

Gemini Near Infrared Spectrograph—Distant Quasar Survey: Rest-frame Ultraviolet—Optical Spectral Properties of Broad Absorption Line Quasars

Harum Ahmed¹ , Ohad Shemmer¹ , Brandon Matthews¹ , Cooper Dix^{1,2} , Trung Ha^{1,3} , Gordon T. Richards⁴ , Michael S. Brotherton⁵ , Adam D. Myers⁵ , W. N. Brandt^{6,7,8} , Sarah C. Gallagher⁹ , Richard Green¹⁰ , Paulina Lira¹¹ ,

Jacob N. McLane⁵ , Richard M. Plotkin^{12,13} , and Donald P. Schneider^{6,7}

¹ Department of Physics, University of North Texas, Denton, TX 76203, USA; HarumAhmed@my.unt.edu

² Department of Astronomy, The University of Texas at Austin, Austin, TX 78712, USA

³ Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA

⁴ Department of Physics, Drexel University, 32 S. 32nd Street, Philadelphia, PA 19104, USA

⁵ Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071, USA

⁶ Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA

⁷ Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA

⁸ Department of Physics, 104 Davey Lab, The Pennsylvania State University, University Park, PA 16802, USA

⁹ Department of Physics & Astronomy, University of Western Ontario, 1151 Richmond Street, London, ON N6C 1T7, Canada

¹⁰ Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721, USA

¹¹ Departamento de Astronomía, Universidad de Chile, Casilla 36D, Santiago, Chile

¹² Department of Physics, University of Nevada, Reno, NV 89557, USA

¹³ Nevada Center for Astrophysics, University of Nevada, Las Vegas, NV 89154, USA

Received 2024 February 2; revised 2024 April 11; accepted 2024 April 12; published 2024 June 13

Abstract

We present the rest-frame ultraviolet—optical spectral properties of 65 broad absorption line (BAL) quasars from the Gemini Near Infrared Spectrograph—Distant Quasar Survey (GNIRS-DQS). These properties are compared with those of 195 non-BAL quasars from GNIRS-DQS in order to identify the drivers for the appearance of BALs in quasar spectra. In particular, we compare equivalent widths and velocity widths, as well as velocity offsets from systemic redshifts, of principal emission lines. In spite of the differences between their rest-frame ultraviolet spectra, we find that luminous BAL quasars are generally indistinguishable from their non-BAL counterparts in the rest-frame optical band at redshifts $1.55 \lesssim z \lesssim 3.50$. We do not find any correlation between BAL trough properties and the $H\beta$ -based supermassive black hole masses and normalized accretion rates in our sample. Considering the Sloan Digital Sky Survey quasar sample, which includes the GNIRS-DQS sample, we find that a monochromatic luminosity at rest-frame 2500 \AA of $\gtrsim 10^{45} \text{ erg s}^{-1}$ is a necessary condition for launching BAL outflows in quasars. We compare our findings with other BAL quasar samples and discuss the roles that accretion rate and orientation play in the appearance of BAL troughs in quasar spectra.

Unified Astronomy Thesaurus concepts: [Active galactic nuclei \(16\)](#); [Quasars \(1319\)](#); [Broad-absorption line quasar \(183\)](#)

1. Introduction

Active galaxies are distinguished from quiescent galaxies by the presence of rapidly accreting supermassive black holes (SMBHs) in their centers. The growth of SMBHs over cosmic history appears to be linked to the buildup of their host galaxies, with more massive galaxies generally harboring more massive SMBHs (e.g., Magorrian et al. 1998; Marconi & Hunt 2003; Di Matteo et al. 2005; Yang et al. 2018).

Quasars, the most powerful active galactic nuclei, can affect their host galaxies by displacing gas and also depositing energy in the form of outflows (e.g., Silk & Rees 1998; Cattaneo et al. 2005; Hopkins et al. 2005; Begelman et al. 2006; Hu et al. 2006). Observationally, such outflows are manifested by 10%–15% of luminous quasars showing signatures of broad absorption lines (BALs) in their rest-frame ultraviolet (UV) spectra (e.g., Reichard et al. 2003; Trump et al. 2006; Ganguly et al. 2007b; Knigge et al. 2008; Gibson et al. 2009). These BAL features are typically associated with high-ionization

emission lines (HiBALs; e.g., C IV $\lambda 1549$, Si IV $\lambda 1393$, N V $\lambda 1240$) that are generally blueshifted with respect to systemic redshifts (z_{sys}), perhaps partly due to outflows from accretion disk winds (e.g., Murray et al. 1995; Richards et al. 2011). Low-ionization BAL quasars (LoBALs; $\sim 10\%$ of the BAL quasar population; e.g., Voit et al. 1993; Trump et al. 2006), on the other hand, are characterized by the presence of additional low-ionization species (e.g., Mg II $\lambda 2803$, Al III $\lambda 1857$) in their spectra.

Traditionally, BAL quasars have been defined by the presence of BAL troughs with a minimum velocity width of 2000 km s^{-1} at 10% depth below the UV continuum (Weymann et al. 1991, hereafter W91). However, it is important to note that W91 defined this index based on low-resolution and low signal-to-noise ratio (S/N) Large Bright Quasar Survey spectra. As a result, the absence of the BAL designation in lower-quality data does not guarantee that a quasar is not a BAL quasar (see Section 2).

Other common characteristics of BAL quasars include evidence for significant dust reddening of the continuum, extinction in their UV–optical spectra (e.g., Sprayberry & Foltz 1992; Richards et al. 2002; Reichard et al. 2003; Trump et al. 2006), and the fact that the vast majority of BAL quasars

Original content from this work may be used under the terms of the [Creative Commons Attribution 4.0 licence](#). Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

appear to have low observed X-ray fluxes, with respect to predicted values, based on their optical fluxes (e.g., Brandt et al. 2000; Luo et al. 2014). While some BAL quasars may be intrinsically X-ray weak, evidence generally suggests that X-ray weakness in these sources is primarily due to obscuration (e.g., Gallagher et al. 2002, 2006; Liu et al. 2018; Wang et al. 2022; but see also Teng et al. 2014; Morabito et al. 2014).

Additionally, the fraction of quasars displaying BALs drops precipitously among the most radio-loud¹⁴ (RL) objects (e.g., Stocke et al. 1992; Brotherton et al. 1998; Becker et al. 2001; Richards et al. 2011). There are indications that this trend may differ for radio-intermediate sources ($10 < R < 100$), where the fraction of BAL quasars increases with radio luminosity (e.g., Petley et al. 2024; but see also Calistro Rivera et al. 2023). BAL features can also introduce z_{sys} uncertainties; however, masking the locations of these features decreases the redshift errors by about 1% and the number of catastrophic redshift errors by about 80% (e.g., García et al. 2023).

There have been claims that BAL quasars are simply “normal” quasars observed along preferential lines of sight that penetrate outflowing gas (e.g., W91; Ogle et al. 1999; Schmidt & Hines 1999; Elvis 2000; Brotherton et al. 2006; DiPompeo et al. 2012; Rankine et al. 2020, hereafter R20). However, it is also evident that BAL quasars may signify a distinct evolutionary stage, where “evolution” refers to changes in the spectral energy distribution (SED). During this stage, absorbing material with a high covering fraction is expelled from the central regions of the quasar (e.g., Voit et al. 1993; Becker et al. 1997; Gregg et al. 2006; Lípari & Terlevich 2006; Urrutia et al. 2009). R20 further emphasizes that the structure of BALs varies across the observed parameter space, and different SEDs lead to different mean BAL properties. Observationally, careful comparisons of the rest-frame UV emission-line properties reveal that BAL and non-BAL quasars appear to be drawn from the same parent population of quasars (e.g., W91; Reichard et al. 2003; Baskin et al. 2013). In addition, Gallagher et al. (2007) highlight that the mid-infrared properties of BAL quasars are also consistent with those of non-BAL quasars of comparable luminosity.

While in the early studies models were often employed to suggest either orientation or evolution as explanations for BAL properties, it becomes clear that a combination of evolutionary and orientation effects, along with other factors, must contribute to the observed phenomena. Consequently, investigating the underlying physics becomes crucial for a comprehensive understanding of the structure, evolution, and feedback mechanisms among all quasars and their host galaxies.

This paper aims to analyze rest-frame UV-optical spectra of BAL and non-BAL quasars, comparing emission-line properties and velocity offsets from z_{sys} to shed light on the drivers for the appearance of BALs in quasar spectra. Prior studies, such as those by W91 and Reichard et al. (2003), have delved into similar investigations, examining rest-frame UV spectra between BAL and non-BAL quasars. Our study focuses primarily on comparing rest-frame optical properties between the two groups of quasars. A statistically meaningful comparison of this kind is now possible by utilizing the Gemini Near Infrared Spectrograph–Distant Quasar Survey (GNIRS-DQS), which includes 65 (195) luminous BAL (non-BAL)

quasars (Matthews et al. 2021, 2023, hereafter M21, M23, respectively).

The structure of this paper is as follows. In Section 2, the sample selection and methodology are described. Section 3 presents our main results. Section 4 discusses our main findings, with comparisons to other work. Section 5 presents our summary and conclusions. Throughout this work, we adopt a Λ CDM cosmology with $H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}$, $\Omega_M = 0.3$, and $\Omega_\Lambda = 0.7$ when calculating quantities such as quasar luminosities or luminosity distances (e.g., Spergel et al. 2007).

2. Sample Selection

A prerequisite for any investigation of the statistical distribution of emission-line properties is a large, well-defined source catalog. To investigate differences in the rest-frame optical properties of quasars with BAL features compared to those without, one generally must resort to sources above $z \sim 1.5$. Below that threshold, the scarcity of rest-frame UV spectra poses a challenge, as these spectra are primarily available through the Hubble Space Telescope (HST) archive in a nonuniform fashion and based on numerous selection criteria. Consequently, a more cost-effective approach is to conduct the study at higher redshifts, where uniform catalogs of rest-frame UV spectra are more abundant, and rest-frame optical spectra can be obtained more economically from near-infrared (NIR) spectroscopy.

For this reason, we selected sources from the GNIRS-DQS catalog, which constitutes the largest uniform inventory of rest-frame optical spectral properties of luminous quasars at high redshift from the Sloan Digital Sky Survey (SDSS; York et al. 2000). Specifically, the catalog consists of 260 quasars, 65 of which are BAL quasars, having $-28.0 \lesssim M_i \lesssim -30.0$ mag with redshifts between $1.55 \lesssim z \lesssim 3.50$ (to center the $\text{H}\beta + [\text{O III}]$ spectral complex in the J , H , and K bands) with monochromatic luminosities (λL_λ) at rest-frame 5100 Å (hereafter λL_{5100}) in the range of $\sim 10^{46} - 10^{47} \text{ erg s}^{-1}$. Our sample consists primarily of HiBAL quasars, with four LoBAL quasars previously identified by Trump et al. (2006) or confirmed through visual inspection. The small number of LoBAL quasars prevents us from conducting a statistically meaningful comparison with their HiBAL counterparts.

