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Network Realization Functions for Optimal Distributed Control

Serban Sabau “~, Andrei Sperila

Abstraci—In this article, we discuss a distributed control archi-
tecture, aimed at networks with linear and time-invariant dynamics,
which is amenable to convex formulations for controller design.
The proposed approach is well suited for large-scale systems,
since the resulting feedback schemes completely avoid the ex-
change of internal states, i.e., plant or controller states, among
subcontrollers. In addition, we provide state-space formulas for
these subcontrollers, able to be implemented in a distributed
manner.

Index Terms—Distributed control, linear time-invariant (LTI)
networks, scalable implementations.

|. INTRODUCTION
A. Scope of Work

The multifaceted intricacies of the optimal decentralized control
problem are widely recognized in literature. With the hope for the
existence of any convenient (let alone convex) parameterizations dis-
pelled (see, for example, [1]), recent research advances have resorted to
modern convexification or regularization methods, such as [2], [3], [4],
[5], and [6]. In this context, the so-called system level synthesis (SLS)
methods from [7] and [8] provided an insightful perspective on dis-
tributed controller design, by exploiting the classical work from [9]. The
connections between SLS and classical parameterizations of stabilizing
controllers have been further elaborated uponin [10] and [11] and, more
recently, in [12] (see also the literature review from the introduction of
our companion paper [13]).

However, the SLS framework: (a) necessitates implementations,
which communicate internal states, i.e., controller or plant states, thus
producing transfer function matrices (TFM) of the controller’s repre-
sentation with dimensions equal to that of the plant’s state vector, while
(b) allowing for the direct application (see the concluding remark in [14,
Sec. II-B]) of the scalable, specialized implementations [8, Sec. I1I-C]
only for networks that have open-loop stable plants.
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B. Problem Statement and Contributions

This article tackles the problem of obtaining a set of stabilizing and
distributed control laws of the type

u=out+ Iz

where the pair of linear time-invariant (LTI) filters (@, T") showcase
prespecified sparsity patterns and are used to compute the command
signals, u, via the regulated measurements, z, without communicating
any internal states between subcontrollers. The main contributions of
our work are as follows.

1) Providing a general method of obtaining distributed control laws
that are akin to the specialized implementations presented in
Section III-C of [8].

2) Bypassing the drawbacks mentioned in points (a) and (b), while
guaranteeing the full scalability of the distributed control laws, for
possibly unstable plants.

3) Obtaining control laws for both discrete- and continuous-time
(see [13] and [15]) systems, while completely avoiding any self-
loops (either integrators or delay elements) on the control signals,
thus facilitating implementation.

‘We point out that the proposed method relies on the concept of network
realization functions (NRF), heavily inspired by the work in [16]
and [17], which is able to impose sparsity patterns directly on the
distributed controller’s coprime factors. The close affinity between
these factorizations and NRFs (see [18]) enables the exploitation of
the robust stabilization machinery for distributed controller design, as
established in [13].

C. Article Structure

In Section II, we present the concept of NRF pairs, all while show-
casing their defining traits. In Section III, we discuss the means of
enforcing sparsity patterns upon an NRF pair, in the same vein as the
approach from [19], and we offer guarantees of closed-loop stability
when implementing controllers via this formalism. We also present
the means to obtain distributed state-space implementations for our
controllers” NRF pairs, in contrast to the purely TEM-based perspective
from [19], and we show that norm-based optimal design in the NRF
paradigm reduces to an affine model matching problem (see also [13]).
In Section IV, we discuss alternative representations for our distributed
control laws, akin to and inspired by the ones in [7] and [8], which
use closed-loop maps to compute the command signals. We show that,
unlike the architecture from Section III, these cannot ensure closed-loop
stability if the plant does not satisfy certain stability assumptions (as
in [8, Sec. III-C]). Section V showcases a numerical example (see [13,
Sec. V]). Finally, Section VI concludes this article.

Il. GENERAL SETUP AND TECHNICAL PRELIMINARIES
A. Notation

Since the enclosed results are valid for both continuous- and discrete-
time LTT systems, we denote by A the complex variable associated
with the Laplace transform for continuous-time systems, or with the
Z-transform for discrete-time ones. We denote by R the set of real
numbers and by I the set of natural ones, while C stands for the complex
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Feedback loop of the plant G with the controller K.

Fig. 1.

plane. Let RP*™ be the set of p x m real matrices and R(A)P*™ the set
of p x m TFMs, matrices with real-rational functions as entries. Let e;
stand for the th vector in the canonical basis of R™**. A TFM for which
lim,_,., G(4) has only finite entries is called proper and it is called
strictly proper when lim; ... G(A) = O. We denote by Ry (1)?*™ the
set of proper TFMs. Finally, let S denote the domain of stability, which
is either the open left-half plane (Re(1) < 0, A € C) for continuous-
time systems or the open unit disk (|A| < 1, A € C) for discrete-time
ones.

