
IEEE JOURNAL OF SOLID-STATE CIRCUITS 1

INTIACC: A Programmable Floating-
Point Accelerator for Partial

Differential Equations
Paul Xuanyuanliang Huang , Student Member, IEEE, Yannis Tsividis, Life Fellow, IEEE,

and Mingoo Seok , Senior Member, IEEE

Abstract— This article presents a 32-bit floating-point (FP32)
programmable accelerator for solving a wide range of partial
differential equations (PDEs) based on numerical integration
methods. Compared to prior works that have fixed-point systems
and are only applicable to specific types of PDEs, our proposed,
integration accelerator for PDEs, named INTIACC, accelerator
consists of 16 locally interconnected processing elements (PEs)
where each PE is a fully programmable reduced instruction set
computer (RISC) processor with an FP32 arithmetic logic unit
(FP32 ALU) and a custom-designed instruction set architecture
(ISA). These features enable INTIACC to generate solutions with
high precision and a wide dynamic range and also allow users to
implement different numerical algorithms to perform high-order
integration methods and to evaluate nonlinear functions. In addi-
tion, we create a novel slow-global-fast-local clocking scheme in
which PEs operate asynchronously with each other most of the
time. We prototype the INTIACC test chip in 65 nm, with a core
area of 0.975 mm2. Running at an average local clock frequency
of 570 MHz at 1 V, it offers a single-precision computation
throughput of 9.12 GFLOPS. Testing results show that with a
similar energy-delay product, INTIACC is up to 40× faster than
the prior state-of-the-art PDE solver.

Index Terms— 32-bit floating point, boundary conditions
(BCs), custom instruction set architecture (ISA), hybrid global–
local clocking scheme, numerical integration, partial differential
equations (PDEs), programmable accelerator.

I. INTRODUCTION

HIGH-PERFORMANCE scientific computing is at the
heart of many modern technological achievements that

rely on computer simulations. These include integrated circuit
design, new drug development, aerodynamics design for new
cars and planes, and accurate weather forecasting. In many
of these simulations, the bulk of the computational load is
dedicated to solving partial differential equations (PDEs) [1],
[2], [3], [4]. PDEs fundamentally describe many physical
phenomena, such as electric charge distribution or airflow
around a moving object [5]. Without PDE-based simulations,

Manuscript received 8 October 2023; revised 30 January 2024 and 14 March
2024; accepted 15 March 2024. This article was approved by Associate Editor
Sanu Mathew. This work was supported in part by NSF under Grant 1840763.
(Corresponding author: Paul Xuanyuanliang Huang.)

The authors are with the Department of Electrical Engineering, Columbia
University, New York, NY 10027 USA (e-mail: xh2373@columbia.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSSC.2024.3379308.

Digital Object Identifier 10.1109/JSSC.2024.3379308

many modern engineering products we enjoy would have been
impossible.

To solve PDEs on computers, numerical approximations
replace the infinitesimally small differentials with finite quan-
tities that a computer can handle [6]. Then, the PDE is solved
on each discretized point in (most commonly) time and space.
These processes can take hours to days and cost a large
amount of energy on multi-core CPUs and GPUs, which are
the common platforms used to tackle PDEs nowadays [7].
Therefore, researchers developed hardware accelerators [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17] to improve
speed and lower energy consumption. The accelerators use
different approaches to achieve these goals.

One interesting direction is to use analog computing tech-
niques to seek higher energy efficiency. This was done
by Guo et al. [13], where they combined analog and
continuous-time digital circuits on a chip to map ordinary
differential equations (ODEs) onto a network of interconnected
analog multipliers and adders. More recently, Liang et al. [14]
proposed another analog chip to solve the 1-D wave equation.
One of the main advantages of solving differential equations
with an analog computer is that the solution, which is repre-
sented in analog voltage or current, does not have convergence
issues as one may have when using numerical approaches.
However, the drawback lies in the device variations inherent
in analog circuits and the difficulty of scaling to larger
problems.

Also, analog but following a completely different approach
was the work from [15]. Instead of mapping the equa-
tions directly, they built analog in-memory-computing (IMC)
hardware to perform reduced-precision matrix–vector multipli-
cations required in the numerical algorithms for solving PDEs.
As the first paper to employ IMCs in a PDE accelerator, their
work demonstrated algorithmic optimizations that can be used
to design PDE solvers with limited arithmetic precision.

More recently, Mu and Kim [16] proposed to map Poisson’s
equation, a PDE used in physics modeling, onto a 2-D array
of digital processing elements (PEs) where each PE in the
array corresponds to a discretized grid point in the spatial
domain where the problem is defined. The PEs compute
in a bit-serial fashion with variable arithmetic precision,
ranging from 4 to 16 bits fixed point. They proposed a
variable-precision technique and a residue-based algorithm

0018-9200 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 08,2024 at 18:39:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0001-8650-1222
https://orcid.org/0000-0002-9722-0979

2 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 1. Compared with prior works, INTIACC supports a much wider range
of PDE problems that have various BCs and parameter settings.

to enable more energy-efficient PDE solving on bit-serial
hardware.

However, despite the novelties of the prior works, several
aspects limit their practical applicability. First, the types
of equations they map onto hardware are constrained to
ODEs [13] or a single type of PDEs such as the Poisson’s,
Laplace’s [15], [16], or the wave equation [14]. Second, the
boundary conditions (BCs), an essential specification of every
PDE, that the prior accelerators support are mostly limited to
the constant type (called the Dirichlet BC). Yet, for real-world
problems, there are many PDEs with non-constant BCs. Third,
most of the prior accelerators lack the capability of mapping
nonlinear terms such as x2, sin x , and 1/x , which frequently
appear in problems with practical applications [23]. Fourth, the
systems in prior works have limited arithmetic precision and
dynamic range because they use analog signals or short-length
(less than 16 bits) fixed-point numbers to represent numerical
values. PDEs arising in practical problems require much higher
precision and dynamic range.

