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Abstract

We address the end-to-end sample complexity bound for learning in closed loop the state estimator-
based robust H controller for an unknown (possibly unstable) Linear Time Invariant (LTT) system,
when given a fixed state-feedback gain. We build on the results from Ding et al. (1994) to bridge the
gap between the parameterization of all state-estimators and the celebrated Youla parameterization.
Refitting the expression of the relevant closed loop allows for the optimal linear observer problem
given a fixed state feedback gain to be recast as a convex problem in the Youla parameter. The
robust synthesis procedure is performed by considering bounded additive model uncertainty on the
coprime factors of the plant, such that a min-max optimization problem is formulated for the robust
‘Ho controller via an observer approach. The closed-loop identification scheme follows Zhang et al.
(2021), where the nominal model of the true plant is identified by constructing a Hankel-like matrix
from a single time-series of noisy, finite length input-output data by using the ordinary least squares
algorithm from Sarkar et al. (2020). Finally, a ., bound on the estimated model error is provided,
as the robust synthesis procedure requires bounded additive uncertainty on the coprime factors of
the model. Reference Zhang et al. (2022b) is the extended version of this paper.
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1. Introduction

In the past few years, significant research efforts have been spent into employing contemporary
high dimensional statistics methods from the machine learning framework in order to approach
classical Linear Quadratic control problems, see for instance Dean et al. (2018), Boczar et al. (2018),
Mania et al. (2019), Dean et al. (2020), Zheng et al. (2020), Wang et al. (2015), Lee and Lamperski
(2020), Tsiamis et al. (2020). In this paper we propose a method for the closed-loop learning in
finite time (from a single time-series of noisy, finite length input-output data) of the optimal state-
estimator for an unknown and potentially unstable Linear and Time Invariant (LTT) plant. Unlike the
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existing results mentioned above, which deal with parametric uncertainty on the matrices of some
state-space realization of the plant, in this paper we consider bounded, additive model uncertainty
on the coprime factors of the plant. Stemming from robust control, this is the preeminent method
of modelling uncertainty for LTT dynamics. The main advantage incurred is that we explicitly avoid
the need for making assumptions on the McMillan degree of the unknown plant or of its learned
model, since in practice it can never be determined with accuracy solely from (noisy) input-output
measurements.

An end-to-end sample-complexity bound of learning observer-based H, controller for an un-
known (potentially unstable) LTI plant that stabilizes the true system with high probability is es-
tablished by incorporating recent advances in finite-time system identification. The resulting sub-
optimal gap is bounded as a function of the level of model uncertainty. The end-to-end sample com-

logT

plexity bound for learning the robust observer-based H, controller is O (%) , Where
0g

l—-a
T is the time horizon for learning and « is a constant which is lower bounded by performance of
the initial controller in the closed loop.

Paper Organization: Reference Zhang et al. (2022b) is the extended version of this paper. The
general setup and problem formulation is given in Section II. The robust observer synthesis with
uncertainty on the coprime factors is included in Section I1I. A brief discussion on the sub-optimality
guarantees with end-to-end sample complexity results are stated in Section IV. Conclusion and
future directions are given in Section V.

2. General Setup and Technical Preliminaries

The notation used in this paper is fairly common in control systems. Upper and lower case
boldface letters (e.g. ) are used to denote transfer function matrices, while lower and upper case
letters (e.g. z and A) are used to denote vectors and matrices. The enclosed results are valid
for discrete-time linear systems, therefore z denotes the complex variable associated with the Z-
transform for discrete-time systems. A LTI system is stable if all the poles of its TEM are situated
inside the unit circle for discrete time systems. The TFM of a LTI system is called unimodular if
it is square, stable and has a stable inverse. For the sake of brevity the z argument after a transfer
function may be omitted. R(z) denotes the set of all real-rational transfer functions and R(z)"*™
denotes the set of p x m matrices having all entries in R(z). The notation T is used to indicate
the mapping from signal ¢ to signal £ after combining all the ways in which £ is a function of . For
example, T°" is the mapping from the disturbances w to the regulated measurements z.

2.1. The State Estimation Problem

For a discrete-time LTI (Linear and Time Invariant) systems driven by Gaussian process and
sensor noise, the state-space model is given by:
T1 = Az + B(ug + wy) + O,

(1)
yr = Cz + Duy, + vy,

where z;, € R" is the state of the system, u;, € R"" is the control input and y;, € R” is the measured
output and w, € R™, §, € R" are the control additive and state additive disturbances, while
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v, € R? is the measurement noise, all considered to be Gaussian with zero mean and covariance
matrices crfDI . a§ I and O'EI respectively.