B. TFM and Realization Theory

The LTI systems considered in this article are described in the time
domain by the classical state-space equations

or = Ax 4+ Bu (1a)

y=Czr+ Du (1b)

where A € R™", B e R™™, C € RP*™, and D € RP*™, and n is
called the order of the realization. The time-domain operator denoted
by o in (1a)—(1b) stands for either the time derivative (in the continuous-
time context) or the forward unit shift (in the discrete-time case). For
any n-dimensional state-space realization (1a)—(1b), the system’s TFM
is given by

A—Aln
C

B

'a) ] =D+ C(I,— A B.

G() = [

We denote by P, (G) the collection of (finite) unstable poles (see
[20, Sec. 6.5.3]), i.e., located in C\S, which belong to G € R, (1)P*™.
We refer to G € Rp(1)P*™ as stable if P, (G) = {0} and we denote
the set of these TFMs by Rg(1)?*™ (C R, (1)P*™). Otherwise, we say
that it is unstable. Note that P,,(G) includes repeated terms when the
unstable poles of G have multiplicities greater than 1. Furthermore, we
denote by A, (A) the collection of eigenvalues belonging to the matrix
A, which are unstable, i.e., located in C\S. Once again, A, (A) includes
repeated terms when the unstable eigenvalues of A have multiplicities
greater than 1.

C. Standard Unity Feedback

We focus on the standard unity feedback of Fig. 1, where G €
Ry (2)P*™ is the LTI plant and K € R,(A)™"? is its LTI controller.
Here r, w, and ( are the reference signal, input disturbance, and sensor
noise vectors, respectively, while y, u, z, and v are the measurement,
command, regulated, and applied control signal vectors, respectively. If

all the closed-loop maps from the exogenous signals [r" w' ('] T

oy’ u' zf 'UT]T, i.e., any point inside the feedback loop of

Fig. 1, are stable then we say that K is an (internally) stabilizing
controller of G or that K (internally) stabilizes G.

D. Youla Parameterization

The seminal work presented in [21] highlighted the fact that the
problem of closed-loop stabilization can be conveniently reformulated
in terms of particular fractional representations, belonging to the TFMs
which make up the feedback control scheme. In this context, we
introduce several key definitions.

Definition I1.1: Let K € Ry(A)™*P, R € Ry(A)™ ™, and P €
R,(A)™*P. A representation of the form K = R~!P is called a left
factorization of K.

Remark I1.2: If K = Y 'X is a left factorization of K, then any
other left factorization of K (as in Definition II.1) is of the form R. =
UY and P = UX, for some invertible TFM U.

Definition I1.3 ([21, Corollary 4.1.4]): A left factorization G =
M™IN € R,(1)P*™ with N € Rg(1)P*™, M € Rg(A)P*P is addi-
tionally called coprime over Rg()) if there exist X € Rg(1)™*P,
Y € Rg(A)P*P sothat MY + NX = I,

Remark I1.4: Note also that a right coprime factorization over Rs (1)
of G can be obtained in a straightforward fashion by simply transposing

the left coprime factors over Rg(1) of G'.
Definition I1.5 ({21, Remark 4.1.17]): A collection of eight stable

TFMs (M, N, ﬁ, ﬁ, X, Y, X, ?) is called a doubly coprime factor-
ization (DCF) over Rg(X) of G € R, (A)P*™ if M and M are both
invertible, they yield the factorizations G = M-'N =NM"! and
they satisfy the following equality:

Y XM -X]_,
N M| [N ¥

The next theorem provides, via such DCFs over Rg(), the param-
eterization of all stabilizing controllers for a given plant.

Theorem IL.6 ({21, Th. 5.2.1]): Let (M, N, M N, X Y ,X,Y)be
a DCF over Rg(1) of G € R,(1)?*™. Define

2

Xq=X+QM, Xq:=X+MQ

Yqo:=Y-QN, Yq:=Y-NQ 3)
for some Q € Rg(A)™*P, and note also that the following generaliza-
tion of the identity from (2) holds

[* NN

~ 4
-N M|[N ¥q @

] =Imyp.

Then, the class of all controllers K q, which stabilize the plant G (in
feedback interconnection, see Fig. 1) is given by
Kq =Yg Xq=XqYg € R(A)™7 (5)

for all Q € Rg(A)™"P, which ensure that both Yq and {’Q are
invertible TFMs. .
Denote by He(G,Kq) the TEM from [rT w' (7] to
[y" uw" 2T UT]T, whose entries are the achievable closed-loop
maps produced by stabilizing controllers (5) and which are given
explicitly in (6), shown at the bottom of this page. One of the chief
features of the Youla parameterization is the fact that it renders all
closed-loop maps from the feedback loop in Fig. 1 as affine expressions
of the free (and stable) parameter Q, as highlighted via the following
result.