The GNIRS-DQS selection criteria may have excluded sources known to exhibit some degree of obscuration. Thus, there is a possibility that a certain number of luminous SDSS BAL quasars did not meet the brightness threshold of GNIRS-DQS. Additionally, there is also a possibility that the GNIRS-DQS sample is biased toward more face-on systems given the high luminosities of these sources (e.g., Runnoe et al. 2013; DiPompeo et al. 2014). Yet, in such a scenario, we would have anticipated a larger fraction of RL quasars and, correspondingly a lower fraction of BAL quasars.

As mentioned in Section 1, RL quasars are a small fraction of the overall quasar population, and this fraction is even lower among BAL quasars. While 17 non-BAL quasars in our sample are formally RL, only one of the BAL quasars, SDSS J114705.24 + 083900.6, is also an RL quasar; in total, RL quasars constitute $\sim 7\%$ of the entire GNIRS-DQS sample. If our sample is indeed biased toward more face-on systems, correcting for this orientation bias would likely result in a higher BAL quasar fraction than we measure ($65/260 = 25\%$), which is a less probable scenario. Furthermore, we also examine whether our sample is biased with respect to

¹⁴ We define radio-loud quasars as sources having radio-loudness values of $R > 100$, where R is the ratio of the flux densities at 5 GHz and 4400 Å (Kellermann et al. 1989).

radio-loudness. This investigation involves analyzing photometric data from the Wide-field Infrared Survey Explorer (WISE; e.g., Wright et al. 2010), specifically focusing on W1 and W2 magnitudes with respect to radio-loudness. We find no discernible differences between BAL and non-BAL quasars, or between RL and non-RL quasars, across the NIR continuum of these sources. Therefore, we do not have evidence that our sample is biased with respect to quasar orientation or radio-loudness.

The spectral measurements in this work were obtained from the catalog of spectroscopic properties of the GNIRS-DQS quasars in M23. M23 determined the z_{sys} values for GNIRS-DQS sources based on the available emission line that carried the smallest intrinsic uncertainty (see Boroson 2005; Shen et al. 2016; Nguyen et al. 2020). In order of increasing uncertainty, these values are obtained from [O III] $\lambda 5007$, Mg II $\lambda\lambda 2798, 2803$, and H β $\lambda 4861$. For those objects where [O III] is too weak to obtain a reliable z_{sys} measurement, Mg II and H β are substituted as suitable proxies (see M23).

The SMBH masses (M_{BH}) and mass-weighted accretion rates (i.e., Eddington ratios, or L/L_{Edd} values) for all sources in this work were obtained from Dix et al. (2023, hereafter D23) and Ha et al. (2023, hereafter H23) following the prescription in Maithil et al. (2022). Briefly, these values are single-epoch M_{BH} estimates using the H β line coupled with corrections based on the Fe II emission strength in the rest-frame wavelength range 4434–4684 Å (see Du & Wang 2019).

Rest-frame optical properties for the 65 BAL quasars taken from M23 are reported in Table 1. Column (1) provides the source name; Column (2) gives the redshift based on H β ($z_{\text{H}\beta}$); Column (3) gives the redshift based on [O III] ($z_{[\text{O III}]}$); Column (4) gives the velocity offset between the two redshifts; Column (5) gives rest-frame equivalent width (EW) of the H β line; Column (6) gives rest-frame EW(Fe II); Column (7) gives full-width at half maximum (FWHM) intensity of H β ; Column (8) gives rest-frame EW([O III]); Column (9) gives FWHM([O III]); Column (10) gives asymmetry of [O III] $\lambda 5007$; Column (11) gives $\log \lambda L_{5100}$; Column (12) gives Fe II-corrected H β -based M_{BH} estimates taken from D23; Column (13) gives Fe II-corrected H β -based L/L_{Edd} values taken from H23.

Rest-frame UV properties for the 65 BAL quasars are reported in Table 2. Column (1) provides the source name; Column (2) gives the visually inspected redshift, z_{vi} , from SDSS Data Release 16 (DR16, Lyke et al. 2020, Table D1, Column (17)); Column (3) gives the systemic redshift from M23; Column (4) gives the velocity offset between the two redshifts; Column (5) gives the C IV emission-line rest-frame EW from R20 for 52 BAL sources; Column (6) gives C IV blueshifts from R20. Additionally, Column (7) gives the balnicity index (BI), defined by W91 for C IV as

$$\text{BI} = \int_{3000}^{25000} \left(1 - \frac{f(v)}{0.9}\right) C \, dv \, (\text{km s}^{-1}), \quad (1)$$

where $f(v)$ is the continuum-normalized flux as a function of velocity, v , relative to the line center. The constant C equals 1 in regions where $f(v) < 0.9$ for at least 2000 km s $^{-1}$, counting from large to small outflow velocities; otherwise, $C = 0$. The outflow velocity, v , is defined to be negative for blueshifts. BI is the traditionally used metric to separate BAL quasars from their non-BAL counterparts. In addition to BI, Column (8)

gives the absorption index (AI), defined by Hall et al. (2002) as

$$\text{AI} = \int_0^{25000} \left(1 - \frac{f(v)}{0.9}\right) C \, dv \, (\text{km s}^{-1}), \quad (2)$$

to account for uncertainties in the systemic redshift, the continuum shape, and to measure intrinsic absorption systems. Here C equals 1 in regions where $f(v) < 0.9$ continuously for at least 450 km s $^{-1}$. The BI and AI values in Table 2 were obtained from the literature (Column (9)); 11 sources that have no measurable BI values with $\text{AI} > 0$ are marked with $\text{BI} = 0$, two sources have both $\text{BI} = 0$ and $\text{AI} = 0$, and one source with no measurable AI value with $\text{BI} > 0$ is marked with $\text{AI} = 0$ (see Table 2). All these sources have been visually classified as BAL quasars (see M23). Table 3 provides the mean (μ), standard error on the mean (SEM), standard deviation (σ), and median (Med) with bootstrapped uncertainty estimates for the properties listed in Table 1, as well as the associated probability (p -value) of statistical tests (see below) for BAL and non-BAL sources in Columns (2)–(11), respectively.

3. Analysis and Results

3.1. Rest-frame Optical Properties

We compare basic properties for multiple rest-frame optical emission lines between the 65 BAL and 195 non-BAL sources in GNIRS-DQS in Figure 1. This figure includes a comparison of the rest-frame EWs of the H β and [O III] emission lines. The means and medians are consistent within their errors for both distributions (see Table 3). It is evident that at $1.55 \lesssim z \lesssim 3.50$ a large fraction of BAL quasars have [O III] emission that is just as strong as that of the non-BAL quasars in the GNIRS-DQS sample. This result is likely due to a narrow luminosity range inherent in the GNIRS-DQS sample.

By design, GNIRS-DQS targeted highly luminous quasars, biased toward having higher L/L_{Edd} values. The [O III] emission in luminous high-redshift quasars is relatively weak (whether BAL or not, due to the Baldwin effect; Baldwin 1977), and, similarly, Fe II emission is relatively strong in such sources (e.g., Dietrich et al. 2002; Netzer et al. 2004; Shen et al. 2016; M21; M23). At lower redshifts, however, a larger range of parameter space is observed (e.g., a broader range of quasar luminosities).

To check whether the BAL outflows are manifested in the sources' [O III] emission-line properties, we compare the FWHM and asymmetry values of the [O III] $\lambda 5007$ emission line (taken from Table 1) between BAL and non-BAL quasars in Figure 1. The mean and median FWHM([O III]), as well as the asymmetry values for BAL and non-BAL quasars, are consistent within their errors (see Table 3). We also computed the velocity offset (Δv) between the $z_{\text{H}\beta}$ and $z_{[\text{O III}]}$ values of a source between BAL and non-BAL quasars, using

$$\Delta v_i = c \left(\frac{z_{\text{H}\beta} - z_{[\text{O III}]}}{1 + z_{[\text{O III}]}} \right) \quad (3)$$

where c is the speed of light in km s $^{-1}$. The distributions of Δv values for BAL and non-BAL quasars are presented in Figure 1.

The relative intensity of the Fe II emission blend with respect to the H β line appears to be correlated with quasar accretion rate in terms of L/L_{Edd} (e.g., Boroson & Green 1992; Netzer & Trakhtenbrot 2007; Shen & Ho 2014; Du & Wang 2019).

