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Distributed Control of Descriptor Networks: A Convex Procedure
for Augmented Sparsity

Andrei Sperila ', Cristian Oara

Abstract—For networks of systems, with possibly improper
transfer function matrices, we present a design framework that
enables H ., control, while imposing sparsity constraints on the
coprime factors of the controller. We propose a convex and iter-
ative optimization procedure with guaranteed convergence to ob-
tain distributed controllers. By exploiting the robustness-oriented
nature of our proposed approach, we provide the means to obtain
sparse representations of our control laws that may not be directly
supported by the nominal model of the network.

Index Terms—Convex optimization, distributed processes, de-
scriptor systems, sparse H,, control.

|. INTRODUCTION

A. Motivation

When faced with a distributed control problem, one notices an
acute lack of dedicated numerical tools, if compared with the classical
centralized design context. Several computational methods, such as
those proposed in [1], [2], [3], and [4], aim to exploit specialized
techniques, in order to mitigate the numerical complexities inherent
to distributed control.

Notably, previous efforts [5] have sought to enforce sparsity con-
straints directly upon a finite impulse response (FIR) approximation
of the Youla parameter, under certain restrictive assumptions, such as
quadratic invariance and strong stabilizability (see [6]). However, the
technique proposed in [5, Sec. 5] cannot cope with enforcing sparsity
patterns upon nonsparse dffine expressions of the Youla parameter.
These issues were tackled in [ 7], with the introduction of the framework
dubbed system-level synthesis (SLS). Yet the focus on discrete-time
systems meant that other architectures, such as the network realization
function (NRF) representations discussed in [8] and [9], have been over-
shadowed by the FIR approximation methods from the SLS framework.

B. Article Structure and Contributions

In this article, we propose tractable techniques and numerical pro-
cedures for the NRFE-based framework formalized in [9], which offers
distributed control laws in both continuous time and discrete time, with-
out needing to communicate any internal states, i.e., plant or controller
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states (see [9, Sec. IV] for a comparison with the SLS framework), thus
promoting scalable control laws for large-scale networks. In Section II,
we cover a set of preliminary notions, with our paper’s problem state-
ment forming Section III-A. Our contributions are structured via the
subsequent sections and are listed as follows.

1) In Section III-B, we show how to impose sparsity in the NRF
formalism and how it reduces to a model-matching problem that is
solved via reliable procedures [10], [11], [12].

2) In Section III-C, we extend the robust stabilization approach
from [13] to the distributed NRF-based setting.

3) InSection IV, we show how to particularize the convex and iterative
procedure (with guaranteed convergence) from [14] to obtain robust
NREF-based implementations.

4) InSection V, we consider a generalization of the network in [8], and
we also show' how to employ our robustness-oriented approach,
in order to retrieve the same sparse control architecture as in [8]
for a more general case.

Finally, Section VI concludes this article.

Il. PRELIMINARIES

A. Nomenclature and Definitions

Let C, C™, jR, and B denote the complex plane, the open left-half
plane, the imaginary axis, and the set {0, 1}, respectively. Let MP*™
stand for the set of all p x m matrices having entries in a set denoted
M. We also denote by P > 0 the fact that P € [R7*9 is positive definite
and by &(Z) the maximum singular value of Z € CP*™. For any
M € MP*™ M7 is its transpose. Let Ker(M) denote the null space
of M € MP*™ and let || Z|. denote the sum of the singular values
belonging to Z € CP*™ which is termed the nuclear norm. The oper-
ator ® denotes the Kronecker product between any two matrices. We
define the vectorization of M € MP*™ as vec(M) := v € MP™*1,
where viy(j-1)p = M;;, along with the diagonalization of M by
diag(M) := V € MPm*Pm where V;; = (vec(M));,fori € 1: pm,
and V;; =0V # 3.

For M; e MPi*™i  with : €1:#, and a natural number
g, we define the block-diagonal concatenation operator by

M

£ £
D(M,..., M= € M%=1P9%21™5 and  the
M;
M;
block-diagonal repetition of M; by D,(M;):= €
M;

MPOPi*9™i  For any R € M?9, we denote its symmetric part
by sym(R):=2(R+ R") =sym(R") and its diagonal part by

i Rij,i=37 . .

ag | _ ijy J .
R‘:j '_{O,Jé;éj Vi, jel:q .

The matrix polynomial A — sE is called a pencil, with square
ones that have det(A — sE) #£ 0 being termed regular. A regular

! All the implementations being compared in this article are available at the
following link: https://github.com/AndreiSperila/CONPRAS
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pencil without finite generalized eigenvalues in C\C~ and without
infinite generalized eigenvalues with partial multiplicities greater than
1 (see [15]) is called admissible. Let A(A — sE) be the collection
of generalized eigenvalues (both finite and infinite) belonging to the
regular pencil A — sE.

In this article, we will focus on systems described in the frequency
domain by transfer function matrices (TFMs) of type (G(s));; =
%:'}%’ with a;;(s) and b;;(s) polynomials with coefficients in R,
i €1:p, 3 €1:m. Wedenote the set of all such TFMs with m inputs
and p outputs by RP*™, with RE*™ being the subset of proper TFMs
(dega;; < degb;;, Viel:p, j€1:m). Let B BP*™, which
we use to express Sp:={G € RP"™|B;; =0= G;; =0, Vie
1:p, Vj€1l:m}. Notethat G € Sgp <= (I — diag(B))vec(G) =
0. We also define the restriction of Sp to proper TFMs §5 =8N
Rpx™.

A TFM without poles (see [16, Sec. 6.5.3]) located in {C\C~} U
{oc} is called stable. Let RH,, denote the set of real-rational and
stable TFMs, with the H., norm of any G € RH.. being given by
|G|l := sup,.,z 7(G(s))- The systems considered in this article are
usually represented in the time domain by differential and algebraic
equations

Ed%:r(t) = Az(t) + Bu(t) (1a)

y(t) = Cz(t) + Dul(t). (1b)
The dimension of the regular pencil A — sE and that of , the vector
that contains the realization’s descriptor variables, is called the order
of the realization (1a), (1b). If its order is the smallest out of all others of
its kind, a realization is called minimal (see [17, Sec. 2.4]). Moreover,
we have

2)

G(s) =C(sE —A)'B+ D = [ A-sE|B ]

C D

Let the matrix S, span KerE. A pair (A — sE, B) or a realization
(2)forwhich[A — sE B]has fullrowrank Vs € C\C™ and [E AS,, B]
has full row rank is called strongly stabilizable. By [18, Th. 1.1], strong
stabilizability is equivalent to the existence of a matrix F, called an
admissible feedback, such that the pencil A + BF — sF is admissible.
By duality, a pair (C, A — sE) or realization (2) is deemed strongly
detectable if (AT — sET, CT) is strongly stabilizable.

