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Global population profile of tropical cyclone 
exposure from 2002 to 2019

Renzhi Jing1,2, Sam Heft-Neal3, Daniel R. Chavas4, Max Griswold5, Zetianyu Wang5, 
Aaron Clark-Ginsberg5, Debarati Guha-Sapir6,7, Eran Bendavid1,2,8 ✉ & Zachary Wagner5 ✉

Tropical cyclones have far-reaching impacts on livelihoods and population health 
that often persist years after the event1–4. Characterizing the demographic and 
socioeconomic profile and the vulnerabilities of exposed populations is essential to 
assess health and other risks associated with future tropical cyclone events5. Estimates 
of exposure to tropical cyclones are often regional rather than global6 and do not 
consider population vulnerabilities7. Here we combine spatially resolved annual 
demographic estimates with tropical cyclone wind fields estimates to construct a 
global profile of the populations exposed to tropical cyclones between 2002 and 2019. 
We find that approximately 560 million people are exposed yearly and that the number 
of people exposed has increased across all cyclone intensities over the study period. 
The age distribution of those exposed has shifted away from children (less than 5 years 
old) and towards older people (more than 60 years old) in recent years compared with 
the early 2000s. Populations exposed to tropical cyclones are more socioeconomically 
deprived than those unexposed within the same country, and this relationship is more 
pronounced for people exposed to higher-intensity storms. By characterizing the 
patterns and vulnerabilities of exposed populations, our results can help identify 
mitigation strategies and assess the global burden and future risks of tropical cyclones.

Health risks owing to substantial natural hazards such as tropical 
cyclones are a central concern of climate science and public health1–4,8. 
Notable tropical cyclones, such as Hurricane Katrina and Hurricane 
Maria, affect regional mortality and population health, both directly 
and indirectly, and for many years after the event9,10. Fundamental to 
understanding the population-health hazards of tropical cyclones is 
characterizing the populations exposed to these storms: the number 
of people experiencing tropical cyclones over time, the demographic 
composition of the populations and the vulnerabilities of those popu-
lations. As such, the United Nations ‘Sendai Framework for Disaster 
Risk Reduction’ notes that understanding the current and historical 
distributions of population exposure to tropical cyclones is a key input 
for policy prioritization to protect vulnerable populations5. This paper 
aims to use the best available data and methods to characterize the 
populations exposed to tropical cyclones. In doing so, we address ques-
tions about the evolving risks of tropical cyclones, the vulnerabilities 
of exposed populations and the relative contributions of population 
growth and climate in shaping tropical cyclone exposure.

When tropical cyclones pass over populated regions, the com-
bination of high winds, low-pressure systems, heavy rainfalls and 
storm surges can lead to large-scale destruction and increased risk 
of mortality and diseases11,12. There are concerns that these harmful 
effects could be more widespread in the future as sea temperature 
rises and population vulnerability increases2,13. Tropical cyclone expo-
sure may be more consequential in areas with fewer resources, which 

are generally less equipped to effectively mitigate the impacts of 
storms10,14. Despite the importance of identifying populations vulner-
able to tropical cyclones, the demographic structure and socioeco-
nomic status of exposed populations remain unclear. Furthermore, 
the trade-offs between the economic opportunities offered by coastal 
access and the increased risk of destructive tropical cyclones make it 
ambiguous whether exposed populations are more or less economi-
cally vulnerable than those unexposed15. The relative demographic 
composition of groups particularly susceptible to impacts from 
tropical cyclone exposure, such as children and the elderly, is also 
unknown16,17.

Previous studies on global population exposure to tropical cyclones 
have provided partial insights. First, disaster databases widely used 
in policy formulation and disaster research18–20, such as EM-DAT21, 
include only limited demographic information and may fail to cap-
ture the impact of frequent, smaller, yet still destructive, events. 
Second, traditional parametric wind models used to simulate tropi-
cal cyclone exposure did not account for asymmetry in wind speed 
induced by land features. Third, previous work has used relatively 
low-resolution population data, limiting the scope for assessing 
demographic patterns in exposure. Studies by Peduzzi et al.22 and 
Geiger et al.7 provide the fullest available accounts of global tropical 
cyclone exposure, but rely on older wind models and provide only 
limited characterizations of the populations exposed beyond the total 
counts. A detailed population profile of those exposed to tropical 
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cyclones, including vulnerable groups such as children or older adults, 
and socioeconomic distribution, is important for understanding risk 
and for future planning. Here we provide evidence documenting the 
characteristics of the exposed populations and how this is evolving  
over time.

In this study, we characterize global population exposure to tropi-
cal cyclones from 2002 to 2019. We use a tropical cyclone parametric 
wind model that combines inner and outer storm dynamics23 and use 
a new wind modelling approach to explicitly consider the asymmetry 
of storms over land24. We simulate wind fields for each tropical cyclone 
and then rasterize global wind fields at 30-arcsec spatial resolution 
(approximately 1 × 1 km2). Then we overlay these wind fields on gridded 
age-specific and sex-specific population estimates (approximately 
1 × 1 km2)25 and a measure of relative deprivation26 to analyse the global 
distribution of population exposure over time, across ages and by 
relative vulnerability (see Methods for more details on wind model-
ling and exposure analysis). We also quantify the degree to which 
the patterns in tropical cyclone population exposure are driven by 
population growth versus changing tropical cyclone frequency and 
intensity. Our estimates of population exposure trends and the extent 
to which tropical cyclones affect vulnerable demographic groups 
are a foundation for assessing the global burden and future risks of 
tropical cyclones.