Corollary 11.7 ([21, Corollary 5.2.3]): The set of all closed-loop
maps (6) achievable via stabilizing controllers (5) are affine in the Youla

(I, + GKq) 'GKq

(Im + KQG) 'Kq

(I, + GKq) 'G
: - (I, + KqG) 'KqG —(Im + KqG) 'Kq
I,+ GKq)~ -

(I, + GKq)™'

(I, + GKq) 'G ©

(Im +KqG) ™!

—(I, + GKq)™
—(Im + KqG) 'Kq
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Fig. 3. Feedback loop of the plant G with the controller K in an NRF-

Fig. 2. Three-hop network architecture.

parameter QQ and are, moreover, given by

T w [4
y NXQ NYQ Ip — NXQ
u MXQ MYQ — Im —MXQ (7)
[, _NXq| —NYq |NXq_-1,
v MXq MYq —MXq

E. Network Realization Functions

For descriptive simplicity, we focus on the three-hop “ring” network
from Fig. 2 and we describe its signal flow equations

ui o 0 &, u1 T O O z1
U | = | Py O O uy| + O TI's O zZg
Ug (0] ‘I’g O Uusg (0] O I‘3 z3

Notice that the three by three @ factor takes the precise meaning of
the network’s directed graph adjacency matrix, with the LTI filters
®, P9, and Pa, respectively, having the significance of weights of
their corresponding edges. The remaining three by three I" factor has
the role of defining the input rerminals of the network, i.e., the points
of access (to the network) of the exogenous signals zq,zg, and za,
respectively.

Assuming that (I,,, — @) is invertible, i.e., the LTI network from
Fig. 2 is well posed, the ensuing left factorization

-1

Uy 1 O —b, Iy O O z
ug| = |—P2 I o O T2 Of |22 (8)
Us (0] —@3 I (0] O I‘3 z3

yields the input/output map (from =z to u), which we denote by K.
Note that, in general, the sparsity patterns of the ® and I'" factors are
completely lost in (8) due to the inversion of (I,,, — @) that generically
yields a “full” TFM K, with no particular sparsity pattern of its own.
The distinctive “structure” of the LTI network in Fig. 2, as captured
by the (@, T") pair, cannot in general be retrieved solely from K (see
also [22]).

Remark I1.8: This type of architecture has been successfully em-
ployed for the control laws proposed in [15], with the aim of eliminating
downstream disturbance propagation for a platoon of autonomous
vehicles. Notably, guarantees of closed-loop norm optimality were also
obtained in [15, Sec. V-B].

Definition I1.9: Given K € R,(A)™ P, @ ¢ Rp(A)™ ™, and T €
R, (1)™*P such that ® has all its diagonal entries equal to zero and
K = (I,, — ®) T, the pair of TFMs (&, I') is said to be an NRF pair
of K.

Remark I1.10: Notice the fact that any NRF is ultimately a left
factorization of K. For any K € R,(1)™*P, let K = R™1P be some
left factorization (recall Definition II.1). In this case, the gain at infinity
of the “denominator” TFM, R, and that of its diagonal component,
R%2_ can always be made (recall Remark I1.2) equal to the identity
matrix. Therefore, R 4 will have a proper inverse, from which we get
that

(® =1, — (R™)'R, T:=(R%)'P) 9)

based implementation u = ®(u + 4§, ) + I'z.

satisfies Definition II.9, making it an NRF pair of K. Notably, the
transformation from (9) preserves the sparsity patterns: @ retains the
sparsity pattern of R while I retains that of P.

Ill. DISTRIBUTED CONTROL VIA NRF IMPLEMENTATION

A. Specifying Sensing and Communication Constraints

The stated aim of this article is to investigate distributed implemen-
tations of output feedback controllers as networks of LTI filters. In the
NRF framework, the control law

u = Py 4+ Iz
feedforward feedback

which bears striking resemblance to the architecture proposed in (16)
from [23], has a twofold manifestation: first, in the sparsity pattern
of the ® factor, by designating which control signals are available,
and second, in that of the T" factor, by defining which of the regulated
measurements are available.

The communication constraints ¢ € ) are imposed on the dis-
tributed controller by way of prespecifying the linear subspace J C
Ry (A)™*™  while the sensing constraints I' € X' are encapsulated
in the prespecified linear subspace X C R, (Ax)™*?, respectively. The
subspace V' is obtained by allowing for nonzero diagonal entries on
the elements from Y such that Y € YT «—= (Y — Y%¢&) c ).

Remark I11.1: In the NRF framework, we avoid communicating in-
ternal states, i.e., states of the plant or controller, thus promoting control
law implementations that are scalable with respect to the dimension of
the plant’s state (recall Section I).

