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Influence operations are large-scale efforts to manipulate public opinion. The rapid detection and
disruption of these operations is critical for healthy public discourse. Emergent Al technologies may
enable novel operations that evade detection and influence public discourse on social media with
greater scale, reach, and specificity. New methods of detection with inductive learning capacity will
be needed to identify novel operations before they indelibly alter public opinion and events. To this
end, we develop an inductive learning framework that: (1) determines content- and graph-based
indicators that are not specific to any operation; (2) uses graph learning to encode abstract signatures
of coordinated manipulation; and (3) evaluates generalization capacity by training and testing models
across operations originating from Russia, China, and Iran. We find that this framework enables strong
cross-operation generalization while also revealing salient indicators-illustrating a generic approach
which directly complements transductive methodologies, thereby enhancing detection coverage.

Manipulation of public opinion by state-backed entities is an ongoing concern. Several influence operations (I0)
campaigns intended to shape geopolitical discourse have been identified on various platforms-and particularly
on social media'™2 For example, IO campaigns designed to promote fake news, advance nationalistic narra-
tives, and exacerbate political tensions have been detected across social media platforms including Twitter">1112,
Facebook® %13 Reddit>!%, and Gab®'"®, among others. Identifying and disrupting such campaigns is an ongoing
challenge, in large part because positive attribution of foreign influence is time consuming and does not easily
scale within or across platforms. Additionally, the rapid development and adoption of generative AI may enable
IO to automate behaviours previously achievable only by human actors, disguising activity and enabling novel
strategies which have greater efficacy, scale, reach, and specificity. Most methods of detecting IO to this point
have relied on identifying and indexing specific indicators of previous campaigns, making these methods inher-
ently transductive. While such methods will continue to play an important role in detecting and constraining
IO activity, identifying increasingly novel and sophisticated IO campaigns will require inductive methods which
can generalize from previous observations. We present an inductive learning framework, depicted in Fig. 5, that
addresses this challenge by combining data censorship, graph learning, and feature attribution to identify models
and indicators that can generalize across operations and across time.

Previous work in detecting influence operations using machine learning has successfully identified a variety
of IO campaigns and activity. Broadly speaking, there have been two main approaches: content-based and graph-
based. Some examples of content-based approaches include: Smith et al.'®, who used narratives derived from
topic models to classify Twitter IO accounts in French and English speaking networks; and Alizadeh et al.'” who
used post text and URL information to classify Twitter posts as belonging to IO or not. Examples of graph-based
approaches include: Monti et al.', who used graph networks (GNs) to classify URLs as fake news or not; Vargas
et al.’®, who used graph data to classify IO accounts on Twitter which display coordinated behaviour; and Smith
et al.'s, who used a network discovery algorithm followed by causal impact estimation to understand the role of
individual accounts in propagating IO narratives. Related research not specific to IO includes influential node
detection?*?!, which determines the most important nodes with respect to information propagation.

A previously distinct line of research in cybersecurity, kill chain analysis**~?*, focuses on identifying and
disrupting threat actors at each phase of their operation. This approach formalizes various sequences of tactics,
techniques, and procedures (TTPs) which IO and other cybercrime operations use to achieve their objectives.
In particular, online operations kill chains?? enable the development of technical indicators which are signatures
of cybercrime operations at various phases. These indicators can be used to detect future operations, identify
abstract themes across campaigns, analyze trends, and compare TTPs across different operations and time
periods.
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These lines of research, as well as reports directly from social media companies, have elucidated a wide range
of IO targets, objectives, strategies, and tactics. Many tactics involve the spread of malicious URLS’, state-backed
media, mis/disinformation®, and particular narratives (e.g., pro-Russian narratives surrounding the Ukrainian
war®®%); other tactics include near-simultaneous link sharing®, troll farming’, mass promotion of particular
narratives®”!'6, mass reporting of accounts and content”’, and mass spamming or “brigading” of specific pages,
posts, and users’. Identifying these tactics has enabled well-resourced social media companies such as Twitter,
Meta, and Google to automate the detection of new campaigns that reuse TTPs on their respective platforms.
This automation has in turn enabled rapid detection and response to coordinated IO activity.

Automated detection has greatly constrained the preferred tactics available to IO on relatively well-regulated
platforms such as Facebook and Twitter. For example, networks of coordinated and near-simultaneous link shar-
ing (< 1 min. apart) are now quickly and routinely removed from these platforms’'"*". However, this conspicu-
ous behaviour persists as an IO tactic due to the fact that social media ranking algorithms up-rank content with
higher engagement, with immediate engagement having an outsized effect on relative ranking and ultimate reach
of content®. Hence, to artificially amplify specific narratives during critical periods, IO preferentially coordinate
on very short timescales, even at risk of being detected. So while near-simultaneous coordination may be largely
curtailed by platforms or even abandoned by IO in the future, coordination on short timescales is expected to
continue. For particularly sophisticated IO networks, one would expect that future coordination patterns would
mimic that of authentic users.