Let both E, and D] D, be invertible and consider

E/X,A,+ Al X,E, + C]C, — (E]X,B, + C] D,)
x (D} Dy) \(BI X,E, + D[ C,) =0 ®)

the generalized continuous-time algebraic Riccati equation (GCARE)
(see [19]). A symmetric solution X, of the GCARE is called stabilizing
if F, :== —(D] D,)"Y(B] X, E, + D] C,) is a stabilizing feedback,
ie, A(A, + B.F, —sE,) CcC".

B. Parameterization of All Stabilizing Controllers

To obtain a tractable parameterization for NRF-based control laws,
we employ the class of all controllers, which stabilize a network whose
TFM G" € R(PutpP)x(mutm) ig ojven by

. A—sE | Bl i .82
GT, 1+ G }
G" = [C_Tll_l_;_@:f.] =| Ci D11 1 Dig (4)
I N e

where A € R™*™, D{; € RPv*™=_ [)yy € RP*™, and all other con-
stant matrices have appropriate dimensions. Under certain assumptions
of strong stabilizability and detectability, the aforementioned class
coincides with that of the controllers, which render the closed-loop
configuration from Fig. 1 well posed, i.e., det(I — G5, K) # 0, and
internally stable, i.e., all the TFMs from w; and w2 to w1, ua, y1, and
yo are stable. We now state an extension of the Youla parameterization,

U 1
" o T
> G3,

Y2 Uz
K «

48 +

Fig. 1. Closed-loop configuration.

for a class of systems having possibly improper TFMs, by combining
the notions from [20, Secs. 4.1 and 4.2].

Theorem 2.1: Let G™ € R(PutP)x(mutm) he oiven as in (4), with
(A — sE, By) strongly stabilizable and (C3, A — sFE) strongly de-
tectable. Let (IN, ﬁ, M, ’Mv, X, i, Y, {’) be a doubly coprime factor-
ization (DCF) of G, = NM~! = M~!N over RH,,, with all eight
TFMs being stable and satisfying

Y X|[M X] [1 0 )
N M|IN Y| |0 I
Then, we have the following.
a) A DCF over R*H,, can be obtained, via (4), by

~ ~ -AH—SEl—BQ—HDQQ:H
Y ! X .
] [P
—N 1 M | CZ _D22 1 I
Ap —sE | By 1 —H
[ﬁﬁ] = | F___ . I:. 0. (6b)
: |Cy + DoaF | Dag v 1

with both the pencils Ay —sE:= A+ HCy —sE and Ap —
sE := A+ BoF — sE being admissible.
b) The class of all stabilizing controllers is given by

K = (X +MQ)(Y + NQ)™'= (Y + QN) (X + QM)
M
for all Q € RHZ*P, which ensure that det(Y + NQ) # 0 and
det(Y + QN) £0.
c) For a stabilizing K given by a DCF over RH,,, of GJ,,

Gor = Fi(G"K) := GT; + GLK(I — GRK)'G];

is expressed affinely in terms of Q from (7) by the identity G, =
T + ToQT5. Given arealization of the employed DCF, as in (6a)
and (6b), we have

T, := G, + G, XMGJ,

A_F' — sk —BQF Bl
= 0 Ag —sE | By +HDy (8a)

Ci+ DipF —DyoF | D1y

AF —sE .82

Ty = GL,M = 8b
2 12 [Cl + D1 F Dlz} (8b)

_ ~.m _[Am —sE | B+ HDa
Ts = MG21 = [ 02 | D21 ] . (8C)

Remark 2.1: The two admissible feedback F' and H can always be
chosen via the two-step stabilization algorithm from [18]. Since Ay —
sE and Ap — sE are admissible, the TFMs from (6a), (6b), and (8a)—
(8c) are all stable and, thus, proper. State-space realizations for these
TFMs can be obtained via the residualization procedure mentioned
in [21, Sec. 3].
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lll. THEORETICAL RESULTS

A. Problem Statement

The results presented in this article tackle the problem of obtaining
sparse and robustly stabilizing control laws of type

m P
w =Y ®yu;+ Y Tuye, =0 Viel:m (9
i=1 k=1

discussed in [9]. More specifically, we aim to impose I' £ 3} and @ €
Sy, for some binary matrices X € B™*Pand V € B™*™, with ydisg
0, and to have the control laws from (9) stabilize all the network models
Ga € Cg, where the class Cg is of the type discussed in [22], due to
its generality.

In the following, we show that this problem reduces to

<1, x; € RH

[« <]

q
T + ZXiTQi
i=1

iel:gq (10)

with T, T9; € RHw, V 2 € 1: g, being expressed in terms of (2)
and (6a) and (6b). Finally, we particularize convex relaxation-based
procedures [14] available in the literature to solve (10), and we compose
(®,T) from the obtained x; € RH!,ie1:q.

B. Parameterization of NRF-Based Control Laws

Here, we show how the problem of obtaining the sparse and stabi-
lizing distributed control laws of type (9) can be reduced to a readily
solvable model-matching problem. As discussed in [9, Sec. III], this
is primarily done by factorizing a stabilizing controller from the class
expressed in Theorem 2.1 as K = (I — ®)7'T", where (Y 4+ QN)4ize
and (Y 4+ QN) have proper inverses and the NRF pair (®,T) is
obtained as

®:= I — (Y +QN)®™)~1(Y + QN)

L= (Y +QN)*) (X + QM) e Rp*. (11b)

Remark 3.1: When the realization of G5, € R”*™ (not necessarily
proper) from (4) is strongly stabilizable and detectable, the guarantees
of closed-loop internal stability and of scalability showcased in [9,
Sec. III] for control laws of type (9) will also hold. Thus, since all
the closed-loop transfers are stable and since the analogues of [23,
Lemmas 5.2 and 5.3] (formulated for descriptor systems) are in effect,
then the descriptor variables of both the plant and the controller’s NRE-
based implementation (along with their output signals in closed-loop
interconnection) will be bounded and will tend to 0, when evolving
freely from any finite initial conditions.

