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ABSTRACT

We consider a stopping problem and its application to the decision-making process regarding the optimal
timing of organ transplantation for individual patients. At each decision period, the patient state is inspected
and a decision is made whether to transplant. If the organ is transplanted, the process terminates; otherwise,
the process continues until a transplant happens or the patient dies. Under suitable conditions, we show that
there exists a control limit optimal policy. We propose a smoothed perturbation analysis (SPA) estimator
for the gradient of the total expected discounted reward with respect to the control limit. Moreover, we
show that the SPA estimator is asymptotically unbiased.

1 INTRODUCTION

This paper is motivated by a kidney transplantation decision-making problem. We consider an end-stage
kidney disease (ESKD) patient with a directed living-donor. We assume that the patient is always eligible
for transplantation (before they die), and the living-donor organ has a fixed quality and is always available
to the patient over the entire decision process. At each decision period, for example, every week or month,
the patient health state is inspected and updated, and the decision is whether to transplant depending on the
patient health. If the decision is to transplant, the patient receives a ferminal post-transplantation reward
summarizing all the short-term and long-term effect of the transplantation, and the process terminates;
otherwise, the patient receives a infermediate pre-transplantation reward, and the process continues until a
transplantation happens or the patient dies. The goal is to find a policy to maximize the total discounted
expected reward. Commonly-used rewards include total discounted expected life years or total discounted
quality-adjusted life years (QALYs) (Prieto and Sacristan 2003).

We propose a Markov decision process (MDP) model (Bertsekas 2020) to study this problem, which
falls into a special class of MDP models called optimal stopping problems. This type of MDP model has
been applied to both liver transplantation (Alagoz et al. 2004; Alagoz et al. 2007b; Alagoz et al. 2007a;
Alagoz et al. 2010; Kaufman et al. 2017; Batun et al. 2018) and kidney transplantation (David and Yechiali
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1985; Bendersky and David 2016; Fan et al. 2020; Ren et al. 2022). Previous work focuses on proving
the existence of control limit-type optimal policies. Then, solving MDP problems could be translated into
finding an optimal partition of the state space, where each region in the partition is assigned an action; in
the scalar-state case, instead of a partition, there is just a single threshold or control limit. Control limit-type
policies are important even if they are suboptimal, because they are easy to implement. In general, however,
finding an analytic expression for the optimal control limit is difficult. Dynamic programming, one of the
most powerful methodologies to solve MDP problems, suffers from the “curse of dimensionality” when
the state space or action space is large or even uncountable. In this case, gradient-based optimization
methods offer an alternative approach. Moreover, previous work, such as Ren et al. (2022), focuses on the
setting of finite state space, while gradient-based methods can be used to solve problems of continuous
state spaces. To apply gradient-based optimization methods, one has to compute the gradient of the total
expected discounted reward with respect to (w.r.t.) the control limit, where finding an analytic solution is
also hard.

In this paper, we focus on estimating the gradient of the total expected discounted reward with respect
to the control limit through smoothed perturbation analysis (SPA), a simulation-based method. This is the
initial phase of optimization, and fully solving the entire optimization problem will be the focus of future
research. The rest of the paper is organized as follows. Section 2 formulates the individual patient organ
transplantation problem as a discrete-time, infinite-horizon, continuous state space MDP. In Section 3,
under suitable conditions, we show the existence of the control limit optimal policy. In Section 4, we
propose an SPA estimator (Fu and Hu 1997) for the gradient of the total expected discounted reward w.r.t.
the control limit. Moreover, we show that the SPA estimator is asymptotically unbiased. Section 5 reports
simulation results illustrating the effectiveness of the SPA estimator. The last section offers conclusion and
future research directions.

2 PROBLEM SETTING

In this section, we introduce components of the MDP model. The set of decision periods is the natural
numbers N={0,1,2,--- }.

Denote the health state of the patient by h, € Sy := [0,H], where a larger value implies worse health.
We use an interval [Hp,H], Hp € (0,H), to represent the death of the patient, i.e., if the patient state A, is
greater than Hp, the patient is deceased. (Representing death as an interval rather than a singleton enables
the stochastic kernel for the patient state Markov chain to be expressed using density functions, enhancing
clarity in deriving structural results.)