Global population exposure in 2002–2019
Tropical cyclones affected populations in 117 countries and regions 
between 2002 and 2019, with a few regions accounting for most of the 
exposure. We estimate that 95% of all person-days exposure (defined 
as the product of annual tropical cyclone days and population size; see 
Methods) during the study period come from Atlantic coastal North 
and Central America (5%), the Caribbean (3%), the Korean peninsula 
and Japan (6%), coastal eastern Asia (43%), South East Asia (24%) or 
eastern India and Bay of Bengal (14%) (see Fig. 1; countries/regions 
included are listed in Extended Data Table 1). The top five countries/
regions with the highest person-days exposure are coastal China (33% 
of total person-days), Japan (19%), the Philippines (10%), Taiwan (9%) 
and the USA (4%), which collectively make up more than 75% of all 
exposed person-days. The next five countries/regions are all in Asia (see  
Supplementary Table 1).

For all storm intensities, we observe an increase in population expo-
sure during the 18-year study period of 2002–2019 (see Fig. 2). We find 
similar patterns in person-days exposure (see Extended Data Fig. 2). We 
estimate that, during this period, approximately 560 million people on 
average were exposed to tropical cyclones with maximum wind speed 
of at least 63 km h−1 (that is, tropical storm or more intense) each year. 
Although our study period is not sufficiently long for inferences about 
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Fig. 1 | Global distribution of annual person-days exposure to tropical 
cyclones in 2002–2019. Storm tracks are shown by light-blue curves. a–f, Six 
sub-regions with high exposures are enlarged: Atlantic coastal North and 
Central America (a); the Caribbean (b); the Korean peninsula and Japan (c); 

coastal eastern Asia (d); South East Asia (e); and eastern India and Bay of Bengal 
(f). Countries/regions included in each subplot are listed in Extended Data 
Table 1. Country outlines were obtained from Global Administrative Areas, 
version 2.0 (http://www.gadm.org).

http://www.gadm.org


Nature  |  Vol 626  |  15 February 2024  |  551

long-term trends27, we observe that population exposure increased 
from 408 million people in 2002 to 792 million people in 2019 using 
smooth estimates (raw estimates range from 354 million people in 
2010 to 936 million people in 2019). The size of the estimated exposed 
population varied on the basis of storm intensity. Around 115 million 
people were exposed to tropical cyclones of at least Category 1 severity 
(maximum wind speed greater than 119 km h−1; with a range of 35 mil-
lion in 2010 and 215 million in 2018) per year and 5.8 million people on 
average were exposed to high-intensity tropical cyclones of at least 
Category 3 severity (>178 km h−1 maximum wind speeds; fewer than 
1,000 in 2009 and 17 million people in 2004). These estimates do not 
represent unique individuals, as people exposed over several years 
would be counted for each respective year of exposure.

Age and sex profile
Certain groups, including young children and older populations, 
are thought to be particularly vulnerable to natural disasters28,29. To 
assess the extent to which vulnerable age groups are affected by tropi-
cal cyclones and how this is changing over time, we analyse the age 
composition of those exposed to the wind level of tropical storm or 
greater and compare annual exposure across two periods: 2002–2006 
and 2015–2019. Figure 3 shows an overall shift in the age distribution of 
those exposed away from children (less than 5 years old) to older adults 
(more than 60 years old). On average, around 109.4 million older adults 
were exposed per year in 2015–2019 (95.0 million in Asia, 8.4 million in 
North America and 0.3 million in Africa) compared with 52.6 million per 
year in 2002–2006 (44.0 million in Asia, 5.9 million in North America and 
0.34 million in Africa), a more than doubling of exposure. The number of 
children less than 5 years of age exposed to tropical cyclones increased 
from 57.3 million to 87.9 million per year, a 53% increase. In total, around 
197 million children and elderly were exposed to tropical cyclones annu-
ally between 2015 and 2019. These shifts mirror the general population 
ageing patterns in Asia, North America and Europe30.

The male-to-female ratio is similar between exposed and unexposed 
populations in all age groups and throughout the study period (results 
not shown).

Poverty and deprivation profile
Next we characterize the exposed population in terms of socioeco-
nomic vulnerability as represented by the relative deprivation index26 
(RDI; details in Methods). We assess relative deprivation by calculat-
ing the RDI ratio as the quotient of the population-weighted RDI for 
the exposed population in a country and the population-weighted 
RDI for the unexposed population in the same country. An RDI ratio 
above 1 indicates that the exposed population is more deprived than 
the unexposed population. Figure 4 shows the result of this exercise 
for countries exposed to Category 1 or more intense storms between 
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Fig. 2 | Global population exposure to tropical cyclones, 2002–2019. Top, 
middle and bottom curves represent exposure to tropical storms or larger 
(>63 km h−1 maximum wind speed), Category 1 or more intense (>119 km h−1 
maximum wind speed) and Category 3 or more intense (>178 km h−1 maximum 
wind speed), respectively. Solid lines represent population exposure assuming 
up to 12 h of sustained wind over land, the dashed curves assume up to 6 h and 
the dotted lines assume no limit on duration of overland sustained wind. Point 
estimates represent raw data and curves represent the best fit of locally 
estimated scatterplot smoothing (LOESS). Population exposures to Category 3 
winds in 2004 (15 million), 2007 (14 million), 2009 (<1,000), 2013 (10 million) and 
2016 (11 million) are omitted for clarity but are included in the LOESS estimation. 
Most exposures occur within the first 12 h after landfall, especially for intense 
wind levels. For tropical storms, assuming 6 h and 12 h sustained wind over land 
are, on average, respectively 17% and 9% lower than assuming no limit of 
sustained winds over land. For Category 1 and Category 3 tropical cyclones, 
more than 90% population exposure occurred within the first 6 h after the storm 
made landfall, and almost all exposures occurred within 12 h after landfall.

