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Abstract

Amplitude scintillations in Global Navigation Satellite System (GNSS) signals are commonly
observed at low latitudes and are frequently associated with Equatorial Plasma Bubbles. The
scintillation severity is enhanced around the Equatorial lonization Anomaly, being controlled,
in great part, by the ionospheric F-region background density. This work proposes the use of
collocated observations from space-based and distributed ground-based monitors to quantify
the relationship between the background F-region peak electron density (NmF2) and
scintillation severity. To test the proposed approach and its feasibility, NmF2 observations
from the Global-scale Observations of the Limb and Disk (GOLD) instrument and L-band
scintillation measurements made by a network of GNSS-based scintillation monitors were
used. The observations were made at low latitudes in October 2022, during the ascending phase
of solar cycle 25. Results show the influence of background NmF2 on scintillation severity.
The results also quantify the control of the latitudinal distribution of maximum S4 values
[S4max)] by the latitudinal variation of NmF2. An empirical relationship between NmF2 and
Samax) for a given local time was also derived for the time of GOLD observations. An
application of the empirical relationship between NmF2 and maximum Sy is illustrated with

regional (Brazilian) maps of potential maximum scintillation severity using GOLD-like data.
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Encouraging results include showing that S4max) can be estimated from independent
observations for a distinct longitude sector, but similar solar flux and season. Future studies
will address to what extent the relationship between NmF2 and S4max) varies for different

geophysical conditions.

Keywords: GNSS, Ionospheric scintillation, Scintillation severity, Scintillation prediction,
Space Weather
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Introduction

Radio signals propagating through the earth’s upper atmosphere are known to be affected by
the ionospheric plasma (Yeh and Liu 1982). One of the most significant effects is ionospheric
scintillation, which can be described as amplitude and/or phase fluctuations caused by
ionospheric density (permittivity) irregularities. Severe scintillation events are of particular
concern for applications that rely on Global Navigation Satellite System (GNSS) signals since
they can cause loss of lock and cycle slips, affecting the performance of GNSS receivers
(Yousufetal. 2023). Scintillation is more intense and longer-lasting over low latitudes (Aarons
et al. 1982). The condition that leads to ionospheric scintillation is the existence of plasma
density irregularities. Given the importance of scintillation for fundamental and applied
studies, extensive research efforts have been dedicated to estimating scintillation severity from

ionospheric measurements.

At low latitudes, plasma density irregularities responsible for L-band (1-2 GHz)
scintillation are associated with the so-called Equatorial Plasma Bubbles (EPBs), which
develop at nighttime due to the generalized Rayleigh-Taylor instability (Kelley et al. 1981).
These EPBs originate in the bottomside F-region at the magnetic equator and evolve vertically.
The EPBs and associated ionospheric irregularities are aligned with the geomagnetic field and,
therefore, map to low latitudes as EPBs gain altitude. Prediction of the occurrence of EPBs and
specification of their spatiotemporal evolution are still subjects of ongoing research efforts.
Several studies, however, have already shown that scintillation events associated with EPBs
are more severe at low latitudes compared to the regions very close to the dip equator (de Paula
et al. 2003, Moraes et al. 2018a, Salles et al. 2021, Sousasantos et al. 2022b). That has been
commonly explained in terms of the expected variation in the amplitude of plasma
perturbations (AN), which are directly related to scintillation intensity (Yeh and Liu, 1982). As
the EPB depletions grow in latitude, they reach higher background densities associated with
the Equatorial Ionization Anomaly (EIA) crests, creating plasma perturbations with larger
amplitudes. The importance of the background plasma density is also mentioned in studies
using measurements made at conjugate geomagnetic sites. They show that the same EPB event
can cause distinct scintillation magnitudes at the two sites because of differences in background

densities (Sousasantos et al. 2022a). Also, strong scintillation can be experienced at low and
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mid during enhanced ionospherc densities caused by space weather events (Rodrigues et al.
2021, Sousasantos et al., 2023). Therefore, one can expect a relationship between scintillation
severity, as expressed by the S4 scintillation index, and the background ionospheric density,
expressed by the F-region peak electron density (NmF2). S; is an index commonly used in
fundamental and applied scintillation studies. It quantifies the amplitude scintillation and can
be described as the standard deviation of the signal intensity normalized by its mean (Briggs

and Parkin 1963, Yeh and Liu 1982).