Denote the post-transplantation state by P. The MDP will transition into the absorbing state P if the
transplantation happens. The state space of the MDP is . = Sy | J{P}, i.e., at each period n, the state of
the MDP s, is either a scalar patient state /,, or the post-transplantation state P.

Denote the action by a,. For each n € N, a, € o = {W, T} where </ is the action space including

*  W: wait for one more period;
e T: accept the kidney for transplantation.

The set of state-action pairs % := {(s,a) | s € ¥, a € o/} consists of four mutually disjoint regions, i.e.,
H =L, Ki, where Ky = Sy x {W}, Ky =Sy x {T}, K3 = (P,W), K4 = (P, T).
The Dynamics of the MDP is defined as follows:

e If action W is taken, the transplant doesn’t happen, and the patient will wait until the next decision
period. The patient state evolves according to the Markov transition kernel H(-|-) : (Sy) X Sy —
[0, 1], where A(Sy) is the collection of Borel subsets of Sy. Specifically, given any current patient
state h, € Sy and any B € %(Sy), at the next period, the patient state /,; will take a value in B
with probability (w.p.) [z H(dh|h,), where H(dh|h,) is a probability measure on measurable space
(St B (Sn))-
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e The transition kernel H satisfies the property that once the patient state enters [Hp,H], i.e., the
patient dies, they will stay in [Hp,H|, and the decision process terminates. In other words, [Hp,H|
is an absorbing terminal inverval, i.e., j,g) H(dh|h,) =1, Yh, € [Hp,H].

e Ifaction T is chosen, the state transitions into the absorbing state P, the decision process terminates.

The general transition kernel S : () x # — [0, 1] of the MDP is summarized as follows: for any n € N,
B € A(Su), hn € Su,

S(snt1="P | sn =P.an) =1,
S(sns1 € B | 55 = sty = W) = /BH(dh\hn),
S(sp+1 =P | sp=hp,a,=T) = 1.

Reward functions are defined as follows: given patient state h, € Sy,

» If action W is chosen, an intermediate pre-transplantation reward c(h,) is granted for being alive
for one period, where c(-) : Sy — Ry;

» Ifaction 7 is chosen, the patient receives a terminal post-transplantation reward r(h,) that evaluates
both the short-term and long-term effect of the transplantation, where r(-) : Sy — R..

For h, € [Hp,H], i.e., when the patient is deceased, we set c(h,) = r(h,) = 0. The one-stage reward of the
MDP g(-,-) : Sy X & — R is given by

_Jr(h) a=T,
gha) = {c(h) a=W.

The objective is to find a stationary policy 7 : Sy — &/ maximizing the total discounted expected
reward (also known as the value function)

Vi(h) = Eﬂ(i AXg(h, (b)) |ho = h), Yh € Sy,
k=0

where A € (0,1) is a discount factor. We define the maximum of the total discounted expected reward

V(h) = maxVg(h), Yh € Sy,
nell

where I1 is the set of stationary policies.

3 CONTROL LIMIT POLICY

In this section, we will show the existence of a control limit optimal policy under suitable conditions,
which further expand upon the results of Alagoz et al. (2004) to an MDP with a continuous state space.
First, we will present several assumptions and preliminary results.

Assumption 1 Both reward functions ¢ : Sy +— R, and r: Sy — R, are continuous and nonincreasing.
It follows that for any fixed a € <7, the one-stage reward g(s,a) is nonincreasing and continuous on

.. Moreover, g is bounded on .%#". Because of boundedness of g, for any policy 7, its value function
Vz(h) is bounded on Sg.

Definition 1 (Strong continuity or strong Feller property) Let X,Y by Borel spaces. A stochastic kernel
T:B(X)xY > [0,1] is said to be strongly continuous if the function y — [v(x)T(dx|y) belongs to C,(Y),
the set of bounded continuous functions on Y, whenever v € M,,(X), the set of bounded measurable functions
on X.
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To establish the Bellman optimality condition and value iteration algorithm, we first need to show the
strong continuity of the kernel S. We assume the following regularity conditions:

Assumption 2 For any i € Sy, the measure H(:|h) admits a density fy(-|h) : Sy — R, satisfying the
following conditions:

« For any fixed i’ € Sy, fu(H'|h) is continuous in A.
*  fu is uniformly bounded, i.e., there exists M > 0 such that for any (4',h) € [0,H]?, fu(h'|h) < M.