Targeting these challenges, we propose an integration
accelerator for PDEs, named INTIACC, that can solve a
wide range of PDEs. This wide applicability is illustrated in
Fig. 1, where we compare INTIACC with prior accelerators.
INTIACC can also solve problems outside the listed examples
if the target PDE can be mapped to INTIACC-supported
algorithms (see Section II). Architecture-wise, the accelerator
consists of 16 locally interconnected PEs, each containing
a programmable custom instruction set architecture (ISA)
reduced instruction set computer (RISC) processor. This archi-
tecture allows the user to program the PEs to map different
types of PDEs with different BCs (i.e., Dirichlet, Neumann,
and time dependent). Also, the architecture improves com-
putation efficiency by limiting data communication to only
among neighboring PEs. For the computing unit in each PE,
we employ a 32-bit floating-point ALU (FP32 ALU), which
allows INTIACC to offer high-precision solutions with a much

Fig. 2. Oscillation magnitude versus time solution of a damped oscillation
problem, computed with 8-, 16-, and 32-bit fixed-point (FX8, FX16, and
FX32) arithmetic and with FP32 arithmetic. Among the four arithmetic
systems, FP32 has by far the largest dynamic range and hence can produce
accurate solutions as the oscillation magnitude diminishes. In contrast, the FX
systems are not able to adapt to the magnitude of change as effectively.

larger dynamic range than those of prior fixed-point systems.
We demonstrate the importance of a large dynamic range using
a damped oscillation problem as an example (Fig. 2).

INTIACC’s programmability enables users to implement
many algorithms that are unattainable in systems without
programmability. For example, we can implement high-order
integration algorithms such as the Runge–Kutta fourth-order
method (RK4) [24], which offers much better accuracy than
the first-order Euler’s method. Also, users can map nonlinear
terms by employing numerical algorithms in each PE. For
instance, there are the Goldschmidt fast division algorithm [25]
for computing 1/x , Newton–Raphson for (x)1/2, and Tay-
lor approximation for sin x . Compared to using lookup
tables (LUTs) to map these functions [10], [13], INTIACC’s
algorithmic approach is much more memory-efficient and also
offers much higher result precision due to the algorithm’s
iterative refinement.

In addition, we designed a hybrid global and local clocking
scheme for INTIACC. Under this scheme, each PE operates
at its own local clock’s frequency (around 570 MHz), while
the PEs only synchronize using a slow global clock (10–50
MHz) when necessary. This scheme takes advantage of the
algorithmic nature of numerical integration, that is, the PEs
only need to exchange data at the beginning of each integration
step, and hence, they can operate on mutually independent
clocks within each such step. From a hardware perspective,
the scheme is designed to relieve design constraints on clock
trees and also save global clock distribution power.

In this article, we will first introduce some of the main
algorithms supported by INTIACC in Section II. Then,
in Section III, we will present design details, including
the chip’s top architecture, programming model, and the
microarchitecture of the PE. Section IV presents the mea-
surement results of the prototype chip and our test-case
PDE settings. We use various equation settings to thoroughly
test the INTIACC’s performance under different computing
tasks and compare it with the prior art and CPU/GPU.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 08,2024 at 18:39:11 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: INTIACC: A PROGRAMMABLE FLOATING-POINT ACCELERATOR FOR PDEs 3

Then, in Section V, we analyze the scalability of the INTIACC
architecture in terms of memory size and latency. Section VI
concludes this article.

II. ALGORITHMIC BACKGROUND

This section describes some numerical approaches that
INTIACC supports in solving PDEs. The discussion includes
how we discretize the spatial domain, integration methods to
perform time stepping, methods for solving time-independent
PDEs, and the various BCs for PDEs.

A. Domain Discretization

One of the most popular numerical discretization methods
used in solving PDEs is the finite difference method (FDM).
This method approximates the differentials in a PDE by
the differences between neighboring discretization points. For
example, we show the heat equation (1) commonly used to
model heat transmission. In this equation, the variable u is
the temperature. Under a set of initial and BCs (e.g., the
temperature at the domain boundary at t = 0 is 100 ◦C),
u becomes a function of time and space. However, instead of
having an explicit functional form, the relation is specified in
terms of partial derivatives

∂u
∂t

= D
(

∂2u
∂x2 +

∂2u
∂y2

)
. (1)

Here, we show how to use the FDM to solve the heat
equation. First, we apply the FDM to discretize the spatial
dimensions, which is to approximate the second-order dif-
ferentials (∂2u/∂x2) and (∂2u/∂y2) with (ui−1, j − 2ui, j +

ui+1, j/(1x)2) and (ui, j−1 − 2ui, j + ui, j+1/(1y)2), respec-
tively [22]. Here, 1x and 1y represent the discrete increments
in the two spatial dimensions. We use the subscript letters i
and j to denote the x- and y-coordinates of each discretized
grid point in the 2-D domain. This approximation originates
from the Taylor series, and here, we use only the nearest two
neighboring grid points in each approximation(

dui, j

dt

)
=D

(
ui−1, j −2ui, j +ui+1, j

(1x)2 +
ui, j−1−2ui, j +ui, j+1

(1y)2

)
.

(2)

Using these approximations, we convert the time- and space-
dependent PDE (1) into equations only dependent on the
time variable t , shown in (2). These equations are ODEs
because the temperature variable ui, j at each grid point is
only differentiated with respect to one independent variable,
the time t . Due to this reason, we can replace the partial
differential (∂/∂t) with the ordinary differential (d/dt). Note
that the number of independent equations represented in (2)
equals the number of grid points in the domain, which should
be determined based on how much spatial granularity is
needed for the solution.

B. Time Integration—Euler’s Method

To solve ODEs such as (2), we need to integrate both sides
of the equations with respect to time. Numerically, the integra-
tion process is illustrated in (3). Here, we use the superscript

letter n to denote the current timestep index, and 1t is the
timestep size. Next, we must find a suitable approximation for
the slope (du/dt) at each timestep. The most basic approach in
approximating this slope is Euler’s method. For example, if we
use Euler’s method for the space-discretized heat equation
from (2), the slope (du/dt) is directly equal to the right-hand
side of the equation. Then, (3) becomes (4)

u(n+1)
= u(n)

+

(
du
dt

)
1t (3)

u(n+1)
i, j = u(n)

i, j + D

(
u(n)

i−1, j − 2u(n)
i, j + u(n)

i+1, j

(1x)2

+
u(n)

i, j−1 − 2u(n)
i, j + u(n)

i, j+1

(1y)2

)
1t . (4)

To start the evaluation, we use a set of initial conditions
(i.e., ui, j ’s value u(0)

i, j at t = 0) and BCs (i.e., ui, j ’s values
at domain boundaries). The solution then consists of the
temperature values at each grid point of the domain at every
timestep.

Euler’s method suffers from relatively large numerical errors
compared to other higher order integration methods. Specif-
ically, it can be shown that the accumulated error (which
describes the accumulated difference between the numerical
and the exact solutions) is proportional to the step size 1t .
In contrast, higher order integration methods make the error
proportional to a higher power of 1t so that these methods
produce much more accurate solutions than Euler’s using the
same integration step size.