Whalen (2009) examined the relationship between NmF2 and S4 values. In his work, NmF2
values were obtained from Digisonde measurements (Reinisch et al. 1989). The amplitude
scintillation (S4 indices for 1.5 GHz signals) was obtained from a SCINDA network station
(Basu and Groves 2001) that recorded transmissions from the Marisat satellite. The
measurements were made at Ascension Island, near the EIA peak (dip latitude 19.76°S at the
time). A total of 11 days of measurements from the period between March 13 and 31, 2001,
when scintillation was detected, was analyzed. During scintillation events, NmF2
measurements made by Digisondes are typically not available due to the occurrence of spread-
F. To overcome this lack of reliable data, Whalen (2009) employed a polynomial fit of the
NmF?2 as a function of local time to obtain values of background peak densities. Subsequently,
he compared values of maximum S4 [S4max)] With the corresponding NmF2 values and showed
a clear relationship between S4max) and NmF2. Surprisingly, additional studies have not yet
taken advantage of Whalen (2009) approach and his encouraging results. This could be, at least

in part, because collocated NmF2 and S4 measurements have been limited.

Advances in distributed instrumentation and measurements motivated this revisit of
Whalen’s (2009) work. More specifically, it is proposed here that the use of collocated and
spatially distributed observations of scintillation and NmF2 is suitable to evaluate, more
comprehensively than previously possible, the relationship between these parameters. It is also
demonstrated that it is possible to generate risk assessments of scintillation severity based on
background F-region density estimates. Examples that illustrate the proposed approach and its
feasibility are presented. These examples use simultaneous and collocated measurements of
NmF2, made by the Global-scale Observations of the Limb and Disk (GOLD) (Eastes et al.
2017), and of scintillation, made by a set of GNSS-based monitors. The main results are

presented and discussed in detail.
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Stations, instruments, and methods

To expand the work of Whalen (2009) and better evaluate the relationship between the
background ionospheric F-region densities and the scintillation severity, collocated and
spatially distributed measurements of NmF2 and S4 were used. Data from GOLD (Eastes et al.
2017, 2019) and ground-based scintillation monitors over the Brazilian region were analyzed
to illustrate the proposed approach and evaluate its feasibility. The period selected for this
analysis covers October 1-30, 2022. During this period equatorial spread-F is observed in the
Brazilian sector (e.g., Sobral et al., 2002) and scintillation starts early in the night (Sousasantos
et al., 2018). The dataset was inspected night-by-night to ensure that the observations used
captured scintillation over a wide range of magnitudes and dip latitudes. More specifically, the
range of observed S4 values were inspected to avoid that only weak scintillation (small S4
values) was present in the entire dataset or in only a few nights. Signatures of EPBs in both,
scintillation and GOLD data were observed in 29 out of 30 consecutive nights in this study.
The solar flux index (F10.7) varied between 104 and 163 sfu (see Figure S1 in the

supplementary material). These conditions favored a wide range of scintillation intensities.

GNSS-based measurements of scintillation severity

Scintillation data was obtained from the CIGALA/CALIBRA network, currently modernized
and managed by the INCT GNSS NavAer project (Monico et al. 2013, 2022, de Paula et al.
2023). The scintillation measurements were made by Septentrio multi-frequency GNSS
reference receivers (model PolaRx5S). Several studies in the past used high-rate data from
these receivers (e.g., Moraes et al. 2018b, 2018c; Vani et al. 2019, 2021; Affonso et al. 2022).
In this work, the L1 frequency (1575.42 MHz) was used. The ionospheric amplitude
scintillation was evaluated using the index S4 (Yeh and Liu 1982):

(P)(1)?