 0

2.5

 5.0

7.5

 0

2.5

 5.0

7.5

All

Age (years)

2002–2006 2015–2019

North America

Europe

Oceania

0

3

6

9

Asia

Africa

0

5

10

15

 0

2.5

 5.0

7.5

20 40 600

0

2

4

6

8

P
or

tio
n 

of
 p

op
ul

at
io

n 
at

 a
ge

Fig. 3 | Age distribution of populations exposed to tropical cyclones. An 
overall shift in age distribution from young to old is observed globally when 
comparing the periods 2002–2006 and 2015–2019. The global shift mirrors the 
shifts in Asia and North America, which have the most people exposed. No 
notable changes were observed in Africa, probably because of the rapid growth 
of its young population. The x axes represent age groups with a 5-year interval 
from 0 to 75 years and the y axes represent the probability density function of 
age distributions. Globally, 57 million more older people (>60 years old) are 
exposed to tropical cyclones compared with the earlier study period.
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2010 and 2019, organized by a decreasing RDI ratio. We find that, in 20 
out of 29 countries/regions, exposed populations are relatively more 
deprived (RDI ratio > 1) and the average RDI ratio across all countries 
is 1.13. In other words, exposed populations, on average, have a 13% 
higher RDI than those unexposed in the same country.

This pattern is accentuated with increasing storm severity (see Fig. 5). 
Although the RDI of those exposed to the wind level of tropical storm 
is similar to those unexposed (median RDI ratio: 1.02; interquartile 
range: 0.91–1.18), the ratio increases with higher storm intensities. In 
countries exposed to Category 5 or more intense tropical cyclones, 
those exposed live in areas with RDI measures roughly 45% greater than 
those unexposed (median RDI ratio: 1.45; interquartile range: 1.35–1.65).

Role of population growth in tropical cyclone exposure
The growth in tropical cyclone population exposure over the study 
period reflects a combination of population growth and changes in 
tropical cyclone hazards. To decompose their relative contributions, 

we hold population size constant at 2002 levels and re-estimate expo-
sure over time (see Extended Data Fig. 8). Holding population fixed, 
the smoothed change in population exposure from 2002 to 2019 is 
33% lower than our base estimates that include population growth. 
This implies that one-third of the change in exposure is attributable to 
population growth, whereas the other two-thirds is because of changes 
in tropical cyclone hazards. A similar distribution is also observed for 
Category 1 tropical cyclones, in which changes in tropical cyclone cli-
matology contribute 71% of the total increase. However, for Category 
3 and larger storms, changes in tropical cyclone hazards contribute 
only 29% of the observed increase. The conclusions are similar when 
we use person-days exposure rather than population exposure (see 
Extended Data Fig. 8).

Sensitivity analyses
We assess the uncertainty in our primary findings in several ways. First, 
we use alternative wind modelling approaches (further details in Meth-
ods). Extended Data Fig. 3 shows the range of estimated population 
exposure using these different approaches. This figure shows that, 
although the levels vary by modelling approach, the trends are similar 
across modelling approaches. We also assess the sensitivity of the age 
distribution and relative deprivation to modelling approaches. These 
are shown in Extended Data Fig. 4 (for age distribution), Extended Data 
Fig. 6, Extended Data Fig. 7 and Extended Data Table 2 (for relative 
deprivation). Although some estimates change from one approach to 
another (for example, the country with the greatest RDI ratio changes 
based on the modelling approach), the overall patterns (of shifting 
age distribution from young to old and of greater relative deprivation 
among the exposed in most countries) are robust to how wind fields 
are modelled.

Finally, Fig. 2 also shows the range in exposure estimates based on 
assumptions about the duration of sustained winds over land. Our main 
modelling approach assumes that exposure stops 12 h after landfall, 
and we test sensitivity by assuming 6 h and unlimited sustained wind 
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than unexposed populations. The upper, middle and lower boundaries of each 
box correspond to the 75th percentile, median and 25th percentile, respectively, 
of the RDI ratios among all countries affected by specific tropical cyclone  
wind intensities. The dots in each box represent the mean RDI ratio for the 
corresponding wind level. Dots outside the boxes represent outliers in each 
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The five countries/regions exposed to Category 5 or more intense storms are 
the Philippines, Mexico, the Bahamas, Fiji and Cuba.
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duration. Figure 2 shows that most exposure occurs within the first 
12 h after landfall (that is, assuming that unlimited sustained wind 
does not add much exposure), especially for more intense wind levels. 
Estimates of exposure to larger storms (such as Category 3 or more 
intense storms) are more sensitive to assumptions about sustained 
wind speed duration than that for weaker storms, which is consistent 
with the greater uncertainty in modelling the tropical cyclone inner 
core wind field31.