C. Time Integration—Runge–Kutta Fourth-Order Method

One such higher order method is RK4 [24]. It is one of
the most commonly used methods for numerical integration
nowadays. It is a fourth-order method because the accumulated
error mentioned above is proportional to the fourth power of
the step size 1t . In other words, if the step size decreases
by a factor of 10, the error decreases by 10 000. To compare,
Euler’s method would only reduce the error by the same factor
of 10

k1 =
du
dt

= f (t, u) (5)

k2 = f
(

t +
1
2
1t, u +

1
2
1tk1

)
(6)

k3 = f
(

t +
1
2
1t, u +

1
2
1tk2

)
(7)

k4 = f (t + 1t, u + 1tk3) (8)

kRK4 =
1
6
(k1 + 2k2 + 2k3 + k4). (9)

The RK4 differs from Euler’s method in the formula used to
approximate the slope (du/dt) in (3). For example, instead of
directly using the right-hand side of (2) to serve as the slope
approximation, RK4 performs extra calculations to generate
a slope that leads to a much more accurate solution for the
next step. To illustrate, we first generalize (2) to the form
in (5), where k1 denotes the slope approximation used by

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 08,2024 at 18:39:11 UTC from IEEE Xplore. Restrictions apply.

4 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Euler’s method and f (t, u) represents the right-hand side of
the spatially discretized equation.

What RK4 does is to compute three more slopes, i.e., k2–k4,
and then use all four slopes to generate a weighted final slope
value to be used in the integration process of (3). These slope
calculations are shown in (6)–(9) in which the final slope is
denoted with kRK4.

D. Time-Independent PDEs

Unlike the heat equation, some PDEs are only dependent on
the spatial variables and independent of time and hence require
a different solution method. Two of the most notable equations
of this kind are Poisson’s and Laplace’s equations, where the
former is a generalization of the latter. These equations are
widely used in physics. For example, they can model the
electric potential distribution caused by an electric charge. The
Poisson’s equation is specified in the following equation:

∂2u
∂x2 +

∂2u
∂y2 = b (10)

where u is the variable of interest, while the right-hand side
b is a known quantity

ui−1, j − 2ui, j + ui+1, j

(1x)2 +
ui, j−1 − 2ui, j + ui, j+1

(1y)2 = b (11)

u(n+1)
i, j =

1
4

(
u(n)

i−1, j + u(n)
i+1, j + u(n)

i, j−1 + u(n)
i, j+1 − h2b

)
. (12)

Similarly, as presented before, we use FDM to discretize
the spatial domain and convert the equation into (11). Then,
we use Jacobi’s iteration to refine an initial-guess solution to
approach the final solution iteratively. The iteration formula is
shown in (12), where, for simplicity, we assume that 1x and
1y are both equal to h.

Note that in (12), the superscript n no longer represents
the timestep index as in time-dependent equations but is an
iteration index. We start from n = 0 where the right-hand side
u values of (12) are either given by initial guess or from the
BCs. As n becomes larger, the solution gets closer to the exact
solution.

E. Boundary Conditions

BCs are essential for a PDE. They specify the relations that
the target variable satisfies on the domain’s boundaries. There
are several types of BC. The first is called the Dirichlet BC.
This type of BC has constant values. The second is the Neu-
mann BC, which specifies that the derivative of the variable is
a constant. Furthermore, there could be time-dependent BC,
where either the variable or its spatial derivative changes over
time. We illustrate these BCs in Fig. 3 in the context of the
heat equation specified over a rectangular domain.

III. HARDWARE IMPLEMENTATION

A. Top Architecture

As shown in Fig. 4(a), the INTIACC accelerator con-
sists of 16 interconnected programmable PEs and circuits
for global clock generation and interfacing with off-chip.

Fig. 3. Illustration of different BCs for the heat equation.

The PE interconnect bit width is 32 since we use the FP32
number representation. We build bidirectional interconnects
since the wires are locally distributed and have very small
lengths, leading to low-cost physical design. Compared to [16],
INTIACC does not have special-purpose components at the
chip boundaries to set the BCs since the user programs the
BC in boundary PEs.

We chose to implement a 4 × 4 PE array because it
allows us to have an equal number of PEs on each boundary.
The 4 × 4 architecture also has four non-boundary PEs
interacting with each other in the center. More PEs could
be added at the cost of a larger chip area. We chose FP32
arithmetic precision because it is widely used in scientific
computing applications. It can also be extended to 64-bit
counterparts at the cost of silicon area and latency.

We chose to implement local communication only because
it is sufficient for our target FDM with explicit integra-
tion algorithms. Supporting only local communication greatly
reduces the amount of hardware dedicated to inter-PE com-
munication and thus greatly improves energy efficiency for
our target applications. The main tradeoff is that it may
not be straightforward to program other numerical methods
(e.g., implicit integration) that require data transfer between
non-neighboring PEs. We can make the current hardware
perform such data transfer only over many global clock
cycles. However, it would degrade the performance and energy
efficiency.

B. Programming Method

To program INTIACC for a PDE problem, the user should
first discretize the PDE using methods described in Section II.
As an example, Fig. 4(b) shows how we can discretize the
convection–diffusion equation (which is a generalized form
of the heat equation) and convert each discretized equation
into a series of arithmetic operations. Then, we write these
operations into a PE program. The general form of such a
program is illustrated in Fig. 4(c), which consists of five main
stages: acquiring solutions from neighboring PEs, evaluating
slope, integrating, updating BCs, and finally sending solutions
to neighboring PEs.

To support varying BCs, we add instructions to the pro-
grams of corresponding boundary PEs, which can evaluate the
mathematical operations required for the update of the BCs.
These PEs have part of their programs perform computations
required for the updates. For example, if the BC specifies that

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 08,2024 at 18:39:11 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: INTIACC: A PROGRAMMABLE FLOATING-POINT ACCELERATOR FOR PDEs 5

Fig. 4. (a) Top architecture of INTIACC; the PEs have the same hardware but are programmed independently based on the target PDE problem. Boundary
PEs are shaded, which also have the same hardware but different software from non-boundary PEs. (b) Discretization of the convection–diffusion equation
and a graphical representation of the data flow. (c) Program flowchart for each PE.

Fig. 5. PE consists of an RISC data path with four special registers and a
local clock generator.

u(i+1)
boundary = 1.1 · u(i)

boundary + 0.2, then the program needs a
multiply and an add instruction for the update in each iteration.
As a result, this boundary PE needs to perform two more
instructions, taking two more local clock cycles than non-
boundary PEs.

After writing the program using INTIACC’s custom instruc-
tion set (see Section III-D), the user converts the instructions
to a binary form and loads them to the instruction memory in
the PEs. Also, the user loads the data memory in the PEs with
data needed during the program execution.

