrACS. The Corio-
lis parameter fis computed as a function of storm latitude. The radius
of34-knot wind R,, in each quadrant (northeast, northwest, southwest,
southeast) are also taken from IBTrACS. The most specific parameter
that accounts for the characteristics of the terrain, C, is calculated
using surface roughness data*® from ECMWF Reanalysis v5 (ERAS5).
Itis averaged over a range of 0-600 km to yield a single value within
each quadrant. Previous studies have shown that the wind field solution
is not sensitive to the selection of w,,,. We set w,,, to be 0.002 ms™,
which is consistent with the median of the best-fit value observed in
storms® and identical to the value used elsewhere*¢. We use C15 and
Quad-by-Quad jointly to simulate wind profiles in each quadrant and
obtain complete tropical cyclone wind profiles.

In this approach, R, can use outer radii of any wind speed, such as
R, (radius of 50-knot wind). We use R, as it has anon-zero value for all
storms inthis study, it canbe accurately estimated by remote-sensing
systems withlittle rain contamination and, inmore recentyears, it has
undergone quality control in retrospective best track reanalysis®. In
IBTrACS, R,, is available since 2002 and also reviewed post-season, or
‘best tracked’, since 2004 in the Atlantic/East Pacific and since 2015 in
other global basins. Thus there is less uncertainty in our wind fields
during the later years of the study period.

On the basis of this approach, we simulate tropical cyclone wind
fields at 6-h intervals for each storm. Using that information, we
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calculate the annual maximum wind speed for each location and ras-
terizeitata30-arcsec resolution. We then categorize the intensity of
the stormin each affected areabased onthe annual maximum gridded
wind speed.

Other wind modelling approaches for sensitivity tests

Thereis meaningful variationin wind modelling approaches. We model
and run all analyses using two other approaches that enable global
exposure estimates. The firstapproachis a modification of our primary
Quad-by-Quad approach that takes into account possible overestima-
tionin the outer reach of the storm. Following Chavas and Knaff, we
reducethe outerradiusR,,in each quadrant by afactor of 0.85. Because
the outer radius R, in IBTrACS is operationally defined as the outer-
most value within each quadrant, this mightlead to an overestimation
of the outer reach of the storm, and this reduction has been shown
to have advantages in some contexts. This approach is referred to as
‘Quad-by-Quad-0.85.

Our second approachisbased on C15and we use aseparate compo-
nent to estimate the asymmetrical surface winds of tropical cyclones
over land. Inthis approach, the total wind is estimated as the sum of two
components: one is the axisymmetric component associated with the
stormitself (modelled by C15) and the other is the asymmetric compo-
nent caused by the combined effects of storm movement and ambient
wind shear>, We label thisapproach as ‘C15+LC12’ in the figures. In this
approach, the axisymmetric component simulated by C15 uses the
radius of maximum wind speed R,,,,, of a storm as model input. R,
plays a crucial role in representing the size of the inner region of the
storm, which markedly affects the simulation of the intense wind region
of the storm. Because R, is estimated with more uncertainty than
the outer size of the storm, we derive R,,,,, from R;,, following Chavas
and Knaff*, Specifically, we calculate R,, as the mean of all non-zero
values available in each quadrant, multiplied by a factor of 0.85. Then
we predict R,,,, based onR;, to get the radius of maximum wind speed.
We use thisapproach to quantify the uncertainties in the strong-wind
region of the storms, in which the Quad-by-Quad approach is incom-
pletely validated®.

WorldPop

We obtain estimates of human population distributions from World-
Pop®. We extract spatial distributions of total population counts using
WorldPop global mosaic files and age-specific population distribu-
tions using WorldPop age and sex structure files. WorldPop estimates
population counts at aresolution of 30 arcsec degree (about 1 km)
between 2000 and 2019. We merge population estimates with wind
field estimates at the grid cell level.

We choose WorldPop as our primary source for gridded population
estimatesasit provides age-structured and sex-structured time series
for population estimates between 2000 and 2019, at a sufficient resolu-
tion to match the constructed wind field estimates™.