Discussion and conclusions
In the first two decades of the twenty-first century, approximately 
560 million people per year on average were exposed to tropical 
cyclones. This analysis provides a detailed profile of exposed popula-
tions and we identify five key findings: (1) the number of people exposed 
to tropical cyclones has increased between 2002 and 2019; (2) these 
increases hold for low-intensity and high-intensity cyclones, across 
different measures of exposure and nearly all affected world regions 
(Extended Data Fig. 1); (3) the age distribution of the exposed popu-
lation has been shifting from young to old, mirroring demographic 
shifts in North America and Asia; (4) exposed populations are relatively 
more disadvantaged than unexposed populations; and (5) this relative 
disadvantage of the exposed population is more pronounced for more 
intense tropical cyclones.

Between 6% and 12% of the global population is exposed to tropi-
cal cyclones yearly. A large portion of exposure occurs at lower wind 
velocities. Although more intense storms, characterized by high wind 
velocities and precipitation, have received more attention from the 
research and policy communities, recurrent tropical storm and Cat-
egory 1 storms are more common and extensive, with unknown human 
and economic burdens32. This more common exposure can have a dis-
proportionate impact on low-income and middle-income countries, 
especially in regions in which resilience is limited and vulnerability 
is high.

We contextualize our exposure estimates relative to three sources. 
First, the Emergency Event Database estimates that about 24 million 
people per year were affected by tropical cyclones between 2001 and 
2020 (ref. 11). These estimates are based on news sources, insurance 
claims and public reports. In that sense, it underscores the point that 
tropical cyclones receiving media attention are an underestimate of 
population exposure, especially for populations without reliable news 
or public reporting systems and which may not have material damages 
collected through insurance claims.

Second, Peduzzi et al.22 estimate population exposure to tropical 
cyclones based on a decade-long average of tropical cyclone frequency 
and gridded total population estimates. During the period from 2002 
to 2009, our estimates are, on average, 320% (4.2-fold) larger than 
Peduzzi et al.’s estimates for the decade 2000–2009. Third, Geiger 
et al.7, using total population counts and an older tropical cyclone wind 
model with greater outer cyclone wind speeds, generate estimates that 
are, on average, 29% higher than ours. Our study uses wind modelling 
approaches that have been calibrated to account for storm asymmetry 
and terrain features after landfall, which improves the outer cyclone 
wind speed estimations (see Methods for an extensive discussion).

Over the study years considered, we observe an increase in overall 
population exposure across all wind intensity levels. However, there 
was substantial year-to-year variability in population exposure to the 
most intense storms, which is consistent with the findings of Wang and 
Toumi33. Increased exposure is attributed more to changes in tropi-
cal cyclone hazards than to population growth, and this is more pro-
nounced for moderate-intensity storms. During the study period, the 
main characteristic of tropical cyclones that has changed is an increase 
in the intensity of the storm at landfall33. The rate of inland decay after 
landfall may also change, although this remains unclear34–36. Storm 
size has not changed substantially and is not expected to change with 

the warming climate37,38. In terms of population growth, the global 
population experienced not only a general increase of 22% but also 
a more substantial growth in urban and coastal populations39, which 
has played a role in increased exposure. As noted, the time period of 
our study limits inferring about longer-term trends in tropical cyclone 
exposure. However, if the projections of the Intergovernmental Panel 
on Climate Change are correct, indicating an expected increase in the 
proportion of strong tropical cyclones in the future, along with an 
increase in the maximum wind speed of intense storms2,40, it is reason-
able to expect a continuing upward trend in population exposure to 
the most intense storms.

We document a shift in the age distribution of the exposed popula-
tion, reflecting relatively fewer children and more elderly being exposed 
over time. Both young and old people are at increased risk of adverse 
consequences, including lack of access to essential healthcare, destruc-
tion of facilities and roads, power outages and insecure access to water 
and food10,41,42. Older populations, more than young, may also face 
mobility problems that hinder their ability to respond to disasters by 
evacuating landfall areas16.

We also document that exposed populations are more socioeconomi-
cally deprived than unexposed populations, especially those exposed 
to high-intensity storms. One possible mechanism for this is selection: 
people with more means move away from regions at high risk of intense 
storms, leaving high-risk areas for those with lower socioeconomic 
status. Another mechanism is that storms, especially high-intensity 
storms, have a negative impact on socioeconomic development. The 
RDI ratio shows substantial heterogeneities, which could reflect resil-
ience to natural disasters (greater resilience may reduce selection of 
residence based on exposure risk), exposure patterns (greater exposure 
may increase risk, but may also increase resilience) or the capacity for 
population adaptation. These mechanisms may operate to different 
extents and we are not able to disentangle these effects. Nevertheless, 
recognizing the relatively higher deprivation of those living in areas 
at risk for tropical cyclones may help give priority to adaptation and 
mitigation resources. This may be particularly salient in countries in 
which coastal regions at risk of tropical cyclones are more impover-
ished for other reasons, such as having few economic opportunities 
for seafaring occupations.