With the stability guarantees of (9) clarified in Remark 3.1, we now
focus on imposing sparsity patterns on the (@, I") pair. The following
result offers a characterization of the stable Youla parameters, which,
for a given DCF over RH.,,, produce the desired sparsity structure for
the NRF pair in (11a) and (11b).

Proposition3.1: Let G € R”*™ be given by a DCF over RH, (6a)
and (6b); let ¥ € B™*? and Y € B™*™, with %€ = J.Define Fy :=
I — diag(X) and Fi? := I — diag()). If there exist Qq € RHT*P and

Q € RH™"? satisfying

eR™  (lla)

Fy(M' @ 1) Fyvec(X)|
[F}r;(ﬁT ®1I) ec(Qo) + {Fi;vec(?]] =0 (12a)
~ Fxr(M™®1)
vec(Q) € Ker [ij(ﬁT ®r) (12b)
det (¥ +(Qo+ Q)N)(c0)) #0 (120)
det (¥ +(Qo+ Q)N)*(c0) ) £0 (12d)

then the controller in (7), formed via the employed DCF over R'H.,, of
type (6a) and (6b) and via Q = QU + Q admits an NRF implemen-

tation of (11a) and (11b) with I" & S,y and @ € S(j; n
Proof: See the Appendix. |
Remark 3.2: Equation (12a) can be solved for a stable vec(Qq),

as shown in [10]. Moreover, a least order solution can be obtained

by employing the generalized minimum cover algorithm from [12].

A benefit of this approach is that it computes a (stable) basis for

K FX(M @)

€ (N & 1)
obtained as in [11]. _
Remark 3.3: Selecting a Q, which ensures that det((Y +

QN)(c0)) # 0, thus guaranteeing that the TFM of the controller is

well posed, can be done numerically by using the fact that

det (?(m) + Q(oo)f\‘:(oo)) £0

. Alternatively, a stable basis of least degree can be

= (Y(00) + Qo) (0) " (¥(00) + Q(e0)N(o0)) > 0.
(13)

To ensure that det((Y + QN)%8(c0)) # 0, we first denote by e; the
ith vector of the canonical basis of R™*! and impose that

el (Y(o0) + Q(00)N(o0)) e

x €] (Y(00) + Q(o0)N(o0))e; =0 Vie1:m. (14)

The bilinear matrix inequalities in (13) and (14) will be convexified and
solved iteratively via the procedure given in Section IV.

C. Robust Stabilization and Augmented Sparsity

In this subsection, we show how to obtain a controller of type (7)
whose NRF implementation (9) stabilizes all the network models G o
in a class Cg and how this technique can be used to obtain a sparse
control architecture. However, before this, we begin by defining the
aforementioned class of TFMs.

The class Cg, introduced in Section III-A, is expressed in terms of a
stable rlght coprime factorization (RCF) of G = NM-! € RP*™ ie.,
N Me RH.., and 3 X Y e RH. so that YM — XN = I, which
is additionally normalized, i.e., NT(—s)N(s) + MT(—s)M(s) = I.
With any (see [22]) such stable normalized right coprime factorization
(NRCF) and € € (0, 1], we define

c, = { (ﬁ+Aﬁ) (M+Aﬁ) ,Ag,Ag € RHe,

det (M +Ag) £0, ||[A% &%{}T

‘ < e}. (15)

Clearly, in order to manipulate Cg, we must first obtain a stable
NRCF of G. While (6b) readily provides a stable RCF of G, a stable
NRCEF can be obtained via the following result.

Lemma 3.1: Let E,. be an invertible matrix, and let also A(A, —
sE,) C C. Let the TFM

T 17 _ | Ar—sE, | B,

[Nt M) = [ C, D,

designate a stable RCFof G = NM~! € RP*™ and let H, € R™*™

be invertible and satisfy H,' H, = D] D,. Then, we have the following.

a) The GCARE from (3) has a symmetric stabilizing solution, X,
along with a stabilizing feedback, F..

] e RHFT™>*m  (16)

b) For Gy := A_‘"I; ";,E‘" g‘" , we get that [NT M']7
[NT MT] TGy?! designates a stable NRCF of G.

Proof: For point (a), see the Appendix. Point (b) is precisely [21,
Proposition 1]. |

Having now the ability to express the TFMs that make up (15), we
turn our attention to characterizing stabilizing controllers whose NRF
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implementations of type (9) stabilize all the TFMs in Cg, for a given
€ € (0, 1]. The following result is central to this section and offers the
means to do just so.

Theorem 3.1: Let G € RP*™ be given by a strongly stabilizable
and detectable realization (2), and let F' ensure that A + BF — sE
is admissible. Let also G = NM ! be the stable RCF induced by F
as in (6b), and for which a realization as in (16) is obtained (recall
Remark 2.1), having E,. invertible and A(A, — sE,) C C™. Let F,,.
be the stabilizing feedback of the GCARE from (3), and let € € (0, 1]
along with H,. € R™ ™ invertible, such that H,' H,, = D] D,. Then,
we have the following.

a) There exists a class of stabilizing controllers K € R™*F, based
upon a DCF over RH., of T45,, for the system

T — —2_-?.6_@_11__5_5@___1_] _ [__Ea_i___?_z:]

I -G G T5; + Ty
‘A, —sE, -B,F |0 —-B, i B,
- 0 A-sElo -B | B -
= | . F, —eH.F |0 —<H, <M. an
0 clTTTIDTTD

b) Let K belong to the class from (a). If || F;(T¢K)||< 1 and K
admits an NRF implementation as in (11a) and (11b), then the
control laws from (9) stabilize all Ga € Cg.

Proof: See the Appendix. O

Remark 3.4: The key to bypassing the feasibility of the model-
matching problem tackled in Proposition 3.1 lies with judiciously
employing Theorem 3.1. Let our network’s TFM be G € RP*™ and
assume that the chosen NRF architecture is either infeasible or difficult
to satisfy for the available DCFs over RH., of G. Then, we may
resort to an approximation of G, denoted G € RP*™, which satisfies
G € Cg and which is described by a DCF over RH., that supports the
desired NRF architecture. By obtaining control laws of type (9) with
the desired sparsity structure and which stabilize all G5 € Cg, these
sparse control laws will also stabilize G. A concrete example of this
design procedure will be shown in Section V.

Although we now possess the means to characterize robustly sta-
bilizing NRF-based implementations of the controller, note that these
are obtained by employing a DCF over R'H.. whose realization is of
the same order as that in (17). The next result shows how to obtain
descriptor representations for the DCF over RH ., with the same order
as that of the network’s model.