Fake account detection”®-!! has also greatly improved. In response, IO have tried to obviate detection by
crafting realistic profiles that mimic authentic users in a process called persona building. The process of persona
building has presumably been a manual effort to this point, as smaller numbers of these meticulously crafted
fake accounts are observed as part of any IO compared to the much larger numbers of less sophisticated “spam”
accounts (though part of this discrepancy may be a survivorship bias). A common approach to persona build-
ing is to mimic existing accounts that promote narratives favorable to the IO objective, such as inflammatory
political content promoted by Russian and Iranian IO campaigns leading up to the 2016 and 2020 U.S. presi-
dential elections'"?”. This process of mimicry requires significant investment of human effort, as this approach
requires the generation of novel content such as text and images. However, it is not difficult to imagine that in
the near future a single IO operative could automate the persona building process using novel Al tools to farm
a large number of fake accounts. Indeed the use of GAN produced profile pictures'®* and deep fakes®® has been
reported. While the automated detection of near-simultaneous coordination and fake accounts will push cam-
paigns towards less efficacious and more costly approaches (Fig. 1), they may be able to compensate with greater
scalability, novelty, and specificity enabled by AL

While mainstream platforms have the resources and desire to improve regulation, alternative platforms are
less equipped, and possibly unwilling, to follow suit. Exploiting this situation, the Russian origin Secondary
Infektion campaign from 2014-2020 made use of over 300 platforms including WordPress, BlogSpot, Quora,
Reddit, and LiveJournal to circulate fake news and seed fabricated primary sources®. A subsequent Russian
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Figure 1. Current landscape of automated detection on mainstream social platforms. Advances in automated
detection will push influence operations towards less effective methods of coordination and more costly
approaches to fake account creation. In turn, influence operations may be able to compensate by augmenting
existing capabilities with emergent AI systems.
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campaign from 2020-2022 (likely a continuation of the same operation) targeted 35 alternative platforms that
intentionally have little or no regulation such as Gab, Gettr, Parler, and Truth Social®>. While all of these platforms
combined have a smaller audience than most mainstream platforms, they demonstrate continued trends of IO
in microtargeting specific audiences and diversifying channels of influence. Countering these trends will require
methods of detection that can identify operations across platforms, as well as generalize previous observations on
mainstream platforms to newly targeted platforms. Additionally, while mainstream platforms have thus far been
proactive in identifying and removing inauthentic actors, it is unclear to what extent this will continue to be true.

Even in light of these trends, continuing to identify and index TTPs for transductive detection will still be
paramount to constrain future IO. In other words, the foundation of IO detection will continue to be transduc-
tive-or based on specific, previously observed indicators. Transductive approaches will continue to be effective
in constraining IO for two main reasons: (1) operations can only develop new TTPs so quickly; (2) previously
indexed TTPs often represent the preferred tactics of IO, which they may be slow to abandon. In order to continue
shaping public discourse in the near term, one can then expect continued reuse of TTPs, even if these are largely
ineffective on mainstream platforms. In the long term, however, one can expect IO to develop novel tactics that
avoid detection and reach larger segments of online users. On one hand, this means that future IO will likely
have less impact per action (post, like, share, etc.) since they cannot maximally exploit the platforms in which
they are embedded. On the other hand, AI systems such as StyleGAN2?!, DeepFaceLab*’, GPT*, and DALL-E*
may allow IO to more easily craft realistic profiles and content, thereby enabling novel campaigns that employ
previously costly tactics at greater scale. In such cases, it is unclear how effective transductive methods will be, if at
all. Hence, developing inductive methods of detection will be necessary to proactively identify and disrupt novel
campaigns which can consequentially alter public opinion in a matter of days (e.g., in the days leading up to an
election'"?’). To this end, we observe two fundamental techniques that IO use when manipulating public opinion:

(I) Linking to off-platform websites that are considered credible by the target audience, possessing
decreased regulation, and/or containing multimodal content such as text, images, audio, and video;
(II)  Coordinated promotion of content supporting specific narratives.

Arguably, IO can have little impact on public opinion without employing these techniques in some form. We
use this observation to design (I) content-based and (II) graph-based indicators which are general enough to
identify novel campaigns from previous campaigns, and use graph representation learning to encode abstract
signatures of coordination from these indicators. In particular, we determine indicators that are not specific to
any particular IO campaign by explicitly censoring previously identified content- and graph-based technical
indicators. We call indicators resulting from this type of censorship generalized indicators, since they will be
common across both IO campaigns and authentic users, and also across platforms.

We investigate how specific choices of generalized indicators and graph learning techniques can identify inau-
thentic actors across IO campaigns, thereby developing a framework that directly complements the transductive
methodologies established in previous work. In doing so, we note the correspondence between the generalized
indicators used here and previously used technical indicators, summarized in Table 1:

Furthermore, we investigate three specific advances of previous approaches:

(1) Identification of content-based and graph-based indicators which enable cross-operation generalization;

(2) Utilization of graph learning to encode abstract signatures of coordination, thereby automating graph-based
feature engineering and inference;

(3) Investigation of a broad coordination window, moving from near-simultaneous (< 1 min.) to quasi-authen-
tic (< 100 min.) interarrival times.

Results

Following the framework presented in Fig. 5, we assess the extent to which specific machine learning models
and generalized indicators can identify IO accounts across campaigns, both intra-operation and inter-operation
(results shown in Table 2). For this purpose, we select six IO campaigns (Fig. 2) belonging to three coordinated
operations: Russia, China, and Iran; and a comprehensive baseline described in the next section. In this case
each operation corresponds to a single nation state and each operation has two underlying campaigns. We
analyze intra- and inter-campaign co-URL statistics in Fig. 4, demonstrating operation specific trends and the
independence of the three operations chosen. In Table 3, we determine which indicators enable cross-campaign
generalization using an axiomatic attribution method, integrated gradients®.

Feature type Technical indicator!®!719:22:26 Generalized indicator

Political and news domains;

URLSs containing malware, propaganda, and fake news Censored domains

Content-based

Graph-based Graph size, betweenness, clustering Censored graph learning

Coordination Near-simultaneous (< 1 min.) Quasi-authentic (< 100 min.)