This study has several limitations. First, the population estimates 
provided by WorldPop are annual and do not reflect intra-annual popu-
lation mobility. If individuals leave high-risk areas during the tropi-
cal cyclone season, resulting in a lower population count in exposed 
regions at the time of the event, then the annual average we use may 
overestimate actual population exposure. Although we cannot quantify 
the extent of this effect on our population exposure estimates, existing 
studies estimating short-term displacement (such as seasonal migra-
tion) indicate that only a minor portion of the population leave43. The 
fact that our population estimates do not capture seasonal migration 
could also have implications for the age and socioeconomic profiles 
we report. Those capable of moving away from the path of a tropical 
cyclone might be younger and of higher socioeconomic status than 
those not displaced, further accentuating the patterns we find for the 
age skew and socioeconomic deprivation of those actually exposed.

Second, tropical cyclone parametric wind models use simplifying 
assumptions based on storm structures over the ocean. When storms 
move over land, their structure is disrupted by land features, result-
ing in uneven wind decay. The field of tropical cyclone modelling is 
developing better representations of overland storm behaviour, but 
this remains an area of uncertainty. We demonstrate that all of our main 
results are robust to using several different modelling approaches.

Third, we represent socioeconomic vulnerability using a depriva-
tion index, which reduces complexity to a single metric and does not 
include factors such as social marginalization, healthcare resources, 
critical infrastructures and governance, among others. Our deprivation 
index is not longitudinally available and does not capture population 
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displacement or socioeconomic development. We therefore present a 
cross-sectional view of the relationship of tropical cyclones to socioeco-
nomic deprivation and are unable to examine temporal trends. As the 
work on granular variation in global socioeconomic conditions evolves, 
its relationship with tropical cyclones would be important future work.

In this study, we describe the composition of populations that have 
been exposed to tropical cyclones globally from 2002 to 2019. Using 
global gridded population and wind field data, we are able to capture 
exposure to intense storms and storms of lesser intensity. Our analysis 
indicates that population exposure to tropical cyclones increased 
from 408 million to 792 million people annually over the study period 
(560 million on average). The age composition in the exposed popula-
tion has been transitioning from younger demographics to older ones, 
reflecting broader global demographic changes. We also find that popu-
lations exposed to tropical cyclones tend to be more disadvantaged 
compared with those not exposed, suggesting that these events can 
exacerbate existing inequalities and highlighting the need for targeted 
interventions to support vulnerable populations.
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Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
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Methods

Tropical cyclone data from IBTrACS
Tropical cyclone tracks data used in this study are taken from the Inter-
national Best Track Archive for Climate Stewardship (IBTrACS version 
v04r00)44,45. This database includes 6-hourly latitude and longitude 
tropical cyclone positions and maximum 1-min sustained wind of storm 
centre at 10 m above the sea surface. We use global tropical cyclone data 
between 2002 and 2019. We chose the start year to align with availability 
of data on storm extent in IBTrACS and the end year to align with gridded 
population estimates. Storm observations with a missing maximum wind 
speed or whose maximum wind speed is less than 34 knots (below the 
tropical storm threshold) are removed. Our storm dataset thus includes 
1,808 tropical cyclone events in six global basins (North Atlantic, West-
ern Pacific, Eastern Pacific, South Pacific, North Indian, South Indian).

Primary tropical cyclone wind modelling approach
To estimate the extent of wind exposure associated with tropical 
cyclones, we use a parametric model to estimate the complete wind 
field of each storm. In general, parametric wind models generate com-
plete wind speed profiles with few inputs, making them suitable for 
global analyses such as ours. Although parametric models were origi-
nally calibrated using mature storms over the ocean, recent models 
account for the evolution of storms during landfall, and validation 
with observational data indicates good overland performance24,46.

In this work, we use an approach developed by Chen et al.24, based 
on the model introduced by Chavas et al. (referred to as ‘C15’)23,47. The 
C15 wind field model mathematically merges an inner wind field model 
(equation (36) in ref. 48) and a separate outer wind field (equations 
(31)–(33) in ref. 49), producing a complete azimuthal wind profile. 
The parameters required by C15 are: storm maximum wind velocity 
Vm, radius of maximum wind speed Rmax for the inner region, radius 
of a specific intensity Rfit (for example, radius of 34-knot wind, R34), 
Coriolis parameter f, exchange coefficients of momentum Cd and free 
tropospheric subsidence rate wcool.

The approach we use is based on Chen et al.24, which explicitly consid-
ers the asymmetry of storm structure after landfall. It applies the C15 
model to each earth-relative quadrant, using quadrant-specific storm 
and surface parameters as model inputs. We refer to this approach as 
‘Quad-by-Quad’. This approach has been validated with an observa-
tional dataset of post-landfall storm wind speeds.

In C15, Vm and the storm latitude ϕ are taken from IBTrACS. The Corio-
lis parameter f is computed as a function of storm latitude. The radius 
of 34-knot wind R34 in each quadrant (northeast, northwest, southwest, 
southeast) are also taken from IBTrACS. The most specific parameter 
that accounts for the characteristics of the terrain, Cd, is calculated 
using surface roughness data50 from ECMWF Reanalysis v5 (ERA5)51. 
It is averaged over a range of 0–600 km to yield a single value within 
each quadrant. Previous studies have shown that the wind field solution 
is not sensitive to the selection of wcool. We set wcool to be 0.002 m s−1, 
which is consistent with the median of the best-fit value observed in 
storms23 and identical to the value used elsewhere46. We use C15 and 
Quad-by-Quad jointly to simulate wind profiles in each quadrant and 
obtain complete tropical cyclone wind profiles.