C. PE Architecture

As shown in Fig. 5, the PE uses an RISC architecture
that consists of an FP32 ALU, instruction, data register files,
and a program counter. In addition to these components,
we incorporate four special registers in the datapath to capture
the solutions from neighboring PEs. The PE can store up
to 224 bytes of program instructions and 128 bytes of data.
We determined them based on the requirements of the target
PDE problems and the available silicon area.

Fig. 6. Timing diagram of the PE operation.

Also, each PE is individually clocked by its local clock,
while only the special registers are synchronized to a global
clock shared by all PEs. We implemented the local clock
generator because we want to keep the local clock fast
and the global clock slow. The main tradeoff is the overhead
of the generator versus a fast global clock distribution power
and the associated timing constraints. By making this tradeoff,
we are able to distribute the fast clock only locally within
each PE.

We use a simple timing diagram (Fig. 6) to illustrate the
PE operation. At each rising edge of the global clock, all PEs
capture the solutions from their neighbors. Then, the local
clock generator in each PE is activated. Using their local
clock, each PE starts to execute instructions. One iteration
in a typical PE program first transfers the data captured in
the special registers to the last four locations (A28–A31) in
the general-purpose register file. Then, the computation part
of the program is executed. Finally, at the end of the program
execution in each iteration, the local clock is deactivated, and
each PE sends its neighbors the solution it just computed. The
PEs capture these solutions at the next rising edge of the global
clock.

Note that if the PE program uses Euler’s method, each
global clock cycle corresponds to one timestep in the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 08,2024 at 18:39:11 UTC from IEEE Xplore. Restrictions apply.

6 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 7. Local clock generator circuit.

Fig. 8. Operation of the local clock generator.

Fig. 9. Custom ISA.

PDE program. However, if a higher order integration method is
used, each timestep requires multiple rounds of data exchange
among neighboring PEs, hence requiring multiple global clock
cycles. For example, each timestep in the RK4 method requires
four global clock cycles to evaluate the four intermediate
slopes.

We show the details of the local clock generator in Fig. 7
and illustrate its operation in Fig. 8. It has a ring oscillator
controlled by the XOR result of two toggle flip flops (TFFs),
where one is synchronized to the global clock, while the other
is synchronized to the generated local clock. For the two TFFs,
while the global clock one always toggles at the rising edge,
the local clock one only toggles when a local finish signal
is high. This local finish signal is asserted when the program
counter reaches a predetermined value that indicates the end
of the iteration. We use a negative edge triggered D flip-flop
and a mux at the output of the ring oscillator. The purpose is
to ensure that the generated clock signal always starts from
a low state so that any potential setup time violation can be
avoided.

D. Custom ISA and Algorithms

We designed a custom ISA for INTIACC, summarized in
Fig. 9. The purpose for the custom ISA is to map many essen-
tial nonlinear functions required in solving PDEs in a small

Fig. 10. ALU area breakdown based on instructions.

Fig. 11. Implementations of (a) 1/u and (b) sin u functions. (c) Instruction
sizes for implementing different nonlinear functions.

number of instructions. The ISA uses a 28-bit instruction for-
mat composed of a 4-bit opcode, 1-bit write enable, three 5-bit
register index fields, and finally 8 bits for branch operations.
The instruction set consists of basic add/mult operations and
more complex instructions performed by custom hardware in
the ALU. For example, some instructions acquire certain parts
of a floating-point number (i.e., gexpu, gexprs, and gmanu).
These are designed to implement floating-point division. The
ALU hardware overhead for implementing these instructions
is about 20%. As shown in Fig. 10, the ALU area is dominated
by the floating-point multiplier and adder.

To demonstrate the effectiveness of the ISA, we show two
examples of nonlinear function implementation. Fig. 11(a)
shows the reciprocal function 1/u. For this function, we use
the Goldschmidt fast division algorithm, which is one of
the most commonly used algorithms in performing division.
A challenge in implementing this algorithm is that it requires
an initial guess of the division result, and this guess should be

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 08,2024 at 18:39:11 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: INTIACC: A PROGRAMMABLE FLOATING-POINT ACCELERATOR FOR PDEs 7

Fig. 12. (a) INTIACC chip die photograph. (b) PE area breakdown.

close enough to the exact result for the algorithm to converge.
To generate such an initial guess for 1/u, where u is an
arbitrary FP32 number, we propose the following approach.
First, we separate the input floating-point number u’s mantissa
and exponential parts using specialized hardware. Then, for the
exponential part, i.e., the 2E with the ± sign in Fig. 11(a) (top),
the reciprocal is ±2−E , which can be computed with the gexprs
instruction using simple integer hardware. For the mantissa
part (the M in the figure) since the floating-point format
guarantees that it is always between 1 and 2, we can use any
number between 0.5 and 1 as the initial guess of its reciprocal.
Finally, we get the initial guess for 1/u by multiplying the
above results for the exponential and mantissa parts.

The second example is the sine function shown in 11(b).
First, we use trigonometric identities to reduce the argument
u of the sine function to a value between 0 and π/4. This
process makes use of the gfrac instruction that produces the
fractional part of the input number. After u is reduced, we then
use the Taylor approximation to evaluate sin u.

The Goldschmidt and Taylor approximation methods shown
are important examples because they can be used to implement
many other nonlinear functions. Specifically, our Goldschmidt
routine can be used for general floating-point division,
while the Taylor approximation can be used to approximate
non-standard nonlinear functions.

In Fig. 11(c), we show the instruction memory space needed
for various algorithms. These algorithms can be implemented
in a memory-efficient manner using INTIACC’s custom ISA.
For example, performing Taylor approximation requires find-
ing the fractional part of a floating-point number. Using the
conventional RISC ISA, this operation can be performed in
about 30 instructions. In comparison, INTIACC can perform
this in a single instruction (named gfrac) in the custom ISA.

IV. MEASUREMENT RESULTS AND ANALYSIS

We prototyped INTIACC in the TSMC 65-nm CMOS
process. The chip die photograph and an area breakdown of the
PE are shown in Fig. 12. To test the INTIACC’s performance
thoroughly, we designed a set of test cases that are based on
different types of PDEs with different BCs and parameter
settings. Then, we compare INTIACC’s solution time and
energy against a CPU (Intel i9-9920X) and GPU (NVIDIA
Quadro RTX6000) in which the same problems are solved.

A. Frequency and Power Measurement Results

In Fig. 13, we show the power and average local clock fre-
quency scaling across different supply voltages. We measure

Fig. 13. Average local clock frequency and chip power consumption
measurement results across different supply voltages.

the average power by running a typical test program in
each PE. Also, the local clock generators are set to a
free-running mode in which the global clock positive edges
do not deactivate them. In this way, we obtain the maximum
power consumption of the chip. Under this setup, at 1-V
supply, the chip runs at an average local clock frequency
of 572 MHz, offering an aggregate single-precision computa-
tion throughput of 9.12 GFLOPS while consuming 152.4 mW.