ST

(1)

where the intensity of the signal is represented by /, and the angle brackets correspond to

temporal averages over 60s intervals. Only data from satellites with high elevation angles (>
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45°) were used. The elevation angle constraint has two purposes. First, it guarantees that
plasma density deviations over the stations dominate over other possible factors regulating the
observed scintillation severity (Affonso et al. 2022, Sousasantos et al. 2022b). In addition to
that, it avoids possible contamination from multipath effects. The Ionospheric Pierce Points
(IPP) for all the stations and for all the datasets are assumed at 350 km of altitude. Also,
although studies show possible code interference in Global Positioning System (GPS)
observables using high-latitude stations (Flynn et al., 2019), these values, in terms of S4, are
typically very small and negligible when discussing low-latitude scintillation (S4 reaching up
to 1.2). As an extra caution, however, all the data for all the nights were inspected to ensure
the absence of multipath and outliers. Moreover, data samples exhibiting a cycle slip counter
parameter below 60 seconds were identified as instances of cycle slip occurrences (Moraes et

al., 2017), these samples were subsequently excluded from the dataset used in the analysis.

The data used in this study is from 6 scintillation monitors located along nearly the same
magnetic meridian, but at different magnetic dip latitudes. Therefore, it was possible to study
the variation of scintillation associated with the same field-aligned EPB structure. Table 1 lists
the geographic coordinates and dip latitudes of these 6 ground stations and one additional
station (STNT) used to test the proposed approach. The International Geomagnetic Reference
Field (IGRF-13) (Alken et al. 2021) was used to calculate the geomagnetic dip latitudes and

magnetic meridians.
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Table 1 Geographic coordinates and dip latitudes of the GNSS ground-based stations used in

this work.
Station STNT STSN STCB PRU2 STSH POAL STBR
Geographic
35.19°W | 55.54°W | 56.07°W | 51.41°W | 54.34°W | 51.12°W | 49.21°W
Longitude
Geographic
5.84°S | 11.83°S | 15.55°S | 22.12°S | 24.85°S | 30.07°S | 28.83°S
Latitude
Dip
12.10°S | 7.15°S | 10.07°S | 17.80°S | 18.37°S | 23.55°S | 23.71°S
Latitude

Figure 1 shows the location of the 7 stations used (colored “x” markers) and their field-of-
view (circular dashed lines) for 45° elevation angle masks and considering the IPPs at 350 km
of altitude. As mentioned earlier, the station at the eastern coast of Brazil (STNT) was used to

test the approach proposed in this work.
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Fig. 1 Location of the GNSS ground-based stations used in this work (x markers). Elevation
masks at 45° are indicated by circular dashed lines for each station. Grey dashed lines describe
the location of 11 magnetic field lines (magnetic meridians) spaced by 1° in longitude. The red

dashed line corresponds to the projection of the geomagnetic field line with the southern
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footpoint starting at 350 km over STBR (the station with larger dip). A map of NmF2 produced
with GOLD data is also shown, with values detailed by the color bar at the right.

GOLD measurements of background F-region densities

To evaluate the relationship between S4 values and the background F-region peak densities,
the GOLD level 2 NMAX (F-region peak density, i.e., NmF2) geolocated data were used.
These data products are derived from the two independent channels of the GOLD high-
resolution far-ultraviolet imaging spectrograph, that make measurements (geolocated) over the
southern and northern hemispheres, sequentially. The errors associated with these
measurements are less than 10% (McClintock et al., 2020). Scans covering the region of the 6
ground-based scintillation monitors (STBR, POAL, STSH, STCB, PRU2, and STSN) are
available for universal times (UT) between 23:11 UT and 00:38 UT, corresponding to local
times between approximately 19:35 LT —21:00 LT. The Balneério Rincao station (STBR) was
used as a reference. The geomagnetic field line starting at 350 km (IPP altitude) over STBR
(red dashed line) is traced using the IGRF-13. The geographic latitude of STBR was used to
trace field lines around that of STBR (black-to-white dashed lines in Figure 1). Each of these
10 additional field lines are spaced by 1°, covering about 10° in geographic longitude (or,
equivalently, about 40 minutes). The S4 data from all the available GNSS constellations were
gathered from the time of the first GOLD scan over STBR up to the last time of observation in
the final scan (from 23:11 UT and 00:38 UT, as mentioned).