A state estimator (observer) for (1) is defined as a system that provides an estimate z;, of the
internal state z;, while having access solely to the control input » and measured output y, with
the underlying requirement that the estimation error converges to zero in the steady-state, that is
k]ingo (z — ) = 0. A state estimator is generically of the form:

z(2) = ¥'(2)u(z) + ¥Y(2)y(2), (2)

where 'I'u(z) and q;y(z) are two LTI filters (stable Transfer Function Matrices (TFMs)) for the
design of which one needs to know the model (1) of the plant, see for example Ding et al. (1994).
The celebrated Kalman Filter, represents the canonical formulation of performance specifications
for a state estimator (2) as it minimizes the transfer from the exogenous signals in (1) (e.g. the
measurement noise v;,) to the estimation error z;, — z;, (by using for example norm based costs).

2.2. Output Feedback Stabilizing Controllers

A standard unity feedback configuration is depicted in Figure 1, where G € R(2)””™ is a multi-
variable LTI plantand K € ]l?;(z)mxp is an LTT controller. Here w, v and r are the input disturbance,
sensor noise and reference signal respectively while u, z and y are the controls, regulated signals
and measurements vectors, respectively.

Figure 1: Standard unity feedback loop of the plant G with the controller K

If all the closed—loop maps from the exogenous signals [rT wl T ]T to any point inside
the feedback loop are stable, then K is said to be an (internally) stabilizing controller of G or
equivalently that K stabilizes G.

2.3. The Youla-Kucera Parameterization of All Stabilizing Controllers

Definition 2.1 (Vidyasagar (1985)) A collection of eight stable TFMs (M, N, ﬁ, N, XY, )H(,iu’)
is called a Doubly Coprime Factorization (DCF) of the plant G if M and M are invertible, yield
the coprime factorizations G = M "N = NM_I, and satisfy the following equality (Bézout’s
identity):
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Theorem 2.2 (Ding et al. (1994), Vidyasagar (1985)) Given a stabilizable and detectable state-
space realization (1) of the plant G, then a DCF as in Definition 2.1 above is given by:
M(z) =1+ F(zI — Ap)™'B, N(z) = Cp(zI — Ap)™'B
M(z)=1I—C(zI —A;) 'L, N(z) = C(zI — A;) ‘B,
X(z)=—F(z2I —AL)"'L, Y(2) =1 —F(zI — A;)'B,,
X(z) = —F(zI — Ap) 'L, Y(2) =1+ Cp(z — Ap)~'L

“4)

where Ap * A+BF, A, Y A— 1.0, Cp ™ C+ DF and B, ¢ B— LD, where F and L are

stabilizing state-feedback and estimation gains that allocate all eigenvalues of Arp and Ay, inside
the unit disk.

Remark 1 Theorem 2.2 above states that the DCF (4) of the plant is essentially equivalent with
establishing certain stabilizing state- feedback F' and estimation gain L, such that v, = Fx,, in

tandem with Ty 1 = ATy + Buy + L(yy — CTy,) is the output stabilizing controller K = Y 'X

Theorem 2.3 (Youla-Kutera) (Vidyasagar, 1985, Ch.5) Let (M,N, M,N, X, Y, X,Y) be a
doubly coprime factorization of G. Any controller Kq stabilizing the plant G, can be written as

-1 T -1

where X q, iq, Yq and Y—Q are defined as: Xq “ x + Qﬁ,iq % +MQ,Yq def

Y — QN, and {’Q “y NQ, for some stable Q in R(z)me. It also holds that K q from (5)

stabilizes G, for any stable Q.

2.4. Parameterization of All State Estimators

The following results provides the parameterization of all state observers of a given LTT system.

