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Abstract

We study quantitatively the overparametrization limit of the original Wasserstein-GAN algorithm.
Effectively, we show that the algorithm is a stochastic discretization of a system of continuity equa-
tions for the parameter distributions of the generator and discriminator. We show that parameter
clipping to satisfy the Lipschitz condition in the algorithm induces a discontinuous vector field in
the mean field dynamics, which gives rise to blow-up in finite time of the mean field dynamics. We
look into a specific toy example that shows that all solutions to the mean field equations converge
in the long time limit to time periodic solutions, this helps explain the failure to converge.
Keywords: GAN, Aggregation Equation, blow-up

1 Introduction

Generative algorithms are at the forefront of the machine learning revolution we are currently
experiencing. Some of the most famous types are diffusion models Sohl-Dickstein et al. (2015),
generative language models Radford et al. (2018) and Generative Adversarial Networks (GAN)
Goodfellow et al. (2014). GAN was one of the first algorithms to successfully produce synthetically
realistic images and audio and is the topic of this article.

A guiding assumption for GAN is that the support of the distribution can be well approxi-
mated by a lower dimensional object. That is to say although P, € P(RX), we expect that the
inherent correlations in data, like values of neighboring pixels in an image, drastically reduce the
dimensionality of the problem. In broad terms, we expect that, in some non-specified sense, the
effective dimension of the support of P, is less or equal than a latent dimension L <« K. The
GAN algorithm tries to find an easy way to evaluate a continuous function from G : RY — RX,
which we call the generator. The objective is to make G(Z) to be approximately distributed like
P,, where Z is distributed like the standard Gaussian A (0,1) € P(R¥). To get an idea of orders
of magnitude, Karras et al. (2017) creates realistic looking high resolution images of faces with
K =1024 x 1024 x 3 = 3145728 and L = 512.

As the word adversarial in its name suggests, the algorithm pits two Neural Networks against
each other, the generator network GG and the discriminator network D. The discriminator network
tries to discern from the synthetic samples G(Z) and the real samples X ~ P,. For this purpose,
the optimization over the discriminator network D is the dual formulation of a metric between



the associated synthetic data distribution G#N and the real data distribution P,. The original
algorithm Goodfellow et al. (2014) used Jensen-Shannon divergence. The version we analyze in
detail here is the Wasserstein-GAN (WGAN) Arjovsky et al. (2017) which uses the 1-Wasserstein
distance instead. The behavior of GAN is known to be directly tied to the choice of the metric, see
Section 3 for more details.

The architecture of the Neural Networks (NN) which parametrize the generator and discrimina-
tor also plays a large role in the success of the algorithms. The paradigm for architectures at the time
of the first prototypes of GANs was to use Convolutional Neural Networks (CNNs) which exploit
the natural spatial correlations of pixels, see for example AlexNet introduced in Krizhevsky et al.
(2017). Currently, the paradigm has changed with the advent of attention networks which are more
parallelizable and outperform CNNs in most benchmarks, see Vaswani et al. (2017). In this paper,
we forego the interesting question of the role of NN architecture to understand in more detail the
induced dynamics, see Section 2.1 for more details.

To understand the dynamics, we will follow the success of understanding the overparametrized
limit in the supervised learning problem for shallow one hidden layer NN architectures Mei et al.
(2018); Chizat and Bach (2018); Rotskoff and Vanden-Eijnden (2022), see also Ferndndez-Real and Figalli
(2022); Wojtowytsch and E (2020) for reviews of these results. In a nutshell, to the first order these
articles relate Stochastic Gradient Descent (SGD) parameter training to a stochastic discretization
of an associated aggregation equation Bertozzi et al. (2011); Carrillo et al. (2011), and to a second
order to an aggregation diffusion equation Carrillo et al. (2006). In probabilistic terms, this is
akin to the law of large numbers Sirignano and Spiliopoulos (2020a) and the central limit theorem
Sirignano and Spiliopoulos (2020b).

Our contribution, which is novel even in the supervised learning case, is to quantify this type of
analysis. First, we show a quantitative result for the stability of the limiting aggregation equation
in the 2-Wasserstein metric, see Theorem 5. The difficulty of the stability in our case is not the
regularity of the activation function Chizat and Bach (2018), but instead the growth of the Lipschitz
constant with respect to the size of the parameters themselves. Next, we show a quantitative
convergence of the empirical process to the solution to the mean field PDE, to our knowledge this
is the first of its kind in terms of a strong metric like the 2-Wasserstein metric, see Theorem 6 and
Corollary 8.

Moreover, the WGAN algorithm clips the discriminator parameters after every training itera-
tion. In the follow up work Gulrajani et al. (2017) observed numerically that it created undesirable
behavior. In terms of the mean field PDE (7), the clipping of parameters induces an associated
discontinuous vector field. This explains from a mathematical viewpoint the pathology mentioned
before. In a nutshell, the parameter distribution can blow-up in finite time, and after that time the
discriminator network loses the universal approximation capabilities, see Secion 2.4.

Failure to converge is a known problem of GAN. For instance, Karras et al. (2017) introduces a
progressive approach to training higher and higher resolution pictures, effectively having hot start
of the algorithm at every step. By looking at an enlightening simplified example, we can explicitly
understand the long time behavior of the algorithm. In this example, any initialization eventually
settles to a time periodic orbit, which implies that the generator oscillates forever, see Section 3.

1.1 Outline of the paper

The rest of the paper is organized as follows. Section 2 contains the notation and the main results:
the well posedness of the mean field PDE system (7) Theorem 5, and the quantified mean field
convergence Theorem 6. Section 3 contains an enlightening example of the dynamics of WGAN.
Section 4 contains the proof of Theorem 5. Section 5 contains the proof of Theorem 6. Section 6
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presents the conclusions and discusses some future directions for research. Appendix A recalls well
posedness and approximation of differential inclusions.

2 Set up and main results

We consider a cloud of data points {z;}ic; C R¥, which we assume to be generated by an underlying
probability measure P, € P(RX). Although we do not have direct access to P, we assume the
cloud of data is large enough so that we can readily sample x; ~ P, without any inherent bias.

The task is to generate approximate samples of the distribution P, from a base underlying
probability measure which is easy to sample. We consider the Gaussian distribution N(0,1) €
P(RY) in a latent space RY, where L is the dimension of the latent space, which is to be chosen
by the user. We will try to approximate P, by the push forward of said base distribution Gg#N,
where Gg : R — R is a parametric function, which is usually chosen to be a Neural Network.

To choose the parameters ©, whose dimensionality we will set later, we consider the following
optimization problem

Héfdl(GQ#Na P*)7

where d; is the 1-Wasserstein distance. Although this problem seems rather straight forward, the
Wasserstein distance is notorious for being difficult to calculate in high dimensions, and we do not
have direct access to Py; hence, in practice a proxy of said distance is chosen. More specifically, we
approximate the dual problem

di(Ge#N, P,) = sup D(Go(2)) dN(2) — D(z) dPy(x), (1)
DeLip; JRL REK

by replacing the Lip; class of functions by the parametric function Dq : RE — R,

h(GattN.P.) ~ sup /R , DalGo(=)) N(2) = [ Daw) dP. (o).