It must be emphasized that the quantity of interest from GOLD is the background NmF2
and not the density values within EPBs. This is because the target is to quantify the relationship
between background F-region peak density and the severity of scintillation if an EPB were to
be present in the signal path. However, low density values associated with EPB depletions are
often present in the GOLD NMAX images. In addition, each pair of GOLD scans from the
northern and southern hemispheres overlap to each other over certain regions around the
geographic equator. To reduce EPB signatures and to have univocal background NMAX
values, consecutive scans were used to create a regularly gridded longitude X latitude map of

the background NmF2. The maximum value of NmF2 was calculated for each grid cell (0.5°
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X 0.5°) and a version of the “rolling-ball” algorithm (Sternberg 1983, Lou et al. 2013),
commonly used to remove ionospheric depletions (Smith and Heelis 2018a, 2018b), was
applied, resulting in a map representative of the background peak electron density for the time
interval of interest. An example of such a map (for October 23, 2022) produced using GOLD

data and the procedure described above is shown in Figure 1.

Results and discussion

Results of the analyses of NmF2 and S4 measurements are presented and discussed in the
following sections. First, latitudinal profiles of these parameters are shown, confirming control
of scintillation severity by the background F-region peak density. Next, the relationship
between maximum S4 and background NmF2 for a specific LT and longitude sector is
quantified using scintillation and NmF2 measurements for the same coordinates. Then, the
application of this relationship to predict maximum bounds for S4 based on GOLD NmF2
measurements is presented and discussed. Finally, assuming that the derived relationship holds
for other LTs and longitudes (but similar season and solar flux), the generation of maps of
scintillation severity risk based on measurements such as those provided by GOLD is

tllustrated.

On the dependence of the severity of the ionospheric scintillation on the NmF2 values

To perform the analyses presented in this study only data from GNSS satellites with high
elevation angles (> 45°) are considered, such that the NMAX (NmF2) data from GOLD can
be suitably compared with S4 over approximately the same region. High elevation angle
measurements also ensure that only data from nearly the same magnetic meridian are used.
Additionally, with a high elevation angle, the effect of the electron density deviation on the
generation of ionospheric scintillation will dominate over other possible contributions
(Affonso et al. 2022, Sousasantos et al. 2022b). With the considerations above, a direct relation

between NmF2 and the S4 severity can be examined and estimated.
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The first analysis performed was designed to verify how both quantities, NmF2 and Sa,
vary with dip latitude and to demonstrate the resemblance of their magnitudes along the
magnetic meridian. After building the NmF2 2D representation in the longitude X latitude grid
using the procedure described in the previous section, the NmF2 values over the geomagnetic
field lines exhibited in Figure 1 were selected. Therefore, 11 latitudinal profiles of NmF2
covering the region of the 6 scintillation monitors were obtained for each night. Since the
monitors were located between the geomagnetic equator and the dip latitude of 23.71° S, only

the southern portions of the NmF2 profiles were needed in this analysis.

Figure 2 shows the NmF2 profiles at the location of the field lines considered here. More
specifically, these are the background ionosphere NmF2 values at the coordinates of the field
lines shown in Figure 1. The NmF2 profiles are displayed with the same colors (i.e., black-to-
gray), except for the field line over STBR, which is depicted by the thicker green line (instead
of using red as in Figure 1) to avoid overlaps with the scatter plot. Four nights (days of year
275, 297, 298, and 302 of 2022) were used to exemplify the general trend in the results. The
NmF2 profiles are displayed according to the dip latitudes in the southern hemisphere, and
their values are related to the vertical axis in the left. The S4 indices recorded by the 6 ground-
based scintillation monitors were also organized according to the dip latitudes and are exhibited
in the panels of Figure 2 with blue/red circles indicating smaller/larger values, as described by

the vertical axis at the right-hand side.
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Fig. 2 Profiles of NmF2 (black-to-gray and green curves) and S4 (blue/red circles) according
to dip latitudes for 4 different nights in 2022 (indicated on the top right corner of each panel).
The NmF2/S4 values are exhibited by the vertical left/right axes. The time interval covered
23:11 UT up to 00:38 UT (19:35 LT — 21:00 LT). The severity of the scintillation occurrences
follows the NmF2 profiles, and the resemblance between the increases in both quantities is
evident. Profiles for the entire set (30 nights) are provided as supplementary material

(Figure S2).