Proposition 3.2: Let the same framework, hypotheses, and notation
hold as in the statement of Theorem 3.1, and let T be defined as in
(17). Then, we have the following.

a) For any H so that the pencil A+ HC — sE is admissible, a DCF
over RH,,, of T5, is given by

& &, [A+HC —-sE|-B—-HD'H
Yer X« 1
[,,, S IS OO S}
—N I M | i e D v T
(18a)
. A+BF —-sE | B —
ME «» X 1
B e AR R
' C+DF |[Di I

b) For any stabilizing controller obtained using (18a) and (18b) and
an arbitrary Q € RH P, we may express F,(T, K) =T] +
T5QT%, where we have

T§ = T§, + T, XM T,

A, —sE, —-B,.F 0 —B,
= 0 A+HC -sE|H —-B-HD
—eH . F, —eH.F | 0 —eH,

(19a)

€ . 13 £ __ Aw‘ — SET Bw‘
T; = Ti;M® = [—eHrFr EH;-:l (19b)
e . Treme A+HC—5E|H —-B—-HD
TS ._MTQI_[ ol | i 5 ] (19¢)
Proof: See the Appendix. O

IV. CONVEX PROCEDURE FOR AUGMENTED SPARSITY

A. Procedure Setup and Norm Condition Reformulation

Recall that, in order to obtain sparse control laws of type (9), we
aim to express controllers of type (7) for Q € RH. *F satisfying (12a)
and (12d). For robust stability, point (b) of Theorem 3.1 argues that we
need only satisfy | T + T5QT%||« < 1, where T, T, and T% are
expressed as in (19a) and (19c).

The beginning of this section is dedicated to showing how this norm
condition can be converted into (10). Owing to this being the setup of
the iterative algorithm given in the following, this conversion will be
given in an ordered sequence of steps.

Step 1: Solve (12a) for Qp € RH.*F, and obtain a basis B €

) for
RH™" for Ker [iﬁ“ﬁﬂ 21| (recall Remark 3.2).

Step 2: Partition B via its columns, as follows:
B:: [Bl : :B\i. : :Bq], B-j ERH;“’XI

B B
S ob-| Vicel:q

Step 3: Using these realizations, write via (66) a stable RCF of each
B; = Ng, Mg,ll_ , which are given explicitly by

to obtain minimal realizations B; = [

AB + BBFB | BB
MB i 1 1 1 1 1
= FB 1 | e RH{PHDx (20)
Nel | crypREE | DP
with 2 ensuring A(AB + BBFB — sI) € C to form
B:=[Ng, |--- ! Np, ' --- ! Np,] e RHIP*9.  (21)

Step 4: Partition B = [B] R : B]
B; € RH™9, in order to finally define

Ve T .
--- B,]", noting that

— ~ "~ As | Bg
B:=[B, - B,]= [ B B} € RHI*PI.  (22)

Cg | P
Remark 4.1: Since B; are the columns of stable basis of the null

space in (12b), then so are Ng, = B;Mp,, having realizations of the
same order as those of B;. Thus, B is a stable basis for the same null
space and may also be used to form vec(Q) = Bx, ¥x € RHZ, as
in Proposition 3.1.

This concludes the setup of our procedure, and we now move on to
converting || T§ + T5QT%|| < 1 into (10), through the explicit use
of B. Recall that Q can be partitioned additively as Q = Qp + Q.
with Qg having been obtained in Step I of the setup and with vec(Q)
formed as in Remark 4.1. Thus, by (22) in Step 4 of the setup, it is
straightforward to obtain

Q= [E‘lx : - : ﬁpx] =BD,(x) € RHT*®.

Defining x € RHZ! as x = [ g" 3” ], WE may express
 [Ag BgDy(C.) | BgDy(ds)
Q=10 Dp(Ax) Dp(bz) (23)

Cg DgD:(Cs) | DgDs(d:)
whose realization is affine in terms of all variable matrices: A, b,., C,,
d,, and Ag and Cg, by way of F2, fori € 1: q.
It now becomes clear, in terms of (10), that we have ’fl =TS+
T5Q T4 and Toi = Ts Q; T4, where we have defined
Q,:=B[a' (24)

1 F-_ R 1 . 1~ .
, Eig+i ' E(P—l)q+=]
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withi € 1:q, j € 1 : p — 2,and ¢; being the 7th vector in the canonical
basis of RP7*! Moving on, the next section tackles the numerical details
of satisfying the inequality from (10).

Remark 4.2: The free term of the Youla parameterization is now
expressed as Q = Qo + > 1_, x;Q;, for some x; € RHLY, Vi e
1: g. Thus, forming B from only a subset of the ¢ columns used in
(21) may prove sufficient to solve (10), which has the benefit of cutting
down on computational costs.

B. Numerical Formulation and NRF Implementability

In order to formulate a numerical procedure meant to solve (10),
we first require a state-space realization of T'{ + T5QT5. This can be
obtained by first defining the following TFM:

and obtaining a minimal state-space realization as in (25), with A(Af —
sI) C C~ dueto T € RH,., via one of Qg and via (19a) and (19c),
as per Remark 2.1. Notice that T§ + T5QT§ = F,(Tf, Q) to get,
via (23) along with the formulas in [23, Sec. 10.4], the realization from
(26), shown at the bottom of the this page. Crucially, notice that all the
variable matrices that appear in the realization from (26) do so only via
affine terms.

Before stating the numerical problem that will be tackled by our
iterative procedure, we must ensure that the obtained controller is well
defined and can be implemented as in (9) via its NRF pair. As indicated
in Remark 3.3, this is ensured by satisfying (13) and (14), which can
be written generically as

(ZF + Z5Q(o0)Z5) (ZF + Z5Q(0)ZE) =0 Vke1: N,
(27)
where the various matrices Z¥ € R¥s*wk ZE ¢ R¥s*™ and Z¥
RP*¥k are shown explicitly in (13) and (14). Finally, note that
Q(oo) Qg(OO + Z le oc) where we partition x(oc) =
=[det - | dai | dzq 7, i €2:q— 1. Thus, we com-
bme (10) and (27) into our numerlcal problem

|Fe(r, @) <1, Qasin23)
(Z¥)TZE+ Y0, dai(ZF)T 28, + Y0 dui(ZE)TZE
A Y daidos (Z5)TZE, -0 VE€1: Ny

Zk = ZF + Z5Qo(c0) 2k, 25, == ZEQu(c0)Zk Viel:gq
(28)

C. lterative Procedure With Guaranteed Convergence

We now introduce the most general form (recall Remark 4.2) of
our convex and iterative procedure for solving (28), based upon the
algorithm with guaranteed convergence in [14].