The parametric function Dq will also be considered as a Neural Network and the parameters
Q) are restricted to a compact convex set. The precise definition of Gg and Dq as Neural Networks
with a single hidden layer is given bellow, letting ¢ : R — R denote the activation function. Since
the parameters € are restricted to a compact set, if o is C* bounded the family {Dgq} is uniformly
Lipschitz.

Remark 1 The original GAN Goodfellow et al. (2014) utilizes the Jensen-Shannon divergence,
which in terms of Legendre-Fenchel dual can be written as

IS(Go#N,P.) =  sup / log D(Go(2)) dN'(2) + / log(1 — D(z)) dP.(x).
) o

DeChy (RK RE

2.1 Neural Networks

For both the generator Gg and discriminator Dgq, we consider the simple case of a single hidden
layer, which has the universal approximation property, see Cybenko (1989). That is to say

N N
1 1
o0 = (3 oolotal =42 St <4289
i=1 =1



where the array © = (61,--- ,0y) € (R x RY x R)¥)N is given by 6; = (al, 87,7/)1<j<x, and Dq
defined by

M
1
Daq(z) = i E a;o(b; - x + ¢),
=1

where the array Q = (wy,--- ,wur) € (R x RE x R)M is given by w; = (a4, b;, ¢;). To obtain rigorous
quantitative estimates, throughout the paper we consider activation functions ¢ : R — R that are
bounded in C2(R). The typical example being the sigmoid function

Simplifying notation, we denote
Ado(f -z =0(267)  with 0 =(d,F,9) eRxREXR,  1<j<K,

and
ac(b-z+c) = o(z;w) with w=(a,b,c) € R x RE x R.

Remark 2 The mean field analysis of two hidden layers NN is also possible, see for instance
Sirignano and Spiliopoulos (2022).

2.2 Training the parameters by SGD

We follow a simplified version of parameter training algorithm which is given in the original refer-
ence Arjovsky et al. (2017), the only difference is that for comprehensibility we consider stochastic
gradient descent instead of RMSProp (Tieleman (2012)), see Remark 4. We use n as the full step
indexing, and [ for the sub-index related to the extra training for the Discriminator’s parameters.
We initialize the parameters chaotically:
oLl o &M

in

@l RN

and ~ i

where
QM e RxREXRM  and  ©! € (R x RE xR)F)V,

and the initial distributions
Vin € P (RxRF xR)  and i € P ((R x R x R)F)

are fixed independent of N and M. Of course, correlations in parameter initialization and N and
M dependent initial conditions can be introduced if they were desirable.

Iteratively in n until convergence, and iteratively for [ = 2,...,n. with n. a user defined param-
eter, we define

Q! = clip (anl—l + hVq (Dgni-1 (Gen (1)) — DQn,H(a;?))) ,
Qn-‘rl,l _ Qn,nc’

and
entl — @n — hVeoDan+1,1 (GG” (ch-i-l))v

where the function clip stands for the projection onto [~1,1] x [~1,1]% x [~1,1], and h > 0 is the
learning rate which is a user chosen parameter. The families {27 }penie(1,... n.3s 127 tneNie(l,. .. ne+1}
are independent R® and R” valued random variables distributed by P, and A/, respectively.
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Remark 3 The clipping of the parameter is made to ensure that the discriminator network is
uniformly bounded in the Lipschitz norm, to approzimate Kantorovich’s duality formulation (1).
With this in mind, we should notice that the clipping of all parameter is slightly indiscriminate. For
instance, the dependence of the discriminator function with respect to the parameter a is bounded
by our assumption on the activation function o, and would not need to be clipped.

Remark 4 We should note that other versions of SGD like Adam or RMSProp (see Kingma and Ba
(2014) and Tieleman (2012)) are preferred by users as they are considered to outperform SGD. They
introduce adaptive time stepping and momentum in an effort to avoid metastability of plateaus, and
falling into shallow local minima. These tweaks of SGD add another layer of complexity which we
will not analyze in this paper.

2.3 Associated Measures

Associated to each family of parameters at the iteration step n we consider the empirical measures,

N
. 1
= N;aey € P ((R x R x R)X)

M
vy = %Zéml,l e P (RxRF xR).
i=1

Abusing notation slightly and for general probability measures u € P ((R x RY x R)E ) and
vE P(]R x RE XR), define

() = (/}RXRLXRa(z; 01) dpir(01), .. ,/RXRLXRa(z;eK) duK(HK)> @)

and
D,(z) = /]RXRKX]R o(z;w)dv(w), (3)

where u;, for i = 1,..., K, denotes the i-th marginal of ;. We should note that due to the exchange-
ability of the parameters, there is no loss of information from considering the pair (0", Q") versus
the pair (1}, v};). In fact, using the previous notations we have
G@n = GHK; and DQn = DV}@I'
Hence, to understand the behavior of the algorithm in the overparameterization limit, we will
center our attention on the evolution of the empirical measures. More specifically, we consider the
curves pu € C ([0, o0); P ((R x RE x R)K)) andv e C ([0, >); P (R x RE x R)) to be, respectively,
the linear interpolation of p% and v}, at the time values t,, = n(h/N).
The choice of the scale At = h/N is arbitrary, and could also be expressed in terms of M. The
relationship between N, M and n. gives rise to different mean field limits

+o00

= Ye~<g1 (4)
0,

nCM

and we will obtain different behavior in terms of limiting dynamics. In this paper, we address the
intermediate limit v, ~ 1, but we should notice that in practice it is also interesting to study when



Y. = 00, which assumes that the discriminator has been trained to convergence, see Section 3 for
an illustrative example. For notational simplicity, we write the proof for N = M and n. = 1, but
our methods are valid for any finite value of =, ~ 1.

Explicitly, for any ¢ € [0,00), we find n € N and s € [0,1) such that

(1 —8)ty +stpp1 =t
and set the intermediate value as the 2-Wasserstein geodesics:
1 1 &
IRCEESD Y NI RO 3 P TIS
i=1 i=1

2.4 Identifying the limit
For a given pair of measures i and v, consider the energy functional:
Elp,v] = | Dy(Gu(z)) dN(z) — | Dy(x) dP.(x). (6)
RL RE

The evolution of the limit can be characterized by the gradient descent of F¥ on u and gradient
ascent on v, the latter restricted to P([—1,1] x [~1,1]% x [~1,1]). In terms of equations we consider

Ot = Vo (1 Vol . v]) =0,
O + 7.V - (1/ Projmvw%—f[u, u]> =0, (7)
IU'(O) = Min, V(O) = Vin,

where we define Q = [—1,1] x [~1,1]% x [~1,1] and the first variations are
0F
G0 = [ 91006600 0100, - 0(00) dv)an ),
OF
i@ = [ o(Gu@w) NG - [ otaiw) P

and Proj., : @ x (R x RE x R) — R x R x R is the projection onto the tangent cone g (w). In
the present case the projection can be defined by components as follows:

Vi, w € (—1,1)
vt -y e (1,1}

Proj., (w, V) = { (8)

We should notice in fact that the projection is trivial away from the boundary, or if the vector field
at the boundary points into the domain. Effectively, the projection does not allow for mass to exit
the domain. We do note that this can easily make mass collapse onto the boundary and flatten the
support of the distribution v into less dimensions, see Section 3 for a further discussion.