Table 1
Optical Spectral Properties of 65 BAL Quasars from GNIRS-DQS

Quasar (SDSS J)	$z_{\text{H}\beta}$	$z_{[\text{O III}]}$	Velocity Offset (km s $^{-1}$)	$\text{EW}_{\text{H}\beta}$ (Å)	$\text{EW}_{\text{Fe II}}$ (Å)	$\text{FWHM}_{\text{H}\beta}$ (km s $^{-1}$)	$\text{EW}_{[\text{O III}]}$ (Å)	$\text{FWHM}_{[\text{O III}]}$ (km s $^{-1}$)	Asymmetry _[\text{O III}]	$\log \lambda L_{5100}$ (erg s $^{-1}$)	$\log M_{\text{BH}}$ (M_{\odot})	L/L_{Edd}
001249.89 + 285552.6	3.248	3.237	807	47^{+11}_{-14}	39 ± 3	4622^{+334}_{-442}	9^{+1}_{-1}	2394^{+1}_{-1}	0.015	46.78	9.40	1.41
001355.10 – 012304.0	3.391	3.380	793	97^{+34}_{-45}	41.7 ± 0.3	7323^{+1451}_{-1920}	20^{+1}_{-1}	1918^{+1}_{-1}	-0.191	46.60	9.87	0.33
004613.54 + 010425.7	2.171	2.166	392	92^{+1}_{-1}	32 ± 1	3522^{+97}_{-128}	24^{+1}_{-1}	955^{+1}_{-1}	-0.039	46.48	9.21	1.14
013012.36 + 153157.9	2.344	2.343	77	64^{+1}_{-2}	18 ± 1	4734^{+116}_{-153}	15^{+1}_{-1}	778^{+40}_{-52}	-0.166	46.35	9.43	0.51
013652.52 + 122501.5	2.394	2.388	537	104^{+2}_{-3}	43 ± 1	4897^{+1599}_{-2116}	30^{+1}_{-1}	2041^{+1}_{-1}	-0.097	46.47	9.46	0.61
014018.20 – 013805.8	2.232	2.235	-319	51^{+1}_{-1}	12.9 ± 0.3	6212^{+129}_{-171}	7^{+1}_{-1}	1138^{+1}_{-1}	-0.217	46.64	9.80	0.41
014206.86 + 025713.0	2.323	2.325	-117	48^{+2}_{-2}	23 ± 1	4721^{+86}_{-114}	17^{+1}_{-1}	1496^{+105}_{-139}	-0.077	46.76	9.54	0.98
022007.64 – 010731.1	3.436	3.429	469	85^{+2}_{-3}	33.4 ± 0.1	3867^{+116}_{-154}	19^{+1}_{-1}	2819^{+1}_{-1}	0.108	46.62	9.33	1.16
025042.45 + 003536.7	2.398	122^{+2}_{-3}	28 ± 1	8886^{+577}_{-763}	<1	46.45	10.04	0.16
073519.68 + 240104.6	3.295	62^{+3}_{-4}	32 ± 1	5227^{+193}_{-256}	<1	46.51	9.50	0.61
080636.81 + 345048.5	1.548	1.547	121	87^{+29}_{-39}	59 ± 3	4427^{+653}_{-863}	12^{+2}_{-2}	2936^{+379}_{-301}	0.413	46.11	9.12	0.61
081114.66 + 172057.4	2.341	2.341	-2	59^{+1}_{-1}	9.8 ± 0.5	6841^{+149}_{-196}	17^{+1}_{-1}	1922^{+1}_{-1}	-0.436	46.49	9.85	0.26
083745.74 + 052109.4	2.364	2.361	306	71^{+3}_{-4}	30 ± 1	3950^{+125}_{-165}	22^{+1}_{-1}	2275^{+1}_{-1}	-0.149	46.31	9.20	0.78
084133.15 + 200525.7	2.360	27^{+1}_{-1}	28 ± 1	5582^{+143}_{-189}	<1	47.00	9.60	1.49
084401.95 + 050357.9	3.358	3.341	1220	50^{+1}_{-1}	19 ± 1	5964^{+1}_{-1}	43^{+1}_{-1}	5811^{+1}_{-1}	-0.042	47.19	9.97	0.97
084729.52 + 441616.7	2.346	2.343	261	71^{+10}_{-13}	30.7 ± 0.1	4257^{+362}_{-479}	15^{+1}_{-1}	719^{+1}_{-1}	0.143	46.37	9.29	0.73
085046.17 + 522057.4	2.235	59^{+1}_{-1}	36 ± 2	4445^{+226}_{-298}	<1	46.62	9.38	1.05
091301.01 + 422344.7	2.317	2.314	309	81^{+1}_{-1}	38 ± 1	4512^{+114}_{-150}	41^{+1}_{-1}	1795^{+1}_{-1}	-0.497	46.50	9.39	0.78
091328.23 + 394443.9 ^a	1.582	1.587	-605	39^{+3}_{-4}	45 ± 4	2543^{+307}_{-406}	11^{+1}_{-1}	1289^{+1}_{-1}	-0.019	46.02	8.44	2.41
091425.72 + 504854.9	2.367	2.368	-116	64^{+3}_{-4}	45 ± 1	4584^{+93}_{-123}	8^{+1}_{-1}	1258^{+126}_{-167}	-0.384	46.32	9.24	0.74
091716.79 + 461435.3	1.630	1.625	548	19^{+3}_{-4}	$1 \pm 1 \times 10^{-7}$	5571^{+1569}_{-2076}	31^{+1}_{-1}	778^{+1}_{-1}	-0.144	46.31	9.65	0.28
093251.98 + 023727.0	2.172	2.171	131	51^{+1}_{-1}	38 ± 1	5988^{+113}_{-150}	10^{+1}_{-1}	1917^{+1}_{-1}	0.026	46.47	9.52	0.54
094328.94 + 140415.6 ^a	2.412	53^{+5}_{-6}	44 ± 1	5940^{+640}_{-846}	<1	46.55	9.52	0.65
094427.27 + 614424.6	2.338	2.340	-169	79^{+2}_{-3}	24 ± 1	4898^{+2279}_{-3015}	38^{+2}_{-2}	1795^{+186}_{-246}	-0.229	46.41	9.47	0.53
094902.38 + 531241.5	1.613	1.609	430	64^{+1}_{-2}	48 ± 1	4345^{+121}_{-161}	4^{+1}_{-1}	1139^{+1}_{-1}	0.915	46.19	9.11	0.74
095746.75 + 565800.7	1.585	1.576	1103	26^{+4}_{-5}	61 ± 1	2613^{+364}_{-481}	2^{+1}_{-1}	321^{+1}_{-1}	-0.046	46.39	8.20	9.36
100610.55 + 370513.8	3.195	3.202	-490	72^{+3}_{-4}	$51.2 \pm 1 \times 10^{-16}$	5601^{+547}_{-724}	20^{+1}_{-1}	674^{+1}_{-1}	-0.238	46.78	9.61	0.87
100653.26 + 011938.7	2.298	2.303	-427	62^{+1}_{-2}	46 ± 1	5850^{+302}_{-400}	21^{+1}_{-1}	1735^{+1}_{-1}	-0.408	46.40	9.47	0.52
101542.04 + 430455.6	2.428	2.415	1115	59^{+4}_{-5}	54 ± 2	3763^{+137}_{-181}	5^{+1}_{-1}	2875^{+194}_{-256}	-0.021	46.48	9.07	1.57
102154.00 + 051646.3	3.448	61^{+1}_{-1}	16.5 ± 0.1	5254^{+226}_{-249}	<1	46.70	9.68	0.63
103246.19 + 323618.0	2.380	36^{+1}_{-1}	37 ± 1	4755^{+249}_{-330}	<1	46.44	9.21	1.04
103405.73 + 463545.4	2.213	2.215	-203	63^{+2}_{-3}	26 ± 1	6489^{+191}_{-254}	17^{+12}_{-11}	718^{+974}_{-718}	-0.665	46.44	9.69	0.34
103718.23 + 302509.1	2.299	2.288	977	100^{+57}_{-76}	$40.1 \pm 1 \times 10^{-10}$	4724^{+123}_{-163}	26^{+1}_{-1}	3538^{+1}_{-1}	0.033	46.39	9.40	0.60
104621.57 + 483322.7	1.580	39^{+1}_{-2}	60 ± 3	4222^{+417}_{-552}	<1	46.15	8.79	1.41
104941.58 + 522348.9	2.367	2.369	-115	97^{+2}_{-3}	21 ± 1	5663^{+391}_{-517}	40^{+6}_{-8}	2152^{+595}_{-787}	-0.198	46.27	9.57	0.31
110148.85 + 054815.5	1.589	1.584	600	48^{+1}_{-2}	17 ± 1	7944^{+457}_{-605}	17^{+1}_{-1}	3473^{+249}_{-329}	0.00022	46.38	9.86	0.20
111313.29 + 102212.4	2.261	81^{+1}_{-1}	42 ± 1	4752^{+144}_{-190}	<1	46.58	9.45	0.81
111352.53 + 104041.9	1.607	1.609	-233	26^{+1}_{-2}	5.4 ± 0.1	6068^{+760}_{-1005}	5^{+1}_{-1}	1675^{+1}_{-1}	-0.554	46.39	9.69	0.31
111920.98 + 232539.4	2.288	2.289	-53	46^{+1}_{-1}	$9.5 \pm 1 \times 10^{-15}$	3901^{+126}_{-167}	28^{+1}_{-1}	1557^{+1}_{-1}	-0.180	46.35	9.28	0.71
112127.79 + 254758.9	1.602	1.602	-8	77^{+1}_{-2}	4.4 ± 0.2	4700^{+1591}_{-2105}	39^{+1}_{-2}	898^{+77}_{-102}	-0.395	46.39	9.52	0.46
112938.46 + 440325.0	2.212	2.212	-1	128^{+4}_{-5}	7.1 ± 0.1	3267^{+117}_{-154}	46^{+4}_{-5}	659^{+118}_{-156}	-0.493	46.62	9.30	1.24
113048.45 + 225206.6	2.378	2.364	1285	34^{+11}_{-15}	$9.9 \pm 1 \times 10^{-15}$	5358^{+213}_{-282}	11^{+19}_{-11}	3119^{+7805}_{-3119}	0.0067	46.39	9.55	0.42

Table 1
(Continued)

Quasar (SDSS J)	$z_{\text{H}\beta}$	$z_{[\text{O III}]}$	Velocity Offset (km s $^{-1}$)	$\text{EW}_{\text{H}\beta}$ (Å)	$\text{EW}_{\text{Fe II}}$ (Å)	$\text{FWHM}_{\text{H}\beta}$ (km s $^{-1}$)	$\text{EW}_{[\text{O III}]}$ (Å)	$\text{FWHM}_{[\text{O III}]}$ (km s $^{-1}$)	Asymmetry $_{[\text{O III}]}$	$\log \lambda L_{5100}$ (erg s $^{-1}$)	$\log M_{\text{BH}}$ (M_{\odot})	L/L_{Edd}
113330.17 + 144758.8	3.254	3.238	1158	68_{-4}^{+3}	35 ± 2	4629_{-249}^{+188}	9_{-2}^{+2}	2158_{-1031}^{+779}	-0.00031	46.65	9.46	0.93
113740.61 + 630256.9	2.318	2.323	-493	59_{-2}^{+2}	23 ± 1	7995_{-411}^{+311}	4_{-1}^{+1}	757_{-1}^{+1}	-0.578	46.41	9.87	0.21
113924.64 + 332436.9	2.310	2.315	-396	41_{-2}^{+1}	60 ± 2	5454_{-574}^{+434}	1.5_{-1}^{+1}	1672_{-1}^{+1}	-0.00044	46.31	9.12	0.95
114323.71 + 193448.0	3.358	3.350	554	77_{-1}^{+1}	18 ± 1	5003_{-140}^{+106}	40_{-1}^{+1}	2750_{-1}^{+1}	-0.202	46.78	9.69	0.74
114705.24 + 083900.6	1.602	1.603	-122	51_{-2}^{+2}	4 ± 1	4778_{-301}^{+378}	36_{-1}^{+1}	959_{-62}^{+47}	-0.345	46.51	9.58	0.51
114738.35 + 301717.5	3.358	46_{-4}^{+3}	29 ± 1	4430_{-707}^{+534}	<1	46.74	9.42	1.23
115747.99 + 272459.6	2.230	2.216	1276	67_{-2}^{+2}	37 ± 2	3896_{-314}^{+238}	12_{-1}^{+1}	1288_{-1}^{+1}	-0.00079	46.63	9.29	1.33
133342.56 + 123352.7	3.281	3.258	1650	59_{-1}^{+1}	30 ± 1	4150_{-190}^{+143}	11_{-1}^{+1}	2645_{-1}^{+1}	-0.022	46.79	9.43	1.36
140058.79 + 260619.4	2.366	2.363	238	54_{-1}^{+1}	31 ± 1	2898_{-132}^{+100}	10_{-1}^{+1}	1736_{-1}^{+1}	-0.450	46.40	8.92	1.85
141321.05 + 092204.8	3.324	3.313	737	69_{-2}^{+1}	22 ± 1	4019_{-115}^{+87}	12_{-1}^{+1}	2097_{-184}^{+139}	-0.017	46.90	9.52	1.43
142013.03 + 253403.9	2.234	2.235	-130	36_{-3}^{+2}	47 ± 2	2820_{-228}^{+173}	6_{-5}^{+6}	539_{-539}^{+9151}	0.048	46.56	8.71	4.29
142500.24 + 494729.2	2.261	58_{-2}^{+1}	45 ± 2	4134_{-169}^{+128}	<1	46.46	9.19	1.14
150205.58 - 024038.5	2.210	2.192	1667	52_{-2}^{+1}	31 ± 1	4459_{-217}^{+164}	21_{-1}^{+1}	1994_{-1}^{+1}	0.038	46.48	9.32	0.87
151123.30 + 495101.2	2.396	47_{-1}^{+1}	55 ± 1	6907_{-306}^{+231}	<1	46.67	9.59	0.73
151341.89 + 463002.7 ^a	1.574	1.572	203	51_{-2}^{+1}	33 ± 1	3937_{-83}^{+63}	13_{-1}^{+1}	1257_{-1}^{+1}	-0.486	46.42	9.10	0.87
153248.95 + 173900.8	2.348	2.350	-181	55_{-1}^{+1}	23 ± 1	7286_{-434}^{+328}	12_{-1}^{+1}	1377_{-1277}^{+7381}	-0.0089	46.56	9.78	0.26
154550.37 + 554346.2	2.164	2.159	432	111_{-5}^{+4}	$6.5 \pm 1 \times 10^{-11}$	3152_{-1}^{+1}	42_{-1}^{+1}	1137_{-1}^{+1}	-0.327	46.72	9.25	1.24
160207.67 + 380743.0	1.592	1.581	1214	65_{-17}^{+13}	29 ± 1	7142_{-245}^{+1856}	24_{-1}^{+1}	2340_{-122}^{+92}	0.541	46.72	9.89	0.40
160552.97 + 292141.4	2.327	87_{-4}^{+3}	$20.6 \pm 1 \times 10^{-11}$	4345_{-224}^{+169}	<1	46.56	9.46	0.76
163125.10 + 174810.0	2.185	2.180	436	76_{-2}^{+2}	7.5 ± 0.3	5617_{-313}^{+237}	33_{-2}^{+2}	1736_{-259}^{+196}	-0.106	46.68	9.79	0.47
220344.98 + 235729.3 ^a	2.159	2.158	79	76_{-1}^{+1}	14 ± 1	6974_{-358}^{+271}	15_{-2}^{+1}	1436_{-521}^{+690}	-0.164	46.35	9.80	0.33
223934.45 - 004707.2	2.226	2.215	1100	62_{-2}^{+1}	38 ± 2	6179_{-247}^{+187}	11_{-1}^{+1}	1681_{-1}^{+1}	0.103	46.49	9.60	0.47
225608.48 + 010557.8	2.267	2.263	350	61_{-4}^{+3}	$33.1 \pm 1 \times 10^{-10}$	2830_{-363}^{+275}	12_{-1}^{+1}	3828_{-1}^{+1}	-0.235	46.41	8.92	1.90