Table 1. Correspondence between previously effective technical indicators and generalized alternatives.
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Model ‘ F1(val.)* ‘ F1(test) ‘ AUC(test) | G.E. Model ‘ F1(val.) ‘ F1(test) ‘ AUC(test) | G.E.
(A): Combined, intra-operation (B): Combined, inter-operation

LR 92.92 84.94 85.23 LR LR 82.97 76.92 77.64 LR
RF 97.50 86.58 86.90 * ok ok RF 82.36 81.06 81.52 * sk ok
MLP 95.96 91.13 94.68 t+++ | MLP 92.04 89.92 96.59 Titt
GCN 95.33 91.71 91.79 Tt GCN 86.39 91.25 93.92 TiTt
MP-GCN(s) 95.55 91.02 94.44 Tt MP-GCN(s) | 91.65 88.05 96.28 T+t
MP-GCN 95.49 90.64 93.01 TETT MP-GCN 92.40 88.06 96.05 Tt
(A1): Rus(18) — Rus(18) / Rus(20) (B1): Chn(19) + Iran(19) — Rus(18) / Rus(20)

N =2700 - NUD = 676/1059 NYm =1920 — NOZU = 676/1059

LR 96.25 90.27 90.45 IR LR 91.93 89.91 90.11 R
RF 99.09 91.82 92.95 Tt RF 83.50 86.46 86.71 s ok sk
MLP 97.27 91.90 96.72 t+++ | MLP 90.11 90.48 96.77 Tiit
GCN 94.80 90.10 93.83 T GCN 84.64 92.22 93.63 Tt
MP-GCN(s) 96.29 92.80 95.46 T+t MP-GCN(s) | 86.12 93.21 94.43 T+t
MP-GCN 96.36 92.84 95.41 Tttt | MP-GCN 86.15 93.44 94.51 Titt
(A2): Chn(19) — Chn(19) / Chn(20) (B2): Rus(18) + Iran(19) — Chn(19) / Chn(20)

NV =377 N‘ZI_:/QH = 95/4201 NOTD <4826 — N‘ZI_:/QH = 95/4201

LR 94.54 88.08 88.30 * T 1T LR 89.23 82.66 83.08 Tt
RF 97.06 91.75 91.87 * % Kok RF 82.31 93.47 93.54 sk ok
MLP 95.44 92.63 93.70 Tt MLP 91.52 94.63 97.82 AETR
GCN 95.40 92.83 89.26 Tt GCN 90.40 94.41 97.51 TiTt
MP-GCN(s) | 95.04 9357 | 92.56 t+++ | MP-GCN(s) | 92.10 94.16 97.38 T
MP-GCN 95.26 93.33 90.15 tt+1++ | MP-GCN 91.79 94.78 97.29 Tttt
(A3): Iran(19) — Iran(19) / Iran(21) (B3): Chn(19) + Rus(18) — Iran(19) / Iran(21)

Ny =1158 — NJoU = 290/179 Ny = 3850 — NJoU = 290/179

LR 88.36 77.60 78.01 ER LR 73.36 71.36 72.56 sk sk Kok
RF 96.38 77.06 77.64 * %k ok RF 71.94 75.01 75.61 sk Kok
MLP 95.21 88.95 93.69 T+t MLP 89.57 86.58 98.41 Tt
GCN 95.80 92.26 92.40 Tt GCN 75.62 87.39 92.05 Tt
MP-GCN(s) 95.33 86.97 95.35 T+++ | MP-GCN(s) |87.85 83.67 96.15 Titt
MP-GCN 94.87 86.13 93.61 T+t MP-GCN 90.65 84.01 97.37 Tt

Table 2. Top: Aggregated intra-operation (A) and inter-operation (B) results; F1 and ROC-AUC scores are
the harmonic mean of the individual subtasks shown in the bottom six tables; G.E. is the median value of
subtasks. Bottom: Individual subtask results for intra-operation (A1, A2, and A3) and cross-operation (B1,
B2, and B3) classification. We note that the validation and test sets in the intra-operation and cross-operation
subtasks are sampled identically, and hence can be compared. Significant values are in bold and italics. Each
graph encoding (G.E.) denotes the absence () or presence (1) of node2vec, Laplacian Eigenmaps, Random
Walk Positional Encoding, and Network Features determined from a censored graph. Each model is trained
with Ymax = 0.54 and kiop = 2500 per Figure 3. *In sample.

Model and indicator evaluation
We evaluate the effectiveness of several machine learning models-Logistic Regression (LR), Random Forest (RF),
Multilayer Perceptron (MLP), Graph Convolutional Network (GCN), deep Message Passing Neural Network
(MP-GCN), and shallow Message Passing Neural Network (MP-GCN(s))-on node classification tasks compris-
ing: 10737 influence operation accounts reported by Twitter between 2018 and 2021; and 9793 baseline Twitter
accounts not known to be part of any influence operation. The IO accounts were reported in several releases
between October 2018 and February 2021, which we split as in Fig. 2 to simulate a prediction task on unseen
data. The baseline includes accounts which directly impact public discourse (journalists, media outlets, writers,
and academics), random accounts, and accounts highly retweeted by the IO training set. Our goal is to differ-
entiate IO accounts versus this baseline using a set of generalized indicators, as well as determine the optimal
graph encoding (G.E.) for each model (i.e. which of node2vec, Laplacian Eigenmaps, Random Walk Positional
Encoding, and Network Features to include).

In order to assess the generalization capacity of particular model and indicator choices, we formulate two
tasks. The first is intra-operation classification (A in Table 2), where we train on a campaign of a particular
operation (Russia, China, or Iran) and test on a later identified campaign of same operation. The second task is
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Baseline

Train - combined

Traln/ Validate: Validate - combined
origin | date reported | accounts | target Test - combined
Russia | Oct. 2018 3378 U.S./Rus.

Iran | June 2019 1448 Varied*
China | Aug. 2019 472 Hong Kong
total 5298

Test:
origin | date reported | accounts | target
Russia | May 2020 1059 U.S./Rus.