In the context of ODEs, the projection onto convex sets was considered by Henry (1973), which
we recall and expand on Appendix A. For Hilbert spaces setting, we mention the more general
sweeping processes introduced by Mureau Moreau (1977). Recently, projections of solutions to
the continuity equation onto semi-convex subsets have been considered as models of pedestrian
dynamics with density constraints, see for instance Di Marino et al. (2016); Santambrogio (2018);
De Philippis et al. (2016).
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2.5 Main Result

We start by showing that the mean field parameter dynamics with a discontinuous vector fields are
well defined and stable. We quantify all the results with respect to the Wasserstein distance, with
ds and dy4 representing the standard 2-Wasserstein and 4-Wasserstein distance, respectively.

Theorem 5 Given initial conditions (fin,vin) € P (R x RE x R)X) x P(Q) such that for some
>0

/65042 dptin < 00, 9)

there exists a unique absolutely continuous weak solution to the mean field system (7).
Moreover, we have the following stability estimate: For any T € [0,00), there exists C > 1 such
that

e da((pa (1), v1.(0)), (2 (t), v2(t))) < Ci((r,in, 1in), (B2,ins V2,in)), (10)

for any pair of weak solutions (u1,v1) and (g, vs).

The proof of Theorem 5 is given in Section 4, see Proposition 10 for a precise dependence of the
constants. Our main result is the following estimate on the continuous time approximation of
parameter dynamics.

Theorem 6 Let (un(t),vn(t)) be the empirical measures associated to the continuous time inter-
polation of the parameter values, assumed to be initialized by independent samples from (pin, Vi)
given by (5). Consider (fin(t),0n(t)) the unique solution to the PDE (7) with random initial con-
ditions (un(0),vn(0)). If pin has bounded double exponential moments on «, that is to say for
some § > 0

«l?
Eu. |:666 | ] < 00, (11)
then for any fixed time horizon T € [0,00) there exists C > 0 such that
2 . . C
sup Edy((un(t), vn(t)), (An (1), N (1)) < == (12)
te[0,T N

Remark 7 The need for (11) stems from the linear dependence of the Lipschitz constant of the
mean field vector field with respect to the size of the parameters, see Lemma 135.

The proof of Theorem 6 is presented in Section 5. Using the convergence Theorem 6 and the
stability of the mean field Theorem 5, we can obtain a convergence rate estimate which suffers the
curse of dimensionality.

Corollary 8 Under the hypotheses of Theorem 5 and Theorem 6, for any fized T > 0, there exists
C > 0 such that

max Ba((u(t), v(), (un (1), w (1)) < ——

_ 13
t€[0,T) N (13)

where (u,v) is the unique solution of (7) and (un,vn) is the curve of interpolated empirical mea-
sures associated to the parameter training (5).

Remark 9 We should note that the difference between the results of Theorem 6 and Corollary 8 is
that the estimate (12) does not suffer from the curse of dimensionality, while the stronger estimate
(13) does. The later dependence on dimension is typical and sharp for the approxzimation of the



Wasserstein distance with sampled empirical measures, see Dudley (1978); Fournier and Guillin
(2015); Bolley et al. (2007). This stiff dependence on dimension suggests that studying the long time
behavior of the mean field dynamics of smooth initial data (u(t),v(t)) is not necessarily applicable
in practice. Instead, the focus should be to show that with high probability that discrete mean field
trajectories (uin(t), Un(t)) converge to a desirable saddle point of the dynamics. See Section 3 for
an explicit example of long time behavior.

Proof [Proof of Corollary 8] We consider the auxiliary pair of random measure-valued paths
(fin, Un) which are a solution to (7) with stochastic initial conditions (pxn(0), vn(0)), that is

N N
. 1 . _ _ 1
NN(O) - NN(O) - N ZZ:; 59i,m and VN(O) - VN(O) - N ; 6Wi,in7

where 6; ;, and w; ;, are N independent samples from p;, and v;,, respectively.
By the large deviation estimate in Fournier and Guillin (2015), for ¢ large enough we have

4
NECZTD q

E[di((ﬂN(0)7ﬁN(0))v (Ninyyin))] < OMI]% ( ! + i4) )

where M, denotes the ¢g-th moment of p;, ® v;,. By Theorem 5, taking ¢ large enough, and using
that wi, ® v, has finite moments of all orders we have

E[d3((an (t), on (1)), (n(t), v(1)] < CE[d]((Aiv(0), 2 (0)), (1(0), (0)))] < Lz

- NEC

By the triangle inequality,

da((p(t), v (1)), (nn (), v (1)) < do((un (8), vn (1)), (A (8), O () + da((An (£), O (), (1(2), (1)),

so the result follows by the previous estimate and Theorem 6. |

3 Mode Collapse and Oscillatory Behavior

A standard problem of GANs is known as mode collapse, Srivastava et al. (2017); Metz et al. (2016);
Thanh-Tung and Tran (2020). This can be broadly described as the generator outputting only a
small subset of the types of clusters that are present in the original distribution. Although the
generator outputs a convincing sample if considered individually, the overall distribution of samples
is off. An extreme example is when the generator outputs almost identical samples for any value
of the latent variable z.

An explanation of this behavior for the original GAN algorithm is the use of Jensen-Shannon
divergence JS(G#N, P.), see Remark 1. More specifically, if the measures are mutually singular
G#N L Py, then JS(G#N, P,) = log(2) independently of how close the supports are to each other.
Namely, the gradient of the associated loss function vanishes and there are no local incentives for
the generator to keep learning. As we are not expecting for the support of these measures to be
absolutely continuous, in fact we are postulating that in some sense the dimension of the support
of G#N is smaller than L < K, this case is more likely to be normal than the exception.

The W-GAN Arjovsky et al. (2017) and its improved variant Gulrajani et al. (2017) try to fix
this by considering 1-Wasserstein distance instead which does not suffer from the vanishing gradient
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problem. Still, training the Generator to get useful outputs is not an easy task, it requires a lot of
computation time and more often than not it fails to converge. For instance to produce realistic
looking images Karras et al. (2017) took 32 days of GPU compute time, and the networks are
trained on progressively higher and higher resolution images to help with convergence.

3.1 An explicit example

Consider a bimodal distribution as the toy example:
1 1

We consider the simplest network that can approximate this measures perfectly. We consider the
generator, depending on a single parameter g € R to be given by

-1 x<yg
G(Z,g)Z{l v g

Although, this generator architecture seems far from our assumptions 2.1. This type of discontinuity
arises naturally as a limit when the parameters go to infinity. Namely, if we take b, ¢ — oo in such
a way that ¢/b — g € R, then

0 z<yg
1 x>y,

o(bx +c) — {

where o is the sigmoid. The generator G can then be recovered as a linear combination of two such
limits. The generated distribution is given by

Gg#P = @(g)0-1 + (1 — ©(g))d1,

where ®(g) = P({z < g}) is the cumulative distribution function of the prior distribution P € P(R),
which we can chose. We make the choice of the cumulative distribution

®(g) = 7 forgeR

to simplify the calculations. Under this choice for g = 0, we have that Gy# P = P, hence the
network can approximate the target measure perfectly.

Moreover, we can explicitly compute the 1-Wasserstein distance,

0(G#P.P) = |3~ 20)

Y

see the figure below.
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di(Gg#P, Py)

0.1F .