Theorem 4.1: Given the realization from (26) along with two toler-
ance values 0 < 71,0 < 1 < 1, define the following:

Af 0 0 ci 0 o0
A =0 0 o, T = I 0
0 0 0 0 1

Algorithm 1: Convex Approach to Solving (28)

Initialization: Solve the LMI system of (30), given on the
next page, along with the equallty constraint dy — dz = 0,

—_p\O
for (42,89, 02,0, @0, (FB)", PO, P, (PP’ P2,
) Using these computed variables,

7. (r) (P2
form TA, TB, Tg as in (29d)-(29f) and then set k = 0
along with 10 = |78 — 74T+ ITnrll;
repeat
if k mod 2 < 1 then
| Set k =k +1 followed by ©F =
else
| Set k =k +1 followed by ©% = T4 — Tk ~1;
end
Solve M (Tj;—l,Tg—l,e") for (A’;, bk Ck gk aF
(B, kP, (P, B P, (PP, (PP)')
and use them to form T, T, TE as in (29d)-(29);
Compute f* := |74 - TATE| +
wntil 71 — 7 <y or f5 —||Ingl, <2

T -TE

-
—=f .

() 0 o Bh=[(o8)" 0 o

PB +PD), T'

(29a)
[ 2sym (PEJr + W;)
G:= (ﬁ{)Tpg(m;)T —ﬁI ﬁ;

(29b)

(B! D5D,(d.) BiCy

B5D,(ds) Ag
Dy (b) 0

Ta:=D(PB,...,

B] DgD,(C:)
BE’DP(CI)
Dy(As)

PP, P:,ds, P,0) € RPT*"T

Ag = (29¢)

(29d)
To:=D((FF)",..., (F?)",A],d, As,0) e Rrr>me
(29¢)
=B B 5 5P 55 T
To =D (Pr,.... Py, Pe, P, P ds — do) € RPT*™T. (290)
Then, we have the following.

a) If the problem from (28) is feasible, then a solution can be found
by the iterative procedure with guaranteed convergence given in
Algorithm 1, which involves the convex optimization problem from
(30), shown at the bottom of the next page.

b) If, at the proposed iteration’s termination, we have that |T% —
TETE||. < 1o, then A% B CE, 3%, and (FB)* can be used to
form Q as in (20)—(23).

Proof: For point (a), see the Appendix. Point (b) follows directly
from the fact that || 7% — TETE||. < n2 < 1 indicates that the bilinear
equality constraint belonging to the problem (given in the Appendix)

A 4+ B DgD,(d,)C] BjCg BIDgD,(C.) | Bf + B DgD,(d.) D},
TSQTS A|B] _ B=Dp(ds)Cd As B=D,(Cs) BsDy(ds) D3 26)
T TTD Dy (b2)C4 0 Dy(As) D, (b:) D},
C{ + D{,DgD,(d:)C3 Di,Cg Di;DgDy(Cy) | D{; + D{; DD, (ds) D}
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that is equivalent to (28) has been satisfied for a feasible tuple, which
designates a solution. |

V. NUMERICAL EXAMPLE

A. Design Procedure

Consider a set of £ = 20 subsystems, which are interconnected in a
network with a ring topology, as depicted in Fig. 2. The input—output
model of each subsystem can be written as

Yimode)+1 = Gy¥((i-1)mod )41 + Gull(imedr)y41 Vi€ 1: £
o B 1-s 01
with Gy(s) == iVC—SELI—%V- = 0 -1f1 and
v T 1[0
1- : 11
(s) == [A"(ESE" B"] [ 4]. Define  now
u 0
Z:R R and E(k) = Dy(k) |74 ! to get that
Iy O 11
_ Dp(Ay - 2By) +Dg(By)2(1)Dy(Cy)  Dyp(By)E(IDg(Cu) | Ogp g
G(s) = Oz Dy(Au-sBy) | Dg(Bu)
TilCy) Dg(Cu) [ Ce
(3D

is the network’s TFM, which is improper, having a strongly stabilizable
and detectable realization and whose resulting descriptor vector is the
concatenation of the descriptor vectors belonging to the realizations
of all G, and G, subsystems. We aim to obtain a control law, for
Pk, Tk € RL*, with

U(imod )+1 = PKU((i-1)mod £)+1 + TKY (imodg)+1 VZE1: f(-32)
Then, approximate G (s) with G(s) := D,(¥)2, where  := Z(2) +

0

Ay — sE
Sy —1|. Note that the
1

I; and ¥(s) :=

latter realization is strongly stabilizable and detectable, such that
Fg =[1 5] and H}, =[-5 —1] are admissible feedback for it.
Thus, we are able to express
G(s) = [Df(Aq: —sEg) | DE(B‘I')Q:|
De(Cy) | De(Dg)S2
with FF = Q'Dy(Fg) and H = D¢( Hg ) being admissible feedbacks.
Obtaining stable NRCFs for (31) and (33) via Lemma 3.1, we use them
to get the maximum stability radius by > 0.9925 of G (see [22]) and
to compute an upper bound for some Q € R?{f;‘f (see [24, Ch. 8])
denoted 1(Q) < 0.5609 of the directed gap metric between G and
G, as given in [22, Eq. (4)]. Then, we set e = 0.7 > u(Q), and we
get, by the same arguments as in [22, Proof of Lemma 2] applied for
Q e RHE, that G e Cg. Note that (Q) < 1 implies det Q # 0.
Otherwise, 3 v € Ker Q N RH%*! with 3 norm equal to 1, which
can be used to obtain that (Q) > 1.

Now, use the realization from (33) and F' to compute a stable RCF as
in (16). With this stable RCF and H, employ Proposition 3.2 to compute
(N¢,N¢, Me, M€, X<, X¢, Y, Y*¢) via (18a) and (18b) and T%, TS,
and T'§ as in (19a)—(19c). Then

K= (QY° +

(33)

QN9 1(QXe + QM*) (34a)

Fo(T,K) = T5 + (T5Q2 1) QTS (34b)
having defined Q:=0QQ. Note that (N¢Q~! N¢ M<Q!,
M=, X5 QX Y, QYY) is also a DCF over RH,,, of T5; = G, as
all mght TFMS are stable, and they satlsfy (5), with the added benefit
of QYE N =] S(':'(]_)_f__{” and of QXE h/.l[E =] S{

We w1ll employ this new DCF over RH,,, to form the controller
as in (34a) and optimize the ., norm of (34b). The control laws in
(32) can be obtaiiled from an NRF pair of Hle controller with ® =
Dy(Pk)E(1) € Sg(qy and I' = D,y (I') € Sy,. By Proposition 3.1, a
solution to (12a) is QO = 0, and note that a stable basis for the null-
space from (12b) is expressed as in (21) with ¢ = £and B; = Np, =
€14+(e4+1)(i-1), Vi € 1: ¢, where €; is the ith vector of the canonical
basis of R%**1.