According to the curves in Figure 2, the NmF2 magnitudes and the dip latitudes of the peak
of the NmF?2 profiles change from night-to-night. These aspects are coherent and agree with
theoretical and observational evidence found in the past (Basu et al. 2009, Batista et al. 2011,
Khadka et al. 2018). Nevertheless, a noteworthy aspect is the strong resemblance between the

trend in the scintillation severity and the NmF2 curves. It is evident that the latitudinal
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distribution of the magnitudes of both quantities, NmF2 and S, follows the same trend over
all the distinct dip latitudes. In addition to that, when the peak values of NmF2 increase, the
maximum values of S; increase as well, without changing the latitudinal trend. Therefore, there

are correspondences between these quantities in both spatial distribution and magnitude.

The analysis presented next demonstrates the relation between NmF2 and S4 from a
different perspective. The procedure used was to find, for every S4 value measured by the 6
ground-based monitors, the coordinates of the IPP and the individual background NmF2 value
corresponding to those coordinates. Figure 3 shows a graphical representation of S4 values
according to the background NmF2 at the corresponding IPPs for the same nights previously
discussed in Figure 2. The colored blue/red circles indicate smaller/larger values. An
increasing trend interconnecting both quantities is evident. The pattern is also coherent over
distinct days. In addition, as mentioned earlier, the S4 maximum values during nights with

larger magnitudes of NmF?2 are also larger.

It is worth mentioning that even under large NmF2 values, the S4 also depends on the
presence of EPBs over the station. Consequently, Figures 2 and 3 show that increasing values
of NmF2 are related to more intense scintillation severity but are not a sufficient condition. As
expected, when EPBs are not present S4 values near zero are observed. Therefore, the most
adequate approach is to determine bounds of the S4 values, that is, the maximum values of S4
one can expect in the scenario that an EPB is present. This approach is described in the

following section.

12
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Fig. 3 S4 values and background NmF2 at every IPP available for four example nights
(indicated on the top right corner of each panel) illustrate well the relationship found between
S4 and NmF2. The blue/red circles indicate smaller/larger values. The time interval is the same
as in Figure 2. A clear connection between the two quantities can be noticed. The entire set of

observations covering 30 nights is provided as supplementary material (Figure S3).

On the quantification of the relationship between the scintillation severity and the
background NmF?2

The objective of the analysis presented here was to verify the viability of quantifying the
relation between NmF2 and the amplitude scintillation severity. Whalen (2009) used 11 days
of data at a single location below the EIA peak and proposed that a linear relation can be
established between the NmF2 values and the maximum level of Ss. The present study
proposes the use of a larger dataset compared to that used by Whalen (2009). These preliminary
results cover regions from the geomagnetic equator down to dip latitudes of 23.71° S during a

period of 30 days, as mentioned earlier.
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An ordinary linear regression is not the best option due to the heteroskedastic characteristic
found in the dataset; instead, a procedure usually referred to as quantile regression was
employed (Hall and Sheather 1988, Koenker and Bassett 1978, Eide and Showalter 1998, Cade
and Noon 2003, Koenker 2005, Wei et al., 2006, Beyerlein, 2014, Das et al., 2019). While
linear regression uses ordinary least squares estimators (B) that minimize the sum of square

residuals, the coefficients in the conditional quantile [Q_ (yi|xi)=xiBT], for the tth quantile, are

obtained using estimators (BT) that minimize, instead, the sum of weighted absolute residuals:

N N
D dyxBl+ ) -0lyxb @
=y =

where for i=1,...,N, x (predictor) is the independent variable, and y (outcome) is the dependent
variable. To absolute values of positive/negative residuals are applied weights of t and 1-t,
respectively. Using this method and considering the quantile 0.99 (i.e., the 99th percentile) it
is possible to determine a first order polynomial beneath which 99% of the scintillation events
are concentrated, i.e., the S4 severity can be “bounded” by a line corresponding to the
maximum Sy as a function of the NmF2 value. In addition, the amplitude scintillation is known
to saturate when the standard deviation and the average of the signal intensity are contiguous,
typically reaching values of, at most, 1.3 (Basu et al. 1996, Forte et al. 2002). Therefore, S4 is
not expected to increase linearly with NmF2 indefinitely. To properly address these aspects,
the natural logarithm was applied to the NmF2 values before the calculation of the quantile
regression. The procedure was performed considering all the S4 values and the corresponding
NmF2 values at the same IPPs for every night (for all the IPPs where S4 > 0.2) to produce a
general expression. Applying the bootstrap technique (Hesterberg 2011) on the measurement
samples (38022 values), the estimated standard error was 0.022, with corresponding p-
value=0. This indicates that the representation by the model is statistically significant. More
essential is the fact that the approach is suitable to ensure that 99% of the scintillation is