Tran Feb. 2021 179 U.S.
China | May 2020 4201 Varied ¥
total 5439

Baseline:
origin date reported | accounts | category
U.S./UK. - 2681 Political

- - 5983 Random
Varied$ - 1129 Top RT
total 9793

Figure 2. Composite dataset used to assess cross-campaign generalization. Date reported indicates when
Twitter released tweet data for each campaign, with the corresponding accounts being removed at some earlier
time. The graph G = (V, £) has vertices V comprising all accounts in the composite dataset, and edges £
indicating one or more co-URLSs between accounts. ¥ target audiences includes the U.S., Latin America, Saudia
Arabia, Israel, Indonesia. # target audiences includes the U.S., China, and Russia. $ account origins include US.,,
Russia, and China.

inter-operation classification (B in Table 2), where we train on all operations except the test operation. For the
three campaigns in the training/validation set and the test set, this implies three subtasks for A and B. To enable
comparison between the two sets of subtasks, we sample the validation and test sets for each respective subtask
identically (e.g., the results of task A1 and B1 can be compared directly). This allows us to assess how well each
model can generalize from independent operations based on any changes in performance from tasks A1, A2,
and A3 to tasks B1, B2, and B3, respectively.

We evaluate the effect of varying the content-based feature set both in terms of stringency (max) and mini-
mum prevalence (kiop) on model performance in Fig. 3. We choose MLP with all graph encodings (G.E. = 1 t
t 1) as a representative model since it consistently performed well across all subtasks. The effect of increasing
kiop improves model performance on all metrics in a nearly monotonic manner, ostensibly reaching saturation
around kiop = 2000. The effect of varying the maximum frequency ratio (¥max) has a more nuanced effect on
performance, but a fairly stringent value of ymax € {0.43,0.67} appears to produce greater generalization than
smaller or larger values, with increases beyond ymax = 0.67 producing a nearly monotonic decrease in perfor-
mance for F1(val/test), but not for AUC.

Coordination analysis of composite dataset

In order to understand intra- and inter-operation patterns of coordination, we report co-URL counts between
all campaigns in Fig. 4. The 2 x 2 block pattern of co-URL counts along the diagonal of 4a and 4b suggests that
each campaign of a particular origin is actually a continuation of the same underlying operation. Observing
how these co-URLs are distributed as a function of interarrival time, we see that the earlier identified training
campaigns in 4c have similar distributions of co-URLSs as the later identified test campaigns in 4c in some cases.
In particular, the campaigns of Chinese and Iranian origin appear to adopt near-simultaneous link sharing
later than the Russian campaigns. This can be quantified by calculating the distance between CDFs for each
campaign (4e). From 4f, we see that the accounts in the Chn.(19) and Iran(19) campaigns appear to use little to
no coordination at short timescales compared to the baseline, but the Chn.(20) and Iran(21) campaigns begin
to display levels of coordination comparable to the Rus.(18) campaign. The Rus.(20) campaign displays greater
levels of coordination than any campaign in our dataset, particularly at short timescales. This delay in near-
simultaneous coordination by the Chinese/Iran operations could be due to adoption of this strategy from the
Rus.(18) campaign, which made extensive use of co-URLs. Specifically, this strategy could have been directly
observed and later adopted as follows: in 4a , we see that the Chn.(19)/Iran(19) campaigns (which do not use
near-simultaneous coordination) interact with both Rus.(18)/Rus.(20) campaigns; and in 4d we see adoption of
near-simultaneous co-URLs by the later Chn.(20)/Iran(21) campaigns well above the baseline.
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Feature ‘ 1G (val.) 1IG (test) 1G (base.) Feature 1G (val.) 1G (test) IG (base.)
(A): Combined, intra-operation (B): Combined, inter-operation

Domains 932x 1072 | 1.06 x 107! | 4.52x 107! | Domains 7.84x 1072 | 931 x 1072 | 4.50 x 107!
node2vec 211 x 1071 | 342 x 107! | 1.87 x 107! | node2vec 1.94 x 107! | 338 x 107! | 1.93 x 107!
LE 953x 107 | 532x107% | 3.92x 107> |LE 9.98 x 107° | 518 x 107 | 4.65x 107>
RWPE 118 x 107" | 2.83x 107! | 3.13 x 10~' | RWPE 1.15x 107" | 2.87 x 107! | 327 x 107!
NF 7.00 x 107! | 8.68 x 107! | 7.90 x 10~! | NF 638 x 107! | 836x 107! | 7.84 x 107!
Degree 3.62 x 1071 | 3.02x 107! | 2.60 x 107! | Degree 331 x 1070 | 297 x 107! | 2.65x 107!
Cluster. coef. 951 x 1073 | 1.56 x 1072 | 7.34 x 107> | Cluster. coef. | 4.92x 1073 | 317 x 1073 | 7.22x 1073
Betweenness 139x 1073 | 4.04x 1072 | 7.83 x 1072 | Betweenness | 3.65x 107> | 3.97 x 1072 | 8.08 x 1072
Pagerank 1.75x 107! | 2.87 x 107! | 3.60 x 107! | Pagerank 158 x 107! | 274 x 107! | 3.60 x 107!
HITS 145 x 107" | 220x 107! | 7.74 x 1072 | HITS 135x 107" | 221x 107" | 7.10 x 1072

Table 3. Mean absolute integrated gradients (IG) of trained MLPs over features for validation, test, and
baseline subsets. For all features, we report the sum of absolute values to avoid cancellation due to conflicting
signs. Additionally, we report the IG of each of the five quantities comprising (NF). For IG values of individual
subtasks and domains, see Tables 4 and 5 in the SI.