We can clearly see that this function has a unique minimum at g, = 0, and also that this function is
concave in g away from g = g,. The concavity of the functional makes the problem more challenging
from the theoretical perspective and it will explain the oscillatory behavior of the algorithm close
to the minimizer g,.

For the discriminator, we consider a ReLLU activation given by

D(z;w) = (wr)+

with w € [—1,1]. We note that taking a single parameter, instead of a distribution, for the discrim-
inator is supported by the mean field dynamics (7). In the sense that under a bad initialization of
parameters, the parameters of the discriminator can blow up in finite time to v = ).

We consider the joint dependence function

Vwg) = [ DulGyl2) dP()~ [ Duw) aP.@
®(g

VU (w,9)

10
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Ignoring, for now, the projection onto w € [—1, 1], we have the dynamics

1 e 9

g(t) vg [ng] 2 (1 —|—€_g)2w
. Yee 9 —1

= Vw¥lg, = 55 )
w(t) 1V ¥lg, o] SRy

where . is the critics speed up (4). These dynamics can be integrated perfectly, to obtain that

_ w(®)> _ win|? _
E, (w(t),g(t)) = 2cosh(g(t)) + T = 2cosh(gin) + Y E, (Win, Gin)-
C (&
Contours of 7. =1 Contours of v, = 10
T T T
— =21
20 1 2F . e
— B, =25
—F, =3
1 1 — LB, =4
=\ —5 s
0 Q ] 1 of | v =10
— |w| =1
NS
—1
—9| 1 9l i
| | | | | | |

In the figure above, we plot the level sets of E,, as well as the restriction of |w| < 1. We notice
that, given the value of 7. there exists a unique level set

Ei(ve) =2+ E
(&
such that the level set {£,, = E,} is tangent to the restriction |w| < 1.

Now, we consider the dynamics with the restriction |w| < 1. We notice that for any initial
conditions (win, gin) satistying E._(win, gin) < Fx(7.) the trajectory of parameters is unaffected by
the restriction |w| < 1 and it is time periodic. On the other hand, if we consider initial conditions
(Win, gin) satisfying E._(win, gin) > Ex(7) and |w;y| < 1, the trajectory will follow the unconstrained
dynamics until it hits the boundary of the restriction w(t) € 0Q = {|w| = 1}. Then it follows on the
boundary w(t) € 0Q = {|w| = 1} until it reaches the point (w(t), g(t«)) = (£1,0) on the tangential
level set {E,, = E,} and start following this trajectory becoming time periodic. Hence, there exists
t« = t(Ey.(Win, gin)) large enough, such that the trajectory (w(t),g(t)) € {E,, (Win,gin) = Ex} for
t > t,. Therefore, we can conclude that

lg(t)| < cosh™* <1 + = ) Vit > t,.

29,

Looking back at the figure, we can see that for 7. = 1 that the limiting trajectory is { E; = 3}, and
that the generator parameter oscillates in the range |g(¢)| < 0.96 for ¢ > t,. While for . = 10,

11



we obtain that the limiting trajectory is {Ejp = 2.1} and the limiting oscillations are smaller
lg(t)] <0.31 for t > t,.

We do notice that regardless of the parameter . and the initial configuration, the limiting
trajectory is always periodic in time. In fact, we expect that every trajectory of the mean field
dynamics settles into a periodic solution.

4 Properties of the mean field

One of the main theoretical obstructions to understand the well-posedness of this flow is that the
projection operator Proj,, induces a discontinuous vector field in (7). Nevertheless, the convexity
of the domain @ = [~1,1] x [~1,1]% x [~1,1] can be leveraged to obtain a stability estimate.

Given a time dependent continuous vector field V : [0,00) x @ — R x R¥ x R, its projection
Proj.. QV} is a Borel measurable vector field which is square integrable in space and time for any
finite time horizon T' > 0 and curve of probability measures v € C([0, ), P(Q)),

T
/ (/ |Pr0j7TQVt|2 dl/t> dt < oo.
0 Q

Hence, as long as the underlying velocity field inducing the motion is continuous, we can consider
the notion of weak solution for the continuity equation given by (Ambrosio et al., 2005, Chapter
8).

With this in mind, we first notice the Lipschitz continuity properties of the vector fields that
induce the motion (7). More specifically, we denote by

oF
VE (0) = Vo [ v)(0) = E.vQ, (0, 2) (14)
and SE
V&U) (w) = ng[u, vi(w) = EZEIU&V) (w, z,x), (15)
where we define the vector fields
vau)(@,z) = —Vg/ Vio(Gu(z);w) - (0(2;601), ...,0(2;0K)) dv(w) (16)
[_1’1]1+K+1
and
Vi (@ 2,7) = V[0 (Gu(2)iw) — o(w;w)]. (17)

In Lemma 13 below, we show that V((?W) (0) and V;?V(w) are Lipschitz continuous with respect to
the dependence of arguments 6, w as well as the measure arguments (y, ). Notice that V' and v%
do not depend on v, only on pu.

By (Ambrosio et al., 2005, Theorem 8.2.1), any continuous solution to the continuity equation
(7) is supported over solutions of the associated characteristic field. Using the classical theory
Henry (1973) for projected ODE flows, we can show that the characteristic equations

{%(e,w = (V) (0:), Projrg () V2, (@i))
(9,0.))(0) = (em,wm)
have a unique solution. More specifically, an absolutely continuous curve (u,v) € AC([0,00); P ((RL+2)K ) X

P(Q)) is a weak solution to (7), if it is given as the image of the initial distributions (4, v, ) through
the unique projected ODE flow. That is to say,

(1, v)(t) = ¢€u7u)#(lu’in7 Vin) (19)

(18)

12
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the family of continuous mappings ®!, , : (R x RE x R)E x Q — (R x RE x R)X x @ given by

D) i, Oin) = (), 0(0). (20)

where (w(t),6(t)) is the unique Lipschitz solution to (18).

One of the main technical hurdles is that the vector fields inducing the motion are only locally
Lipschitz. The Lipschitz constant depends itself on the size of «, which is the first variable of 6.
Hence, to obtain a stability estimates we need to measure the distance of the initial condition in a
p-Wasserstein distance with p > 2. The choice of p = 4 in the following result is arbitrary.

Proposition 10 (Stability) Assume (u1,11), (u2,v2) € AC ([0,00); P (RFF2)E) x P(Q)) are weak
solutions to (7) which satisfies (19). Assume that the initial distribution has bounded exponential
moments in the following sense: there exists § > 0 such that

8)a? Sa?
/e 1 dpar i, /e 1™ g i < 0.

Then for any t > 0 we have the bound

dQ((:ul(t)? 21 (t))v (:u2 (t)v V2 (t))) < A(t)eB(t) dZ((Nl,ina Vl,in)v (,u2,in7 V2,in))7 (21)

where 1/2
A(t) = ec(t2+tA) (/ eCtO"dm,in+/€Cta|d/£2,in> ,
and
B(t) = CtA(t) (t + A),
with

1/2 1/2
A=1+ </ |Oé|2d,u1,in> + (/ |04|2d,u2,1n>

and C > 0 a constant that only depends on ||o||c2.

Remark 11 The double exponential growth on the estimate is related to the dependence Lipschitz
constant of the vector field with respect to the size of the parameters themselves, see Lemma 18 for
the specific estimates.