B. Internal Stability Guarantees

In the NRF-based implementation (10) of the controller, the variable
u may be affected by the additive disturbance denoted as 4,,, with the
equation for the controller from Fig. 3 reading as

u=®(u+6,)+T=. (11)

The internal stability analysis must certify that the closed-loop maps
from 4, to the signals z, u, v, and y are all stable.

Assumption II1.2: The plant G is strictly proper.

Remark I11.3: We point out that Assumption III.2 is by no means
restrictive, as shown via [13], and has been made only to facilitate the
presentation of the NRF design formalism. For example, a direct conse-
quence of Assumption II1.2 is the fact that the TFMs M, Y, ’Mv, Y from
any DCF of G can be scaled in (2) to make their gain at infinity equal
to the identity matrix. Thus, all DCFs of type (3) and (4), which will be
employed in the sequel are taken to have the aforementioned property,
implying that (Y‘é';g)_l € Ry(A)™*™ for any Q € Rg(r)™*2.

The next theorem shows that Remark I1.10 offers a natural mecha-
nism to obtain stabilizing NRF-based implementations.

Theorem I11.4: Let G € R,(A)P*™ be given by one of its DCFs, as
in (2), and define the Q-parameterized NRF pairs

&:=1, - (chj{'g)_lYQ (12a)

= (Y‘g"g)_lxq (12b)
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associated with a Kq, as in (5). Then, we have the following.
(a) The NRF-based implementation of Kq from (11) internally sta-
bilizes the feedback loop shown in Fig. 3.
(b) ey, TeXifandonlyif Yq € VT,Xq € X.
Proof: For point (a), see the Appendix. Point (b) follows directly
from the arguments made in Remark I1.10. O

C. Realization-Based Distributed Implementations

Distinguishing to the NRF setup, the main result of this section shows
that the closed-loop state dynamics from Fig. 3 can be made stable
in a distributed fashion, by implementing stabilizable and detectable
realizations for each row of [iI) [‘] . Before extending the input—output
stability guarantees given in Section III-B, we first require the next
preparatory lemma.

Lemma IIL.5: Let G4 and (=5 be two proper TFMs, with G stable
and having full row normal rank along with no transmission zeros in
C\S Then, ’Pu(G-lG-z) = :Du(Gl)

Proof: See the Appendix. O

We now formulate the result that shows how to implement distributed
and realization-based versions of (11), which successfully stabilize the
closed-loop state dynamics from Fig. 3.

Theorem I11.6: Let G € R,(A)P*™ be given by a stabilizable and
detectable realization of type (1a) and (1b) and let K € R, (1)™"" be
an internally stabilizing controller of GG, which is described by an NRF
pair (@, T) as in (12a) and (12b). Then, by implementing stabilizable
and detectable realizations for each ] [® T'|, with i € 1: m, and
by computing the commands as in (11), the closed-loop state dynamics
of the system from Fig. 3 will be asymptotically stable (see [24,
Sec. 5.3]).

Proof: See the Appendix. O
Remark II1.7: By obtaining minimal state-space realizations de-
notede! [& T = As _C?I“' gi] Vi € 1 : m, notice that each

zero column of e; [tI> [‘] will result in a zero column on the same
position in both B; and D;, producing structured and stabilizing state-
space-based implementations.

Remark I11.8: Quite notably, Remark II1.7 and Theorem III.6 still
hold when implementing minimal and, respectively, stabilizable and
detectable realizations for block-rows of [tI> [‘] , instead of just single
rows. Moreover, minimal realizations of such block-rows may also
reduce the number of subcontroller states at any location where more
than a single command signal is computed, emphasizing the scalability
of our method.

We conclude this section with the next consequence of Theorem I11.6,
which certifies closed-loop stability with respect to bounded additive
disturbance in dynamics of type (1a) and (1b).

Corollary II1.9: Let the same hypotheses and notation hold as in
the statement of Theorem III.6. Let the state dynamics (1a) of G and
[tI’ I‘] be affected additively by the bounded disturbances §,, and
84y Tespectively, and the output dynamics (1b) of G and [@ T
be affected additively by the bounded disturbances d,, and 4,
respectively. Then, all the closed-loop signals and state variables in
Fig. 3 remain bounded.

Proof: See the Appendix. O

Remark [11.10: Similarly to the SLS framework from [7] and [8], we
consider the bounded disturbances 6., and d,, as arising from com-
putational errors and the imperfect implementation of the controller’s
NRF pair. Moreover, the bounded disturbances d,, and d,, can be
attributed to unmapped network dynamics and sources of disturbance,
which are not captured in (1a) and (1b).