bounded by the estimated curve.

Figure 4 shows the result using the entire dataset (blue/red circles) and the corresponding
quantile regression (99th percentile) (black solid line). For comparison purposes, the
approximation provided by Whalen (2009) is also depicted (green line). The values of

maximum S4 [Samax)] as a function of NmF2 (in cm™) can then be determined by:

14
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Fig. 4 — Relation between S values and NmF2 considering every IPP available in the entire
dataset (S4 > 0.2). The blue/red circles indicate smaller/larger values. The black solid line
corresponds to the general quantile regression “bounding” the 99th percentile of the S4 activity.
The green line corresponds to the results using the approach of Whalen (2009). The time

interval is the same as in Figure 2.

The relation in (3) can now be used to estimate S4max) One can expect when EPBs occur,
for a given condition of background NmF2. To demonstrate the performance of the proposed
approach, Figure 5 shows amplitude scintillation measurements (blue/red circles) and
estimated Samax) (solid lines) using Equation 3. Each line corresponds to a magnetic meridian
described in Figure 1 and presented also in Figure 2. The panels on the left show results for
nights from the dataset (days of year 280, 287, and 290, i.e., October 7, 14, and 17, 2022) that
were used to produce (3). These results are shown to demonstrate that, as expected, the derived
model is consistent with the data used, and that 99% of the scintillation lies beneath the S4max)
curve for every dip latitude considered. The panels on the right of Figure 5, on the other hand,
show results for the nights of March 13, 18, and November 8, 2022 (days of year 72, 77, and
312, respectively), which were months outside the dataset used to derive (3) but have similar

solar flux conditions and longitudes.
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The results shown on the left side of Figure 5 illustrate the performance and adequacy of
the relation in (3). The results in the right-side panels of Figure 5 also show the appropriateness
of the procedure when estimating scintillation severity for different months, but similar solar
flux and longitudes (and similar LT). In addition, each of the 3 nights had dissimilar NmF2
values and distinct dip latitudes for the NmF2 peak, allowing the approach to be tested in
different background conditions. It is evident from Figure 5 that the estimated S4max) exhibits
a close resemblance with the trend in the measured S4 values and that (3) provides satisfactory
estimates of maximum scintillation severity, with very few deviations (below 1% of the data).
Therefore, it would be possible to estimate expected maximum scintillation levels in case of
EPB occurrence at a location where background NmF2 is available, as proposed by Whalen

(2009).

It is worth reminding the reader that if EPBs are absent, scintillation would not be observed
even under conditions of large NmF2. This is illustrated in Figure S2, which shows that not all
measurements of large NmF2 are accompanied by measurements of elevated S4. One would
be inclined to think that the model would overestimate Simax). This is not correct since Samax)
represents the maximum S4 one can expect for a given condition of background NmF2. This
is important since estimates of background NmF2 are becoming more available (e.g., GOLD)
but tracking the occurrence and spatiotemporal variability of EPBs is still a challenge.