Feature importance

For each model and subtask, we report the best performing graph encoding in each case (G.E. in Table 2).
However, it is not clear from these results what the relative importance of each graph-based feature is on model
predictions, or the relative importance of content-based to graph-based features. To quantify the relative impor-
tance of each feature set, we calculate the mean absolute integrated gradients (IG) for each feature over validation,
test, and baseline sets for each subtask (Table 4 in the SI). In Table 3 we report the aggregated (arithmetic mean)
IG values of each feature over all subtasks. We again use MLP as a representative model since it consistently
performs well on all subtasks.

Overall, the net attribution of all graph-based features (node2vec, LE, RWPE, NF) appears to be substantially
larger than that of all content-based features (domains), greater by roughly an order of magnitude. Notably,
several quantities widely used in network analysis such as Laplacian Eigenmaps (LE), clustering coeflicient,
and betweenness centrality had a marginal impact on predictions, indicating that they provided little useful
information for predictions and, since dropout was employed, that this information was not even redundant
with other features. Meanwhile, graph embedding techniques such as node2vec and RWPE enjoy a relatively
high utility, having a substantial impact on predictions. This result is not necessarily surprising since node2vec
and RWPE essentially act as deep encoders, which can be decoded with high fidelity by deep neural networks
(i.e. MLP and GNs, but not by LR and RF). What is surprising, on the other hand, is that several simple network
quantities-degree, pagerank, and HITS-were as important to predictions as any other single feature. This implies
that these quantities encode some information that is complementary to graph embedding techniques, and do
so with only a single scalar value.

Discussion

Constraining influence operations is an ongoing challenge that will require continued advancement of detec-
tion capabilities in order to counter novel operations-particularly as they adopt powerful AI technologies. In
particular, detection methods which go beyond established transductive methodologies and can identify novel
campaigns in an inductive manner will be critical. Here we have examined the systematic application of general-
ized indicators and graph learning techniques, demonstrating a framework in Fig. 5 which enhances detection
coverage. Furthermore, this framework is broadly applicable to detecting manipulation on social media, and
naturally complements detection using technical indicators identified in transductive methodologies.

Overall, the most effective approaches utilized: (1) a fairly large content-based feature set (approximately
2000-2500 domains) with fairly stringent removal threshold applied (ymax = 0.5); (2) a broad range of graph-
encoding features, particularly node2vec, RWPE, degree, pagerank, and HITS (hyperlink-induced topic search);
(3) a deep neural architecture. In other words, MLP and the three GNs outperformed LR and RF on every out-of-
sample subtask. On the in-sample prediction tasks, as quantified by F1(val) of tasks A1, A2, and A3, RF actually
outperforms all of the deep models. It appears that in this case RF was simply able to memorize patterns specific
to the training set, as it fails to generalize to the test set. Notably, on tasks A2 and A3, RF achieved superior
validation set performance and optimal test set performance with no graph encoding features at all, while all
other models saw improved generalization from these features. These results suggest that RF is ill suited to make
use of graph-based features, and moreover, fails to generalize both content-based and graph-based features. For
task A, this failure corresponds to a ~ 5 point decrement on F1(test) and AUC(test) relative to the deep models.
On task B, for which predictions had to be made by generalizing across campaigns, an even larger decrement of
10-15 points is observed across all metrics.

Among deep models, MLP consistently demonstrates high performance across all subtasks, achieving superior
AUC performance in all but one case. However, on all out-of-sample F1 scores, one or more GNs outperformed
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Figure 3. Top to bottom: Aggregated F1(val), F1(test), and AUC(test) for inter-operation (A, left column) and
inter-operation (B, right column) classification with varying ymax and k¢op. Errors are calculated from individual
subtasks (A1, A2, A3 and B1, B2, B3) using uncertainty propagation.

MLP. This indicates that while GNs perform well at the decision boundary for classification (the naive bound-
ary o = 0.5 in all cases), misclassifications were by a greater margin than for MLP. This is a possible indication
that while the increased expressive power of GNs was beneficial for classification on average, it could lead to
even further errors on accounts which were misclassified. Moreover, these results indicate that MLP with graph
encoding features may achieve superior performance at higher/lower decision boundaries, which may be relevant
for applications with a greater/lesser tolerance for false positives.

While we have outlined several specific approaches for selecting feature sets and models which can general-
ize across campaigns, there are a number of improvements which would likely further this work. First, there
are presumably other content-based indicators which may aid in out-of-sample identification of IO accounts.
Namely, we did not investigate text, images, audio, and video contained directly in posts. On one hand, multi-
modal embeddings of such content that encode specific narratives or ideologies could presumably provide useful
information which is not necessarily specific to a particular IO campaign. On the other hand, off-platform URLs
can in principle contain all of these modalities, pose additional moderation challenges to platforms, and have a
similar function regardless of platform. For content-based features overall, a unified approach for encoding the
content and semantics of text, images, audio, video, and web pages would be ideal, since focusing on a specific
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form of content could lead to blind spots. For example, the multimodal encoders used by the multi-task agent
Gato™ or the GPT-4 system?® could allow for training on text posts and making inferences on video posts, and so
on. Additionally, the content of both direct posts and off-platform web pages could be compared on equal footing.

Though the co-URL is a effective and robust tool for quantifying coordination, there are many other edge-
wise features e;; which quantify pair-wise relationships in a graph. In particular, several graph-based measures
which quantify similarity could add useful information: node-similarity measures based on nearest neighbors
such as common neighbors, Jaccard Index, Adamic Adar, and preferential attachment coefficients; as well as path
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Figure 5. Illustration of the proposed inductive learning framework for the detection of information
operations: (I.) Collect IO data spanning various operations and time periods, as well as a baseline that interacts
with the IO to varying degrees; (IL.) Extract and censor raw content-based and graph-based indicators and
encode signatures of coordination via graph learning; (IIL.) Evaluate model performance on tasks requiring
generalization and determine the most important indicators using feature attribution. H(-) is the Heaviside

step function,y; is the relatlve frequency of the ith domain in the IO training set (y = 1) relative to the baseline
training set (y = 0), and 7 is a co-URL vector. .

based measures such as shortest path lengths, Katz measure, and hitting time. Other similarity measures can be
derived from graph learning measures by applying various distance metrics such as L, cosine, and Serensen-
Dice distances to pairs of graph encodings. Fortunately, message passing graph networks provide a natural way
to incorporate similarity measures (or any edge-wise features) into predictions, making this type of extension
straight forward.