In this approach, Rfit can use outer radii of any wind speed, such as 
R50 (radius of 50-knot wind). We use R34 as it has a non-zero value for all 
storms in this study, it can be accurately estimated by remote-sensing 
systems with little rain contamination and, in more recent years, it has 
undergone quality control in retrospective best track reanalysis52. In 
IBTrACS, R34 is available since 2002 and also reviewed post-season, or 
‘best tracked’, since 2004 in the Atlantic/East Pacific and since 2015 in 
other global basins. Thus there is less uncertainty in our wind fields 
during the later years of the study period.

On the basis of this approach, we simulate tropical cyclone wind 
fields at 6-h intervals for each storm. Using that information, we 

calculate the annual maximum wind speed for each location and ras-
terize it at a 30-arcsec resolution. We then categorize the intensity of 
the storm in each affected area based on the annual maximum gridded 
wind speed.

Other wind modelling approaches for sensitivity tests
There is meaningful variation in wind modelling approaches. We model 
and run all analyses using two other approaches that enable global 
exposure estimates. The first approach is a modification of our primary 
Quad-by-Quad approach that takes into account possible overestima-
tion in the outer reach of the storm. Following Chavas and Knaff 53, we 
reduce the outer radius R34 in each quadrant by a factor of 0.85. Because 
the outer radius R34 in IBTrACS is operationally defined as the outer-
most value within each quadrant, this might lead to an overestimation 
of the outer reach of the storm, and this reduction has been shown 
to have advantages in some contexts. This approach is referred to as 
‘Quad-by-Quad-0.85’.

Our second approach is based on C15 and we use a separate compo-
nent to estimate the asymmetrical surface winds of tropical cyclones 
over land. In this approach, the total wind is estimated as the sum of two 
components: one is the axisymmetric component associated with the 
storm itself (modelled by C15) and the other is the asymmetric compo-
nent caused by the combined effects of storm movement and ambient 
wind shear54. We label this approach as ‘C15+LC12’ in the figures. In this 
approach, the axisymmetric component simulated by C15 uses the 
radius of maximum wind speed Rmax of a storm as model input. Rmax 
plays a crucial role in representing the size of the inner region of the 
storm, which markedly affects the simulation of the intense wind region 
of the storm. Because Rmax is estimated with more uncertainty than 
the outer size of the storm, we derive Rmax from R34, following Chavas 
and Knaff 53. Specifically, we calculate R34 as the mean of all non-zero  
values available in each quadrant, multiplied by a factor of 0.85. Then 
we predict Rmax based on R34 to get the radius of maximum wind speed. 
We use this approach to quantify the uncertainties in the strong-wind 
region of the storms, in which the Quad-by-Quad approach is incom-
pletely validated24.

WorldPop
We obtain estimates of human population distributions from World-
Pop25. We extract spatial distributions of total population counts using 
WorldPop global mosaic files and age-specific population distribu-
tions using WorldPop age and sex structure files. WorldPop estimates 
population counts at a resolution of 30 arcsec degree (about 1 km) 
between 2000 and 2019. We merge population estimates with wind 
field estimates at the grid cell level.

We choose WorldPop as our primary source for gridded population 
estimates as it provides age-structured and sex-structured time series 
for population estimates between 2000 and 2019, at a sufficient resolu-
tion to match the constructed wind field estimates55.

Tropical cyclone exposure
Using gridded tropical cyclone wind fields and population estimates, 
we estimate tropical cyclone exposures using two metrics. The first 
metric is an annual population exposure count, in which a population 
grid cell is counted as exposed if the maximum sustained wind exceeds 
a certain wind threshold at least once in the year:


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V V
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0, if ≤
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In equation (1), the subscript ‘grid’ represents each 30-arcsec-degree 
cell, Vday,grid represents simulated maximum sustained wind speed for 
a specific cell on a given day and Vthres represents a specific wind speed 
threshold. On the basis of the affected grids identified in equation (1), 
the total population exposure in a given year is calculated as:
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The second metric is annual person-days exposure, defined as the 
product of annual frequency under a specific wind speed threshold 
and the population size for each grid cell. Similarly, the annual days 
exposed to tropical cyclones for each grid is computed as follows:
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The total person-days exposure in a given year is computed as:

∑
annual person - days exposure

= population × tropical cyclone days (4)
year

grid
year,grid year,grid

We choose thresholds for maximum sustained wind speed based on 
categories on the Saffir–Simpson scale56. We use TS, CAT1, CAT2, CAT3, 
CAT4 and CAT5 to denote storm winds at tropical storm (34–63 knots), 
Category 1 (64–82 knots), Category 2 (83–95 knots), Category 3 (96–
112 knots), Category 4 (113–136 knots) and Category 5 (≥137 knots) 
scales, respectively.