We now run Algorithm 1 with MOSEK [27], called through MAT-
LAB via YALMIP [28]. A comparison with other techniques from the
literature is given in Table I, located at the top of the next page, and
their computational performance will be discussed in the next subsec-
tion. Taking Q(s) = D,(5.9844) produces, Vi € 1 : £, the distributed
control laws of type (32)

64.11s +257.4
= —2U((i-1) mod )41 + ————————

s+ 4

Remark5.1: LetK := (I — &)7'T, where & := —Z(2) and T :=
641, and notice that [® I internally stabilizes [I ‘G '] ". Then,
the distributed implementation (9) of the approximated dlstrlbuted
controller K internally stabilizes G even in the presence of com-
munication disturbance (see [9] and recall b(; mod ¢y+1 from Fig. 2).
Moreover, the control laws from (9) implemented with either (@, I") or
(®,T) stabilize all Ga € CZand § = 0.8968, indicating satisfactory
robustness.

(i mod £)+1 Y(imod£)+1-

B. Computational Performance

We conclude this section by presenting a comparative discussion
of the results showcased in Table I. With respect to our proposed
procedure, inspired by Doelman and Verhaegen [14], we state the
following.

1) [14, Alg. 2] is slightly more computationally demanding, due
to optimizing over all decision variables during each iteration.
However, this extra degree of freedom comes at the major cost
of guaranteed convergence.

2) Although the individual iterations of [25, Alg. 1] are significantly
less costly and convergence is initially quite rapid, the latter tapers
off on later iterations, similarly to [25, Fig. 2]. Convergence can be
sped up by the judicious choice of p; and po from [25, Eq. (3.4)],
yet our approach bypasses this empiric decision via the benefits of
optimizing the trace heuristic (see [29]).

3) [26, Alg. 1] is based upon the same trace optimization heuristic
proposed in [29] as our procedure, yet it requires an explicif eigen-
value decomposition and orthonormal eigenvector computation at
every iteration. For large-scale problems (such as our numerical
example), this may prove unreliable, with the accumulation of
computational errors noticeably hampering convergence.

min

Az.b2.Cz,d2 35 FB.P PP’ P, Pz, FB P,
Zk\T 7k

(ZH)"Zf + 3

M(X,Y,0) =«

\

[TC + XY —TaY — XTg

dzl(Zl )TZQw, + Z =1 dz: ZQ:A TZk + Z -1 Z
— —DN T —
st{P” = (PD) ,P=PT»0,-G»0, P, =F, >0, ~2sym(P,) » 0
PP =(PP)" » 0, —2sym (P::B (4B)' + P} (BP)T) =0 Vicl:iq, ©=0

Ta—X
Tg—-Y Im,

*

P (Z5)7Z5 =0 Vke1l:Ng 30)
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Ui mod £)+1

U((i+1) mod z)+1

by(i-1) mod £)+1

Y((i=1) mod O+ =

+ “F
byi mod )41

¥ (i mod e)+1

TF

by((i41) mod £)+1

> [‘I’K FK]
[ *

Y((i41) mod £)41

~c)

[

Fig. 2.

Interconnection between the network’s subsystems and the distributed subcontrollers.

TABLE |
COMPARISON BETWEEN ALGORITHMS THAT SOLVE CONVEX RELAXATIONS OF (28)

Employed procedure Guaranteed convergence Runtime Solution [Tc — TaTg], at convergence
Alg. 1 (Alg. 1 in [14]) Yes 18.41 s Q(s) = Dg(5.9844) 2.8 x 10712
Alg. 2 in [14] No 2049 s Q(s) = Dy(5.9844) 2.1 x 1077
Alg. 1in [25] Yes Timeout after 900 s Q(s) = Dg(6.0143) at timeout 2.3 x 10? at timeout
Alg. 1 in [26] Yes Timeout after 900 s Q(s) = Dg(5.7355) at timeout 3.2 x 10! at timeout
V1. CONCLUSION Gy is expressed as in Lemma 3.1. Moreover, we have from

In this article, we showed that the distributed control of a network
(having a possibly improper TFM) can be tackled by imposing con-
straints upon affine expressions of the Youla parameter. A procedure
was given on how to relax this problem, which reduced to solving
a structurally constrained H., norm contraction. The latter was ap-
proached through a convex and iterative optimization algorithm with
guaranteed convergence.

APPENDIX

Proofof Proposition 3.1: Let there exist Qo € RH™* sothat X +
Qoﬁ S gx andY + Qoﬁ € §A They are equivalent to vaec(i +
1Qo M) = Oand Favec(Y +1TI Qg N) 0. Using the properties of the
vectorization operator (see [6, Lemma 1]), we retrieve (12a). Pick any
Qe RHT™F that satisfies (12b) and note that, when replacing Qq
with Q = Qp + Q in (12a), the identity with 0 from (12a) will hold.
In addition, ensuring (12c) is sufficient for the controller from (7) to
be well posed, while ensuring (12d) is sufficient for I' and ® to be
both well posed and proper. Flnally, the spa:s1ty structures of I' and
& follow from those of X + QM and Y + QN respectively, by the
way they are defined in (11a) and (11b). | |
__Proof of Lemma 3.1: To prove point (a), define A, = E1A,,
B, :=E'B,, X, := E XE, to rewrite (3) as

XA, + Al X, +C]Cr — (X, Br + C] D,)

x (DI D) Y(BI X, + D]C,)=0 (35)

which is a standard continuous-time algebraic Riccati equation (see [23,
Ch. 13]). Recall now that A(A, — sE,) C C™ and, thus, A(A, —
sI) CC". Then, both [A, —sI B,] and [A] —sI C]| have
full row r:{{lk Vs € C\C~, which, by £23, Sec. 3.2], means that
(A, — sI, B,.) is stabilizable and (C,., A, — sI) is detectable. Note

T ~ .
that [NT(S) M7 .9]] — C,(sI — A,)"'B, + D, has full column

rank Vs € jRU {0}, or else there cannot exist X Y stable so that
YM - XN =TI Then, by [23, Corollary 13.23, point (a)], (35)
has a stabilizing solutlon X,. Thus, (3) has a stabilizing solution,
X, = (E])"' X, E;', and its stabilizing feedback equals that of (35),

F,: —(D!'D,)~ 1(BTXT+DTC) F. |
Pmof of Theorem 3.1: To prove point (a), define first T :=
T T ] _ (0 MM Ni-l— 4

[Tzl !'Ta } [I -G i G ]’ where M™ = GoM™" and

(6b) in Theorem 2.1 that M™!