Note.

^a LoBAL quasars identified by Trump et al. (2006) or through visual inspection.

Table 2
UV Spectral Properties of 65 BAL Quasars from GNIRS-DQS

Quasar (SDSS J)	z_{vi}^{a}	z_{sys}	Velocity Offset (km s $^{-1}$)	$\text{EW}_{\text{C IV}}^{\text{b}}$ (Å)	Blueshift $_{\text{C IV}}^{\text{b}}$ (km s $^{-1}$)	BI (km s $^{-1}$)	AI (km s $^{-1}$)	BI/AI References $^{\text{c}}$
001249.89+285552.6	3.236	3.233	213	25	1582	164	1924	1
001355.10-012304.0	...	3.380	...	30	1370	1226	1598	3
004613.54+010425.7	2.150	2.165	-1422	36	2264	3393	7033	1
013012.36+153157.9	2.349	2.343	538	15	435	5	2468	1
013652.52+122501.5	2.393	2.388	443	68	1060	5177	6130	1
014018.20-013805.8	2.235	2.236	-93	33	1522	1091	1404	1
014206.86+025713.0	2.315	2.323	-722	19	640	40	1229	3
022007.64-010731.1	3.441	3.428	881	35	2127	5649	8132	1
025042.45+003536.7	2.387	2.398	-971	42	978	5336	7361	1
073519.68+240104.6	3.278	3.282	-280	26	1865	25	1983	1
080636.81+345048.5	...	1.549	0	0	5
081114.66+172057.4	2.323	2.341	-1616	26	1427	405	2687	1
083745.74+052109.4	2.355	2.362	-625	42	1582	385	3137	1
084133.15+200525.7	2.342	2.356	-1252	9	6936	7235	1178	1
084401.95+050357.9	...	3.340	...	16	4458	8972	9558	3
084729.52+441616.7	2.347	2.344	269	16	1274	572	1785	1
085046.17+522057.4	2.230	2.234	-371	1065	1641	3
091301.01+422344.7	2.315	2.314	91	59	1563	645	980	1
091328.23+394443.9	...	1.587	390	508	3
091425.72+504854.9	2.345	2.369	-2493	28	1171	3817	7286	1
091716.79+461435.3	...	1.625	0	216	3
093251.98+023727.0	2.165	2.170	-473	37	1928	4436	6935	1
094328.94+140415.6	2.430	2.408	-704	0	1402	3
094427.27+614424.6	2.333	2.338	-449	67	703	4169	6845	1
094902.38+531241.5	1.611	1.609	230	49	2502	753	2368	1
095746.75+565800.7	1.575	1.576	-117	45	2925	808	0	2
100610.55+370513.8	3.204	3.202	143	53	1607	1441	1567	1
100653.26+011938.7	2.298	2.303	-454	37	2382	6190	6715	1
101542.04+430455.6	2.364	2.417	702	13	4704	383	2079	1
102154.00+051646.3	3.439	3.448	-607	24	2853	9177	1230	1
103246.19+323618.0	2.380	2.379	89	11	5562	4393	5752	3
103405.73+463545.4	2.215	2.215	< 90	32	1816	0	699	1
103718.23+302509.1	2.293	2.288	456	44	1315	252	931	1
104621.57+483322.7	...	1.580	1676	2547	3
104941.58+522348.9	...	2.364	...	50	736	934	3557	3
110148.85+054815.5	...	1.584	0	1709	3
111313.29+102212.4	2.261	2.259	184	28	2349	613	1381	1
111352.53+104041.9	...	1.609	0	1939	3
111920.98+232539.4	2.289	2.289	< 90	57	547	220	1907	3
112127.79+254758.9	1.587	1.601	-1615	67	523	1008	3251	1
112938.46+440325.0	2.210	2.212	93	0	605	3
113048.45+225206.6	2.370	2.364	535	42	1782	6596	7168	1
113330.17+144758.8	3.252	3.242	424	616	1940	3
113740.61+630256.9	2.322	2.323	-90	52	1408	5169	5889	3
113924.64+332436.9	2.314	2.315	-91	28	3626	4283	5198	1
114323.71+193448.0	3.348	3.350	-138	43	1308	0	1470	1
114705.24+083900.6	1.604	1.601	346	0	242	3
114738.35+301717.5	3.353	3.358	-344	7	1574	0	336	1
115747.99+272459.6	2.206	2.216	-933	32	1322	4076	5548	1
133342.56+123352.7	3.275	3.258	1198	20	2466	0	514	1
140058.79+260619.4	2.351	2.363	-1071	37	1992	1851	2432	1
141321.05+092204.8	3.327	3.324	765	20	1734	58	964	1
142013.03+253403.9	2.235	2.235	< 90	15	5255	2469	4993	1
142500.24+494729.2	2.260	2.261	-92	15	3953	2648	3156	1
150205.58-024038.5	...	2.192	...	31	2774	6929	8100	3
151123.30+495101.2	2.380	2.379	265	19	4131	178	1954	1
151341.89+463002.7	...	1.572	2661	4651	3
153248.95+173900.8	2.350	2.350	< 90	31	436	1437	4057	1
154550.37+554346.2	2.158	2.159	-95	43	1050	0	350	3
160207.67+380743.0	...	1.581	0	0	4
160552.97+292141.4	2.321	2.333	-1080	53	678	1767	3858	1
163125.10+174810.0	2.180	2.180	< 90	20	1708	3042	5239	1
220344.98+235729.3	...	2.157	...	31	-81	2170	3318	3

Table 2
(Continued)

Quasar (SDSS J)	z_{vi}^{a}	z_{sys}	Velocity Offset (km s $^{-1}$)	$\text{EW}_{\text{C IV}}^{\text{b}}$ (Å)	$\text{Blueshift}_{\text{C IV}}^{\text{b}}$ (km s $^{-1}$)	BI (km s $^{-1}$)	AI (km s $^{-1}$)	BI/AI References $^{\text{c}}$
223934.45-004707.2	2.221	2.215	560	39	1040	110	349	1
225608.48+010557.8	2.268	2.263	460	40	1814	1217	3993	1

Notes.

^a Value based on the visually inspected redshift measurement in SDSS DR16 (Lyke et al. 2020, Table D1, Column (17)) for 52 BAL quasars.

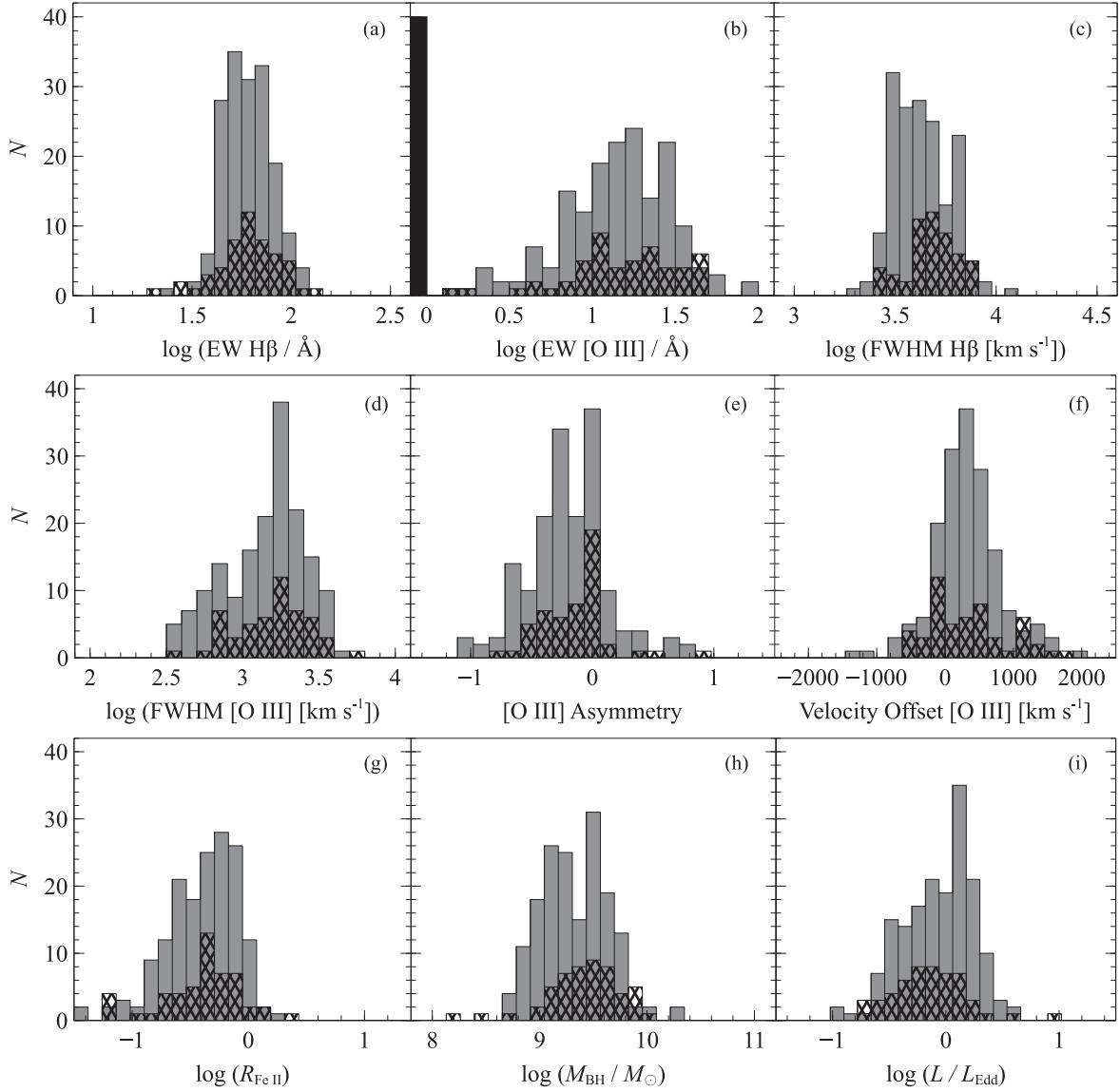
^b Data taken from R20 for 52 GNIRS-DQS BAL quasars that appeared in their sample.