For all three parametric wind modelling approaches, we further quan-
tify the uncertainties in the range of population exposure by assuming 
sustained wind up to 6 h (one step in IBTrACS data), 12 h (two steps) and 
no limit (full tracks) of duration over land. When storms stay longer 
over land after landfall, the uncertainty in R34 data increases and the 
structure of the storm becomes more asymmetric, which together lead 
to larger uncertainty in the estimates. That is, the population exposure 
estimates within 12 h after landfall are more reliable than the full tracks, 
and we use that duration in all our primary analyses.

Global gridded RDI
We use the global gridded RDI to represent the socioeconomic status of 
exposed and unexposed populations26. The RDI has a value between 0 
and 100, for which higher values represent higher levels of deprivation. 
The RDI is constructed using six main sociodemographic components: 
gridded child dependency ratio, infant mortality rate at the various 
administrative levels, human development index (derived from life 
expectancy, mean years of schooling and gross national income) at the 
first administrative level, gridded building footprint, gridded night-
time lights and recent local deprivation trends. These six main compo-
nents are harmonized and rasterized and the resulting RDI data have 
a resolution of 30 arcsec degree (about 1 km), with global coverage. 
The high spatial resolution of the RDI allows for capturing variations in 
socioeconomic profiles across different areas within the same country 
(see Extended Data Fig. 5).

To assess the socioeconomic profile of exposed populations, we 
define the RDI ratio as the quotient of the population-weighted RDI 

for the exposed population in a country and the population-weighted 
RDI for the unexposed population in the same country. Therefore, an 
RDI ratio exceeding 1 indicates that the exposed population is more 
deprived than the unexposed population.

The RDI is noted to be representative of the world in 2015. The raw 
data used to develop the RDI are either single-year or estimates between 
2010 and 2020. We consider the RDI, then, as a single representation of 
the global levels of relative deprivation during the decade from 2010 
to 2019. For all population exposure analyses using the RDI, we limit 
our sample to 2010–2019 to align with the RDI time frame.

Data availability
Replication data and codes for this study have been deposited at https://
doi.org/10.5061/dryad.76hdr7t30.
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Extended Data Fig. 1 | Population exposure to tropical cyclones in 2002–
2019, by continent. Curves represent exposure to tropical storms or higher 
winds (>63 km h−1 maximum wind speed), assuming 12-h duration of sustained 

wind over land. The overall increase in global exposure to tropical cyclones is 
primarily driven by Asia.
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Extended Data Fig. 2 | Global person-days exposure to tropical cyclones in 
2002–2019. Similar to Fig. 2, the person-days exposure has increased between 
2002 and 2019. The top, middle and bottom curves represent person-days 
exposure to tropical storms, Category 1 or more intense and Category 3 or 
more intense storms, respectively. The solid, dashed and dotted lines represent 

exposure assuming up to 12 h, 6 h and no limit on duration of sustained wind 
over land. Point estimates represent raw data and the curves represent locally 
estimated scatterplot smoothing (LOESS) best fit. Increasing trends in person- 
days exposure are observed for all wind levels.



Extended Data Fig. 3 | Comparison of population exposure levels with 
different wind modelling approaches. The figure compares the population 
exposure estimates calculated using three different wind modelling approaches 
(the primary approach Quad-by-Quad with two other approaches, Quad-by- 
Quad-85 and C15+LC12). Similarly to the solid curves in Fig. 2, the coloured curves 
represent exposures to tropical storms or higher winds (>63 km h−1 maximum 
wind speed), assuming a 12-h duration of sustained wind over land. The estimates 
are further compared with population exposure estimates in previous studies, 
that is, Geiger et al.7 and Peduzzi et al.22. Peduzzi et al. estimate population 
exposure based on a decade-long average, with the two red triangles representing 
estimates for the two decades of 2000–2020. This comparison indicates that: 
(1) the increasing trend from 2002 to 2019 is robust to model choice, and we 
observe this pattern with all three modelling approaches; (2) by correcting the 

outer radius through a reduction factor of 0.85, the population exposure 
reduces by approximately 15%, indicating that the impact of the reduction 
factor on estimated population exposure is approximately linear; (3) the 
uncertainty in population exposure to stronger storms is greater than that to 
weaker storms, and the disparities in the estimates of exposure to Category 3  
or more intense storms can be as much as threefold in certain years; (4) despite 
the uncertainties in the exposure estimates obtained from the three different 
approaches, the difference is very small compared with previous studies. The 
discrepancy between our estimates and Geiger et al.7 can be partially attributed 
to differences in the wind parametric method. Geiger et al. used a parametric 
wind model from Holland57, which may potentially overestimate tropical 
cyclone surface winds.
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Extended Data Fig. 4 | Sensitivity analysis for age profile, as in Fig. 3. a, Age 
profile of unexposed population, indicating that the overall shift in the age 
distribution of exposed population is largely driven by the general population 
ageing patterns in Asia, North America and Europe. b,c, Age profiles for the 

exposed population identified by Quad-by-Quad-85 (b) and C15+LC12 (c), 
suggesting that the overall change in the age distribution of the exposed 
population is robust to model choice.