D. Norm-Based Optimal Design

Given the sensing and communication subspace constraints X" and
Y, we desire to obtain NRF-based implementations of distributed

controllers K, which solve the following problem:

cein | He(G,K) | (13a)
subject to Fig. 3 is internally stable (13b)
K=(I, —®)'l (13¢c)
Pcy I'ek. (13d)

With the difficulty of (13a)—(13d) being well understood in literature,
and its epitome being the computation of an optimal controller having
a (block-)diagonal TFM, we now focus on a tractable adaptation of it.
The latter is given via the following result, which has the benefit of
being stated in terms of affine expressions, starting from a fixed DCF
(2) of the plant.

Corollary Il 11: Let G € R,(1)"*™. Consider (®,T") from (12a)
and (12b), based upon a DCF (2) of G. Then, (13a)—(13d) is equivalent
to the following affine model matching problem:

min He (G, K 14a

Qe | He(G, Kq) || (14a)

subject to Yqelt, Xqe . (14b)

Proof: The result follows directly from Theorem I11.4. O

Remark II1.12: Efficient numerical solutions for type (14a) and
(14b) problems were proposed in [ 13]. However, an important limitation
of Corollary III.11 is that its outcome depends on the initial choice of
a DCF over Rg() for the plant. This was to be expected and has been
alleviated in part by the subsequent results from [13]. Similarly, the
outcome of the SLS [8] depends on the initial choice of a realization of
the plant. Moreover, we point out that the suboptimality gap induced by
the desired sparsity structure of ® and I" must also be taken into account
in the design phase, as is the case with the SLS (see, for example, [4]
and the numerical examples from [7]).

IV. ALTERNATIVE REPRESENTATIONS

In this section, we examine the opportunity of implementing NRF-
based control schemes as in the SLS framework [7], [8], by employing
the closed-loop maps achievable with stabilizing controllers. We denote
by ng the dependency on the Youla parameter Q of the closed-loop
map between two signals € to £, and let 5 denote the states of the
controller. We investigate a distributed implementation for controllers
based on the closed-loop maps from [¢T #']" to [y" ="]T in Fig. 1,
namely

T f=—-TY =
u=T§ p +TY z
or, in terms of the corresponding DCF over Rg(), we get that

YoM = (YoM -—1,) = (15a)

u=-XqMg +XqM -=. (15b)

It can be checked that the elimination of 3 from (15a)and (15b) (since
Y @M is invertible, as per Remark II1.3) yields the Kq controller via
its right coprime factorization over Rg(i) u = XQYal z,as in (5). For
implementation purposes, we require an NRF-based formulation of the
“state iteration” from (15a). By applying a transformation of type (9),
we get

B=(I,- Q7 'YqM)(B+65) + (YoM - I,)>

where Q := (Y qM)%22, which has a proper inverse (recall Remark
I11.3), while 5 represents additive disturbances acting upon the con-
troller’s states, replacing 6,, from Fig. 3. Thus, we obtain a set of control
laws, which are akin to the secondary specialized implementations from

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on Apnil 12,2024 at 14:16:38 UTC from IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 12, DECEMBER 2023

8063

Area 2 Area 1 Area 3

|
|
|
|
I us  Ys
|
|
|
|
|

i

|
|
|
|
Uz Ys :
|
|
|
|

Node 3

Y2
Node 2

Uz Yo

Ug Y4

Interconnection of the network’s various nodes and the areas
of admissible communication.

Fig. 4.

[8, Sec. III-C], namely

B=(I,— QY qM)(B+65) + Q@ (YoM —1,)z (16a)

u=—-XqM B8 +XqM-=. (16b)

Yet, as expected (see [8, Sec. III-C]), this type of specialized im-
plementation for a centralized stabilizing controller is hampered by

restrictive assumptions on the plant’s TFM.
Theorem IV.I: Let G € R,(A)"™™ and consider any of its Q-

parameterized DCFs, asin (3) and (4). Define © := (Y g M)%*2, where
Q is the (stable) Youla parameter, and let also Kq € R,(1)™ " be a
(centralized) stabilizing controller, as in (5). If G is unstable, then the
implementation (16a) and (16b) of Kq does not internally stabilize the
feedback loop with G.

Proof: See the Appendix. O

V. NUMERICAL EXAMPLE

Consider a grid of five interconnected nodes separated into three local
areas, as shown in Fig. 4. We aim to obtain a distributed control law
in which each node’s controller employs only local measurements and
exchanges command values only with other subcontrollers that belong
to nodes located in the original node’s area or in directly adjacent ones.

Thus, we will devise a control law in which the controller of node
1 sends its command to nodes 2-5 while the controller of node 2
sends its command to node 3. The network from Fig. 4 is modeled
as a discrete-time system with a sampling time of T, = 100 ms. To
describe the network’s TFM, denoted as G(z), define I'g(z) := -2

Network outputs, reference and disturbance

25

in
T

Amplitude

05

—r[n]
e 101 ]

i[n]
—e—un]
—&—ya(n]

va[n]
——us[n]

Fig. 5.