^c References for the balnicity index and absorption index: (1) Paris et al. 2017; (2) Páris et al. 2018; (3) Lyke et al. 2020; (4) Matthews et al. 2021; (5) Abazajian et al. 2009.

Table 3
BAL and Non-BAL Quasar Property Statistics and Comparisons

Property	μ_{BAL}	$\mu_{\text{non-BAL}}$	SEM_{BAL}	$\text{SEM}_{\text{non-BAL}}$	σ_{BAL}	$\sigma_{\text{non-BAL}}$	Med_{BAL}	$\text{Med}_{\text{non-BAL}}$	A-D p -value	K-S p -value
$\log \text{EW}_{\text{H}\beta}$	1.77	1.77	0.02	0.01	0.16	0.14	1.79 ± 0.36	1.79 ± 0.24	0.25	0.84
$\log \text{EW}_{\text{[O III]}}$	1.19	1.14	0.04	0.03	0.33	0.35	1.22 ± 0.23	1.17 ± 0.17	0.25	0.69
$\log \text{FWHM}_{\text{H}\beta}$	3.68	3.63	0.02	0.01	0.12	0.13	3.68 ± 2.21	3.62 ± 1.98	0.002	0.11
$\log \text{FWHM}_{\text{[O III]}}$	3.19	3.14	0.04	0.03	0.02	0.24	0.26	3.23 ± 0.04	3.22 ± 0.03	0.25
Asymmetry $_{\text{[O III]}}$	-0.14	-0.20	0.04	0.03	0.29	0.32	-0.13 ± 0.06	-0.20 ± 0.03	0.23	0.14
$R_{\text{Fe II}}$	0.55	0.54	0.05	0.03	0.40	0.39	0.44 ± 0.05	0.48 ± 0.04	0.25	0.86
$\log M_{\text{BH}}$	9.42	9.30	0.04	0.02	0.34	0.33	9.46 ± 0.04	9.29 ± 0.03	0.004	0.19
L/L_{Edd}	1.00	1.23	0.15	0.11	1.22	1.50	0.74 ± 0.06	1.04 ± 0.08	0.02	0.18
Velocity offset [O III] (km s $^{-1}$)	353.85	325.16	79.92	38.26	576.38	495.86	283.99 ± 112.77	308.38 ± 35.10	0.18	0.29
Velocity offset ($z_{\text{vi}} - z_{\text{sys}}$) (km s $^{-1}$)	-224.41	-226.60	133.06	68.86	959.50	840.56	-90.39 ± 72.70	-92.19 ± 61.71	0.25	0.98

Note. A comparison of several BAL and non-BAL spectral properties with probabilities of test statistics (see Section 3). The p -values highlighted in bold indicate rejection of null hypothesis at the 95% and 99% significance level.

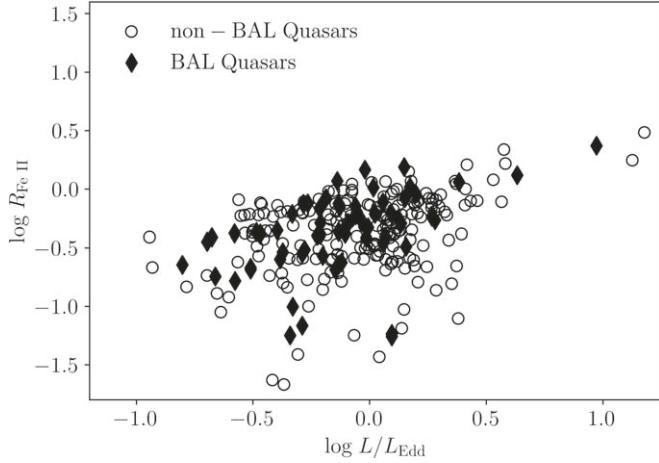

Using the EWs of the Fe II blend and H β line of all GNIRS-DQS quasars, a comparison is made between $R_{\text{Fe II}}$, defined as $\text{EW}(\text{Fe II})/\text{EW}(\text{H}\beta)$, of BAL and non-BAL quasars as shown in Figure 1. The mean and median $R_{\text{Fe II}}$ values for BAL and non-BAL quasars are consistent within their errors (see Table 3). This result indicates that BAL and non-BAL quasars, in this sample of highly luminous sources, have similar L/L_{Edd} distributions despite the presence of outflows in the former.

A similar comparison was performed between the FWHM values of the H β line for the BAL and non-BAL quasars and is displayed in Figure 1. The figure also compares the M_{BH} values, which show a similar distribution to the FWHM (H β) distribution, as the M_{BH} values depend primarily on FWHM(H β) for sources in a relatively narrow luminosity range (e.g., D23). The comparison of the Eddington ratios (L/L_{Edd} , where L is the bolometric luminosity), both obtained from M23 and H23, for our populations of BAL and non-BAL quasars, presented in Figure 1, shows no significant differences between the two groups of sources. Figure 2 shows a correlation between $R_{\text{Fe II}}$ and L/L_{Edd} values for the GNIRS-DQS BAL and non-BAL quasars. We find a Spearman rank correlation coefficient of 0.54 ($p = 3.48 \times 10^{-6}$) and 0.35 ($p = 4.58 \times 10^{-7}$) for BAL and non-BAL quasars, respectively. Both groups exhibit a statistically significant positive correlation between $R_{\text{Fe II}}$ and L/L_{Edd} .

To test whether the rest-frame optical properties of BAL quasars are significantly different from their non-BAL counterparts, we ran a two-tailed Kolmogorov–Smirnov (K-S) test on all the parameter distributions shown in Figure 1. We choose a cutoff for “significant” differences in distributions of $p = 0.05$ and $p = 0.01$ to indicate rejection or failure of rejection of the null hypothesis at the 95% and 99% significance level, respectively. Test results with p -values lower than these limits are possibly indicative of different parent populations for BAL quasars and non-BAL quasars, and they are highlighted in bold in Table 3.

To run the K-S test on the distributions of $\text{EW}(\text{[O III]})$, we removed 13 BAL quasars and 27 non-BAL quasars that did not meet the M23 threshold of reliability for $\text{EW}(\text{[O III]})$ values greater than 1 Å. In each test the hypothesis that properties from both samples, BAL and non-BAL quasars, arise from the same parent population could not be rejected at a significance level of 95% or 99% (see Table 3).

The K-S test may not effectively capture discrepancies in the tails of distributions. To address this issue, we also conducted a two-tailed Anderson–Darling (A-D) test on all the parameter distributions depicted in Figure 1, utilizing the same significance levels as employed in the K-S test. The A-D test exhibits greater sensitivity to differences in the tails of distributions and is capable of detecting even minute distinctions, particularly in large sample sizes. Our findings


Figure 1. Distributions of the optical emission-line properties between BAL (hatched) and non-BAL (gray) quasars from the GNIRS-DQS sample. The comparison of all distributions reveals that the two populations are largely similar (see Section 3 and Table 3 for statistical analysis). For 40 sources (13 BAL and 27 non-BAL quasars) that did not meet the M23 threshold of reliability for an $\text{EW}([\text{O III}])$ measurement (i.e., greater than 1 \AA); we place upper limits of 1 \AA on their EW values (solid black column in panel (b); see also Table 1). The top row (panels (a), (b), and (c)) includes distributions of $\text{EW}(\text{H}\beta)$, $\text{EW}([\text{O III}])$, and $\text{FWHM}(\text{H}\beta)$ of 65 BAL and 195 non-BAL quasars. The middle row (panels (d), (e), and (f)) includes $[\text{O III}]$ FWHM, asymmetry, and velocity offset distributions for only 52 BAL and 168 non-BAL quasars that meet the M23 $\text{EW}([\text{O III}])$ threshold. The bottom row (panels (g), (h), and (i)) includes distributions of $R_{\text{Fe II}}$, M_{BH} , and L/L_{Edd} .

indicate that the null hypothesis, that both BAL and non-BAL quasars arise from the same parent population of sources, is rejected for $\text{FWHM}(\text{H}\beta)$ and M_{BH} at both the 95% and 99% significance levels and for L/L_{Edd} at only the 95% significance level. However, the null hypothesis was not rejected at either significance level for $\text{EW}(\text{H}\beta)$, $\text{EW}([\text{O III}])$, $\text{FWHM}([\text{O III}])$, asymmetry ($[\text{O III}]$), velocity offset ($[\text{O III}]$), or $R_{\text{Fe II}}$. In particular, we do not detect any manifestation of BAL outflows in the $[\text{O III}]$ line properties of our sources.

We conducted a Monte Carlo simulation on properties where the null hypothesis was rejected with the A-D test, specifically focusing on L/L_{Edd} , M_{BH} , and $\text{FWHM}(\text{H}\beta)$. In this simulation, we performed 10,000 realizations to account for uncertainties associated with each value. For approximately 90% of the 10,000 realizations, the A-D test was unable to reject the null hypothesis in each test. The

simulation indicates that the A-D test is particularly sensitive to the tails of the distributions rather than the core values of L/L_{Edd} , M_{BH} , and $\text{FWHM}(\text{H}\beta)$. Therefore, since each value carries a degree of uncertainty, it is important to interpret the A-D test results with caution.

If indeed M_{BH} , $\text{FWHM}(\text{H}\beta)$, and possibly L/L_{Edd} values of BAL and non-BAL quasars were found to originate from distinct parent populations, then this would have implied that the underlying mechanisms governing the broad-line region (BLR) dynamics and central SMBH accretion processes differ between these two groups of quasars. Any putative differences may have required refining mass estimation prescriptions to include additional BLR dynamics such as outflows. However, given that the differences are marginal at best, these properties remain broadly indistinguishable between BAL and non-BAL quasars.

Figure 2. $R_{\text{Fe II}}$ vs. L/L_{Edd} for non-BAL (open circles) quasars and BAL (diamonds) quasars from GNIRS-DQS. Both groups reveal a strong positive correlation between the two parameters (see Section 3.1).

3.2. Rest-frame UV Properties

To explore the C IV parameter space of BAL and non-BAL quasars, we compare a sample of 177 GNIRS-DQS non-BAL quasars with a sample of 52 BAL quasars with reliable C IV measurements taken from D23 and R20, respectively. D23 provides measurements of the C IV emission-line properties of 177 GNIRS-DQS sources, following the exclusion of 64 BAL quasars, 16 RL quasars, 1 BAL and RL quasar, and 2 sources that do not have reliable C IV coverage. For the BAL quasars, we adopted C IV measurements (EW and blueshift) from R20 for 52 of our sources (not including the single RL BAL quasar, SDSS J114705.24+083900.6) that appeared in their sample.