B. Test Cases

We design seven test cases to test INTIACC’s performance.
Their configuration details are listed in Table I. We started
from a fully fledged convection–diffusion equation in test
case 1 (TC1) and made simplified versions of it in TC2–TC4.
The physical context of this equation is that of a chemical
substance diffusing in flowing water. The variable of interest
u is the concentration of the substance. The equation’s solution
describes the chemical’s concentration across time and loca-
tions in the water. Using TC1 as an example, the parameter
D = 0.4 m2/s is the diffusion coefficient. The water flow
velocity field v is a function of time and space and is equal to
0.1e−0.1t

+0.2x +0.1y m/s. Besides, the chemical is constantly
generated when diffusing, and the amount generated is a
function of the concentration. Here, we assume a sinusoidal
form for this function, i.e., R = sin u. Moreover, we specify
that the domain boundaries have an exponentially decreasing
concentration of this chemical, as given in the BC u = e−0.2t .

TC5, TC6, and TC7 target other types of PDEs. The wave
equation in TC5 models the transmission of waves; TC6 and
TC7 test Poisson’s and Laplace’s equations, which can be
used for modeling thermal or electric phenomena. We tested
these PDEs because they use different domain quantization
formulas or different evaluation algorithms than those used in
the convection–diffusion equation.

We solve the test-case equations with a grid size of 4 × 4.
For the time-dependent cases TC1–TC5, we use an integration
timestep size of 0.001 s. We illustrate the solutions of two of
the test cases in Fig. 14(a) and (b). Each solution plot contains
16 curves corresponding to the solutions obtained in 16 PEs
across iterations.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 08,2024 at 18:39:11 UTC from IEEE Xplore. Restrictions apply.

8 IEEE JOURNAL OF SOLID-STATE CIRCUITS

TABLE I
TEST-CASE PROBLEM SPECIFICATIONS

Fig. 14. INTIACC solutions for (a) TC1 and (b) TC5. Each plot consists of 16 curves representing the solutions obtained over iteration steps in the 16 PEs.
(c) Solution error of each test case compared to the corresponding 64-bit floating-point solution.

Before solving a PDE problem, INTIACC’s global clock
frequency (fglobal) needs to be configured. We determine fglobal
as follows. First, based on the specifications of the PDE
problem and the solving algorithm, we write a program for
each PE using INTIACC’s instruction set. Then, we count the
number of instructions for one iteration for each PE, which
equals some number N . Assuming that the largest N out of
the 16 Ns (for 16 PEs) is Nmax and the local clock frequency
is flocal, then fglobal should satisfy fglobal < flocal/Nmax − τ ,
where τ is a margin. The reason for this relation is that each
PE must finish executing instructions for one iteration within
one global clock cycle. The margin τ accounts for the latency
of turning the local clock on and off at the beginning and the
end of a global clock cycle, respectively.

Although INTIACC uses FP32 arithmetic, the solutions are
still less precise than those from a CPU since the latter uses
double-precision floating-point (FP64) arithmetic. Therefore,
we plot the mean absolute errors of the solutions obtained
in INTIACC across all the test cases, as shown in Fig. 14(c).
We note that the errors depend on the specific math operations
performed in solving each test case. For example, TC1 and
TC2 have the largest normalized errors due to the extra
function evaluations in their equation settings. In contrast,
the errors are much smaller in TC6 and TC7 since their
solutions are obtained through iterative refinement instead of
time integration as in TC1–TC5.

C. Performance Comparison

We compare INTIACC’s performance with CPU/GPU and
the prior accelerator works. For comparison with CPU/GPU,

Fig. 15. Program structure used in CPU/GPU for solving the test-case
problems.

we program the CPU/GPU to solve the same test-case PDEs
with a grid size of 16 using a standard matrix–vector multipli-
cation approach. Specifically, as shown in Fig. 15, the matrix A
contains information about the PDE’s parameter settings, while
the vector b contains BCs, and the vector u is the solution.
The power measurements of the CPU are performed using
real-time CPU power measuring software. An example of this
type of software can be found in [27].

The performance improvements of INTIACC over the CPU
and GPU are summarized in Fig. 16. We note that the solution
times of the GPU are larger than those of the CPU for our
test cases. This is because the GPU has latency overhead in
launching parallel computing kernels and, therefore, is only
faster than the CPU when the problem size is large enough
to amortize this overhead [28]. For this reason and the GPU’s
higher power consumption, the GPU is less energy efficient
than the CPU in solving our test cases, so we only compare
INTIACC with the CPU for energy consumption. However,
we note that as the problem size becomes larger, the GPU
solution speed will exceed that of the CPU, and hence,
we should compare the performance of INTIACC with that
of the GPU.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 08,2024 at 18:39:11 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: INTIACC: A PROGRAMMABLE FLOATING-POINT ACCELERATOR FOR PDEs 9

TABLE II
COMPARISON WITH PRIOR WORKS

Fig. 16. Solution time and energy of CPU, GPU, and INTIACC. The per-
formance data for INTIACC do not include the overhead of being configured
and launched by a host.

We observe the largest speedup in TC2. The main reason is
that TC2 requires a large number of updates in the BCs and
equation parameters for each iteration. In CPU/GPU, these
updates happen to individual elements in the matrix A (for
equation parameters) and vector b (for BCs), which could lead
to expensive memory accesses. In contrast, INTIACC performs
these updates locally within each PE and mostly in parallel,
which enables the speedup. We also note that although TC1
has one more parameter update, i.e., the nonlinear term R =

sin u, than TC2 does, INTIACC’s performance advantage over
the CPU is less in TC1 than in TC2. We think that this is
because, in TC1, the evaluation of the sine function is faster

on the CPU than on INTIACC due to the much higher clock
frequency of the CPU.

We also compare our works with the prior state-of-the-
art PDE accelerators, as shown in Table II. We show that
INTIACC offers more than 40× speedup while maintaining
a similar energy-delay product compared to [16] in solving
Laplace’s equation. Yet, we note that comparing INTIACC
with prior fixed accelerator works is difficult because they use
much lower numerical precision and are not programmable
(except for [13]) for solving a wide range of problems.
We also note that the prior systolic array processors [18], [19],
[20], [21] do not focus on the PDE problems. To the best of
our knowledge, INTIACC is the first to optimize the systolic
floating-point processor array for solving various classes of
PDE problems.