Therefore, this work describes an approach for obtaining an upper bound for Ss.
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Fig. 5 Comparison between real amplitude scintillation (blue/red circles) and estimated Samax)
(colored lines). Left panels: 3 nights from the dataset (280, 287, and 290, 2022) used in the
derivation of (3). Right panels: 3 arbitrarily chosen nights (72, 77, and 312, 2022) outside the
dataset used to produce (3). These panels demonstrate the suitableness of the approach to
describe the scintillation severity for any night of interest. The general trend described by the
estimated Samax) 1s clearly in good agreement with the real data. Also, S4max) 1 “bounding” at
least 99% of the data, i.e., the measured S4 values are essentially underneath the predicted

curves over all the dip latitudes evaluated. The time interval is the same as in Figure 2.
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On the use of the relationship between the S4max) and NmF2 to produce scintillation

severity maps

A relationship such as (3) could be used with space-based measurements to generate maps of
potential maximum scintillation. The procedure proposed here is to apply the relationship to
every NmF2 measurement available, generating a higher-level data product. To illustrate this
idea and provide insight on the feasibility and performance of the potential approach, data from
a scintillation ground-based monitor deployed at the Brazilian eastern coast (STNT) was used.
Data from this monitor was not used to produce the empirical S4max)-NmF2 relationship (3).
Additionally, it is at least 14° to the east of any of the 6 monitors whose data were used in the

derivation of (3). Table 1 and Figure 1 can be inspected for more details.

Figure 6 shows the results for October 14, 2022 (day of year 287), considering 4 GOLD
scans covering time intervals separated by approximately 50 minutes. The date is well within
the range of dates from which data was used to create the S4max)-NmF2 empirical relationship.
Therefore, it is possible to assess the performance of the proposed approach for measurements
made at a different longitude sector but similar season and solar flux conditions. The first two
scans started at 23:22 UT and ended at 23:38 UT, the final two scans started at 00:11 UT and
ended at 00:24 UT. For the STNT station, these UTs correspond to approximately 21:01 LT —
21:17 LT and 21:50 LT — 22:03 LT, respectively, i.e., early nighttime, when scintillation is

expected to occur (Sousasantos et al., 2018).
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Fig. 6 Scintillation severity map using GOLD NMAX (NmF2) data and the relation given by
(3). Top panels: Original scans from GOLD (left), gridded and smoothed NmF2 (middle), and
estimated scintillation severity, Simax) (right) for 23:22 UT — 23:38 UT. Bottom panels:
Original scans from GOLD (left), gridded and smoothed NmF2 (middle), and estimated
scintillation severity, S4max) (right) for 00:11 UT — 00:24 UT.

The top panels exhibit the results for the first two scans between 23:22 UT and 23:38 UT.
The top left panel shows the original GOLD NMAX (NmF2) data with values described by
the color bar at the top. Several EPBs (blue streaks) can be readily noticed, with one exactly
over the STNT station (orange “x” marker). The top middle panel exhibits the NmF2 data after
the gridding and smoothing processes used to remove the electron density “bite-outs” from the

background NmF2. The values are also described by the color bar at the top. The STNT
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elevation angle coverage (grey dashed circle) is centered in the EIA region. The top right panel
shows the estimated scintillation severity [Samax)] applying the relationship given by (3) on the
NmF2 gridded and smoothed data. The values are detailed by the color bar at the right-hand
side. The isocontours reveal maximum scintillation in the range 0 < S4max) < 1.2 for distinct
dip latitudes. Particularly over STNT, for the time interval between 23:22 UT and 23:38 UT,

the value found was 1.0 < Symax) < 1.1.

The bottom panels in Figure 6 are similar to those on top, but this time for the scans
covering regions slightly to the west and between 00:11 UT and 00:24 UT. A different EPB
(bottom left panel) is again over STNT, but the background NmF2 (bottom middle panel)
decreased in comparison with the top middle panel, consequently, the estimated maximum
scintillation in the STNT field-of-view varied in the ranges 0.9 < S4max) < 1.0 and 1.0 < S4(max)
<1.1.

Figure 7 shows real scintillation data from STNT station for the same night (October 14,
2022, i.e., day of year 287), with the same elevation angles (> 45°), and at the same time
interval. The colors (and the sizes) of the circles are related to the S4 values and are the same
as used in Figure 6. Between 23:22 UT and 23:38 UT, when GOLD-based estimates predicted
1.0 < S4(max) < 1.1 for the field-of-view of the STNT station, maximum values of S4 measured
by the monitor were 0.85 (at 23:26 UT). Between 00:11 UT and 00:24 UT, on the other hand,
when GOLD-based estimates predicted 0.9 < S4max) < 1.1 for the field-of-view of the STNT
station, the monitor at the station measured a maximum Ss value of 0.64 (at 00:14 UT).
Therefore, the estimated Simax) values in Figure 6 are in good conformity with the
observations, providing adequate maximum boundaries of scintillation severity. It must be
pointed out that Figure 7 shows a S4 value reaching 1.08 at 23:51 UT. While the scans exhibited
in Figure 6 do not cover this particular time, both, prior and subsequent scans show estimated