For a detailed description of the C IV measurements in our BAL quasars, we refer the reader to Section 6.1 of R20. In summary, calculation of the C IV emission-line parameters followed a nonparametric approach. Initially, a power-law continuum was subtracted from a reconstructed spectrum, after which the emission-line flux was integrated to determine the EW, and the blueshift was calculated from the wavelength that bisects the total cumulative line flux relative to the systemic redshift of the quasar. Wavelength regions of the spectra affected by BAL troughs were masked, covering areas blueward of the C IV emission line (i.e., 1430–1546 Å), resulting in a relatively symmetric emission-line profile.

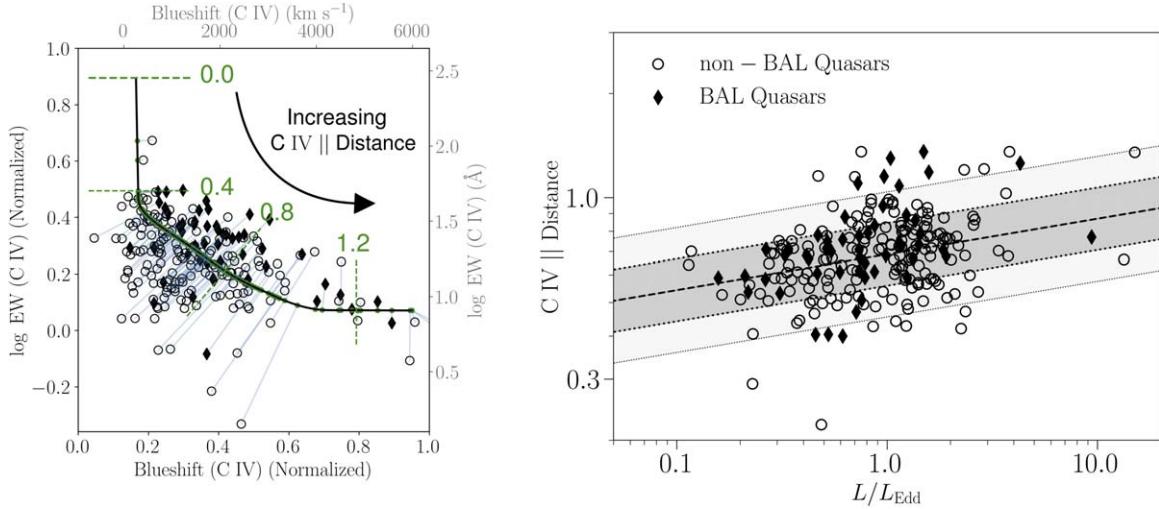
The left panel of Figure 3 displays normalized values of the C IV emission-line EW versus blueshift for the 177 non-BAL quasars compared to 52 BAL quasars from GNIRS-DQS. While these two parameters, on their own, are not ideal accretion rate indicators (e.g., Richards et al. 2011; Shemmer & Lieber 2015), a combination of these two parameters appears to provide a robust indication of the accretion rate for all quasars as manifested in the right panel of Figure 3 (e.g., H23). This consolidated C IV parameterization, termed the C IV \parallel Distance, indicates the projected location onto a nonlinear first principal component of the EW–blueshift diagram, and the piecewise polynomial best-fit curve traces the C IV parameter space of sources across wide ranges of redshifts and luminosities. To calculate the C IV \parallel Distance parameter, we follow the procedure summarized in Rivera et al. (2022) and detailed in Richards et al. (2021).

Upon inspection of Figure 3, it appears that while BAL and non-BAL quasars demonstrate broad similarities within the C IV parameter space, the former tend to concentrate toward the top

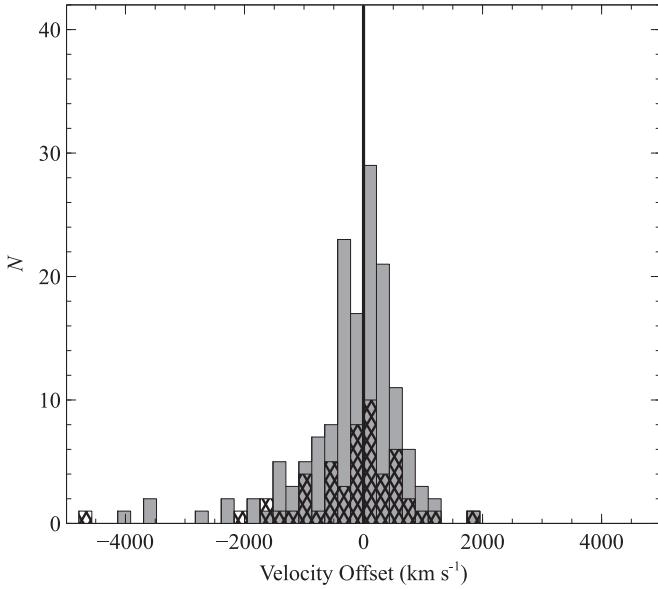
right above the best-fit curve in the left panel. We quantitatively tested this observation by also comparing the C IV \perp Distance parameter (the perpendicular to the C IV \parallel Distance parameter), also defined in Rivera et al. (2022), between BAL and non-BAL quasars using a K-S test. The C IV \perp Distance parameter was measured relative to the closest (projected) point on the best-fit curve. The results indicate that the null hypothesis, that BAL and non-BAL quasars arise from the same parent population, can be rejected at significance levels of 95% and 99%. We suspect that this distinction between BAL and non-BAL quasars stems from the fact that measurements for the BAL quasars were performed by R20, while those for the non-BAL quasars were performed by D23, relying on z_{sys} values from M23.

In the case of C IV \parallel Distance versus L/L_{Edd} , we find a Spearman rank correlation coefficient of 0.52 ($p = 7.65 \times 10^{-5}$) and 0.28 ($p = 1.47 \times 10^{-4}$) for BAL and non-BAL quasars, respectively. This result indicates that, despite being a smaller subset of sources with potentially large uncertainties in the C IV measurements, the BAL quasars exhibit a stronger H β -based L/L_{Edd} and C IV \parallel Distance correlation compared to non-BAL quasars. We fit a linear model to the C IV \parallel Distance parameter and L/L_{Edd} space, taking into account only the non-BAL quasars. The mean deviation of the BAL quasars from the best-fit line is $\sim 1.05\sigma$.

We also searched for any potential relationship of BI and AI as a function of EW([O III]) and L/L_{Edd} values. However, we could not identify any significant correlation or trend among these parameters. We further performed an investigation of trough properties, including maximum and minimum velocity of each trough (V_{max} , V_{min}) and width of each trough (V_{width}), as a function of H β -based L/L_{Edd} and M_{BH} . The trough values were taken from R20 (see Table 1 therein) for 52 of our BAL sources that were part of their significantly larger sample. Our analysis does not reveal any significant correlation or discernible trend between the BAL trough properties and L/L_{Edd} or M_{BH} . This lack of clear trend could be attributed to the constraints imposed by a small sample size and limitations inherent in deriving comprehensive information from basic measurements such as those obtained from R20 (see also Leighly et al. 2022).


To test whether BAL quasars exhibit significantly different blueshifts compared to non-BAL quasars, we compute the Δv values between the z_{vi} value from Lyke et al. (2020)¹⁵ and the z_{sys} value of a source taken from M23. If there is a noticeable difference, it could suggest the presence of an additional factor that is responsible for driving outflows in BAL quasars. The velocity offset is computed using

$$\Delta v = c \left(\frac{z_{\text{vi}} - z_{\text{sys}}}{1 + z_{\text{sys}}} \right), \quad (3)$$


in a similar manner to Equation (3) in Section 3.1. The distributions of Δv values for 52 BAL and 150 non-BAL quasars are presented in Figure 4; the Δv values for the former¹⁶ are taken from Table 2, and the Δv values for the

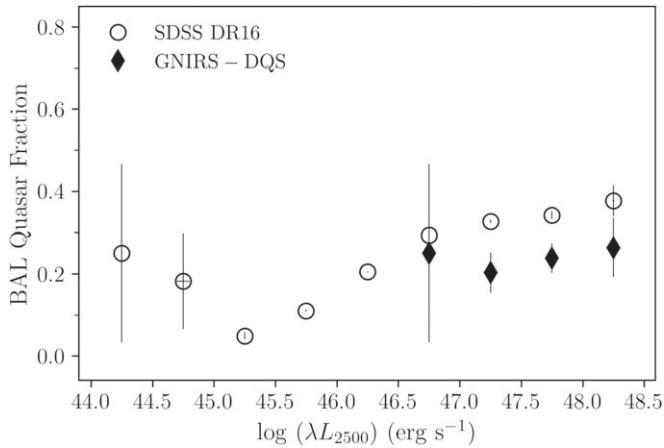
¹⁵ We note that for 20% of our BAL quasars the SDSS pipeline fails to provide a reliable redshift (Lyke et al. 2020, Table D1, Column (29)); thus, the z_{vi} values should be adopted. Lyke et al. (2020) only provide z_{vi} values for 52 BAL and 150 non-BAL GNIRS-DQS quasars (note that these 52 sources do not entirely coincide with the 52 sources that have C IV measurements in R20).

¹⁶ The z_{vi} values of five of the sources are identical to their z_{sys} values. We, therefore, assign an upper limit of $|90| \text{ km s}^{-1}$ for their Δv values in Table 2; these values are treated as zeros in Figure 4 and our analysis.

Figure 3. Left panel: distribution of EW(C IV) vs. blueshift (C IV) for 177 non-BAL quasars and 52 BAL quasars; symbols are the same as in Figure 2. The data are first normalized so that the two axes share the same limit; each data point is then projected (thin blue lines) onto the best-fit curve obtained from Rivera et al. (2022). The C IV || Distance value of each quasar is defined as its projected position (green point) along the solid black curve. Representative C IV || Distance values are indicated by dashed lines and numbers. The ranges of C IV blueshift and EW are -1000 – 6000 km s⁻¹ and 2 – 140 Å, respectively. Right panel: C IV || Distance parameter vs. Fe II–corrected H β -based L/L_{Edd} . The correlation for the non-BAL quasar sample, obtained by fitting a linear model, is indicated by a dashed line. The dark (light) shaded region represents the 1σ (2σ) deviation from the fitted correlation (see Section 3).

Figure 4. Distribution of the velocity offset between z_{vi} from Lyke et al. (2020) and the z_{sys} value of a source between BAL (hatched) and non-BAL (gray) quasars from the GNIRS-DQS sample. The zero velocity offset is indicated by the solid line. Based on statistical tests, both distributions are broadly similar (see Section 3).

latter are computed using z_{vi} values from Lyke et al. (2020) and z_{sys} values from M23.


The comparison of both distributions of BAL and non-BAL quasars reveals no significant difference between these two populations. We confirm this result by running K-S and A-D tests on the distributions in a similar manner to the tests run in Section 3.1. Our analysis reveals that the hypothesis asserting that Δv from both samples, BAL and non-BAL quasars, come from the same parent population was not rejected at the 95% or 99% significance level with the K-S and A-D tests (see Table 3). This result highlights the fact that both populations exhibit a high degree of similarity.