2 3 4 5
Time (seconds)

Reference tracking of the closed-loop network with NRF imple-

mentation and input, measurement, and communication disturbance.

1 0 000
i 1 000
Uiz) = |84 +Pg ®c 1 0 0
®c 0 010
i 0 00 1

Note, moreover, that a DCF over Rg(1) of G is given by

rz—1 1

~ o~ 1 U

[M N]_ z—05° z-05

X Y| | -0395 2
=05 z=0s"
Tz -1

~ I 1

[}j —N]_ z—05° z-05"

X M 0.25 z—1 U
Lz —0.5 z—0.5

We choose Q(z) = =%8-1 to get, for the network from Fig. 4, the

control laws from (17), shown at the bottom of this page.

Consider, now, the following simulation scenario. Let the con-
troller (in NRF form) be implemented in standard unity feedback
with our network and let the reference signal be given by r[n]:=

1n][1 1 1 1 1] ", where 1[n] denotes the discrete-time Heav-
iside step function.

Also, let each output measurement be disturbed additively by a
measurement noise (;[n], ¢ € 1 : 5, and let each communicated com-
mand be affected additively by a communication disturbance &,;[n],

and @ (2) = =22 to get that = € 1: 5, with these signals being modeled as uniformly distributed
=08 noise having |¢; [n]|, [6u:[n]| < 0.05 ¥r € N.Moreover, letw[n]:=
0.5 x 1[n — 20] be an additive disturbance at the input of the network’s
0 0 0 0 O first node.
1 0 00O U(z) =I5 — B As can be seen in Fig. 5 above, not only are all signals bounded,
B:=1|1 1 0 0 0|, V() =Tgl;s even in the presence of communication disturbance, but the distributed
1 0 0 00 G(z) = U1V controller also ensures satisfactory performance for reference tracking
1 0000 - and disturbance rejection.
0 0 0 00 ;ﬁ% 0 0 0 0
U1 - U1 z—0.85 1
Uug z—DI.QS 0 000 Uug 0 % 0 0 0 Z9
us| = |25 o5 0 0 O Jus|+| 0 0 HEw 0 0 23| (17)
wl |22 0 00 of|u 0 0 R
us —0.2 us 1.05z-0.85 | L5
=08 0 000 0 0 0 0 702:-08
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VI. CONCLUSION

We have successfully formalized the distributed design framework
introduced in [15], while highlighting its inherent connections [11]
with existing techniques from literature [7], [8]. Moreover, we have
extended the coprime factor approach from [19] via state-space-based
implementations, while laying the theoretic groundwork for reliable
numerical procedures [13], enabling the synthesis of scalable and robust
control laws.

APPENDIX

Proof of Theorem IIL4: In order to prove point (a) from
the result’s statement, we will express all closed-loop maps from
[rT w" (T 6I]T to [y’ u’ 27 UT]T in terms of the Q-
parameterized DCF given in (3) and (4). The equations of the standard
unity feedback interconnection from Fig. 1 are given by z =r — y,
v=u+w,y= Guv+(, andu = Kq z, respectively, or equivalently
byy=r—z,v=u+w,and

z+Gu=-Gw+r—( (18a)

—Kqz+u=0. (18b)

Multiplying to the left in (18a) with M and in (18b) with Yq, we
obtain, via the identities from (3) and (4), that

’Mvz—i-ﬁu: —ﬁw—i—nM’r—ﬁC (19a)

—XQZ—FYQ‘LI.:O. (lgb)

By implementing « via (11), (12a), and (12b) and allowing it to be
affected by 4,,, (19a) and (19b) turn into

M N .
_ (Ygag)"l Xq (Ydéag)_lyq [ ]
-N M -M o)
(0] (0] (0]

To obtain the explicit dependency of [z' uT]T in terms of

[r" w" ¢ 4] ", we multiply (20) to the left with
_ :{Q _N -ngau
Xq MYde

M N
diag -1 diag -1
-(v&) Xe (v&7) Ya

Moreover, we have from Fig. 3 that v = u 4+ w and y = r — z. Then,
the resulting closed-loop maps will be given by (21), shown at the
bottom of the this page. Since Q) is stable, all of them will also be
stable, thus guaranteeing internal stability.

Proof of Lemma I11.5: We focus on the case where Go is not a

start by expressing G and (37 via the minimal realizations

A; — M. | By

G‘A(l) - [ C‘_' D:‘, } ? T E {1! 2} (22}
and we use these in order to write down the realization of
Al - lI\l’al BICQ B]_D2

G1(1)Ga(d) = O Ay, | B (23)
C D1Ch | Di1Ds

which we will show to be both stabilizable and detectable.