Although we attempted to present a range of graph networks-convolutional, shallow message-passing, and
deep message-passing graph networks-there are myriad design dimensions of graph networks which we did
not explore. Among these are more advanced sampling strategies, attention mechanisms, and various message
passing architectures. However, the results in this study are adequate to suggest that both graph learning and
graph networks will be an indispensable tool for detecting IO into the future.

Finally, we examined a “hard” measure of coordination, the co-URL, in this paper. There could in the future,
however, be softer forms of coordination which evade detection. For example, different URLs could lead to
semantically or literally identical content, which would not be measured as coordination by our current approach.
To hedge against this possibility, one could encode the content of URLs as embeddings and define coordination
as a function of the distance between embeddings. This would generalize the current co-URL approach in which
we implicitly assign identical URLs distance 0 and distinct URLs distance co. This is yet another indication of
the utility of multimodal content encoders in future influence detection efforts.

In summary, we have demonstrated an inductive approach to detecting IO which allow for continued utility
into the future and generalization capacity across campaigns, enabling identification beyond technical indicators
identified by transductive methodologies. We have illustrated how specific content- and graph-based features
realize these objectives, as well as how one can systematically identify these features. Finally, we have identified
several refinements of the current approach, enabling continued advancement in the automated detection of IO
even as these campaigns continue to evolve.

Methods

Data collection and inclusion criteria

For the purpose of evaluating intra- and inter-operation generalization of machine learning models, we selected
IO of several origins (Russia, China, and Iran) for which there were significant campaign sub-networks identified
at different times. To this end, six Russian, Chinese, and Iranian origin campaigns identified by Twitter between
2018 and 2021 were suitable. Another important aspect considered was the availability of baseline accounts which
both interacted with the IO (to provide adequate coordination measures) and remained independent of IO (to
reduce bias in frequency measures). To this end the baselines of'”'* were used (88.5% of baseline accounts), in
addition to 1129 accounts (11.5% of baseline accounts) interacted highly with IO, as measured by co-URLs. Addi-
tionally, the 1129 high-interaction accounts were sampled at various maximum follower thresholds (# = 102, 10,
and 10%) since accounts with many followers (n > 10%) were disproportionately interacted with by IO accounts.
This resulted in an aggregate baseline which was highly connected to the IO and yet provided broad coverage
of various types and sizes of accounts.
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For this study, we focus specifically on IO accounts which displayed reasonably organic patterns of sharing,
which evaded detection for some amount of time, and which could have reasonably had some impact on public
discourse. We therefore selected from the initial data set accounts which: (1) were active for at least 3 months;
(2) had at least 300 Tweets; (3) had at least 200 URL shares; (4) shared at least 5 unique domains; (5) had at least
10 co-URLs with at least 2 neighbors.

Extracting raw indicators
To obtain features from the raw tweet data, we expand all shortened URLs contained in tweets using the URL-
Expander library?’. Then, to obtain domain counts for each account, we use the tldextract library to extract the
domain of each URL tweeted by an account. We then generate node-wise and edge-wise features from the raw
URLs and extracted domains:

Edge features As a measure of coordination between accounts, we compute the interarrival time between
shares of the same URL (co-URLSs) and bin the results into 1 minute intervals to obtain a vector of co-URL
frequencies between all pairs of accounts. Denoting the interarrival time as 7, the co-URL count between the
ith and jth account in the interarrival windowt — 1 < t < 7 is then denoted el

Node features We use the raw counts of the most frequently shared top-level domains (e.g.,, cnn.com, youtube.
com, nytimes.com) from each account in the composite dataset. To avoid having the models simply memorize
domains which are specific to a particular IO, we censor domains where more than yy,x of occurrences of the
domain originate from the IO training set relative to the baseline set. For example, riafan.ru, histantv.com,
and tel-avivtimes.com are censored by this method for any ymax < 10 since each of these domains originate
at least 10* more frequently from IO accounts than from the baseline. See SI section E for extended examples
of censored domains.

Graph Encoding From a censored co-URL graph we compute three graph embeddings-node2vec (dim = 128),
Laplacian Eigenmaps (dim = 50), Random Walk Positional Encodings (dim = 50), and several network statis-
tics (degree, clustering coeflicient, betweenness centrality, pagerank and HITS). We define the concatenation
of all graph-based features the graph encoding.

Content-based generalized indicators

Following transductive methodologies, previous work has enabled the rapid detection of IO which attempt
to propagate specific domains containing fake news, propaganda, and malware”!**. Accounts sharing these
domains, particularly in a coordinated manner, are now routinely identified and removed by mainstream plat-
forms. To identify influence efforts beyond these more flagrant indicators, we investigate domains which are
commonly shared and yet may be useful indicators of IO activity. In order to quantify the extent to which a
particular domain is either common to some baseline users or specific to an IO, we define the relative frequency
for the ith domain in the IO training set (y = 1) relative to a baseline set (y = 0) as

tf(i,y =1
= (‘ y=1 W
tf(i,y = 0)
where the domain term frequencies for the ith domain are
(=1
2if; @
f(}’:O)

11

and fi(y =19 are the raw counts of the ith domain in the IO and baseline training sets. We then censor any domains
which exceed a threshold ymax such that we remove domains which are specific to the IO training set with vari-
able stringency. Particular choices of Ymax can censor domains which only appear in the baseline set (Ymax = 0),
appear in the IO set no more than parity (¥Ymax = 1), or which appear only in the IO set (Ymax = 0c). Additionally,
we retain only a select number of the censored domains, ktop, the top-k domains when sorted in descending
order by absolute frequency. We can then vary the stringency and minimum prevalence of our content-based
feature set with ¥max and kop, respectively, in order to investigate the effect of content censorship on generaliza-
tion. Moreover, at less stringent thresholds (Ymax > 1), we can observe the effect of directly including technical
indicators of previous campaigns used in transductive methodologies.