Lemmal The transitionkernel Sis strongly continuous, i.e., forevery u € M, (), v(s,a) = [qu(s")S(ds'|s,a)
is continuous and bounded on 7.

Proof. It is enough to show that S is strongly continuous on K; = [0,H| x {W}, because S(:|s,a) is a
probability mass on some single absorbing state when (s,a) € K;, i =2,3,4. Sincea =W when (s,a) € K, we
will drop dependence on a in v(s, a) for simplicity. It suffices to show that v(h) = [cu(s')S(ds'|s =h,a=W)
is continuous on [0,H] for any u € Mp(.#). We can write

v(h) = /0 LB (K ). (1)

v is bounded, since the measure H(dh'|h) is finite. Then, by Assumption 2, (1) can be rewritten as

/ (Y E (K ) = / w0 fa )
0 0

Take any sequence {h,} such that h, — h as n — co. Since fy(/#'|h) is continuous in & for any 4’ € [0, H],
u(h) fu(W'|h,) — u(h') fu (W' |h) as n — 0. Since both u and fy are bounded, by the dominated convergence
theorem,

H H
/0 u(H) fea (|l AR — /O w(H) fua (1 |R) K as n— oo,

Therefore, v(h) is continuous in . O
Then, by Theorem 4.2.3 and Lemma 4.2.8 in Herndndez-Lerma and Lasserre (1996), we can establish

the Bellman’s optimality condition and value iteration algorithm.

Theorem 1 The optimal value function V (k) is the solution of the optimality equation:

H
V(h) = min{r(h),c(h) + A / V(K )H(dK |h)},Vh. )
0
Moreover, the sequence {V;} generated by value iteration

H
Ve(h) = min{r(h), c(h) + A /O Ve (1 YHI(dH 1)},
Vo(h) = 0,Vh,

is a monotonically nondecreasing sequence, i.e., V,(h) < V,11(h), Vh € Sy, k € N and converges pointwise
toV,ie,V, V™

In reliability theory, the increasing failure rate (IFR) property of a probability distribution is a widely-
used concept to depict the deterioration of a system (Ross 1996). For a distribution function F with a
density or mass function f, we say that F is IFR if its failure rate function defined by f(r)/F (t), where

F :=1—F is the complementary (or tail) distribution function, is nondecreasing as a function of ¢. For
our purposes, we define the IFR property for the transition kernel of a Markov chain.
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Definition 2 Let T be a stochastic kernel on (£[0,X],[0,X]). We say that T has the IFR property if for
every xo € [0,X], b(x) := fx)é T(dx|x) is nondecreasing in x.
Assumption 3 The transition kernel H has the IFR property.

Assumption 3 has the intuitive explanation that as the patient’s health deteriorates, the likelihood of
further deterioration increases. The following lemma in Douer and Yechiali (1994) provides a necessary
and sufficient condition for Definition 2.

Lemma 2 The stochastic kernel T on space (#[0,X],[0,X]) is IFR if and only if for any bounded,
nonnegative and nondecreasing function v : [0,X] — R*, I(x) = fg( v(x)T(dx|x) is also nondecreasing.

The monotinicity of the value function V can be easily shown from (2) in Theorem 1 and Lemma 2.
Theorem 2 Under Assumptions 1 through 3, the value function V is nonincreasing on Sy.

Theorem 2 implies that the patient’s overall benefit, e.g., the total QALYs, will not increase if the
patient health deteriorates.

Theorem 3 provides sufficient conditions for the existence of a control limit optimal policy. Specifically,
Theorem 3 shows that there exists an optimal policy 7* that partitions Sy into two intervals:

{W if h< 0",

7 (h) = 3)

T ifh> 6",

where 8* is called the optimal control limit (or threshold). The optimal action to take depends only on
whether the state / is greater than or less than the control limit 8%, and solving the MDP problem boils
down to finding this optimal threshold. To prove Theorem 3, we need the following lemma (Alagoz et al.
2007b) and several additional assumptions.