Theorem 2.4 (Ding et al. (1994)) Given stabilizing state-feedback F' and estimation gain L, or
equivalently, given a DCF (4) of the LTI plant (1) (see also Remark 1), let us denote P(z) def

(zI-A p)_lB. Then: (A) the pair of filters (¥"; W") generate a state estimator (2) for the system
in (1) if and only if
U(2)M(z) + ¥Y(2)N(z) = P(z2). (6)

(B) Furthermore, any state estimator for (1) can be written as
Z(z) = W§(2)u(2) + TE(2)y(2), (7

where

Wi(2) 2 P(2)Y(2) +S(2)N(2), W4(2) Z P(2)X(2) — S()M(z) (8)
for some stable S(z) € R(z)"" . Conversely, for any stable S(z) it holds that (7), with (¥g, ¥%)
as in (8), is a state estimator for (1).
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Remark 2 The intrinsic connections of Theorem 2.4 with output feedback stabilization are appar-
ent. Furthermore the affine parameterization (8) of all state-estimators is akin to the Youla pa-
rameterization of Theorem 2.3. Finally, towards the scope of this paper; is important to note that
Theorem 2.4 holds just the same if the plant (1) is in open loop or if the plant is in a feedback inter-
connection with a stabilizing controller K. However, the maps from the exogenous to the estimation
error differ greatly. In this paper we are interested in "learning" the optimal state estimator of an
unknown plant in closed feedback loop. To this end the following two results (for the closed-loop
scenario) will be instrumental towards the main result and surprisingly enough, they cannot be
found in the original work from Ding et al. (1994).

Theorem 2.5 Consider the the LTI plant (1) in feedback interconnection with the controller given
by: uy, = FZy, in tandem with any state-estimator of the form T = Wg(2)u(z) + WE(2)y(2). The
closed loop maps from the disturbances w and measurement noise v to the estimation error (z — T)
are dffine functions of the S parameter from Theorem 2.4 (B), moreover:

T(Sm_f)w = Wg(z) and T(Sm_f)v = —WY(z), respectively. 9

Theorem 2.6 Given a DCF (4) of the LTI plant (1) and its subsequent stabilizing state-feedback
gain uy, = FZy, let us assume that the F € R™™ "™ matrix is onto (i.e. it has full row rank). Then
any stabilizing output feedback controller K q from (5) can be realized as: wy, = FZy, in tandem
with the state-estimator T = Wg(z)u(z) + Wg(2)y(2) from (7), where

FS(z) = Q(z) + X(2) (10)

Remark 3 The two theorems above clarify the fact that the two filters that realize any state estima-
tor (7) in closed-loop are actually the closed loop maps from the exogenous signals to the estimation
error. Furthermore, the assumption that the state-feedback gain matrix F has a right inverse allows
us to rephrase parameterization (8) of all state observers which is affine in S, to a parameterization
(lIJE; 'I'yQ) affine in the Youla parameter; thus bridging the gap between any stabilizing controller
Kq from (5) and its realization via: a fixed state-feedback gain F' in tandem with the dynamic state
estimator ('I'uq, ‘I’yQ) The fixed state-feedback gain F' belongs to the initial stabilizing controller

in the closed loop, since i(z) =—F(z[-A p)_lL is neither a function of Q, nor a function of S.

2.5. A First Glimpse into the Separation Principle

We summarize below the fact that any stabilizing controller can be realized either as a fixed
state-feedback gain in tandem with a dynamic state-estimator or as a fixed estimation gain in tandem
with dynamic state feedback. Both parameterizations are affine in the Youla parameter.

Ding et al. (1994) and Subsection 2.4 Alazard and Apkarian (1999)

Any stabilizing Kq from (5) can be realized via | Any stabilizing Kq from (5) can be realized
the static state-feedback gain F' in tandem with | via the static estimation gain L in tandem

the dynamic state estimator ('I'uq, ‘I’yQ )- with the dynamic feedback Q.
u = F'z), Tpy1 = ATy + Buy + L(y — Cy)
& =Whu+ Uy u=Fz +Q(y — C%)
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2.6. The Optimal State Estimator

THE PROBLEM: In this paper we consider the unknown plant (1) in feedback interconnection
with some known stabilizing controller K, controller that is realized as: a fixed state-feedback
gain F' considered to be immutable (namely u;, = F'z};), in tandem with some state-estimator
z = W"u 4+ WYy Initially, we must learn the unknown system with high probability, in finite
time, from a single trajectory in the closed loop. Subsequently, we must design the optimal
state-observer that in tandem with the state-feedback gain u;, = F'z, yields the optimal LQ
performance.