Graph-based generalized indicators

Coordination by IO on social platforms has taken many forms, including mass spamming, mass reporting, and
coordinated content sharing. Among these tactics, coordinated content sharing has perhaps been the most widely
observed, and is the chief tactic employed by many campaigns. In particular, many takedown efforts have used
near-simultaneous co-URL sharing as the primary means of both identifying and substantiating coordinated
inauthentic behaviour. In addition to the ubiquity of co-URLSs across a variety of campaigns and platforms, they
also have the appealing properties that they are agnostic to the specific content shared, are easily defined across
platforms, and automatically imply a graph structure between accounts. Furthermore, each co-URL has an associ-
ated time between shares, the interarrival time, whose distribution can provide further insight into coordinated
activity between accounts (see Fig. 4 for examples).
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While near-simultaneous co-URLs are a useful indicator for automated detection of IO activity, this behaviour
is not guaranteed to persist, particularly for campaigns with high operational security (i.e., those which closely
mimic authentic users). Therefore, generalized indicators of coordination should incorporate a broader time
frame within which future campaigns are likely to operate. In particular, we utilize co-URLs with interarrival
times from T = 0 to 100 minutes. This time frame includes near-simultaneous sharing (< 1 min.), the majority
of retweets (< 20 min.*®), and the median half-life of tweet views (~ 80 mins.*>’). We denote the number of co-

URLs with interarrival timest — 1 < t < tas e?, and the composite co-URL vector as ejj = {ellj, s 611100}

The graph structure implied by co-URLSs, however, cannot be used directly by machine learning models to
make node-wise inferences. Two approaches for utilizing graph structured data in machine learning applications
are to: (i) learn unsupervised feature vectors for each node in the graph (graph embedding); and/or (ii) define
graph operators which systematically aggregate data over the graph at each layer in a neural network. Both of
these techniques can be referred to collectively as graph learning’®, and neural networks utilizing graph opera-
tors as graph networks.

Graph networks can utilize co-URL data in ways which may or may not directly make use of near-simulta-
neous link sharing behaviour, thereby offering varying degrees of generalization capacity. For example, one can
define a graph which censors near-simultaneous link sharing as follows: assign A;; = 1if and only if two accounts
share at least n URLs with interarrival times less than T, or in mathematical notation

Aij:H(Zeij—n) (3)

t<T

where H(-) is the Heaviside step function. This definition equally counts the contribution of all co-URLs with
interarrival times less than T, thereby censoring any near-simultaneous behavior while still allowing a rigorous
threshold for coordination. One can then define graph operators, such as GCN*, in terms of this censored graph.
A standard way of directly using vector-valued edge features such as co-URLs, on the other hand, is within a
message passing*>*’ framework. Message passing defines graph operators directly as a function ¢ (e;) of the
edge-wise feature vectors (i.e., allowing predictions to be made directly using near-simultaneous co-URLs e}).
In order to understand the generalization capacity of graph networks with varying degrees of graph censorshlp,
we implement three graph networks as follows: GCN, which utilizes only the censored graph; MP-GCN(s), a
message passing variant of the base GCN architecture with a shallow message passing function ¢ = L, where L
is a linear operator; and MP-GCN, which uses the more common deep message passing function ¢ = f, where
fis aneural network. Comparing the performance of these three architectures allows us to examine the effect of
graph censorship, as well as compare different graph network architectures in identifying IO.

Graph encoding

In order to understand the utility of different types of graph-based features (from network analysis to graph learn-
ing) as well as the utility of specific features, we incorporate several candidate quantities in a node-wise feature
vector which we call the graph encoding. Due to the asymmetric nature of our dataset (co-shares of content by
IO accounts are visible in the dataset, but co-shares of IO account content have been removed by Twitter) we
treat all graph quantities in an undirected manner by setting e;; <— e;; + ¢;;. All graph-based features are derived
from an undirected graph computed from the co-URL vectors as in Eq. 3 where we select thresholds of n = 10
and T = 15 to censor the graph. While more stringent n would produce a more robust graph, we find that fur-
ther reducing the number of edges rapidly disjoints the graph, making graph learning techniques infeasible. The
temporal threshold T = 15 minutes represents a window in which IO could coordinate effectively and yet avoid
detection, while also censoring near-simultaneous link sharing.

Graph representation learning, including graph embedding algorithms such as node2vec*, originated as an
effort to automate the feature engineering process for graph prediction tasks such as node classification and link
prediction. From a modern perspective, graph embedding techniques are unsupervised methods which allow
one to systematically assign relational, functional, and structural information to each node in a graph. This
information can greatly improve the performance of deep learning models, with or without graph operators, on
graph prediction tasks. We choose three graph embedding algorithms for our purpose here: (1) node2vec, which
encodes neighborhood information of nodes into dense embeddings; (2) Laplacian Eigenmaps, a non-linear
spectral embedding technique which provides a local coordinate system on graphs and effectively encodes clus-
tering within the graph; (3) Random Walk Positional Encoding, which is based on the graph diffusion operator
and uniquely assigns node embeddings based on the k-hop topological neighborhood of each node. Each of
these approaches, in principle, encode different aspects of graph topology and therefore can provide predictive
utility independent of one another. In each case, the dimensions of the embeddings are chosen such that further
increases yield no benefit to performance across models.