S4max) values that also bound that scintillation level.
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Fig. 7 Real scintillation data recorded at STNT station on October 14, 2022 (day of year 287).
The maximum S4 observed in the intervals 23:22 UT — 23:38 UT and 00:11 UT — 00: 24 UT
are, respectively, 0.85 and 0.64.

Concluding remarks

Previous studies have already shown that scintillation severity is enhanced around the EIA
peaks, and the background ionospheric F-region density controls that scintillation severity.
This work proposes that collocated and spatially distributed observations of NmF2 and S4 can
be used to quantify the relationship between the background F-region peak electron density
and the scintillation severity. NMAX (NmF2) images from the Global-scale Observations of
the Limb and Disk (GOLD) instrument and amplitude scintillation data (S4 indices) from 6
ground-based monitors deployed over the Brazilian region were used to evaluate the feasibility

of this approach.

The analyses started by examining the dependence of the scintillation severity on the peak
electron density over distinct dip latitudes. The results demonstrated a remarkable similarity in

the latitudinal variation of background NmF2 and Sa.
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After that, the S4 values obtained from scintillation monitors deployed along the same
geomagnetic meridian were compared with NmF2 values at the corresponding IPPs. The
results showed a noticeable coherent pattern between the two quantities (background NmF2

and Sy).

A relation between maximum S4 [Simax)] and background NmF2 values was quantified
using a quantile (99th percentile) regression approach. Simax) represents the upper bound in S4
for a given condition of background NmF2. The empirical relationship (3) was successfully

evaluated using independent GOLD and scintillation measurements.

The empirical relationship was also used to produce Simax) maps derived from GOLD
NMAX (NmF2) observations. The performance of these maps was tested using an additional
ground-based monitor located approximately 14° to the east of all other monitors whose data

was used in the quantile calculation. The results show good estimates of S4max).
The main conclusions can be summarized as follows:

1) A comparison between GOLD NMAX (NmF2) and ground-based L-band scintillation
data shows that background NmF2 plays an important role in scintillation severity. It
shows how the latitudinal and day-to-day variability of the EIA controls the variability
of S4(max)-

2) Using collocated GOLD NmF2 and scintillation measurements, it was shown that an
empirical description of Simax) based on background NmF2 can be obtained. Using
independent measurements, the performance of the empirical relationship for

estimating S4(max) from NmF2 was illustrated.

3) The results indicate the possibility of using empirical relationships between
background NmF2 and S4max), such as the one derived in this work, to create S4gmax)
maps from GOLD-like observations. It must be emphasized that S4max) represents the
maximum S4 one could expect for a given condition of background NmF2 and EPB
occurrence. This is important since distributed estimates of NmF2 (e.g., GOLD) are
becoming more available, but the specification of the occurrence and spatiotemporal

variability of EPBs is still a challenge.
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This work focused on deriving a relationship between NmF2 and S4max) for a specific local
time (19:35 LT —21:00 LT) and longitude sector (western Brazil) employing a limited dataset
of collocated observations. The results, nevertheless, showed the feasibility of the proposed
approach, demonstrating the connection between the values of NmF2 and the scintillation
severity. The advantage of this approach is that it only uses the NmF2 and S4 observations, not
requiring the specification of processes causing the NmF2 variability, etc. As an illustration of
potential application, cases of scintillation severity maps were presented and evaluated using
independent GOLD and scintillation observations (different longitude sector, but similar solar

flux, year/month, and LT) with encouraging results.

Finally, it must be mentioned that the relationship presented here (3) may not be well-
suited for geophysical conditions and locations considerably distinct from those analyzed in
this study. For instance, future work will investigate to what extent the relationship is valid to
other local times and/or longitude sectors. Future work might also address using data from
other instruments or measurement techniques for creating or evaluating relationships between

scintillation severities and background plasma densities.
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