The canonical formulation of performance specifications for a state estimator is to minimize the
transfer from the exogenous signals to the estimation error. However, as repeatedly stated above,
the declared scope of this work is to design a state-estimator specifically tailored to work in tandem
with the fixed state-feedback gain u;, = F'z,. In this context, the choice of the optimality criterion
is essential, as clarified below.

Proposition 2.7 We define the Optimal Observer Evaluation Problem as follows: given a fixed
state-feedback gain F with w = Fx, minimize the norm of the TFM below after all Youla parameters
Q:
. u Yy
quin [ F¥q —F¥q ]|y, (an

which in turn is equivalent with:

min
Q stable

(1= Ya(e) + (In —MENQERE)  Xq(e) + (Tn - ME)QEME) |,
(12)

Remark 4 (Optimality) The reason behind choosing (11) for the observer design is the fact that the
model of the plant can never be learned with absolute accuracy. Consequently, in the presence of
[frequency-domain uncertainties, the problem of designing a state observer is not well-posed, since
not even the dimension of the state vector of the true plant can be known. Proposition 2.7 defines
optimality in the following sense: the objective function from (11) pertains to the difference in Ho
performance in the closed loop between the state-feedback control w = F'z (with direct access to
the state) and any output feedback controller Kq. The thorough reasoning for this and all other
underlying implications are deferred to Zhang et al. (2022b).

3. Robust Controller Synthesis: An Observer Based Approach

The outcome of the "learning" of the true plant G from closed-loop measurements comes in the
form of a left coprime factorization of what we have dubbed the nominal model 1, namely G™ =
(M™)7'N™ = N™(M™*) ™", For the detailed description of the learning algorithm we refer to
the Appendix G from Zhang et al. (2021). In order to evaluate the discrepancy between the learned
G™ and the true plant, we make a recourse to the preeminent method for modelling uncertainty for
LTI systems (stemming from classical robust control), specifically via additive perturbations on the
coprime factors.

1. An alternative name might as well have been “the learned model”.
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With the DCF of the nominal model of the plant G™ = (M™)7'N™ = N™(M™) ™", we
can write the Bézout’s identity that incorporates the coprime factorization of the initial, known
stabilizing controller” K™ = (Y™)7'X™ = X™(¥™)™, specifically:

ﬁmd de ?—md . de I 0
_ — p
_de Ymd ] [ de Mmd. [ 0 Im ] . (1 3)

Definition 3.1 (Model Uncertainty Set) The ~y-radius model uncertainty set for the nominal plant
G™ with Agg, A both stable is defined as:

def

G, X {G = NMIN|M = (VP + A N= (R4 ag): [ Ay Ax ]| <o} a9

Definition 3.2 (y-Robustly Stabilizing) A fixed stabilizing controller K of the nominal plant is
said to be y-robustly stabilizing iff K stabilizes not only G" but also all plants G € G-

Assumption 1 [t is assumed that the true plant, denoted by GF*, belongs to the model uncertainty
(a5 ax ]| <~

set introduced in Definition 3.1, i.e. that there exist stable Aﬁ, Aﬁ with
for which GP* = (M™ + Aﬁ)_l (N™ + Ag)-

In the presence of additive uncertainty on the coprime factors the Bézout’s identity in (13) no longer
holds, however, the following holds for certain stable Ayg, Ay factors:

(M™ +Ag) (N™+Ag) ] !‘:’néi ~(N" +AN) ] _ [ ®,(Q O

. (5
Xy Yo X (M™+Ay) O ‘izz(Q)] ()

T,}l‘f' block diagonﬂaJl structure of the right hand side term in (15) is due to the fact that GPF* —
(M™ + Agp) (N™ + Ag) = (N™ + AN)(M™ + Apy) ™ for the stable Ayy, A factors from
Assumption 1.

Lemma 3.3 A stabilizing controller of the nominal plant ]E(n(g,1 = (Y"éd)‘lx"é" = igi(?gi)_l is

y-robustly stabilizing iff for any stable model perturbations Ag;, Ag with || [Aﬁ Aﬁ] <7
the TFM >
?—md
®,(Q =L+ [ Ay Ay ] ! ~n%], (16)
Q

from (15) is unimodular i.e. it is square, stable and has a stable inverse.

Theorem 3.4 The Youla parameterization yields a ~y-robustly stabilizing controller Kq iff its cor-
Xq

As an intermediary result, by employing Theorem 3.4 and the standard inequality from Ap-
pendix A of Zhang et al. (2022b) it is concluded that:

1
< —, where Q denotes as the Youla param-
Y

responding right coprime factors satisfy

o0
efer.