Tropical cyclone exposure

Using gridded tropical cyclone wind fields and population estimates,
we estimate tropical cyclone exposures using two metrics. The first
metricisanannual population exposure count, in which apopulation
grid cellis counted as exposed if the maximum sustained wind exceeds
acertainwind threshold at least once in the year:

1, if Vday,grid > Vthres

max Jl(Vday,grid) = ()]

exposure .
ay €year o, if Vday,grid < Vihres

year,grid d

Inequation (1), the subscript ‘grid’ represents each 30-arcsec-degree
cell, Vy,y gria represents simulated maximum sustained wind speed for
aspecificcellonagiven day and V., represents a specific wind speed
threshold. Onthe basis of the affected grids identified in equation (1),
the total population exposure in a given year is calculated as:



Article

annual population exposure,

= Z population 2)

grid

X exposure

year,grid year,grid

The second metric is annual person-days exposure, defined as the
product of annual frequency under a specific wind speed threshold
and the population size for each grid cell. Similarly, the annual days
exposed to tropical cyclones for each grid is computed as follows:

tropical cyclone daysyear'gri(jl

= Z I( Vday,grid)
dayeyear (3)

1, if Vday,grid > Vthres

o, if Vday,grid < Vthres

The total person-days exposure in a given year is computed as:

annual person - days exposure

x tropical cyclone days

= Z population @

Lgrid
arid year,gri

year,grid

We choose thresholds for maximum sustained wind speed based on
categories on the Saffir-Simpson scale®. We use TS, CAT1, CAT2, CAT3,
CAT4 and CAT5 to denote storm winds at tropical storm (34-63 knots),
Category 1(64-82 knots), Category 2 (83-95 knots), Category 3 (96—
112 knots), Category 4 (113-136 knots) and Category 5 (=137 knots)
scales, respectively.

For all three parametric wind modelling approaches, we further quan-
tify the uncertainties in the range of population exposure by assuming
sustainedwindupto 6 h(one stepinIBTrACS data), 12 h (two steps) and
no limit (full tracks) of duration over land. When storms stay longer
over land after landfall, the uncertainty in R,, data increases and the
structure of the storm becomes more asymmetric, which together lead
tolarger uncertainty in the estimates. That is, the population exposure
estimates within 12 hafter landfall are more reliable than the full tracks,
and we use that durationin all our primary analyses.

Global gridded RDI
We use the global gridded RDI to represent the socioeconomic status of
exposed and unexposed populations®. The RDI has a value between O
and 100, for which higher values represent higher levels of deprivation.
TheRDlis constructed using six main sociodemographic components:
gridded child dependency ratio, infant mortality rate at the various
administrative levels, human development index (derived from life
expectancy, meanyears of schooling and gross nationalincome) at the
first administrative level, gridded building footprint, gridded night-
time lights and recentlocal deprivation trends. These six main compo-
nents are harmonized and rasterized and the resulting RDI data have
aresolution of 30 arcsec degree (about 1 km), with global coverage.
The high spatial resolution of the RDI allows for capturing variationsin
socioeconomic profiles across different areas within the same country
(see Extended Data Fig. 5).

To assess the socioeconomic profile of exposed populations, we
define the RDI ratio as the quotient of the population-weighted RDI

for the exposed populationinacountry and the population-weighted
RDIfor the unexposed population in the same country. Therefore, an
RDIratio exceeding 1indicates that the exposed population is more
deprived than the unexposed population.