4. Discussion

We find that BAL quasars are generally indistinguishable from their non-BAL counterparts in the rest-frame optical band, an extension of the W91 result concerning rest-frame UV emission-line properties. This conclusion resonates with the results of Schulze et al. (2017), who find no discernible differences in the rest-frame optical properties between LoBAL and non-BAL quasars, particularly with respect to their M_{BH} and L/L_{Edd} values. To understand the underlying causes behind the appearance of BAL troughs in quasar spectra, we consider the potential influence of accretion rate and orientation.

Our highly uniform sample consists of quasars selected at high redshifts with high luminosities, likely above the luminosity threshold required to launch accretion disk winds (e.g., Laor & Brandt 2002; Bieri et al. 2017; Quera-Bofarull et al. 2023). Giustini & Proga (2019) further argue that the strongest winds are expected to arise in objects with both the highest M_{BH} values and the highest accretion rates, such as those in the GNIRS-DQS sample (see also D23; Temple et al. 2023). This may explain the relatively high fraction of BAL quasars observed in GNIRS-DQS.

Figure 5 depicts how the observed BAL quasar fraction in GNIRS-DQS changes as a function of luminosity. For comparison, Figure 5 also displays similar data for SDSS DR16 quasars, which is the parent sample of the GNIRS-DQS sources. For this comparison sample, we only included sources identified in Lyke et al. (2020) as having a BAL probability ≥ 0.75 . We further limited that sample to sources lying in the redshift ranges $1.57 \leq z \leq 1.65$, $2.10 \leq z \leq 2.40$, and $3.20 \leq z \leq 3.50$, similar to the GNIRS-DQS redshift intervals; no brightness restriction was applied. Since SDSS DR16 only identifies BAL quasars at $z \geq 1.57$, two GNIRS-DQS sources are excluded from Figure 5, SDSS J080636.81 + 345048.5 at $z = 1.553$ and SDSS J090247.57 + 304120.7 at $z = 1.560$. For all sources in Figure 5, monochromatic luminosities at a rest-frame wavelength of 2500 Å were derived from the point-spread function m_i values in Lyke et al. (2020), assuming a

Figure 5. Fraction of BAL quasars as a function of λL_λ at 2500 Å. Each point represents the average BAL quasar fraction within equal luminosity bins ($\Delta \lambda L_\lambda$) of 0.5 dex. The SDSS DR16 sample (Lyke et al. 2020) includes 141,241 quasars between $1.57 \leq z \leq 3.5$.

quasar continuum of the form $f_\nu \propto \nu^{-0.5}$ (e.g., Vanden Berk et al. 2001). These luminosities are represented by equal bins of $(\Delta \lambda L_\lambda) = 0.5$ dex, including ~ 4 –60,000 sources per bin, with error bars representing the SEM of the BAL fraction in each bin.

According to Figure 5, it appears as if the BAL fraction increases as a function of luminosity. It is also apparent that the BAL fractions of the GNIRS-DQS sources are generally consistent with those of their parent SDSS sample. This trend of increasing BAL fraction as a function of luminosity is also broadly consistent with the results of Ganguly et al. (2007b). A different approach employed by Allen et al. (2011) for SDSS quasars reports intrinsic BAL quasar fractions that are somewhat larger than the values we derive from the Lyke et al. (2020) sample at higher luminosities. The Allen et al. (2011) data can be considered as conservative upper limits to the BAL quasar fractions for luminous quasars. As indicated by Laor & Brandt (2002) and Ganguly & Brotherton (2008), quasars with low luminosity ($\lambda L_\lambda \lesssim 10^{44}$ erg s⁻¹) are not capable of attaining the requisite high maximum velocity of the outflow necessary for the manifestation of the BAL phenomenon according to the W91 definition. This trend is consistent with the data in Figure 5.

Instead of the increased ability to launch outflows as luminosity increases, there are alternative explanations to the observed trend of increased BAL fraction as a function of luminosity. For example, Yuan & Wills (2003) argue that the trend of increasing BAL fraction with increasing luminosity could be a consequence of low-luminosity sources having a shortage of gas supply and hence lower Eddington ratios. Therefore, sources that have the largest supply of cold gas (at higher redshifts) have the largest fueling and outflow rates and exhibit BAL troughs. Another explanation for this trend may be related to low-luminosity quasars typically having low-S/N spectra, in which a BAL trough is less likely to be identified as such (e.g., Allen et al. 2011, R20).

At lower redshifts ($z \lesssim 1.5$), the characterization of BAL quasars remains unclear, primarily due to the scarcity of available rest-frame UV data, as the majority of BAL quasar studies lack a statistically significant number of sources. For example, Brandt et al. (2000) report five BAL quasars out of a sample of 87 sources. Similarly, the Ganguly et al. (2007a)

sample includes two BAL quasars out of 14 sources, and the Matthews et al. (2017) sample has 58 BAL quasars out of 16,742 sources, though their sample consists exclusively of LoBAL quasars. Moreover, since luminous quasars lie preferentially at higher redshifts and the BAL quasar fraction decreases toward lower luminosities, the census of nearby BAL quasar targets is quite limited.

Another factor that may contribute to the observation of BAL troughs in quasar spectra is orientation. The outflows in BAL quasars may not be directed along our line of sight, which might potentially account for the observed BAL fraction of 10%–15% at viewing angles less than $\sim 30^\circ$ relative to the plane of the disk within the larger population of quasars (e.g., Zhou et al. 2006; DiPompeo et al. 2012). An additional complication that arises is that quasars viewed at angles above 45° (more edge-on) are likely obscured by dust (e.g., Barthel 1989).

Nair & Vivek (2022) observe that the BAL quasar sample at high orientation angles is almost double the BAL quasar fraction at low orientation angles ($\sim 40\%$ compared to $\sim 20\%$), pointing to the possible existence of polar BAL quasars. Kunert-Bajraszewska et al. (2015) also found that stronger C IV absorption is associated with lower values of the radio-loudness parameter, and thus with high orientation angles for BAL quasars. This trend is consistent with our GNIRS-DQS sample of 65 BAL quasars, only one of which is also RL (see Section 2), constituting a considerably lower fraction of RL sources among the general quasar population. This observation supports the idea that BAL quasars tend to occupy large orientation angles. Similar findings by DiPompeo et al. (2012) indicate a general trend suggesting that BAL quasar viewing angles extend about 10° farther from the radio jet axis.

Figure 5 indicates that a certain threshold luminosity, $\lambda L_{2500} \gtrsim 10^{45}$ erg s⁻¹, is a necessary condition for the production of outflows. While high luminosity is required, it is clearly insufficient to guarantee the appearance of a BAL trough. Even in the most luminous quasars, the BAL fraction remains below $\sim 40\%$ (see Figure 5; but see also Figure 28 of Allen et al. 2011 for a somewhat larger intrinsic BAL fraction). This trend can be explained by a limited BAL covering fraction observed at preferential orientation angles. All this suggests that orientation plays a significant role in the appearance of BAL troughs in quasar spectra (see also Filiz et al. 2013; Filiz & Brandt 2014).

By design, GNIRS-DQS encompasses only high luminosity, and consequently high M_{BH} values, providing limited insights into the properties of BAL quasars across the broader quasar parameter space (see M21; Figure 5). Extending GNIRS-DQS to lower luminosities would allow inclusion of distant sources with lower M_{BH} values, enabling one to disentangle the roles that luminosity, M_{BH} , and orientation play in the appearance of BAL troughs in quasar spectra. This goal could be achieved most efficiently by employing NIR spectrographs on future large observatories such as the European Extremely Large Telescope (e.g., Thatte et al. 2016), the Giant Magellan Telescope (e.g., Jaffe et al. 2016), or the Thirty Meter Telescope (e.g., Larkin et al. 2016).

5. Summary and Conclusions

In this work, we conduct a comparative analysis of the rest-frame optical properties of 65 BAL quasars and 195 non-BAL quasars to gain insights into the appearance of BAL features in

quasar spectra. All the quasars were drawn from GNIRS-DQS, a flux-limited uniform sample of luminous sources at $1.55 \lesssim z \lesssim 3.50$ that have spectroscopic data of the $H\beta$ region. Our BAL quasar sample, which constitutes a BAL quasar fraction of 25%, is the largest uniform sample of such sources having rest-frame optical spectral properties. We perform careful comparisons between BAL quasars and non-BAL quasars based on velocity offsets from systemic redshifts and emission-line properties, such as EW, FWHM, and $R_{Fe\text{ II}}$. We also explore correlations between BAL trough properties and the $H\beta$ -based SMBH masses and normalized accretion rates.

We find that, in spite of the differences between luminous BAL and non-BAL quasars in their rest-frame UV spectra, they are generally indistinguishable in their rest-frame optical spectra. This result is broadly consistent with the idea that the BALs observed in the rest-frame UV spectra of luminous quasars are the result of clumpy, outflowing gas along the line of sight (e.g., W91; Yong et al. 2018). Specifically, all luminous quasars have the potential to be seen as BAL quasars, but the appearance of BAL features may depend on the orientation of the outflow with respect to our line of sight. We do not find any significant correlations between BAL trough properties and either M_{BH} or L/L_{Edd} in our sample, and, overall, the velocity offsets from systemic redshifts of our BAL quasars are similar to their non-BAL counterparts. A future extension of the high-redshift sample to considerably lower luminosities may allow one to explore the contributions of luminosity, M_{BH} , and orientation to the quasar BAL phenomenon.

Acknowledgments

This work is supported by National Science Foundation (NSF) grants AST-1815281 (H.A., B.M.M., C.D., O.S.) and AST-1815645 (M.S.B., A.D.M., J.N.M.). We thank an anonymous reviewer for valuable comments that helped improve this manuscript. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. T.H. acknowledges support from a predoctoral program at the Flatiron Institute. Research at the Flatiron Institute is supported by the Simons Foundation.

Software: MATLAB and Statistics Toolbox (MATLAB 2022), matplotlib (Hunter 2007), numpy (van der Walt et al. 2011); (Harris et al. 2020), pandas (McKinney 2010), scipy (Virtanen et al. 2020), scikit-learn (Pedregosa et al. 2011).