2. The controller with which the closed-loop learning is being performed is assumed to be known.
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e [ B
Q Q
Starting from the left coprime factorization of the true plant, known to be of the form G =
(Wd + Aﬁ)_l (ﬁmd + Ag). one can always obtain a DCF of the true plant by redefining MFE X
& (M™ + Ag), NP E a7 (N™ 4+ ag) P Y (M + AM)¢22 and NP* %/ (™ 4
AN)‘I>2_21, such that the Bézout identity holds with the Xq, Yq, )ﬂiQ and YQ factors available

from the known controller. Here, ®,,, ®,, are as in (15). By re-establishing the Bézout identity we
are able to formulate the robust version of (12) as:

1
<gyx—=1
7

o0

[ A% Ay ]

o0 o0

Theorem 3.5 The Robust Linear Observer Evaluation Problem given a fixed state feedback gain
F, with u = FZ is defined as :
nd M —1/5nd T
Im _:{Q + (I — )Q‘i'n (N +4Ax)
Xg + (I, — M) Q@] (M™ + Agy)

Qr?fjlf}f max
"I ag ax 1| <

s.t. l Yq ]
Xq

Remark 5 Aside from being able to cope with learning unstable plants (in closed loop), this method
of modelling uncertainty explicitly avoids the need of knowing apriori the McMillan degree (i.e. the
state dimension of a minimal state-space realization) of the unknown plant, which can never be
determined in practice. Since the learned nominal model G™ and the true plant will not even have

Ha (17)

1
_/-Y.

the same McMillan degree, it is impossible to remeve anything about the state representation (1)
of the true plant solely from the knowledge of c™ . However, by considering a fixed state feedback
gain (belonging to the initial controller in the closed loop), it is possible to evaluate the performance
of different observers with respect to the Youla parameter Q. The optimal Q" from problem (17)
will yield a robust controller having the same state feedback gain as the initial one, in tandem with
an observer that achieves the best Hy performance when compared to the controller which has full
access to the state, namely u = Fz.

It can be seen that (17) is actually phrased in terms of the coprime factors of the true plant, which
can never be “learned” in practice. The non-convexity of the standard min-max formulatlon from
Theorem 3.5 (for the robust observer evaluation) is caused by the fact that <I>11 is no longer an
affine function in Q, therefore the nonzero duality gap makes it impossible to solve (17) by merely
flipping min and max. In order to circumvent this, an upper bound on the cost functional will be
derived and we will formulate the robust observer evaluation problem in a quasi-convex form.

Proposition 3.6 (Quasi-Convex Formulation) For the true plant, GPF ¢ G, the robust observer
evaluation problem in (17) admits the following upper bound:
_ a7
1] 1.+

5, (1) [ X“;g)]T s

” l Y:mdi l
md
XQ

| =™ ||l (

aE[O 1/’)*) 1—~vaQ smble

< a.

o0

(18)



SAMPLE COMPLEXITY BOUND FOR LEARNING THE ROBUST OBSERVER

The inner objective function in (18) is affine in Q, hence the inner optimization problem in Propo-
sition 3.6 is convex for each fixed a.

Remark 6 (Validation of Constraints) The quasi-convex formulation from (18) is not equivalent
with (17). It trades optimality for feasibility in the following sense: for a chosen positive constant

Ymd

¥g
Q Jlleo

vexify the inner objective function. Note that as the initial controller is a stablizing one, necessarily
v
imd

Remark 7 The quasi-convex problem in Proposition 3.6 is formulated in frequency domain. To
solve it in practice, we need to perform a Finite-Impulse Response (FIR) truncation on Markov

1
a < —, the feasible set shrinks to {Q € R(z)™ " stable | < a} in order to con-
v

Q = 0P should be feasible. This implies that o cannot be smaller than

o0

parameters of these systems. After the FIR truncation, for each fixed o € [0,1/7), An equivalent
Semi Definite Program (SDP) can be formulated for the inner optimization problem, which would
give us the vectorization of Markov parameters of the optimal Q" to Proposition 3.6. Details on the
SDP formulation are given in Appendix B of Zhang et al. (2022b).