While graph embeddings are a sensible method of encoding topological information for predictive tasks, they
do not necessarily preclude the utility of conceptually similar network analysis quantities. To this end we include
several quantities which encode relational, functional, and structural information of graphs in our graph encod-
ing: (1) degree, which for undirected graphs is simply the number of directly adjacent neighbors of each node;
(2) clustering-coeflicient, which quantifies the local clustering of each node as the amount of closure between
the neighbors of each node; (3) betweenness centrality, a centrality measure quantifying the extent to which a
node facilitates connection within the graph via shortest paths; (4) pagerank, a centrality measure which ranks
nodes according to their relative importance within a network; (5) HITS, which also ranks nodes according to
relative importance but assigns two scores quantifying the extent to which a node connects the graph (hub score)
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and is of relative importance within the graph (authority score). For undirected graphs, the hub and authority
scores of HITS are identical.

Graph learning
Given the node-wise and edge-wise data in our feature set, there are several graph learning techniques that
are viable choices for the predictive task at hand. Firstly, an MLP with graph encodings serves as a baseline to
compare against graph network architectures. We then select several GN architectures of increasing expressive
power such that we can compare the utility of different GN design choices and degrees of graph censorship. In
particular, we perform ablation on message-passing rules for encoding the co-URL vectors e;.

In general, a graph network can be written as the series of operations

hng) = W(l)hl@ +p? (affine transformation) (4)
h(H'l) ;é/gf((z;) (h(l+1)) (feature aggregation) (5)
h(lH) (h( H)) (non-linearity) (6)

where the set \(i) indicates the neighborhood of the ith node where A;; = 1. The simplest graph network that
we employ is a spectral GN, the popular Graph Convolutional Network (GCN), with layers defined by the feature
aggregation function®!

_ I N(ZS))
AGG = A (GCN) )

JEN () je%i) Vdid; J

where d; is the degree of the ith node.
There are a number of ways in which message passing rules can be defined, but for graph networks one typi-
cally defines the message passing rule as

g = o (W05 ®)

where the message passing function ¢ (-) can take as input both nodewise features hgl) and edgewise features e;;.
We then incorporate these messages into the aggregation step as

h(l+1) AGG h( +1) ( +1)
jeN (i) lj ©)

We employ two message passing rules to encode the co-URL vector, the first of which is a shallow message pass-
ing rule which defines our MP-GCN(s):

(l+l) (Zw(l) ’]) (10)

The second rule utilizes a neural message passing function, implemented as an L layer perceptron which defines
our MP-GCN:

(Jk+1) (W(k,l)agc) + b(k,l)) :

(11)
) = (W“)afj” n b(L));

where W® and b") are the weights and biases of the Ith layer and a? = el To compare with the base GCN
implementation, we insert each message passing rule into the base GéN aggregation function as

AGG = 3 MR+, (MP-GCN(s)/MP-GCN)

NG S Vi

Thus we have performed ablation on the message passing rule over the three GCN architectures.

(12)

Model training

In the LR and RF implementations we tune all hyperparameters to achieve the best model performance via
gridsearch. In the MLP and the three GCN variants we use the same hyperparameters: two hidden layers of 64
units, and a dropout probability p = 0.5 applied to all units in the hidden layers. In all message passing layers
we apply a dropout probability of p = 0.2. For all MLP and GCN training we use a binary cross entropy loss and
the Adam optimizer with a learning rate of 1074,
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Integrated gradients
Integrated gradients® is an axiomatic attribution method for deep neural networks. Mathematically, the IG of a
function F(x) with respect to the ith component of an input x and a baseline x’ is

LOF(x' +a(x—x'))

ax,‘

IntegratedGradient;(x) = (x; — x]) / da (13)
0

where o parameterizes a straight line path from x’ to x. This method provides a more robust attribution of predic-
tions to specific features than directly evaluating the product of the gradient and feature value

Att oF

ri(x) = x; 9%, (14)
which has historically been a popular attribution method. When using IG, one selects a baseline where the model
prediction is neutral. Calculating the IGs of each feature for an MLP, there is not an obvious baseline which yields
neutral predictions, i.e., where F(x) = 0.5. For example, simply choosing the mean or minimum value of each
feature over various subsets of the data produces predictions close to 0 or 1. We therefore construct an empirical
baseline comprising the subset of all nodes such that 0.4 < F(x;j) < 0.6, or within + 0.1 of a neutral prediction.
Setting x” = (x;) then yields F(x") = 0.534 £ 0.018 over all six subtasks, which is approximately neutral while
ensuring that no particular feature in the baseline takes on an extreme value (which might be the case if we
simply chose j to be the single most neutral prediction).

Error propagation of aggregated metrics

In Fig. 3, several performance metrics are aggregated over subtasks by computing their harmonic mean. For
each subtask and choice of parameters (ymax and kiop), there is an associated uncertainty for each metric due to
their dependence on a random samples of train/validate/test splits in the data. In order to compare aggregated
results for different parameter values, we propagate the uncertainties associated with each metric as follows. In
general, the harmonic mean can be written

n

xR
I

1 (15)

PR
i=1%i

and the propagated uncertainty (neglecting correlations between x;)
n ~
0x
2 ox\ 5
Ox N;<8xi)axi' (16)
The partial derivatives of X with respect to each x; are
ax X% 1
8x,-

(17)

and the propagated uncertainty is then

Using this result we can better understand different choices of yimax and ktop shown in Fig. 3.
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