For discrete initial conditions, existence to (7) follows from applying the results in Appendix A.
Using stability, we can then approximate the initial condition by taking discrete approximations of
it.

Proposition 12 (Existence) For any initial condition (pin, vin) € P (RF2)K) xP(Q) satisfying
that there exists & > 0 such that

2
66\a| d:um < 00,

there exists (u,v) € AC ([0,00); P (RFF2)K) x P(Q)) a weak solution to (7) which satisfies the
mild formulation (19).

Proof [Proof of Proposition 12] For any L € N we consider a deterministic discretization

L L

L L

Win, = E wié% and Vjp = E vi(?wiL
i=1 i=1

13



of the initial conditions p;,, V4, where w; and v; are weights which add up to 1. The main properties
we need from this discretization is that

. 2 2
dimda (s, vi0), (tin, vin)) = 0 and /65'a dpk, S/e“" dftin.

Such a discretization can be given by the following procedure. For simplicity we consider R =
2k(L+2)K e divide the box [—log R, log R]E+2K into equal sized boxes {B;}L_ . We assign ¢ to
be the the point with the smallest norm of the box B;, and the weights are given by w; = pn(B;).
We add any leftover mass on ([—log R, log R](*+2K)¢ to the delta at the origin. We do the same

L
to produce vy, .

7
By Appendix A, for any L € N there exists a unique solution to the projected ODE associated
to the solution of the mean field equations with initial conditions given by (uf ,vE). Hence, we can
construct a global weak solution to the PDE (u(t),v*(t)). By the stability result, we know that
for any finite time horizon T > 0, {(u*, v*)}, form a Cauchy sequence in AC([0,T], P ((RF+2)%) x
P(Q)). Hence, there exists (p,v) € AC ([0,00); P (RET2)X) x P(Q)), such that for any fixed time
horizon T'

Tim sup d((u(t), (), (u* (1), V(1)) = 0.
=0 ¢[0,T)

By Lemma 14, u* satisfies the growth condition (26), and so does u. By Lemma 15, we have that
the associated projected ODE flows also converge

Jimsup ({0 (8,0) — B, (0,5)]7 < COTNHD 6, 0) - (8,0). (22)
0 ¢€[0,T)

Using that
(W (8), 0" () = B 0o # ()

and the uniform exponential integrability of (,uiLn, I/Z-Ln), we can conclude that
(/,L(t), V(t)) = ®€‘u7y)#(lu’ln7 V’in)7

which in turn implies that (u,v) is a weak solution to (7) satisfying (19). [ |

For the next lemma we use the notation 6 = (0y,...,0x) with 6; = (a;, B;, 1) € R x RE x R,
and a = (aq,...,ax) € RE,

Lemma 13 There ezists C € R depending on ||o||c1 such that the vector fields (14), (15), (16)
and (17) satisfy the bounds

il <c(i+ [latan). e <o (1ei+ flaln), @)
and
C forr=1
)] < |
S Clog|  forr #1,
C orr=1
), ! (21)
oo Cloy[ (1 +1z[)  forr#1,

where (vj), denotes the r-th component of the j-th position.

14



GAN: DYNAMICS

Moreover, we have the following Lipschitz estimate. There exists C € R depending on ||o]|c2,
such that

Vi (O) = Vi @] < Cllal 1]+ A, 12) (a1, 1), (12, 2)) + 16— 6])

Vir oy (@1) = V2, o (w2)| < CA(u, p2) (Jwr — wal + da(pa, pi2)),

and
| Y, Vl)(H z) — U(uz Vz)(H z)| R
< C(laf +[a] + A(pr, p2) + 12]) (d2((p1, 1), (2, v2)) + 10 = 1),
’U(%l,yl)(w17z7x) - U&Q,VQ)(“)??Z?‘Z')‘ < C(A(,ulnu2) + ‘x’ + ‘Z’) (’wl - w2’ + d2(ﬂlaﬂ2))7
where

1/2 1/2
A, ) = 1+ ( / \alzdm) ; ( / !a\2du2> ,

and oy, as are the first components of 01, 02, respectively.

Proof [Proof of Lemma 13] Throughout the proof, we use the notation 6 = (01,...,0k) with
0; = (ai,Bi,v) € RxREXR, a= (ag,...,ax) € (RY)E, and w = (a,b,¢) € Q. We begin by
explicitly writing out the vector fields

ob-Gu(z) +¢)—ob-z+c)
fu&y) (w,z,2) = | aGu(2)o’'(b- Gu(z) +¢) —azo’(b-z+¢) |,
ac’(b-Gu(z)+c¢)—ad'(b-z+c)
and U(QMV)(H’Z) = (vavu);l(el,z), - =”a,u);K(0K72)> with for 1 < j < K:

abjo(5) =-+2y)o00: Gy(2) 0
g @) == [ Labagza’ (5 420l Gulo) + o) | dvle)
S\ oo’ (B 2+ 7)o (b Culz) +0)

Bounding the generator (2), we have

G2 < [lotso)ants) < ¢ ( [ laldn(s) ). (25)

Using (25), and that |al, |b], |c|] < 1, we readily obtain (23) and (24). Applying the mean value
theorem,

Vwa(a:l;wl) — va(xZ;WQ)
(&o)[b1 - x1 — ba - x2 + €1 — c2]
= | a1 O'”(fl)[(bl -z +cp) — (b2 -y + Cz)] + (a:l(al — CLQ) + (xl — xg)ag)()"(bz -y + Cg) ,
a10”(&1)[(by - w1 4+ c1) — (bo - 22 + )] + (a1 — az)o’ (by - x2 + ¢2)

where &y, &1 are points in between by -z +c¢; and by-y+co. To obtain the estimate for 0%, we consider
the difference above in two instances x; = 2 = x, and taking x; = G, (2) and 92 = G/,,(2). Using
the triangle inequality, and ||o|/c2 < oo, we can conclude

|’U&17V1)(w17 Z, iU) - U&27V2)(wg, zZ, ,ﬁU)|
< O (1t J2] + Gy (2) + G (2) (lw1 = wal 4Gy (2) = G (2)]).

15



To estimate G, (2) — G, (2), we consider 7 a coupling between 11 and po, and notice that the
difference is given by

Gua(2) = Gralo)| = | [ 9(:50) — o(:0)ax(6.0) < [ Io(::0) ~ o(esB)ar

Estimating,
|0(2,0) — 0(2,0)| < C(1+ (la| + [a))(1 + |2])) 10 — 6].

Applying the Cauchy-Schwarz inequality,

Gua(2) =GP <C (14 ( [laP dur + [16P dua) (1+1P)) [10- 0P am.

Taking 7 to be the optimal coupling with respect to the dy distance, and using (25), we conclude

|U&1,I/1)(w17 Z) - U&zyz)((&&, Z)|2
<C (1 2P+ 2P+ o [ el dui) (lor — wal? + d3 (1, p2)).-

For v®, apply the same argument as above to obtain a bound that also depends on the size of
lad]. [ |

Lemma 14 Let (u,v) € AC([0, T); P((RET2)E) x P(Q)) a weak solution to (T), then

/\a!2dut <C </ a2 dpin + t2> . (26)

Proof By the bound ||(Vj®)1||OO < C, we conclude that |a(t,0in)| < |ain| + Ct, which implies the

desired bound. [ |

A key step in the proof of existence and uniqueness, Proposition 12 and Proposition 10, is the
stability of the projected ODE flow.