V. SCALABILITY ANALYSIS

In this section, we offer a scalability analysis for using
the INTIACC architecture to compute larger problems. First,
a larger 2-D problem can be mapped by dividing the problem
domain and assigning multiple grid points to each PE. For
example, a problem with 16 × 16 grid points can be divided
into chunks of 4 × 4 grid points where each chunk will be
mapped to a PE. The BCs can be processed by the boundary
PEs in a similar manner. In the above example, a boundary PE
will have four boundary points to update (or eight boundary
points if it is at a corner). These updates will be performed in
program order based on the mathematical formula associated
with the corresponding BCs.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 08,2024 at 18:39:11 UTC from IEEE Xplore. Restrictions apply.

10 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 17. Map a 3-D problem of size N × N × N grid points to an array
of M PEs. Each PE is assigned with a column of grid points.

Fig. 18. Total on-chip memory size versus the number of grid points for
Laplace’s equation.

For 3-D problems, assume its domain is rectangular and
discretized into N grid points on each dimension. To map the
problem, each PE can be assigned with a column region of
grid points, as illustrated in Fig. 17, where each of the M PEs
computes the solutions for N 3/M grid points.

In each iteration, PEs first exchange the values of grid points
at the column boundaries with their corresponding neighbors.
After doing so, each PE possesses the complete grid-point
data needed for updating solutions in the current iteration.
Then, each PE performs these updates for all its associated
grid points. We note that each PE can map multiple grid
points because of the programmable PE architecture, which
allows the PE to compute multiple grid-point solutions by
sequentially executing a user-defined program.

To map more grid points per PE, we need more on-
chip memory. Using Laplace’s equation as an example, the
PE’s memory area would be dominated by the storage of
grid-point solutions (each in FP32 format). The total memory
size required versus the number of grid points can be plotted
as in Fig. 18. Therefore, mapping a ten million grid-point size
problem requires about 40 MB of on-chip memory, which we
believe is feasible in today’s technology.

To solve the 3-D problem, each PE must first exchange data
(of the boundary grid-point solutions) with their neighbors.
Therefore, the total computation latency for one iteration con-
sists of the communication and calculation latency. We assume
that each PE uses a single-port memory and transferring one
grid-point solution takes one clock cycle. Then, for Laplace’s
equation, the communication latency can be calculated as
4 · N 2/(M)1/2, where M is the number of PEs, which we

Fig. 19. Latencies of CPU/GPU and INTIACC for solving a 200 × 200 grid
size 2-D Laplace’s equation. The latency for INTIACC does not include the
overhead of being configured and launched by a host.

Fig. 20. Latency versus the number of grid points for Laplace’s equation,
assuming that there are 64 PEs.

assume is the square of an integer (e.g., 16 and 64). For
Laplace’s equation, updating each grid point requires summing
the values of its six neighbors in the x-, y-, and z-directions
and then multiplying by a parameter. Therefore, it takes six
clock cycles to update each grid point within a PE. This leads
to a calculation latency of 6 · N 3/M .

We now compare the performance of the scaled-up versions
of INTIACC with GPU for a 2-D Laplace’s equation with a
grid size of 200 × 200. We compare it to the GPU since,
with this problem size, the GPU’s performance is more than
20 times better than that of the CPU. This is because the
GPU kernel launching overhead is amortized. The comparison
is shown in Fig. 19. For each iteration, the GPU has a
computation latency of 16 µs, while the CPU is much slower,
at 400 µs. The figure also shows the INTIACC’s performance
across different numbers of PEs without the overhead of being
configured and launched by a host. We note that it is not
necessary for INTIACC to use off-chip memory since each
PE can store the values of many grid points. For example,
when the problem of size 200 × 200 is solved on a 10 × 10
PE array, each PE stores and updates 400 grid-point values,
which consume 1.6 kB of on-chip memory per PE.

Figs. 20 and 21 summarize the latency versus the number
of grid points and the number of PEs, respectively. The total
computation latency consists of the communication latency
between neighboring PEs and the calculation latency inside

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 08,2024 at 18:39:11 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: INTIACC: A PROGRAMMABLE FLOATING-POINT ACCELERATOR FOR PDEs 11

Fig. 21. Latency versus the number of PEs for Laplace’s equation, assuming
one million grid points.

each PE. The plots show that the total latency is dominated by
the calculation latency, especially for large problem sizes with
a relatively smaller number of PEs. As the PE array becomes
larger, the calculation latency decreases due to increased
parallelism, while the communication latency also decreases.
We note that we are showing the ideal scaling behavior since
at each analysis point, i.e., the number of PEs and the number
of grid points, we assume that PEs have sufficient memory to
store computing data and, therefore, the PEs fully utilize the
memory and computing resources.

The current INTIACC prototype can map 3-D problems if
each PE has a larger memory. However, it is not preferable for
our current microarchitecture implementation because we opti-
mize it for problems that mostly require data exchange among
neighboring PEs. For example, we design the PE to exchange
one solution value per iteration with each neighbor, which is
sufficient for a 16-point 2-D problem. To map 3-D problems,
however, more solution values must be exchanged among non-
neighboring PEs. We can make the current hardware perform
these exchanges over many global clock cycles. However, this
can be done more efficiently if we add additional hardware to
perform these exchanges.

VI. CONCLUSION

Practical PDE problems involve various equation types,
BCs, and parameter settings. This requirement can be best
satisfied by programmable hardware. The proposed INIACC
accelerator is, therefore, designed to have programmable PEs
to offer flexibility for users to configure different equations
and numerical algorithms. We tested our prototype chip with
equations from different PDE categories and compared its
performance with that of CPU/GPU and the state-of-the-art
PDE accelerator. INTIACC exceeds the state-of-the-art PDE
solver by 40× in speed and has a much wider applicable prob-
lem range and much higher numerical precision. Moreover,
we show that the INTIACC architecture can be easily scaled to
map larger problems by incorporating more on-chip memory
in each PE and/or increasing the number of PEs.

REFERENCES

[1] R. E. Bank, W. M. Coughran, W. Fichtner, E. H. Grosse, D. J. Rose,
and R. K. Smith, “Transient simulation of silicon devices and circuits,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. CAD-4,
no. 4, pp. 436–451, Oct. 1985, doi: 10.1109/TCAD.1985.1270142.

[2] W. Materi and D. S. Wishart, “Computational systems biology in
drug discovery and development: Methods and applications,” Drug
Discovery Today, vol. 12, nos. 7–8, pp. 295–303, Apr. 2007, doi:
10.1016/j.drudis.2007.02.013.

[3] A. Jameson, L. Martinelli, and N. A. Pierce, “Optimum aerody-
namic design using the Navier–Stokes equations,” Theor. Comput.
Fluid Dyn., vol. 10, nos. 1–4, pp. 213–237, Jan. 1998, doi: 10.1007/
s001620050060.