A-sE| B .
= [TI—I} Expressing T =
= [EI O]T for

an e € (0,1], we obfain the realization given in (17). Since G is
given by a strongly stabilizable and detectable realization (2), then
it is always possible to find F and H so that A + BF — sE and

and noticing that T*

A+ HC — sE are admissible. Thus, defining F := [0 F]and H :=

[0 H T] T, we extract the realization of TS, from (17), T5, =
A.-sE, —B.F | B

A _ SE B ™ ™ ™ ™

|:22022 22 Dii :[ g A—CsElg],togetthatAzg+

ByyF — sEyy and Agy + HCog — sEgp are both admissible, since
A(A, — sE,) C C. Therefore, F' and H can be used, as in Theorem
2.1, in order to express the class of stabilizing controllers via a DCF
over RHo of TSy

To prove point (b), begin by defining the system

[A. —sE, —-B.,F |0 —B, : B,
0 A-sE|0 -BiB
— ' Ty i Tio
T-— | “H.F, —HF |0 —H H|=|." o
0 0 o 0T To1 i Ty
L o c |r -pipD
(36)
and by considering the class of TFMs expressed through
[ A~ — = [25 — AT -1
Fu (T Af]) = T22+T21[ ](I T [ ]) Tio,

with AA and AA as in (15). Denotmg now the class of TFMs
-1
Ga = (N + Aﬁ) (M +Aﬁ) , it is straightforward to check

wa 7, (T, [ 7))

u ’ Aﬁ
down to applying the small-gain theorem, as formulated in [30, Ch. 8],
to confirm robust stability.

Note that the realization of T5, from (17) is strongly stabilizable
and detectable, and so is the one belonging to T;2 in (36). Now, if
(@,T) is an NRF implementation of K as in (11a) and (11b) and K
stabilizes G, then [® T stabilizes T = [I G ] (see [9]). Since
the latter’s realization in (36) is strongly stabilizable and detectable, then
[® T stabilizes T (as in Theorem 2.1). Finally, it is straightforward
to check that F¢(T¢, K) = e}"g(T [@ T).If | Fe(T K)[< 1,
then || F¢(T,[® TI)|l. < 1,andby applying [30, Th. 8.1, point (a)],
it follows that the closed-loop interconnection between [@ I'] and

= [ GL]". Thus, the proof of point (b) boils
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Fu(T,A)=[I GLJ will be internally stable and well posed for
any Ga € C&. As shown in the proof of the main result from [9],
this ensures that the control laws from (9) will stabilize any G €
Ca- |

Proof of Proposition 3.2 Define first F := [0 F] and H:=
[0 HT]" and employ these two feedbacks to write, via (6a) and
(6b), a DCF of T5, from (17). This factorization is indeed a DCF
over R'H., due to the fact that A+ BF — sE and A + HC — sE are
admissible and A( A, — sE,) C C. The identities from (18a), (18b),
and (19a)—(19c) follow by writing the realizations given by (6a) and
(6b) and by (8a)—(8c) in Theorem 2.1 and then eliminating all the
unobservable modes. |

Proof of Theorem 4.1 To prove point (a), we first ensure that
the realization from (23) is stable by imposing that A and (AE +
BBFEB)T, ¥V ic1:gq, have eigenvalues only in C~, along with
AT via (20)~(22). These conditions are equivalent to 3 P, = P =
0 and PB = (PB)T ~0, ic1:q, such that —2sym(A,P,) >0
and —25ym(A?P,B + BBEFBPB)~0, Vic1:q. To remedy the
bilinearity induced by P, Al and PB(FB)T, define P, := P, Al
and P; := PB(FB)T, with i € 1:q, and rewrite the inequali-
ties as —2sym(P,) = 0 and —2sym(PB(AB)T +F:3(BP]T] =0,
Viel:q.

If these new affine inequalities are satisfied, then due to A(Af —
sI) cC~ and to Cf(sI — AT)"1BJ =0, it follows that A from
(26) has A(A — sI) € C~. By the equivalence of [30, Corollary 12.3,
points (i) and (vii)], we have that || T§ + T5QTS||.. < 1 if and only

2sym(PA) PB E_
if3P=P"~0suchthat —| F'p -1 D' | = 0, which
c D —I

contains bilinear products of P with A and B, thus leading to nonconvex
optimization. To obtain an affine expression, define As as in (29c¢),
in order to introduce P := PAg. With this new matrix and the four

matrices defined in (29a), notice that PA = sz +ﬁ§ and that
PB = PB! + PDJ,. The norm condition is equivalent to —G = 0,
with GG from (29b) being affine in all the variables.

Recall the inequalities from (28) that contain bilinear terms and de-
note P- = d,d],to obtain the N; LMIs from (30), while additionally
imposing that d, — d, = 0. Form the matrices from (29¢) to (29f) to
notice that (28) is equivalent to

( ~ -~ 9 -~ -~ 9 -~ -~
(Zk)TZk + Z dz:’(Zk)TZé:;' + Z dzi(Zé::')TZf‘i‘
a
z z P (ZE)ZE >0 VEe1:N;, P° = (P)T,
P= PT =0,—G >0
P, =P] »0, —2sym(P;) = 0, PB = (PBE)T » 0
—~2sym (PB (4)"+P7 (BB)') »0 Viel:q TuTp =Tc
(37

By selecting an artificial scalar v >0 as the cost func-
tion and by applying [14, Th. 1], we get that (37) is equiv-
alent to the problem in which T4I, Tp =Ty is replaced by
Te+ XY —-T,Y - XTp Ta-X