ORCID iDs

Harum Ahmed <https://orcid.org/0009-0008-0969-4084>
 Ohad Shemmer <https://orcid.org/0000-0003-4327-1460>
 Brandon Matthews <https://orcid.org/0000-0001-8406-4084>
 Cooper Dix <https://orcid.org/0000-0003-0192-1840>
 Trung Ha <https://orcid.org/0000-0001-6600-2517>
 Gordon T. Richards <https://orcid.org/0000-0002-1061-1804>
 Michael S. Brotherton <https://orcid.org/0000-0002-1207-0909>
 W. N. Brandt <https://orcid.org/0000-0002-0167-2453>
 Sarah C. Gallagher <https://orcid.org/0000-0001-6217-8101>
 Richard Green <https://orcid.org/0000-0003-1245-5232>
 Paulina Lira <https://orcid.org/0000-0003-1523-9164>
 Jacob N. McLane <https://orcid.org/0000-0003-1081-2929>
 Richard M. Plotkin <https://orcid.org/0000-0002-7092-0326>
 Donald P. Schneider <https://orcid.org/0000-0001-7240-7449>

References

Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, *ApJS*, 182, 543
 Allen, J. T., Hewett, P. C., Maddox, N., Richards, G. T., & Belokurov, V. 2011, *MNRAS*, 410, 860
 Baldwin, J. A. 1977, *ApJ*, 214, 679
 Barthel, P. D. 1989, *ApJ*, 336, 606
 Baskin, A., Laor, A., & Hamann, F. 2013, *MNRAS*, 432, 1525
 Becker, R. H., Gregg, M. D., Hook, I. M., et al. 1997, *ApJL*, 479, L93
 Becker, R. H., White, R. L., Gregg, M. D., et al. 2001, *ApJS*, 135, 227
 Begelman, M. C., Volonteri, M., & Rees, M. J. 2006, *MNRAS*, 370, 289
 Bieri, R., Dubois, Y., Rosdahl, J., et al. 2017, *MNRAS*, 464, 1854
 Boroson, T. A., & Green, R. F. 1992, *ApJS*, 80, 109
 Boroson, T. 2005, *AJ*, 130, 381
 Brandt, W. N., Laor, A., & Wills, B. J. 2000, *ApJ*, 528, 637
 Brotherton, M. S., van Breugel, W., Smith, R. J., et al. 1998, *ApJL*, 505, L7
 Brotherton, M. S., De Breuck, C., & Schaefer, J. J. 2006, *MNRAS*, 372, L58
 Calistro Rivera, G., Alexander, D. M., Harrison, C. M., et al. 2023, arXiv:2312.1017
 Cattaneo, A., Blaizot, J., Devriendt, J., & Guiderdoni, B. 2005, *MNRAS*, 364, 407
 Di Matteo, T., Springel, V., & Hernquist, L. 2005, *Natur*, 433, 604
 Dietrich, M., Hamann, F., Shields, J. C., et al. 2002, *ApJ*, 581, 912
 DiPompeo, M. A., Brotherton, M. S., & De Breuck, C. 2012, *ApJ*, 752, 6
 DiPompeo, M. A., Myers, A. D., Brotherton, M. S., Runnoe, J. C., & Green, R. F. 2014, *ApJ*, 787, 73
 Dix, C., Matthews, B., Shemmer, O., et al. 2023, *ApJ*, 950, 96
 Du, P., & Wang, J.-M. 2019, *ApJ*, 886, 42
 Elvis, M. 2000, *ApJ*, 545, 63
 Filiz, A. N., Brandt, W. N., Hall, P. B., et al. 2013, *ApJ*, 777, 168
 Filiz, A. N., Brandt, W. N., & Hall, P. B. 2014, *ApJ*, 791, 88
 Gallagher, S. C., Brandt, W. N., Chartas, G., & Garmire, G. P. 2002, *ApJ*, 567, 37
 Gallagher, S. C., Brandt, W. N., Chartas, G., et al. 2006, *ApJ*, 644, 709
 Gallagher, S. C., Hines, D. C., Blaylock, M., et al. 2007, *ApJ*, 665, 157
 Ganguly, R., Brotherton, M. S., Arav, N., et al. 2007a, *AJ*, 133, 479
 Ganguly, R., Brotherton, M. S., Cales, S., et al. 2007b, *ApJ*, 665, 990
 Ganguly, R., & Brotherton, M. S. 2008, *ApJ*, 672, 102
 García, L. Á., Martini, P., Gonzalez-Morales, A. X., et al. 2023, *MNRAS*, 526, 4848
 Gibson, R. R., Jiang, L., Brandt, W. N., et al. 2009, *ApJ*, 692, 758
 Giustini, M., & Proga, D. 2019, *A&A*, 630, A94
 Gregg, M. D., Becker, R. H., & de Vries, W. 2006, *ApJ*, 641, 210
 Ha, T., Dix, C., Matthews, B. M., et al. 2023, *ApJ*, 950, 97
 Hall, P. B., Anderson, S. F., Strauss, M. A., et al. 2002, *ApJS*, 141, 267
 Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, *Natur*, 585, 357
 Hopkins, P. F., Hernquist, L., Cox, T. J., et al. 2005, *ApJ*, 630, 705
 Hu, J., Shen, Y., Lou, Y.-Q., & Zhang, S. 2006, *MNRAS*, 365, 345
 Hunter, J. D. 2007, *CSE*, 9, 90
 Jaffe, D. T., Barnes, S., Brooks, C., et al. 2016, *Proc. SPIE*, 9908, 990821
 Kellermann, K. I., Sramek, R., Schmidt, M., Shaffer, D. B., & Green, R. 1989, *AJ*, 98, 1195
 Knigge, C., Scaringi, S., Goad, M. R., & Cottis, C. E. 2008, *MNRAS*, 386, 1426
 Kunert-Bajraszewska, M., Cegłowski, M., Katarzyński, K., & Roskowiński, C. 2015, *A&A*, 579, A109
 Laor, A., & Brandt, W. N. 2002, *ApJ*, 569, 641
 Larkin, J. E., Moore, A. M., Wright, S. A., et al. 2016, *Proc. SPIE*, 9908, 99081W
 Leighly, K. M., Choi, H., DeFrancesco, C., et al. 2022, *ApJ*, 935, 92
 Lípari, S. L., & Terlevich, R. J. 2006, *MNRAS*, 368, 1001
 Liu, H., Luo, B., Brandt, W. N., Gallagher, S. C., & Garmire, G. P. 2018, *ApJ*, 859, 113
 Luo, B., Brandt, W. N., Alexander, D. M., et al. 2014, *ApJ*, 794, 70
 Lyke, B. W., Higley, A. N., McLane, J. N., et al. 2020, *ApJS*, 250, 8
 Magorrian, J., Tremaine, S., Richstone, D., et al. 1998, *AJ*, 115, 2285
 Maithil, J., Brotherton, M. S., Shemmer, O., et al. 2022, *MNRAS*, 515, 491
 Marconi, A., & Hunt, L. K. 2003, *ApJL*, 589, L21
 MATLAB 2022, v9.12.0 (R2022a) (Natick, MA: The MathWorks Inc.)
 Matthews, B. M., Shemmer, O., Dix, C., et al. 2021, *ApJS*, 252, 15
 Matthews, B. M., Dix, C., Shemmer, O., et al. 2023, *ApJ*, 950, 95
 Matthews, J. H., Knigge, C., & Long, K. S. 2017, *MNRAS*, 467, 2571
 McKinney, W. 2010, in Proc. of the 9th Python in Science Conf., ed. S. van der Walt & J. Millman (Austin, TX: SciPy), 56

Morabito, L. K., Dai, X., Leighly, K. M., Sivakoff, G. R., & Shankar, F. 2014, *ApJ*, **786**, 58

Murray, N., Chiang, J., Grossman, S. A., & Voit, G. M. 1995, *ApJ*, **451**, 498

Nair, A., & Vivek, M. 2022, *MNRAS*, **511**, 4946

Netzer, H., Shemmer, O., Maiolino, R., et al. 2004, *ApJ*, **614**, 558

Netzer, H., & Trakhtenbrot, B. 2007, *ApJ*, **654**, 754

Nguyen, N. H., Lira, P., Trakhtenbrot, B., et al. 2020, *ApJ*, **895**, 74

Ogle, P. M., Cohen, M. H., Miller, J. S., et al. 1999, *ApJS*, **125**, 1

Páris, I., Petitjean, P., Ross, N. P., et al. 2017, *A&A*, **597**, A79

Páris, I., Petitjean, P., Aubourg, É., et al. 2018, *A&A*, **613**, A51

Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, *JMLR*, **12**, 2825

Petley, J. W., Morabito, L. K., Rankine, A. L., et al. 2024, *MNRAS*, **529**, 1995

Quera-Bofarull, A., Done, C., Lacey, C. G., Nomura, M., & Ohsuga, K. 2023, *MNRAS*, **518**, 2693

Rankine, A. L., Hewett, P. C., Banerji, M., & Richards, G. T. 2020, *MNRAS*, **492**, 4553

Reichard, T. A., Richards, G. T., Hall, P. B., et al. 2003, *AJ*, **126**, 2594

Richards, G. T., Vanden Berk, D. E., Reichard, T. A., et al. 2002, *AJ*, **124**, 1

Richards, G. T., Kruczak, N. E., Gallagher, S. C., et al. 2011, *AJ*, **141**, 167

Richards, G. T., McCaffrey, T. V., Kimball, A., et al. 2021, *AJ*, **162**, 270

Rivera, A. B., Richards, G. T., Gallagher, S. C., et al. 2022, *ApJ*, **931**, 154

Runnoe, J. C., Shang, Z., & Brotherton, M. S. 2013, *MNRAS*, **435**, 3251

Schmidt, G. D., & Hines, D. C. 1999, *ApJ*, **512**, 125

Schulze, A., Schramm, M., Zuo, W., et al. 2017, *ApJ*, **848**, 104

Shemmer, O., & Lieber, S. 2015, *ApJ*, **805**, 124

Shen, Y., Brandt, W. N., Richards, G. T., et al. 2016, *ApJ*, **831**, 7

Shen, Y., & Ho, L. C. 2014, *Natur*, **513**, 210

Silk, J., & Rees, M. J. 1998, *A&A*, **331**, L1

Spergel, D. N., Bean, R., Doré, O., et al. 2007, *ApJS*, **170**, 377

Sprayberry, D., & Foltz, C. B. 1992, *ApJ*, **390**, 39

Stocke, J. T., Morris, S. L., Weymann, R. J., & Foltz, C. B. 1992, *ApJ*, **396**, 487

Temple, M. J., Matthews, J. H., Hewett, P. C., et al. 2023, *MNRAS*, **523**, 646

Teng, S. H., Brandt, W. N., Harrison, F. A., et al. 2014, *ApJ*, **785**, 19

Thatte, N. A., Clarke, F., Bryson, I., et al. 2016, *Proc. SPIE*, **9908**, 99081X

Trump, J. R., Hall, P. B., Reichard, T. A., et al. 2006, *ApJS*, **165**, 1

Urrutia, T., Becker, R. H., White, R. L., et al. 2009, *ApJ*, **698**, 1095

van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, *CSE*, **13**, 22

Vanden Berk, D. E., Richards, G. T., Bauer, A., et al. 2001, *AJ*, **122**, 549

Virtanen, P., Gommers, R., Burovski, E., et al. 2020, *NatMe*, **17**, 261

Voit, G. M., Weymann, R. J., & Korista, K. T. 1993, *ApJ*, **413**, 95

Wang, C., Luo, B., Brandt, W. N., et al. 2022, *ApJ*, **936**, 95

Weymann, R. J., Morris, S. L., Foltz, C. B., & Hewett, P. C. 1991, *ApJ*, **373**, 23

Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, *AJ*, **140**, 1868

Yang, G., Brandt, W. N., Vito, F., et al. 2018, *MNRAS*, **475**, 1887

Yong, S. Y., King, A. L., Webster, R. L., et al. 2018, *MNRAS*, **479**, 4153

York, D. G., Adelman, J., Anderson, J. E. J., et al. 2000, *AJ*, **120**, 1579

Yuan, M. J., & Wills, B. J. 2003, *ApJL*, **593**, L11

Zhou, H., Wang, T., Wang, H., et al. 2006, *ApJ*, **639**, 716