Lemma 3 Let v be a bounded, nonnegative, and nonincreasing function. If the stochastic kernel T defined
n (4[0,X],[0,X]) is IFR and admits a uniformly bounded density function f :[0,X]?> — R, then the
following results hold: for any x; < x»,

o Jo v (f(xler) = f(xlxa))dx = vxr) fo! (f (xlxr) = f(xlxa) s
o LV ) = fxlx))dx = v(a) [ (f () = £(xlx))dx

Proof. ~ We only provide a proof for the first part, as the second part can be proved in a similar way.
First, we consider the case that v is simple function, i.e., v(x) = Y., vi14,(x) for some n, where 14, is the
indicator function of set A; and {A;}i—1,... , is a partition of [0,x;]. v nonincreasing allows us to take each
A; to be an interval. Assume that vi > v, > --- >v,. Then,

[ vt — pisbe)de= Yo [ (o) - s
= /Al(f(x|x1) f(x|x2))dx+ Zv,/ (x|x1) = f(x]x2))dx
>, /A 1(f(x|x1) f(x|x2) dx+2v, / (xlx1) — f(x[x2))dx

> vy [ () = flaben)
=y [ (o) = f ()

For any general nonincreasing function v, we can take a monotone sequence of simple functions {v,} such

that v, /v pointwise. Since f is uniformly bounded, the result follows from the dominated convergence
theorem. ]
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Assumption 4 For any h; < hy and hy,

Hp Hp
/ Ju(hlhi)dh < / fu(h|hy)dh.
ho ho

Assumption 4 takes a similar form as the IFR property and can be interpreted similarly, but Assumption 4
is neither a sufficient nor a necessary condition for the IFR property of H.

Assumption 5 For any i < hy,

r(hi) —r(ha) H H
W <A </HDfH(h|h2)dh_/HDfH(hhl)dh) '

Assumption 5 has an intuitive explanation that, as the patient health becomes worse, the increment of
the probability of death during waiting is greater than the marginal reduction in the transplantation reward.
Alagoz et al. (2004) presents empirical evidence that Assumptions 4 and 5 are applicable in the context
of living-donor liver transplantation.

Theorem 3 Under Assumptions 1 through 5, there exists a control limit optimal policy taking the form of

(3).

Proof. By contradiction, suppose that for some h; < hy, T € a*(hy), but a*(hy) = W, where a*(h) is
the set of optimal actions at 4. Then, we have

Hp
r(h) > c(h) + A /0 V) fia (K| )i,
r(hz) < C(hz) —I—A/OHDV(h/)fH(h/‘hz)dh/.
Then,
F(n) — r(hs) > e(hy) - e(hy) + A /OHDV<h’><fH<h’|h1> — fia (K |))dI
=9 V) 1) — o8 o)l 2 hH”vw')(fH(h’ml) — il o))l
> AV ) [ G )~ f )t
H H
= V() ( | fabimyan— [ fH<h\h1>dh> ,

where the second inequality follows from Assumption 1, and the third inequality follows from Lemma 3.
By Assumption 5, we have V(hy) < r(hy). Since a*(hy) =W,

r(h2) <V(h2) <V(h1) <V(m),
which is a contradiction. Therefore, for any h; < hy, T € a*(h;) implies that T € a*(hy). O

Theorem 3 has an intuitive explanation that the patient should be transplanted if and only if their health
status is worse than some threshold (recall that a larger patient state 4, implies the worse health status).
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4 SMOOTHED PERTURBATION ANALYSIS (SPA) ESTIMATOR

In this section, we propose an SPA estimator for the gradient of the value function w.r.t. the control limit.
Throughout this section, we suppose that a control limit policy with control limit 8, denoted by 7y, is
implemented. For a fixed initial condition Ay € Sy, let V(0) be the value function associated with mg and
assume that V(0) is differentiable w.r.t. 6. We want to estimate the gradient of V(6) w.r.t. 6.

We denote by h(0), Vk the patient state at period k, under control limit policy my. For fixed n € N
and hy € Sy, we consider the following sample performance
n
va(0) =Y A*g (e, o (hi)),

k=0

i.e., the total discounted reward until period n under policy my. Notice that

r(h) h>0,

&l 7o () {c(h) h< .