The RDIis noted to be representative of the world in 2015. The raw
datausedtodevelop the RDI are either single-year or estimates between
2010 and 2020. We consider the RDI, then, as a single representation of
the global levels of relative deprivation during the decade from 2010
to 2019. For all population exposure analyses using the RDI, we limit
our sample to 2010-2019 to align with the RDI time frame.
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exposurebased onadecade-longaverage, with thetwored triangles representing
estimates for the two decades of 2000-2020. This comparisonindicates that:
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observe this pattern with all three modelling approaches; (2) by correcting the
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outerradius through areduction factor of 0.85, the population exposure
reduces by approximately 15%, indicating that theimpact of the reduction
factor on estimated population exposure is approximately linear; (3) the
uncertainty in population exposure to stronger storms is greater than that to
weaker storms, and the disparitiesin the estimates of exposure to Category 3
ormoreintense storms canbe as much as threefold in certainyears; (4) despite
theuncertaintiesin the exposure estimates obtained from the three different
approaches, the differenceis very small compared with previous studies. The
discrepancy between our estimates and Geiger etal.” can be partially attributed
todifferencesin the wind parametric method. Geiger et al. used a parametric
wind model from Holland*’, which may potentially overestimate tropical
cyclone surface winds.
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Extended DataFig. 5| Variationsin the RDI of exposed countries/regions.
TheRDlis suitable for this analysis as it captures the variationsin the
socioeconomic profiles across different regions within the same country. Here
we show the RDI distribution for the most heavily exposed nine countries/
regionsinaasanexample.InFig. 4, weexclude countries/regions with
populationsless than100,000 or areas smaller than 8,000 km?for clarity.
Therearetwo reasons for removing these areas: first, in regions with small
areasor low populations, everyone is affected by tropical cyclones, making the
RDIratio meaningless; second, inregions with small areas, thereis insufficient
variationinthe RDI. Inthe two aforementioned circumstances, the RDlisnota
suitable indicator, as we show in b. With this criterion, countries/regions

removed inthe RDlanalyses are: Turks and Caicos s., St.Kitts and Nevis, Virgin
Is.,Samoa, Vanuatu, St. Vincent and the Grenadines, Guadeloupe, British Virgin
Is., Martinique, Micronesia, Mayotte, Wallis and Futuna, Reunion, American
Samoa (Eastern Samoa), French Polynesia, Fiji, Macau (China), Hong Kong
(China), New Caledoniaand Northern Marianals. We show the RDIratio of these
countries/regionsin Extended DataFig. 6.InFig. 5, we only exclude countries/
regions with populationsless than100,000, so that the most intense wind
category (Category 5) still has five countries/regions remaining. In Extended
DataFig. 7, we also confirm that the primary findings on the socioeconomic
characteristics of the exposed populationin this study remain valid, regardless
of whether the countries/regions areincluded or excluded.
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Extended DataFig. 6 |Sensitivity analysis for the RDIratio of exposed
countries/regions, asinFig.4.Subplotsaand b indicate that the main
conclusion about the RDIratio of exposed countries/regionsis not sensitive to
model choice. Here we present the RDI ratios of each affected country/region,
identified by the Quad-by-Quad-85 modelling approach (a) and the C15+LC12
modelling approach (b). The raw results are listed in Extended Data Table 2. Our
results show that 70% and 73% of the countries/regions have RDI ratios greater
thanl, respectively.Itisimportant to note that the RDI ratio for Portugal
experiencessubstantial fluctuations when different wind modelling approaches

areused. Thisis primarily because of thelocation of Portugal in ahigher-latitude
region, inwhich tropical cyclones have already undergone extratropical
transition, which greatly affected the symmetric structure of the storm. In this
scenario, the C15+LC12 approachislesssuitable, and only the Quad-by-Quad
method can capture this substantialasymmetry. When comparing the Quad-by-
Quad-85and Quad-by-Quad methods, the change in the RDIratio for Portugal is
minimal. ¢, The RDI ratio for all countries/regions exposed to Categorylor more
intense storms, including those with population less than100,000 or area
smallerthan 8,000 km?.
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Extended DataFig.7|Sensitivity analysis for the trends in the RDIratio regions that were exposed to tropical cyclones between 2010 and 2019, the
withincreasing stormseverity, asinFig. 5. Subplotsaandbindicate that the middle plotremoves areas with populationsless than100,000 and the bottom
main conclusion about the socioeconomic profiles of the exposed population plot removes countries/regions with populations less than100,000 or areas
isnot sensitive to model choice. Here we show results of the analysis similar to smaller than 8,000 km?.Inall three subplots, we show that the exposed
those showninFig. 5, but with exposed populationidentified with the Quad-by-  populations are more socioeconomically deprived than unexposed populations
Quad-85modelling approach (a) and the C15+LC12 modelling approach (b). within the same country, and this relationship is more pronounced for higher-
They both show similar patterns and the conclusionis robust. ¢, Sensitivitytest  intensity storms. Our results indicate that this conclusionis robustand
based on our primary modelling approach Quad-by-Quad but using three unaffected by the removal of small countries/regions.