Tp-Y L.
X and Y. Therefore, by applying [14, Th. 2] with a regularization
parameter A > 0,adapting [14, Alg. 1] for the resulting problem, scaling
its cost function by 1/, and then taking A — oo, we obtain Algorithm 1,
which solves (30) at each iteration. If the initialization is successful
(the LMI system along with d, — d, = 0 must be feasible for the
original BMI system to be feasible), we then set ©! = Tz — T'3, and
weemploy [14, Th. 3] for our algorithm (with the adapted cost function),
which guarantees its convergence. |

rank = rank I, ., for any matrices

T

(11

2

—

[3

—_—

[41

[5

—_—

(6]

[71

[8

—_—

[9

—
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[12]

[13]

[14]

[15]
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[171
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[20]

[21]
[22]
[23]
[24]

[25]

[26]
[27]
[28]

[29]

[30]

REFERENCES

G. Fazelnia, R. Madani, A. Kalbat, and J. Lavaei, “Convex relaxation

for optimal distributed control problems,” IEEE Trans. Autom. Control,

vol. 62, no. 1, pp. 206-221, Jan. 2017.

N. Matni and V. Chandrasekaran, “Regularization for design,” IEEE Trans.

Autom. Control, vol. 61, no. 12, pp. 3991-4006, Dec. 2016.

Y. Wang, J. A. Lopez, and M. Sznaier, “Convex optimization approaches

to information structured decentralized control,” IEEE Trans. Autom.

Control, vol. 63, no. 10, pp. 3393-3403, Oct. 2018.

C. A. Rosinger and C. W. Scherer, “A flexible synthesis framework of

structured controllers for networked systems,” IEEE Trans. Control Netw.

Syst., vol. 7, no. 1, pp. 618, Mar. 2020.

A. Alavian and M. C. Rotkowitz, “Q-parametrization and an SDP for

‘H.-optimal decentralized control,” IFAC Proc. Vol., vol. 46, no. 27,

pp. 301-308, 2013.

M. Rotkowitz and S. Lall, “A characterization of convex problems in

decentralized control,” IEEE Trans. Autom. Control, vol. 51, no. 2,

pp. 274-286, Feb. 2006.

Y. Wang, N. Matni, and J. C. Doyle, ““A system-level approach to controller

synthesis,” JEEE Trans. Autom. Control, vol. 64, no. 10, pp. 40794093,

Oct. 2019.

S. Sabiu, C. Oar#, S. Warnick, and A. Jadbabaie, “Optimal distributed

control for platooning via sparse coprime factorizations,” IEEE Trans.

Autom. Control, vol. 62, no. 1, pp. 305-320, Jan. 2017.

S. Sabiu, A. Sperild, C. Oar4, and A. Jadbabaie, “Network realization

functions for optimal distributed control,” JEEE Trans. Autom. Control, to

be published, doi: 10.1109/TAC.2023.3298549.

A. Varga, “Computation of least order solutions of linear rational equa-

tions,” in Proc. Int. Symp. Math. Theory Netw. Syst., 2004, pp. 1-14.

A. Varga, “On computing nullspace bases—A fault detection perspective,”

in Proc. IFAC World Congr., 2008, pp. 6295-6300.

A. Varga, “Reliable algorithms for computing minimal dynamic covers for

descriptor systems,” in Proc. Int. Symp. Math. Theory Netw. Syst., 2004,
. 1-13.

%P Glover and D. McFarlane, “Robust stabilization of normalized coprime

factor plant descriptions with H.-bounded uncertainty,” IEEE Trans.

Autom. Control, vol. 34, no. 8, pp. 821-830, Aug. 1989.

R. Doelman and M. Verhaegen, “Sequential convex relaxation for convex

optimization with bilinear matrix equalities,” in Proc. Eur. Control Conf.,

2016, pp. 1946-1951.

F. Gantmacher, The Theory of Matrices. Providence, RI, USA: Amer.

Math. Soc., 1959.

T. Kailath, Linear Systems. Englewood Cliffs, NJ, USA: Prentice-Hall,

1980.

C. Oari and A. Varga, “Minimal degree coprime factorization of rational

matrices,” SIAM J. Matrix Anal. Appl., vol. 21, no. 1, pp. 245-278, 1999.

A. Varga, “On stabilization methods of descriptor systems,” Syst. Control

Lett., vol. 24, no. 2, pp. 133-138, 1995.

P. Benner, Z. Bujanovié, P. Kiirschner, and J. Saak, “A numerical compar-

ison of different solvers for large-scale, continuous-time algebraic Riccati

equations and LQR problems,” SIAM J. Sci. Comput., vol. 42, pp. 957-996,

2020.

K. Takaba, N. Morihira, and T. Katayama, “H.,, control for descriptor

systems: A J-spectral factorization approach,” in Proc. IEEE 33rd Conf.

Decis. Control, 1994, pp. 2251-2256.

A. Varga, “Computation of normalized coprime factorizations of rational

matrices,” Syst. Control Lett., vol. 33, no. 1, pp. 3745, 1998.

T. Georgiou and M. Smith, “Optimal robustness in the gap metric,” JEEE

Trans. Autom. Control, vol. 35, no. 6, pp. 673—686, Jun. 1990.

K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control.

Englewood Cliffs, NJ, USA: Prentice-Hall, 1996.

B. A. Francis, A Course in Control Theory. New York, NY, USA: Springer-

Verlag, 1987.

C. Sun and R. Dai, “A customized ADMM for rank-constrained optimiza-

tion problems with approximate formulations,” in Proc. IEEE 56th Conf.

Decis. Control, 2017, pp. 3769-3774.

C. Sun and R. Dai, “Rank-constrained optimization and its applications,”

Automatica, vol. 82, pp. 128-136, 2017.

The MOSEK Optimization Toolbox for MATLAB Manual, Version 10.0,

Mosek ApS, Copenhagen, Denmark, 2022.

J. Lofberg, “YALMIP: A toolbox for modeling and optimization in MAT-

LAB,” in Proc. IEEE Int. Conf. Robot. Autom., 2004, pp. 284-289.

M. Fazel, H. Hindi, and S. Boyd, “A rank minimization heuristic with

application to minimum order system approximation,” in Proc. Amer.

Control Conf., 2001, vol. 6, pp. 4734-4739.

K. Zhou and J. C. Doyle, Essentials of Robust Control. Englewood Cliffs,

NI, USA: Prentice-Hall, 1998.

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on Apnil 12,2024 at 13:45:48 UTC from IEEE Xplore. Restrictions apply.


https://dx.doi.org/10.1109/TAC.2023.3298549


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