Lemma 15 We consider (uy,v1), (12, v2) € AC([0,T]; P(RET2)E) x P(Q)) that satisfy the growth
condition (26). The associated flow maps (20) satisfy the bounds

|,y (01, 01) — ®F, 0 (03, w0)[? < OOl CE () 1) — (G, wn)]?

t
+CeC(A+‘O¢1|+‘O¢2|)teCt2 /0 C(T)d%((ﬂl, Vl) (T), (M?a Vg) (T))d?‘,

where

1/2 1/2
A=1+ </ |041|2d,u1,in> + </ |@2|2dM2,in> ;

C(r)= e_C|O”‘Te_c|o‘2|re_CAre_CT2/2(A + 7+ oq| + |az|)

for some constant C' > 0 depending on T.
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Proof Recall the Lipschitz bounds on Lemma 13 are given by

1/2 1/2
Co(b1,62) =C <1 + |aq| + || + </ |oz|2d,u1> + (/ |oz|2d,u2> > ,
1/2 1/2
Co—C (1 i < / |a|2dm) i ( / |Oé|2du2> ) .

By the bound H(Vj@)lHoo < C, we conclude that
lou(t, 0in)| < |oun| + Ct.
Combining this with the growth assumption (26), we have
Co(0:1(t),02(t)) < C(Co(b1,n,b2n) +t) and Cq(t) < C(Calpiin, H2,n) +1).
Taking the derivative of the distance, we find

S 101(8) = 2D = (61(8) = 02(0), Vi, 1,y (O10) = VS, 0 (2(2)))
< Co(61(t), 62(1)) (161() — 62(8) > + da(pin g, p12.0)? + do (v v2)?)

= (wi(t) = wa(t), Proju(@) Vi 1 o) (€1(8)) = Projaiy Vi oy (@2(1)) )

< (1(t) = w20, VE, 1wy @1(0) = VE, oy (@2(8)))
< Cat) (|wr(t) — wa(t) ? + da(pur 1 12,4)%)

where we have used the non-expansiveness property of the projection.

Let Ag = 1+ ([ |a/?dpa in) 12, ([ lal*duz;in) Y2 and Ao = Ag+]|a1(0)|+]az(0)]. The estimates
above can then be written as

d
5!91(?5) — (1) < C(Ae+1t) (101(t) — O2(t)” + dolpir g, pos)? + da(vig, v2,4)?)

d

o) = < Cha+1) (lon(t) = wa®)” + da(pe 121)°)

which by Gronwall’s inequality implies that
101(t) — 2(1)]* < €C(A@t+t2)!91,in — Og1n?
+C /Ot eChettt—Rer=r) (A g 4 ) (d5((p1,11), (p2, v2)) dr.
wi() = wat)|? < ATy 1y — g i

t
—|—C/0 eC(AQt+t2/2—AQr—T2)(AQ + r)d%(,ul, /LQ)d’f’.

Putting both inequalities together, we arrive at the desired result. |

We now use this ODE estimate to prove Proposition 10.

17



Proof [Proof of Proposition 10] Let
d(t) = d3 (1, 11) (1), (p2, v2) (1)),
and notice that for any coupling IL, between fi1 iy ® V1 in and 2 in @ V2 in
d(t) < / |(01(t), wi(t)) — (Ba(t), wa (t)) [ dIL (61 ,in, @1 ,in ), (B2,in, W2,in))

since the push-forward of II, along the ODE flow at time ¢ is a coupling between i ® v1; and
pot @ 2. Using Lemma 15, we obtain that

d(t) < / CCHarlHazDt O (9, 1)(0) — (B2, wp) (0)[2dIL,

1
t
_1_0/ d(r) </ eC(A—l—\al\+|a2\)(t—r)eC(t2—r2)(A + 7+ o | + |a2|)dH*> dr.
0

11

For I we apply the Cauchy-Schwarz and Cauchy’s inequality, and take II, as the optimal coupling
with respect to the 4-Wasserstein to get the bound,

1/2 1/2
eC(At+t2) </ eC|O“td,u1,in +/eC|ath27in> </ ‘(91,&)1)(0) — (92,&)2)(0)‘4611_[*)

1/2
CAH) (/ €C|atdul,in+/€C|Mduz,in> d3((ftin,1, Vin1) s (Hin,2, Vin 2))-

~
IN

IN

We bound II from above uniformly in r by the Cauchy-Schwarz inequality,

1/2
I1<c (/ el dpy i +/€C|atd/~62,in> (Aq +1).
Therefore, we find that for every ¢t > 0
t
d(t) < A(t)d3((tin1, Vi) » (fin,2, Vin2)) + B(t)/ d(r)dr,
0

where we define B(t) = CA(t)(A +t) and

1/2

Gronwall’s inequality implies that for all ¢ > 0
d3((peaven) s (a2, v12)) < A(t)etB(t)di((Min,h Vin,1) , (4in,2, Vin,2)),

using the monotonicity of A(t) and B(t). [ |
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5 Continuous time approximation of parameter dynamics

Proof [Proof of Theorem 6] We consider the parameter training algorithm with learning rate h > 0
and a single hidden layer of N neurons for both the generator and the discriminator neural networks.
We denote the parameter values at step n by (67, w!);=1... n and the parameter dynamics is

07 =07 + f v (9 Zn)
wit! = Projg (wi' + ¥ uyv,u;@(w?azmxn»v

where at each step we sample z,, ~ P, and z, ~ N independently, u%, denotes the empirical
measure associated to 07,...,0% and vy the empirical measure associated to wf,...,wy,. The
parameters are assumed to be initialized by independently (9?,w?) by sampling p;, ® v,. The
linear interpolation of the parameters to a continuous time variable ¢ > 0 with time step At = h/N
will be denoted by (6;,w;), where we let 6;(t,) = 6 and w;(t,) = w}*, with ¢, = nAt = nh/N. We
let 1 and v be the empirical measures associated to 61,...,0y and wy,...,wny. We suppress the
dependence on N of the measures for notational simplicity.

We consider the mean field ODE system defined by the expectation of the vector fields over z

and x
dp. _ 1/© .
% = Vi) (%)
d -~ _ : Q ~
@i = Projeg ) Vi o (@i),
where (i and © are the empirical measures associated to él, ... ,éN and @y, ...,wnN, respectively, and

the initial conditions are coupled to the parameter training by 6;(0) = 69 and &;(0) = w). More
clearly, the probability measures fi and © are the solutions of the PDE (7) with random initial
conditions chosen as (f1(0),2(0)) = (un(0), vn(0)).