Given a nominal sample path under policy g, suppose that a perturbation of A8 is introduced to construct
a sample path under policy g g, called the perturbed sample path. An infinitesimal perturbation analysis
(IPA) estimator comes from taking the derivative of each g(h,mg(hy)) while assuming that the event
{h, # P, h, < 0} is unchanged, i.e., the perturbation A6 results in no change in the transplant decision
(thus there is also no change in the sample path). Under this assumption,

dhi.(6)
de

=0wp. 1,

and

dg(hg,mg(hi))  dg(hi, 7o (hi)) | dg(hu, 7o (hi)) dhy(0)
do 00 oh do
dg (i, o (i)
00

=0wp. 1,

because for fixed h, g(h,mg(h)) is a function of 6 with only one discontinuity of zero measure.

However, the IPA estimator does not capture the discrete changes that occur, for example, when the
action in some period changes from “transplant” in the nominal sample path to “wait" in the perturbed
sample path. We use SPA to calculate discrete changes caused by the change of the action. Specifically, by
conditioning on suitable quantities, we compute the conditional expectation on the change in v,, and take
A6 — 0. In this MDP model, discrete changes may potentially occur only at M(n) =min{i <n:h; > 0},
i.e., the period when a transplantation happens in the nominal sample path. Conditioned on M(n), the
event {fyy,) > 68} is equivalent to {c, > 0}, where @, := hyy(,) — 0. The action in the perturbed sample
path alters if &, < A6. Conditioned on Ay (,)_, the SPA estimator is expressed as

va(0)\ .
( 56 )SPA_AleerOE(Av,,(e)l{a,,§A9}|hM(n)_1)/A9

— lim E(A <A P(oy, < A A
Jim E(Ava(8)[ 0 < A8yt 1 )P (0w < AB|hyy()-1)/ A,

where

P(0t < AB|hyy(ny—1) = Pty < AB[0t, > 0, hpgn)—1)
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=P(0 < hyg(ny < 0+ A0 |hpg()—1) /P(agin) = Olhpg(my—1)

o e H(dh|hpg(ny—1)
g H(dh|hpyny—1)

Therefore,

0y
lim P(0t, < AB|hy)1)/AB = JH( astn—1)
AB—0 Jo H(dh|hM(n),1)

The term limag 0 E(Av,(0)[0t, < AB,hy(,)—1) is the extra accumulated reward caused by the change of
the action, which is given by

lim E(Av, ()| < A8, hyy 1) =AM (r(0) — c(0)) —E ( Y Alg(hi, mo(hi)) | hwgny = 9—) .
A6—0 i=M(n)+1
The final SPA gradient estimator is given by

9vn(0) = fH(e‘hM(")*l) M(n) () —c — Y i (1. . .
( d6 >SPA_f(fH(dh]hM(n)l) <7L (r(6) —c(8)) E(i_M%)Hlg(hl,ire(hl))|hM(n)_9 ))

Now we formally show that (%)S | is an asymptotically unbiased estimator, i.e.,
P

Idvu(0) av(0)
E( 30 )SPA—> 59 BSnre

First, we show that (%) is an unbiased estimator of %”9@).
SPA

Theorem 4 Under Assumptions 1 and 2, (avsée)) 18 an unbiased estimator of W, i.e.,
SPA

dva(6)\ _ OE(v.(6))
E( a0 )SPA_ d6 .

Proof. ~ We define the following events: for fixed A0,
Ar={hi(0) <O orhi(6)>0+A60,i=1,--- k}, Vk,
By =AYy,

i.e., Ay is the event that a perturbation of size A@ doesn’t cause a change in the transplant decision until
time k. Then, we can write
aE(Vn(G)) : E((VH(G+A6)_Vn(6))1{An}) E((Vn(9+A6)_Vn(6))l{Bn})
— % — lim + ’
20 A0 A6 A6

where the first term is zero, because the perturbed sample path and the nominal sample path are the same,
conditioned on the event A,. We write the term E((v,(0 +A6) —v,(0))1{B,}) as

E(E((va(6 +A6) —v4(6))1{ B} |hyg(n-1)))-
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Note that the event B, is equivalent to the event {M(n) is non-empty, hy(,)(0) > 0, hyy()(8) < 6 +AB}.
Then,
E(vi(0 +A0)1{By }Hhy(n)—1) = E(va(0 +A0) | Aag(n)—1, 1{Bn })P({By } g (n)-1)
= E(Vn(e —|—A9) ‘hM(,,O_] s I{Bn})
XP(9<hM()<9+A9‘th 1)