Extended Data Fig. 5 | Variations in the RDI of exposed countries/regions. 
The RDI is suitable for this analysis as it captures the variations in the 
socioeconomic profiles across different regions within the same country. Here 
we show the RDI distribution for the most heavily exposed nine countries/
regions in a as an example. In Fig. 4, we exclude countries/regions with 
populations less than 100,000 or areas smaller than 8,000 km2 for clarity. 
There are two reasons for removing these areas: first, in regions with small 
areas or low populations, everyone is affected by tropical cyclones, making the 
RDI ratio meaningless; second, in regions with small areas, there is insufficient 
variation in the RDI. In the two aforementioned circumstances, the RDI is not a 
suitable indicator, as we show in b. With this criterion, countries/regions 

removed in the RDI analyses are: Turks and Caicos Is., St. Kitts and Nevis, Virgin 
Is., Samoa, Vanuatu, St. Vincent and the Grenadines, Guadeloupe, British Virgin 
Is., Martinique, Micronesia, Mayotte, Wallis and Futuna, Reunion, American 
Samoa (Eastern Samoa), French Polynesia, Fiji, Macau (China), Hong Kong 
(China), New Caledonia and Northern Mariana Is. We show the RDI ratio of these 
countries/regions in Extended Data Fig. 6. In Fig. 5, we only exclude countries/
regions with populations less than 100,000, so that the most intense wind 
category (Category 5) still has five countries/regions remaining. In Extended 
Data Fig. 7, we also confirm that the primary findings on the socioeconomic 
characteristics of the exposed population in this study remain valid, regardless 
of whether the countries/regions are included or excluded.
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Extended Data Fig. 6 | Sensitivity analysis for the RDI ratio of exposed 
countries/regions, as in Fig. 4. Subplots a and b indicate that the main 
conclusion about the RDI ratio of exposed countries/regions is not sensitive to 
model choice. Here we present the RDI ratios of each affected country/region, 
identified by the Quad-by-Quad-85 modelling approach (a) and the C15+LC12 
modelling approach (b). The raw results are listed in Extended Data Table 2. Our 
results show that 70% and 73% of the countries/regions have RDI ratios greater 
than 1, respectively. It is important to note that the RDI ratio for Portugal 
experiences substantial fluctuations when different wind modelling approaches 

are used. This is primarily because of the location of Portugal in a higher-latitude 
region, in which tropical cyclones have already undergone extratropical 
transition, which greatly affected the symmetric structure of the storm. In this 
scenario, the C15+LC12 approach is less suitable, and only the Quad-by-Quad 
method can capture this substantial asymmetry. When comparing the Quad-by- 
Quad-85 and Quad-by-Quad methods, the change in the RDI ratio for Portugal is 
minimal. c, The RDI ratio for all countries/regions exposed to Category 1 or more 
intense storms, including those with population less than 100,000 or area 
smaller than 8,000 km2.



Extended Data Fig. 7 | Sensitivity analysis for the trends in the RDI ratio 
with increasing storm severity, as in Fig. 5. Subplots a and b indicate that the 
main conclusion about the socioeconomic profiles of the exposed population 
is not sensitive to model choice. Here we show results of the analysis similar to 
those shown in Fig. 5, but with exposed population identified with the Quad-by- 
Quad-85 modelling approach (a) and the C15+LC12 modelling approach (b). 
They both show similar patterns and the conclusion is robust. c, Sensitivity test 
based on our primary modelling approach Quad-by-Quad but using three 
different countries/regions subsets. The top plot includes the raw 93 countries/

regions that were exposed to tropical cyclones between 2010 and 2019, the 
middle plot removes areas with populations less than 100,000 and the bottom 
plot removes countries/regions with populations less than 100,000 or areas 
smaller than 8,000 km2. In all three subplots, we show that the exposed 
populations are more socioeconomically deprived than unexposed populations 
within the same country, and this relationship is more pronounced for higher- 
intensity storms. Our results indicate that this conclusion is robust and 
unaffected by the removal of small countries/regions.
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Extended Data Fig. 8 | Relative contributions of population growth and 
changes in tropical cyclone climatology to the change in tropical cyclone 
exposure. For each tropical cyclone wind intensity, we hold population size 
constant at the 2002 level and re-estimate population exposure over time, as 
shown by the light-coloured curve in each panel. We do this exercise for both 
population exposure (a) and person-days exposure (b). We show that around 
67%, 71% and 29% of the change in total population exposure is attributable to 
the changes in tropical cyclone climatology at the tropical storms, Category 1 
and Category 3 wind levels, respectively. Similarly, 72%, 74% and 27% of the 
change in person-days exposure is attributable to changes in tropical cyclone 
climatology at the tropical storms, Category 1 and Category 3 wind levels, 
respectively. The reasons behind the differences in the distribution between 
weak and intense storms remain uncertain and require further study.



Extended Data Table 1 | List of countries/regions in six most heavily exposed sub-regions shown in Fig. 1

The table lists specific countries included in each of the six panels of Fig. 1. Only countries/regions with populations exposed to tropical cyclones are noted in the table.



Article
Extended Data Table 2 | Sensitivity tests of the RDI ratio using different wind modelling approaches

The population-weighted RDI ratio (the RDI among those exposed to tropical cyclones divided by the RDI among those unexposed) calculated using three different wind modelling approaches 
in all affected countries/regions. Quad-by-Quad is our primary approach used in Fig. 4, whereas the RDI ratio estimated using the Quad-by-Quad-85 and C15+LC12 approaches are shown for 
comparison (more details in the ‘Other wind modelling approaches for sensitivity tests’ section). This table is used to generate Fig. 4 and Extended Data Fig. 6a,b.
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