To simplify the arguments, we first consider the distance between mean field ODE system and
the discrete projected forward Euler algorithm

il
0" =07 + Ati un)(9 )
a}?'f‘l = PI'OjQ (wz + At ‘/(l/« V”)( n)) 9
where we let T' > 0 be a fixed time horizon and consider At = h/N, where h > 0 is the user defined
learning rate. To estimate the difference between the continuum and the discrete approximation,

we can use a similar argument to Theorem 17, taking into consideration the bound on the Lipschitz
constant of the vector fields given by Lemma 13. We can obtain the bound

1 N
NAt 12
iR

i=1

< AC (14 By [ 7)),

The argument is simpler than the argument below, so we skip it to avoid burdensome repetition.
We define

N
. 1
=00 — 072 + |l — wif? and €= NZeZ",
and notice the inequality
d3((u", "), (", 0)) < e
Using a step in either algorithm

= 107+ AV ) OF) = (O & At L (O))P

+[Projg (@] —|—AtV(M un)( ") — PrOJQ(w —I-Atv(u ,,n)(w"))|2-
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Using that the projection is contractive, expanding the square and bounding we obtain

Mt < et + At(A? + B + (At)2CP,

where
B = —2<é?—9” V(,; ,;n)(H”) Vi Vn)( )>
207 = Wi, Vi oy (@]) = (gin y) (W]' 20y ),
and

CF = 2 1V om) O1) + [0y O + [V oy @) + [0y @)
Using the bounds Lemma 13, we get the growth bound
'], |67 < |ain| + CnAt,
and the estimates for nAt < T
AP < Ki(el +¢e™) and  CP < (142" + |z0)?) KE

where
1/2

1
K, =C|1+ N Z ’aj’mﬁ + ’amn’
J
Using ey = 0 and a telescopic sum, we get
n n n
et < ALKGY (€] +eT) + ALY Bf + ALK (14|27 + [z ).

r=0 r=0 r=0

Next, we will take the conditional expectation with respect to the variables {«; ;,}. To this end,
we notice the bound
9 1/2

{ovin}

n
S
r=0

{ein }] < E

n
S
r=0

n

1/2
E[| B} *[[{ctj,in}] +22 Z B‘TlBimHaj,in}])

(7" r1=0rg=r1+1

n 1/2
K7 Elej + erl{%’,z‘n}]>
r=0

IN

IN

Ki <1 + Elef + €T|{aj,in}]> ;

r=0

where we have used that by Lemma 13

|BI? < K(ef +¢")
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and that
E[B]* B{*|{ajin}] = 0,

which follows by using the law of iterated expectation with the sigma algebra F'2 generated by
{(O, iy, {2712 and {27 }2Z" Namely,

E[B;" Bi*[{ajn}] = E[B'E[B*|F"][{cjmn}],

where we have used that each B]' is a measure with respect to F™ as r; < ry. Finally, using
that 2" and z"? are independent with respect F"2, and that (0;2_1,@;“2_1) and (9:2_1,(,‘):2_1) are
measurable with respect F"2, we have

E[BP*|F2] = =2E.n (072 = 0727 Vot a1y (072 71) = 001 1) (67271, 272))]
+2Ezr2,xr2 [<@;2_1 - w?_la ‘Qgr2,17ﬁr2,1)(w?) - U&T2*1,yr2*1)(wz2_17 ZT’zjxrz»]
=0.

Using the previous bound, that the distributions for " and z" have finite second moments, and
that K; is a deterministic function of {c;;,}, we obtain up to a change of constant

Elej ™ [{ojn}) < AtK; > Elej + ¢ |{ajin}] + K7 At.
r=0

Applying a discrete version of Gromwal’s inequality, we have

B[] {ajin}] < AtKe™™ Y “Ele"|{ayin}] + AtK7eT

r=0
Summing over i, we obtain
n 1 N
Ele" ™ [{ajin}) < AtK Z;) Ele"{ayin}] + At Z; Kre™,
r= 1=

where
1 N
_ TK;
K= N ;:1 Kie 7.

Using discrete Gromwall’s inequality one last time we have the estimate

N
1
B g and] < ArT 3 KT (27)

i=1

Taking expectation, we can bound

N N
1 1
n+1 2TK Z 4 Z 2TK;
E[e ]SAt(Ee +N KZ—FN (& )
=1 =1
Hence, up to changing constants we have the bound

Ele"] < AtC (1 +E [e% zfilecwaiwD
— AtC <1 + By [eﬁew]N)
< a0 (1B [o]) scar-cf s
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The desired bound (12) follows from using the bound (11) to show that the right hand side above
is finite. m

6 Conclusions and future directions

We showed rigorously and quantitatively that the Wasserstein-GAN algorithm is a stochatic dis-
cretization of the well-posed PDE system given by (7). Here, we use the insight gained from the
dynamics to explain some of the pitfalls of W-GAN Arjovsky et al. (2017) that help explain why is
the algorithm finicky to converge. We center in two salient points: the discontinuity of the vector
field for the parameters of the discriminator network and the long time behavior of the mean field
dynamics.

We noticed that the clipping of the parameters induces that the dynamics are given by a
discontinuous vector field, which forces the dynamics into a box . In essence, the parameters of
the discriminator move within the box (Q without anticipating its boundary and crash into Q. This
is akin to birds flying into a window. This produces blow-up of the distribution of discriminator
parameters in finite time. Still, the measure valued solution is well defined for all times ¢ > O.
Most noticeably, for this solution once the dimension of the support of the measure is reduced, it
will never fatten back up. In an extreme case, the dynamics can lead to the distribution of the
discriminator parameters being v(t) = 0, for any t > ¢..

In the follow up work Gulrajani et al. (2017), finite time blow-up was already observed in toy
numerical examples. Gulrajani et al. (2017) improves the original W-GAN algorithm by enforcing
1-Lipschitz condition with a penalization. With respect to the underlying energy functional, this
is equivalent for the mean field dynamics to considering

/ Dy(Gu(2)) dN(2) — | D, () dP.(x)

2
+)\/ /RL/RKHVD (1= 8)Gp(2) + s2)| — 1 dP,(2)dN(2)ds

with A being a user chosen penalization parameter. The evolution of the mean field limit can be
formally characterized as the gradient descent of E on u and gradient ascent on v. In terms of
equations we consider

O — Vo - (u Ve‘f;—f[u, ]) =0,
atV + ’chw (V Vw Sv [,U*a ]) O,
1#(0) = piin, v(0) = vin.

Understanding, the difference in the dynamics for these improved algorithms is an interesting open
problem.

For the long time behavior of the dynamics (7), we refer to Section 3 for intuition where we
show in a toy example of ODEs that for any initial conditions the dynamics stabilize to a limiting
periodic orbit. Generalizing this to absolutely continuous initial data is quite complicated, we
mention the recent work for the Euler equation, in Hassainia et al. (2023) the authors construct
vortex patches that replicate the motion of leapfrogging vortex points. Moreover, for the general
system, we expect that the dynamics will always converge to some limiting periodic orbit. Showing
this rigorously is a challenging PDE problem.

In terms of the curse of dimensionality exhibited in Corollary 8, an alternative would be to
quantify the convergence of the algorithm in a Reproducing Kernel Hilbert Space (RKHS). In PDE
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terms, this would mean to show well posedness of the PDE in a negative Sobolev space like H~*
with s > d/2.
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Appendix A.

Following the ideas of Henry (1973), in this section we prove the existence, uniqueness and stability
to a class of ODEs with discontinuous forcing given by a projection. We also show quantitative
convergence of the projected forward Euler algorithm, for which we could not find a good reference
for.