different countries/regions subsets. Thetop plotincludes the raw 93 countries/
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Extended DataFig. 8| Relative contributions of population growthand
changesin tropical cyclone climatology to the changein tropical cyclone
exposure. For each tropical cyclone wind intensity, we hold populationsize
constantatthe2002level and re-estimate population exposure over time, as
shown by thelight-coloured curveineach panel. We do this exercise for both
population exposure (a) and person-days exposure (b). We show that around
67%,71% and 29% of the change in total population exposureis attributable to
the changesin tropical cyclone climatology at the tropical storms, Category1
and Category 3 wind levels, respectively. Similarly, 72%, 74% and 27% of the
changein person-days exposureisattributable to changesin tropical cyclone
climatology at the tropical storms, Category 1and Category 3wind levels,
respectively. The reasons behind the differencesin the distribution between
weak and intense storms remain uncertainand require further study.



Extended Data Table 1| List of countries/regions in six most heavily exposed sub-regions shown in Fig. 1

Subplot Sub-Regions Countries/Regions

A North and Central America Canada, United States; Bermuda; Mexico; Guatemala;
Belize; Honduras; El Salvador; Costa Rica

B Caribbeans Anguilla; Aruba; Barbados; British Virgin Islands;
Cayman Islands; Cuba; Domonican Republic; Grenada;
Guadeloupe; Haiti; Jamaica; Martinique; Montserrat;
Puerto Rico; Bonaire, Sint Eustatius and Saba;
Saint Kitts and Nevis; Saint Lucia; Saint Vincent and the,
and Grenadines; Trinidad and Tobago; Turks and Caicos
Islands; Virgin Islands, U.S.Grenadines;

C East Asia Japan; North Korea; South Korea

D East Asia China Mainland; Taiwan

E South East Asia Cambodia; Indonesia; Laos; Malaysia; Myanmar;
Philippines; Singapore; Thailand; Timor-Leste; Vietham

F South Asia Bangladesh; India; Sri Lanka

The table lists specific countries included in each of the six panels of Fig. 1. Only countries/regions with populations exposed to tropical cyclones are noted in the table.



Article

Extended Data Table 2 | Sensitivity tests of the RDI ratio using different wind modelling approaches

Country / Region Quad-by-Quad Quad-by-Quad-85 C15+LC12
Portugal 2.01 2.01 0.90
Costa Rica 1.80 1.78 1.78
Canada 1.47 1.43 1.50
South Korea 1.45 1.43 0.87
Nicaragua 1.42 1.43 1.44
Cuba 1.34 1.31 1.29
Australia 1.32 1.44 1.31
Guatemala 1.25 1.27 1.28
Mexico 1.24 1.19 1.21
Ireland 1.20 1.22 1.08
Laos 1.17 1.15 1415
Honduras 1.16 1.33 1.33
Haiti 1.14 1.13 1.12
Puerto Rico 1.13 1.13 1.13
Myanmar 1.13 1.1 1.15
Vietnam 1.12 1.23 1.24
North Korea 1.1 1.11 0.99
Somalia 1.09 1.08 NA
Oman 1.09 1.06 1.07
Bangladesh 1.04 1.02 1.10
China 1.01 1.00 0.97
Mozambique 0.95 0.93 0.93
India 0.91 0.89 1.01
Madagascar 0.88 0.88 0.87
United States 0.79 0.76 0.81
Jamaica 0.75 0.73 0.80
Philippines 0.74 0.87 0.80
Japan 0.65 0.62 0.57
Taiwan 0.49 0.49 0.49

The population-weighted RDI ratio (the RDI among those exposed to tropical cyclones divided by the RDI among those unexposed) calculated using three different wind modelling approaches
in all affected countries/regions. Quad-by-Quad is our primary approach used in Fig. 4, whereas the RDI ratio estimated using the Quad-by-Quad-85 and C15+LC12 approaches are shown for
comparison (more details in the ‘Other wind modelling approaches for sensitivity tests’ section). This table is used to generate Fig. 4 and Extended Data Fig. 6a,b.
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