Since G has full row normal rank and no zeros in C\ S, then by [24,
Lemma 3.33 and Th. 3.34] and from the minimality of (22), we get that
S(A) := A2=Mn,  B2| pos ull row rank Va € C\S. From this

Cy Dy
and the stabilizability of the pair (A4, B;), recalling the minimality of
(22), a standard PBH test confirms that (23) is also stabilizable.

From the minimality of (22), we have that the pair (Cy, 44) is
detectable and that P, (Gz) = {0} = A,(Az) = {0}. By employ-
ing a PBH test, we get that (23) is also detectable, in addition to
being stabilizable, and therefore P,(G1Ga) = Ay(A1) U A, (A3).
Yet, from the minimality of (22) and by recalling the stability of
Gg, we have that P, (G1) = A,(A;) and that A, (Ap) = {0}. Thus,
Pu(G1G2) = Pu(Gy).

Proof of Theorem III.6: The proof can be broken down into
four parts. In the first part, (I), we prove that Py( [@ I‘]) =
U, Pu(e] [® T]). By employing this fact along with the stabi-
lizable and detectable realizations denoted

A — M, | B;

ej [®@ T]= [ . D.

] Viel:m (24)

we prove in part (IT) the fact that the resulting realization of the
controller’s row-based NRF implementation, namely

e )[BT .

\ Ap —2, | B
el [ T]|= o D, (25)
L; [‘I’ F] I .. }—_).m_

is both stabilizable and detectable. In part (I1T), we show that the NRF
implementation solves a more general stabilization problem and, in part
(IV), we employ parts (IT) and (IIT) to prove that these state-space
implementations ensure that the closed-loop system’s state dynamics
are asymptotically stable.

(I) Notice that, since ch'{'g is a diagonal TFM, we have

constant matrix and Py (G1) # {0} since, otherwise, the result follows [@ T]=[In. O]—(Y§®) "' [Yq —Xq
directly from the full row rank of G, via classical Popov-Belevitch- T . Toodisg 1 T
Hautus (PBH) tests (see [24, Sec. 3.2]), or from the stability of G. We ei [ T]=[e] O] —e/(YQ®) 'eie] [Yo —Xq].
I'Z —?Qﬁ ?Qﬁ —?QHM’ N(Yq — Ygag] w
SN Y Y dia
ul _ | —XaN_ XoM ~XoM  ~M(Yq - Ygg) “" 21)
o] 7| o XeN  RaM KoM M(Ye-¥gy| ¢
Y YQN IP—YQM YQM —N(YQ —YQE) u
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Fig. 6. Equivalent negative unity feedback interconnection.
Since [-Xq Yq is stable and since it satisfies (4), then

[-Xq(x) Ygq(A)] has only finite entries along with full row rank
VA € C\S.Thismeansthat [Yq —Xgq]andeverye] [Yq —Xq}
Vi € 1 : m will share this property. Then, it follows that |[Yq —Xq
and every e] [Yq —Xgq] Vi € 1:m are stable and that they have
full row normal rank along with, by [24, Lemma 3.29], no transmission
zeros in C\S. _

We now apply Lemma IILS to both (Y5*) ™! [Yq —Xq] and

el (Yo¥) leie] [Yq —Xgq] in order to get that

Pu([® T])=Pu([ln O] -[® T])=P.(YE%™)
Pu(el [® T]) = Pu([el O] —e] [® T]) =Pule] (YQ®) ).

Moreover, from the diagonal structure of Yo it s straightforward
to obtain, using classical state-space theory, that Pu((Ygag)‘l] =
U, Pule] (YSE) te;). This, in turn, yields the fact that
Pu([® T])=UZ,Pule] [ T]).

(IT) We now turn to the stabilizable and detectable realizations for
each e] [® T given in (24). By the stabilizability and detectabil-
ity of these realizations, we have that Pu(e] [® T]) = Au(A:).
Then, we employ these realizations to form the one from (25) and
we define Ak := diag( Ay, ..., An), which is precisely the state ma-
trix of the realization from (25). By employing the fact that Ak is
block-diagonal, we get that A, (Ax) = U~ Au(A;), which implies
Au(Ak) =UiZ; Pule; (2 T])=Pu([® T]). Therefore, it fol-
lows (by standard state-space theory) that the realization from (25) must
be both detectable and stabilizable.

(III) We now show that [® T| internally stabilizes
[-Im, GT] T in standard unity configuration (recall Fig. 1).
Moreover, we point out that this fact is a sufficient condition for the
feedback configuration from Fig. 6, which is equivalent to the one in
Fig. 3, to be internally stable.

Note that [® T'| internally stabilizes [—I,, GT] T if and only
if (see [24, Lemma 5.3] for the continuous-time positive feedback case)
all the entries of the following TFM

Hep = |—Im
G

(Im+[q> r] [_ém])_l [In. ® T] (26

are stable. Recall (3)—(5) along with (12a) and (12b) to get that
T T i diay
HCL = [MT —MT NT] [quag YQE - YQ XQ]
has only stable entries. Therefore, [tI> [‘] internally stabilizes

[~I, GT] T, which also confirms, recalling (21) and the equiva-
lence with Fig. 3, that Fig. 6 is indeed internally stable.