[4] M. Ghil, S. Cohn, J. Tavantzis, K. Bube, and E. Isaacson,
“Applications of estimation theory to numerical weather predic-
tion,” in Dynamic Meteorology: Data Assimilation Methods (Applied
Mathematical Sciences), L. Bengtsson, M. Ghil, and E. Källén, Eds.
New York, NY, USA: Springer, 1981, pp. 139–224, doi: 10.1007/
978-1-4612-5970-1_5.

[5] W. A. Strauss, Partial Differential Equations: An Introduction. Hoboken,
NJ, USA: Wiley, 2007.

[6] W. F. Ames, Numerical Methods for Partial Differential Equations.
New York, NY, USA: Academic, 2014.

[7] C. Barajas, M. K. Gobbert, G. C. Kroiz, and B. E. Peercy, “Challenges
and opportunities for the simulation of calcium waves on modern
multi-core and many-core parallel computing platforms,” Int. J. Numer.
Methods Biomed. Eng., vol. 37, no. 11, p. e3244, Nov. 2021, doi:
10.1002/cnm.3244.

[8] Y. Huang, N. Guo, M. Seok, Y. Tsividis, K. Mandli, and
S. Sethumadhavan, “Hybrid analog-digital solution of nonlinear par-
tial differential equations,” in Proc. 50th Annu. IEEE/ACM Int.
Symp. Microarchitecture (MICRO), New York, NY, USA, Oct. 2017,
pp. 665–678.

[9] G. E. R. Cowan, R. C. Melville, and Y. P. Tsividis, “A VLSI
analog computer/digital computer accelerator,” IEEE J. Solid-State Cir-
cuits, vol. 41, no. 1, pp. 42–53, Jan. 2006, doi: 10.1109/JSSC.2005.
858618.

[10] J. Kung, Y. Long, D. Kim, and S. Mukhopadhyay, “A programmable
hardware accelerator for simulating dynamical systems,” in Proc.
ACM/IEEE 44th Annu. Int. Symp. Comput. Archit. (ISCA), New
York, NY, USA, Jun. 2017, pp. 403–415, doi: 10.1145/3079856.
3080252.

[11] M. A. Zidan et al., “A general memristor-based partial differential
equation solver,” Nature Electron., vol. 1, no. 7, pp. 411–420, Jul. 2018,
doi: 10.1038/s41928-018-0100-6.

[12] B. Asgari, R. Hadidi, T. Krishna, H. Kim, and S. Yalamanchili,
“ALRESCHA: A lightweight reconfigurable sparse-computation accel-
erator,” in Proc. IEEE Int. Symp. High Perform. Comput. Archit.
(HPCA), San Diego, CA, USA, Feb. 2020, pp. 249–260, doi:
10.1109/HPCA47549.2020.00029.

[13] N. Guo et al., “Energy-efficient hybrid analog/digital approximate
computation in continuous time,” IEEE J. Solid-State Circuits,
vol. 51, no. 7, pp. 1514–1524, Jul. 2016, doi: 10.1109/JSSC.2016.
2543729.

[14] J. Liang, N. Udayanga, A. Madanayake, S. I. Hariharan, and S. Mandal,
“An offset-cancelling discrete-time analog computer for solving 1-D
wave equations,” IEEE J. Solid-State Circuits, vol. 56, no. 9,
pp. 2881–2894, Sep. 2021, doi: 10.1109/JSSC.2021.3074003.

[15] T. Chen, J. Botimer, T. Chou, and Z. Zhang, “A 1.87-mm2 56.9-GOPS
accelerator for solving partial differential equations,” IEEE J. Solid-
State Circuits, vol. 55, no. 6, pp. 1709–1718, Jun. 2020, doi:
10.1109/JSSC.2019.2963591.

[16] J. Mu and B. Kim, “A dynamic-precision bit-serial computing hardware
accelerator for solving partial differential equations using finite differ-
ence method,” IEEE J. Solid-State Circuits, vol. 58, no. 2, pp. 543–553,
Feb. 2023, doi: 10.1109/JSSC.2022.3174354.

[17] P. X. Huang, D. Jang, Y. Tsividis, and M. Seok, “INTIACC: A 32-bit
floating-point programmable custom-ISA accelerator for solving classes
of partial differential equations,” in Proc. IEEE 48th Eur. Solid State
Circuits Conf. (ESSCIRC), Milan, Italy, Sep. 2022, pp. 349–352, doi:
10.1109/ESSCIRC55480.2022.9911441.

[18] S. Kim et al., “Versa: A 36-core systolic multiprocessor with
dynamically reconfigurable interconnect and memory,” IEEE J. Solid-
State Circuits, vol. 57, no. 4, pp. 986–998, Apr. 2022, doi:
10.1109/JSSC.2022.3140241.

[19] G. Peng, L. Liu, S. Zhou, S. Yin, and S. Wei, “A 2.92-Gb/s/W
and 0.43-Gb/s/MG flexible and scalable CGRA-based baseband pro-
cessor for massive MIMO detection,” IEEE J. Solid-State Circuits,
vol. 55, no. 2, pp. 505–519, Feb. 2020, doi: 10.1109/JSSC.2019.
2952839.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 08,2024 at 18:39:11 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCAD.1985.1270142
http://dx.doi.org/10.1016/j.drudis.2007.02.013
http://dx.doi.org/10.1007/s001620050060
http://dx.doi.org/10.1007/s001620050060
http://dx.doi.org/10.1007/978-1-4612-5970-1_5
http://dx.doi.org/10.1007/978-1-4612-5970-1_5
http://dx.doi.org/10.1002/cnm.3244
http://dx.doi.org/10.1109/JSSC.2005.858618
http://dx.doi.org/10.1109/JSSC.2005.858618
http://dx.doi.org/10.1145/3079856.3080252
http://dx.doi.org/10.1145/3079856.3080252
http://dx.doi.org/10.1038/s41928-018-0100-6
http://dx.doi.org/10.1109/HPCA47549.2020.00029
http://dx.doi.org/10.1109/JSSC.2016.2543729
http://dx.doi.org/10.1109/JSSC.2016.2543729
http://dx.doi.org/10.1109/JSSC.2021.3074003
http://dx.doi.org/10.1109/JSSC.2019.2963591
http://dx.doi.org/10.1109/JSSC.2022.3174354
http://dx.doi.org/10.1109/ESSCIRC55480.2022.9911441
http://dx.doi.org/10.1109/JSSC.2022.3140241
http://dx.doi.org/10.1109/JSSC.2019.2952839
http://dx.doi.org/10.1109/JSSC.2019.2952839

12 IEEE JOURNAL OF SOLID-STATE CIRCUITS

[20] M. Anders et al., “2.9 TOPS/W reconfigurable dense/sparse matrix-
multiply accelerator with unified INT8/INTI6/FP16 datapath in 14 NM
tri-gate CMOS,” in Proc. IEEE Symp. VLSI Circuits, Honolulu, HI, USA,
Jun. 2018, pp. 39–40, doi: 10.1109/VLSIC.2018.8502333.