Before we present the main result, we introduce some notation that we need. For any closed
convex subset @ C R? and = € R? there exists an unique Projgz € @ such that

Projpoxr — z|| = min||lqg — z||.
|Projq | quHq [

The map Projg is non-expansive, which means that for all z, y € R
[Projg(z) — Projo(m)ll < [z —yll.

We denote by 7mg(x) C R? the tangent cone of Q at x € Q,

={veRi|Te>0, eQ}=<SveR?
mo(z) = {v |Je x+eveQ} {v Jim, -

lim d(x + hv, Q) :0}7

which is a closed convex cone. The map Projm(x) : RY — R? denotes the projection onto

mo(r) € R% We notice that for a smooth vector field V(z) : Q — RY, the mapping » € R”
Proj. () (V(2)) is discontinuous at points  such that V(z) ¢ mq().

Theorem 16 (Henry (1973)) Let Q C R? be a closed and conver subset of R? and V : R? — RY
a O wector field, which satisfies that there exists C > 0, such that |V (z)|,|VV (z)| < C. Then, for
any initial condition ;, € Q there exists a unique absolutely continuous curve x : [0,00) — @ such
that

{a’: = ProjﬂQ(x)V(x), (29)

z(0) = zip,

with the equality satisfied for almost every t. Moreover, the solutions are also stable with respect to
the initial condition T, :

l1(8) = z2(t)]| < el VY= 21 (0) — a2(0),

where x1 and xo are two solution to (29).
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Moreover, we can approximate these solutions by a projected forward Euler algorithm.

Theorem 17 Let xa; : [0,00) = Q be the linear interpolation at times nAt of {x'},} defined by
the projected Euler algorithm

{:L”Ktrl - Pron(th + AtV (zX,)) (30)

a;OAt = Tjn-
Then, for any time horizon T > 0, as At — 0 we have
e = all < e HITVIN (2(AD Y2V oo + ALV oo [VV s )

where x is the unique solution of (29).

Proof [Proof of Theorem 16 and Theorem 17] For each = € (), we define the normal cone Ng(x)

as
No(z)={neR¥|VgeQ: (n,q—z) <0},

or equivalently the set of vectors n € R? such that (n,w) < 0 for all w € mg(z). It follows directly
from the projection property the following useful result.

Lemma 18 For any v € R? and x € Q, the vector ny = v — Projm(x)v is orthogonal to Proj,TQ(x)v
and ny € Ng(z). Conversely, if w € mg(x) is that ny = v —w € Ng(x) and (w,v —w) = 0, then
w = Proj. v

Uniqueness and Stability. Suppose that z; : [0,7] — @ and x2 : [0,7] — @ are solutions of
(29). Then,
d1
dt2
Using the property of the projection we have

21 — wa||* = (21 — @2, Projrg(uy)V (@1) = Projrg (uy)V (22)).-

IA

(1 — 22, V(1) — V(22))
IVV |oo [J21 — 22|,

(21 — 22, Proj, o)V (21) — Proj, (2,)V (22))

IN

where we have used Lemma 18 for the first inequality, and the Lipschitz propety for the second
inequality. Grownwall’s inequality applied to ||x1 — z2||? gives:

1 (8) = 22(t)]| < el VY= 1 (0) — (0},

which shows the uniqueness and stability of solutions with respect to the initial condition.
Equivalence with a relaxed problem. Using Ng(z), we now introduce a relaxed problem
which we prove is equivalent to the ODE (29). For each x € @ we define the compact convex set
V(z) C R? by

V(z) = {V(z) = ng|ns € No(x), |nel* < V() -ng}.

The relaxed problem is finding an absolutely continuous curve z : [0,7] — @ such that

{a‘s(t) e V(x(t))

x(0) = xip, (31)

for almost every ¢ € [0,T]. To show the equivalence between (29) and (31), we need the following
Lemma.
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Lemma 19 For all z € Q we have V(z) € V(z), Proj, )V (z) € V(z) and

V(z) N7g(r) = {Proju, )V (z)}.

Proof [Proof of Lemma 19] Taking n, = 0 in the definition of V(x) gives that V(z) € V(z). Writing
ng = V(z) — Projr, )V (z), we recall from Lemma 18 that n, € Ng(z) and

(nz, PrOJWQ(x)V(x» =0,

50 ||nz||? = (ns, V(z)) and we conclude Proj,(2)V(z) € V(x). Now note that if V(2) —ng € mo(z)
with ng € Ng(2), then (V(2) — ng, ng) < 0 with equality only if V(2) — ng = Proj,, )V (), as we
have noted above. So if V/(z) — ng € mq(z) N V() then V(z) — ny = Proj, ) V(z). [ |

An absolutely continuous curve z : [0,7] — @ is such that

lim x(t+h)—x(t) —z(t)h
h—0+ h

=0,

for almost every t. Since z(t) € @ for all ¢t € 0,77,

0= lim W&t+h),Q) . d®) + hi(t), Q)
h—0F h h—0+ h

9

which shows #(t) € mg(x(t)). If we have a solution to the relaxed problem, then the differential
inclusion #(t) € V(z )) is satisfied almost everywhere, therefore we have &(t) = Proj., )V ()
since by Lemma 19 V(z) N mg(z) = {Proj., )V (2)}, and we conclude that (31) and (29) are
equivalent.

Existence. Consider vg(2xt') € No(2'x") unit vectors and 0 < A < 1 such that

gy = g+ ALV (2Ry) — ANV (2Ry) v (a Ry )+ vo(airh),

which follows directly from the properties of the projection. For each n > 0 we consider the discrete
velocity
u "LJALJtrl — TR
At — At )

which we re-write as
uk, = V(@) — AV (@R - vo@i))+vo@hth) + V(zk,) — V(@x")
I
FA((V(@ke) vk )+ — (V(@x") - vo@ki)) v @kl .-
II

We notice the bounds
1], 11| < [VV [lsol2kf' = 2Kl < ALVV oo |V oo
Therefore, letting By denote the unit ball centred at the origin,
ups € VR + [VV]|oo| Voo At By
Hence, for any At > 0 we can conclude that for a.e. ¢

(at(t), 2ae(t)) € Graph(V) + At([|V][oo By X [[VV [0 [V ][00 B1), (32)

25



Noting that za; is uniformly Lipschitz with constant less that ||V ||, we get up to subsequence there
exists a Lipschitz function X : [0,00) — @ such that za; — X uniformly at compact subintervals,
by Arzerla-Ascoli. We conclude using Mazur’s Lemma that the derivative of = belongs almost
everywhere to the upper limit of the convex hull of the values of Za(t),

#(t) € limsup co(Zat(t) e aree)-
e—0t

Using that V(z(t)) is convex and closed, we conclude
(x(t),2(t)) € Graph(V),

which implies that x is a solution to the relaxed problem, and therefore a solution to the original

(29).

Quantitative Estimate. We differentiate the distance, between X and za; to obtain
1d i
§E|X —aad? = (X —aan X —ing)

< (X =22, V(X) = Viwan) + AtV [l X — dadl
FALV oo [[VV [loo| X — 24|
L+ IVV]o) X —zael* + 24| V][5, + (AL V%IV V12,

IN

where we have used estimate (32) and the contraction to property. Using Gromwall’s inequality
and that | X — za¢|? = 0, we obtain

X —aarf? < UV QALIVIE, + (A VZIVVIIZ) -
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