(TV) Finally, recall from the result’s statement that the plant is
described by a stabilizable and detectable realization

org = Arg + Bug (27a)
ya = Crag + Dua (27b)
and then denote the realization of [tI’ I‘] from (25) as follows:
orx = Axrk + Biuki + Bauka (28a)
yk = Ckzx + Diuki + Dauka. (28b)

With these representations, it is straightforward to check by direct
substitution that the closed-loop state dynamics of type (1a) and (1b)
in Fig. 3 are described by the same set of equations (with respect to the
same sets of inputs and outputs) as those in Fig. 6 when [I,, GT] T
is described by the realization

org = Axg + Bug (29a)
—Uug = OIG — ImuG (ng)
yg = Czg + Dug. (29¢)

Note that, since (27a) and (27b) is stabilizable and detectable, then
s0 is (29a)—(29c) and that these two realizations share the same state
variables, i.e., the components of the plant’s state vector.

Consider the state vector of the closed-loop interconnections in
both Figs. 3 and 6 to be the concatenation of the plant’s state vector,
T, with the distributed controller’s state vector, zk. Following this,

I (0] Im
define D:= | O I, —D | .Toshow that D is invertible, we
Dk, Dk Inm
compute the Schur complement of its upper left (m + p) x (m + p)
block and obtain

Im + [Dx1 Dksa] [-Im D] T

=Im+ [®(0) T(0)] [-Im GT(0)] ". (30)
SinceI, 4+ [@ T| [-Im GT] " is properand ts inverse is, by point
(III), both proper and stable, then the Schur complement from (30) is
invertible, implying that D is also invertible. We now combine (27a),
(27b), and (29a)—~(29c) with (28a) and (28b) to get the fact that the
closed-loop interconnection’s realization in both Figs. 3 and 6 has the
following state matrix

o O
[a o o 0 B|x,
ACL_[O AK] [_BKI —Bkxs O O @D
0O Ck

Since the TFM from (26) is stable, while (29a)—(29c), (28a), and (28b)
are stabilizable and detectable, we apply the negative unity feedback
versions of [24, Lemmas 5.2 and 5.3] to the feedback loop from Fig. 6
(directly in the continuous-time case and in adapted form for discrete-
time case) to get that A, (Ag.) = {0}. This is equivalent, by [24, Def.
5.2] (with the appropriate alteration for the discrete-time case), to the
desired result, i.e., the two state vectors, rg and rk,in Fig. 3orinFig. 6
are driven asymptotically to the zero vector, when evolving freely from
any finite initial conditions.

Proof of Corollary I11.9: We start by recalling the realizations from
(27a), (27b), (28a), and (28b), along with the matrix Acp from (31).
As discussed in part (I'V) of the proof belonging to Theorem IIL.6, the
closed-loop state dynamics of type (la) in Fig. 3, when considering
the closed-loop state variables to be the concatenation of z (the state
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vector of G) and of zx (the state vector of [® T']), are given by (32)
shown at the top of this page. Since A, (Ac.) = {0}, the closed-loop
system in Fig. 3 is guaranteed to be internally stable, even when taking
into account the bounded disturbances from the statement.

Proof of Theorem IV.1: The proof boils down to showing the fact that
the closed-loop map from the input disturbance w to the controller’s
state 3, denoted Tﬁ”", is unstable if so is G.

Begin with the closed-loop equations, which are given by

Mz+Nu=-Nw+Mr—M¢ (33a)

Q YI, - YoM)z + Q 'YqM§B = (I, — Q 'YqM)ds (33b)
XqMz—XqM B—u= O (33¢)

where (33b) and (33c) represent the distributed implementation of
the controller. Next, multiply (33a) to the left with Y q and rewrite
(33a)—(33c) in matrix form in order to get that

T 0 ToN| [:
QY,-YoM) QYoM 0O | |8
XqM XM I | [
YR VoM Vo 0 w
=| o o 0 I,-Q'YoM E e
0 o 0 0 s

The expression of the closed-loop maps can be obtained by multiplying
(34) to the left with the inverse of the square TFM on the left-hand side.
Doing so, we get the fact that T’a‘" = GXgN and by employing the
identity XqN = I,,, — MY o, which can be deduced from (4), we
finally obtain the fact that

T = G(Im —MYq) =G - NM 'MYq = G - NYq.

If G is unstable, then so is T’a‘" for any stable Q, since NYq
is guaranteed to be stable, thus making the implementations in
(16a) and (16b) unable to stabilize the feedback loop.
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