0+A0
< rnaxh{c }/ Ju(hlhyn—1))dh

MAO maxh{c( )v (h)}
= ) ’

where the first inequality follows from the fact that v,(0) < Y A'max,{c(h),r(h)}, and the sec-
ond inequality follows from Assumption 2 that fy is uniformly bounded by M. Therefore, E(v,(6 +
AG)I{B,,}\hM(,,, 1))/A0 is uniformly bounded for any A@. By the dominated convergence theorem,

E(va(60 +A6)1{B,}) _ lim E E(vn(6 +A6)1{ B }|hy(n)-1)
AB—0 AO A0 A6

_ ( i E(v,(6 +A9)1{Bn}|hM(n)_1))

A6—0 AO

r ( lim P({Bn Hhpr(n)-1)

AO—0 AO

E( fea(8hygny—1)

lim E(v,(0 + A8)[1{B,}, hiys()
 lim E0,(0-+ A0)1(B,). ) )

dhrhM )
M

hi) +AM"e (0 )+E<

Similarly, we can derive

- EOn@OUB.Y) _ o ( faOlhwe ) ()
Y E(fg’H(dhth(n)l)x< Y, () +ATrO) | ).

It follows that

E((va(6 +A8) — v, (8))1{B,}) E( far([yg(my—1)
Jo H(dhlhyg) 1)

x(AM<”>(c(e)—r(e))+E(_ Y /lig(hi,ne(hi))lhmn)=9_>>-

T
Aéglo AO

Therefore, we conclude that E ( ava”i((f)) = %”9@). O
SPA

Theorem 5 Under Assumptions 1 and 2, (avgée))sm is an asymptotically unbiased estimator, i.e.,

. avn(e) . 8V(6)
'}E;IC}QE< ae >SPA B 86 .
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Proof.  Note that lim, . E(v,(0)) = E(lim,—v,(0)) = V(0) because the sequence of random variables

{Vn}nen is uniformly bounded and converges pointwise. Since we already proved E (%) o %
in Theorem 4, it remains to show that lim IE(v4(0))  dlim, . E(v,(0))
n—e 90 N a0 '

i.e., passing a derivative through a limit. By Theorem 8.2.3 in Bartle and Sherbert (2010), it suffices to

show that <%"6(9))) N is a uniformly convergent sequence on Sy. Note that
ne

JEv,(8)  dEv,—1(0)| _ A 0Eg(hy, 7 (hy))
26 d0 B J0 '
It suffices to show that w is bounded, which can be shown similarly as in Theorem 4. We write
dEg(hy, mg(hy)) _ m Eg(h,(60+AB), mg(h, (6 +AB))) —Eg(h,(6),7e(he(0)))
0 A§—0 AB '

Similar to the proof of Theorem 4, we can write Eg(h,(6),mg(h,(6))) as
Eg(7(6), 79 (h1n(0))) = E(E(g (7 (6), o (1n(6)))1{Bn} [ hrs(m)-1)), where
E(8(7n(8), 70 (hn(6)))1{ B} Fngn)—1) = PO B }HIrag ()1 JE(8 (hn(6), 700 (hn (0))) 1{ B} Fag () —1)
0+A6
< max{c(h).r(w)} | " gy )
< AGMm;lx{c(h),r(h)}.
Similarly, Eg(h,(6 4+ A0),mg(h,(0 +A6))) < AOMmax;{c(h),r(h)}. It follows that
m Eg(hn(e —l—A@), 7179(/1,,(9 +A9))) +Eg(hn(6)v ﬂe(hn(e)))

OEg (hn, 79 (hn)) | _ ..
<1 =2M h),r(h
‘ a0 SA620 AO m]?x{c( ),r(h)},
which is independent of 8. Therefore, aE;"e(e) — aEvg‘el(e) ' converges uniformly to zero, and (W)nm
is a uniformly convergent sequence on Sy. Thus we can pass the derivative through the limit. O

5 SIMULATION EXAMPLE

In this section, we present a simple simulation example to demonstrate the performance of the SPA
estimator. We consider an MDP where the decision period is half a year, and the patient state &, takes
values in Sy = [0,1]. Suppose that the control limit policy 7y is implemented for some 6 € (0,1). For
any n, conditioned on &, € [0, 6], h,+ is uniformly distributed over [h,,1], i.e., fu(#'|h) =1{1 > K >
h}/(1—h), Yh,h' € ]0,1]. Therefore, the patient health never improves, and it is straightforward to check
that fiy satisfies the IFR property. The rewards are defined in terms of expected life years. We define the
intermediate pre-transplantation reward c(h) = 0.5 (years), and the terminal post-transplantation reward
function r(h) = 8(1 —h) (years). Then, the SPA estimator is given by