[21] S. Shanmuga Sundaram, Y. Khodke, Y. Li, S.-J. Jang, S.-S. Lee, and
M. Kang, “FreFlex: A high-performance processor for convolution
and attention computations via sparsity-adaptive dynamic frequency
boosting,” IEEE J. Solid-State Circuits, vol. 59, no. 3, pp. 855–866,
Mar. 2024, doi: 10.1109/JSSC.2023.3341348.

[22] W. E. Schiesser, The Numerical Method of Lines Integration of
Partial Differential Equations. San Diego, CA, USA: Academic,
1991.

[23] X. Lü and S.-J. Chen, “Interaction solutions to nonlinear partial dif-
ferential equations via Hirota bilinear forms: One-lump-multi-stripe
and one-lump-multi-soliton types,” Nonlinear Dyn., vol. 103, no. 1,
pp. 947–977, Jan. 2021, doi: 10.1007/s11071-020-06068-6.

[24] J. C. Butcher, Numerical Methods for Ordinary Differential Equations.
New York, NY, USA: Wiley, 2008.

[25] R. E. Goldschmidt, “Applications of division by convergence,” M.S. dis-
sertation, MIT, Cambridge, MA, USA, 1964.

[26] T. Stocker, Introduction to Climate Modelling. Berlin, Germany:
Springer, 2011, p. 57.

[27] D. Beyer and P. Wendler, “CPU energy meter: A tool for energy-aware
algorithms engineering,” in Tools and Algorithms for the Construc-
tion and Analysis of Systems (Lecture Notes in Computer Science),
vol. 12079, A. Biere and D. Parker, Eds. Cham, Switzerland: Springer,
2020, doi: 10.1007/978-3-030-45237-7_8.

[28] S. Kim, S. Oh, and Y. Yi, “Minimizing GPU kernel launch over-
head in deep learning inference on mobile GPUs,” in Proc. 22nd
Int. Workshop Mobile Comput. Syst. Appl. New York, NY, USA:
Association for Computing Machinery, Feb. 2021, pp. 57–63, doi:
10.1145/3446382.3448606.

Paul Xuanyuanliang Huang (Student Member,
IEEE) received the bachelor’s degree in electrical
engineering from the University of Electronic Sci-
ence and Technology of China (UESTC), Chengdu,
China, in 2018, and the master’s degree in electrical
engineering from Columbia University, New York,
NY, USA, in 2020, where he is currently pursuing
the Ph.D. degree with the VLSI Laboratory led by
Prof. Mingoo Seok.

His research focuses on the design of high-
performance accelerator circuits for computing
applications.

Yannis Tsividis (Life Fellow, IEEE) received the
B.S. degree from the University of Minnesota, Min-
neapolis, MN, USA, and the M.S. and Ph.D. degrees
from the University of California at Berkeley,
Berkeley, CA, USA.

He is currently the Edwin Howard Armstrong
Professor of Electrical Engineering at Columbia
University, New York, NY, USA. He has worked
on analog and mixed-signal integrated circuits at
the device, circuit, system, signal processing, and
computer simulation level.

Dr. Tsividis received the 1984 IEEE W. R. G. Baker Award for the best IEEE
publication, the Columbia’s Presidential Award for Outstanding Teaching
in 2003, the IEEE Undergraduate Teaching Award in 2005, the IEEE Circuits
and Systems Education Award in 2010, the IEEE Gustav Robert Kirchhoff
Award in 2007, and the Outstanding Achievement Award of the University
of Minnesota in 2013. He was a recipient or co-recipient of best paper
awards from the European Solid-State Circuits Conference in 1986, the IEEE
International Solid-State Circuits Conference in 2003, and the IEEE Circuits
and Systems Society (the Darlington Award in 1987 and the Guillemin-Cauer
Award in 1998 and 2008). In 2012, he was an elected Professor Honoris Causa
at the University of Patras, Patras, Greece.

Mingoo Seok (Senior Member, IEEE) received
the B.S. degree (summa cum laude) in electrical
engineering from Seoul National University, Seoul,
South Korea, in 2005, and the M.S. and Ph.D.
degrees from the University of Michigan, Ann
Arbor, MI, USA, in 2007 and 2011, respectively,
all in electrical engineering.

He was a member of the Technical Staff with Texas
Instruments Inc., Dallas, TX, USA, in 2011. Since
2012, he has been with Columbia University, New
York, NY, USA, where he is currently an Associate

Professor of electrical engineering and the Chair of Computer Engineering.
His current research interests include ultra-low-power system-on-chip (SoC)
design for emerging intelligent systems, machine-learning VLSI architecture
and circuits, variation, voltage, aging, thermal-adaptive circuits and architec-
ture, on-chip integrated power circuits, and nonconventional hardware design,
including in-memory computing and analog and mixed-signal computing
hardware.

Dr. Seok received the 1999 Distinguished Undergraduate Scholarship from
Korea Foundation for Advanced Studies, the 2005 Doctoral Fellowship from
Korea Foundation for Advanced Studies, the 2008 Rackham Pre-Doctoral
Fellowship from the University of Michigan, the 2009 AMD/CICC Schol-
arship Award for picowatt voltage reference work, the 2009 DAC/ISSCC
Design Contest for the 35-pW sensor platform design, the 2015 NSF
CAREER Award, and the 2019 Qualcomm Faculty Award. He is a Tech-
nical Program Committee Member for several conferences, including IEEE
International Solid-State Circuits Conference (ISSCC) and ACM/IEEE Design
Automation Conference (DAC). He serves/served as an Associate Editor for
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS
from 2013 to 2015, IEEE TRANSACTIONS ON VERY LARGE SCALE INTE-
GRATION (VLSI) SYSTEMS since 2015, and IEEE SOLID-STATE CIRCUITS
LETTER since 2017. He also served as a Guest Editor for IEEE JOURNAL
OF SOLID-STATE CIRCUITS (JSSC).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 08,2024 at 18:39:11 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/VLSIC.2018.8502333
http://dx.doi.org/10.1109/JSSC.2023.3341348
http://dx.doi.org/10.1007/s11071-020-06068-6
http://dx.doi.org/10.1007/978-3-030-45237-7_8
http://dx.doi.org/10.1145/3446382.3448606