4. Analysis of End-to-End Performance

The performance of the Robust Linear Observer from (17) working in tandem with the fixed
state feedback gain F', such that w = F'z, will be discussed in this section. Denote the H,-cost of
applying the control inputs © = F'z and w = F'z by Jg and J,,, respectively. Then it is shown in
Appendix C of Zhang et al. (2022b) that:

Jo—Ju <D D [(Fz,— Fz,)" (Fz, — F3,)];  w, = €0}, (19)
k=1 t=0

where e, represents the k™ standard basis vector in R™ and 4, is the discrete Dirac impulse function.
Then, by the upper bound from Proposition 3.6, we get that:

Ja—Jy < ||@ — ulf?

<| 0 —vy) xg 1, +] -]

1 _ —_
oo”Q*”’Hz 1—ya (H [ N M } Hoo +F¥)’

(20)
where Q" is the optimal solution to (18). Specifically, if the fixed state feedback gain F' happens to
be the stabilizing Riccati state-feedback F'°° . then by the virtue of separation principle the cost J,, in
(20) becomes the optimal H,-cost. In this case, (20) immediately gives a bound for the difference in
‘H,-cost between the Robust Linear Controller from (17) and the optimal Linear Quadratic Regulator
(LQR) for the true plant. The detailed argumentation is deferred to Zhang et al. (2022b).

Furthermore, from (20), it is evident that (J; — J,) ~ O( 1 _770{) which indicates that the

sample complexity relies heavily on the chosen constant .. In practice, it is impossible to examine
uncountably many «’s in [0,1/~), therefore one could simply pick the value of o empirically, in
order to balance the performance and the feasibility. The following remark indicates that « actually
serves as an evaluation parameter for the quality of the initial controller in the closed loop, and
consequently it cannot be taken to be arbitrarily small.
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1
Remark 8 (Feasibility) As o < — is picked manually each time to formulate a new SDP and

the performance of the observer degrades much faster with a larger a, one would like « to be as
small as possible. However, as shown in Remark 6, a relatively small oo may render the feasible
set empty. This implies that the robust observer performance essentially relies on the quality of the
initial controller (the one with which the learning preocedure is being performed). A better initial
controller would provide not only a better fixed feedback gain, but also a larger feasible set for the
inner optimization in Proposition 3.6.

We integrate the above results with the system identification guarantees of Zhang et al. (2022a),
to provide end-to-end sample complexity bounds for learning the linear observers given a fixed
feedback gain. Then following the system identification procedure with probability at least (1 — &)
where § is the failure probability, it holds that

n mg+p&2+glogT5
1T -A5 —Ax o< X™ Y] ||oo12cﬁn(\/ * dloeT/0)
Ag ] llo < 7 asin As-
logT
sumption 1, it is reasonable to consider that the robustness radius +y is at the level O( 0? )

2
Theorem 4.1 Define s = 144” { x™ y™ } || CQﬁQRQ. Then, the error in Hq cost of applying
o0

the control laws © = FZ and u = Fx is bounded as in (20) with probability at least (1— ) provided
rkar T > max{T,,T, (5)} Here, T, takes the larger value between 0 and the right most zero of

~°T — sdlog(T/5) —s(md+pd ), and T, (6) = inf{T'|d,(T,9) € D(T),d,(T,6) < 2d (2§6,5)}
where, d, (T, 8) = inf{d165Ra(d) > |Hoaa — Fogooc,}
T m + dp + log(T'/5)
d f(d) =+Vd. .
m?2log3(Tm/§) and £(d) = Vd (\/ T )
Combining Theorem 4.1 with (20), it follows that with high probability the difference J; and J,
behaves as

D(T) = {d e N|d <

logT

Jo—J,~of T
1 logT

— T

5. Conclusion and Future work

In this paper, we have provided the sample complexity bounds for an observer-based robust

LQG regulator synthesis procedure for an unknown plant, where uncertainty is modeled as additive
perturbations on the coprime factors. We combined finite-time, non-parametric LTI system iden-
tification (Sarkar and Rakhlin (2019)) with the Youla parameterization for observer performance
evaluation given a fixed state feedback gain.
As an opened avenue for future research is the online learning of the observer-based LQG controller
under the same type of model uncertainty. One possible direction is to work out the sample com-
plexity for online learning for: (a) the optimal state feedback (LQR) in tandem with (b) the optimal
state-observer (Kalman Filter (Tsiamis et al. (2020))) for a potentially unstable system.

10
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