9vn(0) = Su(Blhym)-1) M) (1(0) — ¢ — Y iolh. . .
< 00 >SPA - f(g{H(thM(n)_]) (7L (r(6) (0))—E <,-_M%)+ll g(h,,ne(h,))]hM(,,) =0 ))

1
T 1-6
1

= ﬁ(lM(ﬂ)(g —86-0.5) —E(AM"FIg(1 — Pty 1) gy = 67)),

(M) (1(8) — €(8)) ~ E(AM™* (g1 hagiy = 67))
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Table 1: Simulation results for sensitivity of value function V(0) w.r.t. 6 (standard errors in parentheses).

Ren, Fu, and Marcus

N |6 SPA FD(§ =0.01) | FD(§ =0.05) | FD(§=0.1)
0.2 | —3.199(0.242) | —8.251(5.394) | —4.786(1.811) | —2.065(0.871)
102 [ 0.5 | —2.668(0.233) | —5.523(3.182) | —2.560(1.076) | —3.512(0.780)
0.8 | —1.313(0.225) | —3.083(1.411) | —1.326(0.552) | —0.205(0.242)
0.2 | —3.371(0.023) | —3.281(0.349) | —3.503(0.155) | —3.253(0.104)
10* [0.5 | —2.997(0.023) | —3.120(0.265) | —2.991(0.109) | —2.920(0.071)
0.8 | —1.515(0.022) | —1.306(0.114) | —1.144(0.043) | —0.527(0.028)
0.2 | —3.403(0.002) | —3.446(0.036) | —3.346(0.016) | —3.310(0.010)
105 [0.5 | —3.019(0.002) | —2.948(0.026) | —2.945(0.011) | —2.867(0.007)
0.8 | —1.517(0.002) | —1.413(0.011) | —1.106(0.004) | —0.527(0.003)

which we compare with the symmetric finite difference (FD) estimator

<8vn(9)> w049 (69
FD

26 1) ’

where 0 is the size of the symmetric difference. We compute both derivative estimators at 6 =0.2,0.5,0.8
and test with 6 = 0.01,0.05,0.1 and number of replications N = 10%,10*,10°. Simulation results are shown
in Table 1 and Figure 1. We have the following observations:

* For a small number of replications, SPA has much smaller bias and standard error (SE) than FD.

* FD at 6 =0.1 has a large bias that can be reduced at the expense of variance.

 FD at 6 =0.01 is almost unbiased but has much larger variance than SPA.

* For a fixed number of replications, the standard error of the SPA estimator is almost identical at
different 0, whereas the precision of the FD estimator is proportional to the derivative.

6 SUMMARY AND FUTURE RESEARCH

We proposed a continuous-state MDP model to study the optimal timing of organ transplantation. Under
suitable conditions, we proved that there exists a control limit optimal policy. We derived an SPA estimator
for the gradient of the value function w.r.t the control limit, which is useful in computing the optimal
control limit by gradient-based simulation optimization. Furthermore, we proved that the SPA estimator
is asymptotically unbiased and demonstrated its effectiveness using a simulation example. Solving for the
optimal control limit through gradient-based optimization methods will be the focus of future research.
Another future research direction is to consider the situation where the donor organ’s quality and availability
may vary over time. Finally, because implementing the SPA estimator requires additional simulation beyond
the nominal sample path, comparing it with other unbiased gradient estimators, for example, the generalized
likelihood ratio (GLR) method proposed in Peng et al. (2018) and the measure-valued differentiation (MVD)
method in Heidergott and Peng (2023), is an important topic warranting further investigation.

N = 102 N = 10* N =108

6 04 0.04
5
4 0.3 0.03
3
2 0.2 0.02
1
ols 0.1 0.01
-1 = s
z ° ° IV (9)
-3 oy
4 -1 1 a0
-5 2 2
-6
-7 -3 -3
-8
9 -4 B

0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 08 0

Figure 1: Simulation results for the sensitivity of the value function V(0) and their standard errors (SEs).
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