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A B S T R A C T   

The design of both molecular and non-molecular solid materials with specific properties fundamentally relies on the controlled synthesis of crystals with desired 
functional groups, bonding motifs, polarity, chirality, and more. To this end, fluoride and oxide-fluoride anions have been utilized as basic building units (BBUs) in 
the synthesis of noncentrosymmetric racemic materials for their ability to create polar axes that facilitate the breaking of an inversion center as demonstrated in a 
series of compounds with [MF6]2- anions (M = Ti, Zr, Hf). Targeting an analog with a [TaOF5]2- anion, the phase space of (CuO, Ta2O5)/bpy/HF(aq)/H2O (bpy = 2,2′- 
bipyridine) was investigated and three new compounds with Cu-bpy cations and Ta-fluoride or Ta-oxyfluoride anions were synthesized: [Cu(bpy)2][TaF6], [Cu 
(bpy)2][Ta2OF10], and [Cu(bpy)F(H2O)2]2[TaF7]•H2O with the anions [TaF6]-, [Ta2OF10]2-, and [TaF7]2-, respectively. The formation of these anions was found to be 
a product of both the concentration of hydrofluoric acid in solution and the ratio of metal-oxide starting materials to ligand. This work contributes to the under-
standing of mixed anion formation in the solid state.   

1. Introduction 

Many properties require certain symmetry elements to be present or 
absent, such as nonlinear optical activity and circular dichroism require 
the absence of an inversion center [1–4], while other properties require 
specific electronic [5,6], polarity, or geometric considerations [7]; ex-
amples include the electron counting rules in band theory to determine 
if the material is an insulator or conductor [8], a net polar moment for 
pyroelectricity [9,10], and triangular motifs to promote magnetic frus-
tration in some magnetic materials, respectively [11,12]. It is therefore a 
foundation to designing molecular and non-molecular solid materials 
with specific properties to know what synthetic conditions yield desired 
structural functional groups, building units, bonding motifs and the like. 
To this end, using basic building units (BBUs) with mixed anions to 
assemble materials is a promising route to materials design [13]. 
Further, combining different BBUs with different symmetry or polarity 
elements allows for an additive approach to materials design: such has 
been seen through the combination of chiral and polar BBUs in the 
synthesis of noncentrosymmetric racemate compounds [1,14,15]. 

Tantalum anions host a wide variety of sizes, geometries, and po-
larities, making them candidate BBUs for a wide variety of materials 
with physical properties [16–19]. Further, the solubility of tantalum 
oxide (Ta2O5) in hydrofluoric acid solutions allows for extensive study of 
Ta-fluoride and Ta-oxide/fluoride anions [2,13,18–20]. Ta-fluoride an-
ions [TaFx]5−x range from octahedral (x = 6) to the distorted 
capped-cube of (x = 9) and the octahedral dimer [Ta2F11]- [21–25]. 

Ta-oxyfluoride anions exhibit an even broader range of sizes and ge-
ometries, from octahedral [TaOF5]2- to its dimer [Ta2OF10]2- [26], and 
tetramer [Ta4O4F16]4- [19], adamantane-like cage [Ta4O6F12]4- [27], 
the hexanuclear cage-like cluster [Ta6O9F18]3- [19], and one dimen-
sional chains of [TaOF4]- and more [19,28–30]. Further, the formation 
of many of these fluoride and oxyfluoride anions is understood through 
the relationship of the amount of dissociation of aqueous hydrofluoric 
acid and organic bases needing protonation, therefore, controlling the 
amount of fluoride ions in solution [18,19]. 

In this article, we report three new Ta-fluoride and Ta-oxyfluoride 
compounds. Chiral, metal-centered BBUs were combined with Ta- 
fluoride/oxyfluoride anions targeting a noncentrosymmetric, polar, 
racemate with the anion [TaOF5]2-, a Group V, oxyfluoride analog to the 
Group IV series of compounds of the formula Δ, Λ-[Cu(bpy)2-
H2O]2[MF6]2•H2O (bpy = 2,2′-bipyridine, M = Ti, Zr, or Hf) [14,15]. 
Exploratory synthesis towards this target yielded the compounds [Cu 
(bpy)2][TaF6] (1), [Cu(bpy)2][Ta2OF10] (2), and [Cu(bpy)F 
(H2O)2]2[TaF7]•H2O (3) with the anions [TaF6]-, [Ta2OF10]2-, and 
[TaF7]2-, respectively. These newly synthesized compounds are struc-
turally characterized and the formation of the anions in the presence of 
metal chelated cations builds on the works by Lu [18] and Wu [19] 
which described the basicity of organic bases and anion formation, as 
well as the role of acid concentration in conjunction with the basic 
ligands. 

Abbreviations: BBU, basic building unit; bpy, 2-2′-bipyridine; ETM, early transition metal. 
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2. Methods 

Hydrofluoric acid (HF) is toxic and corrosive! HF must be 
handled with extreme caution and with the appropriate protective 
gear [31–33]. 

2.1. Materials 

Ta2O5 (Aldrich, 99 % trace metals basis), CuO (Sigma-Aldrich, 
≥99.0 %), 2,2′-bipyridine (bpy, Sigma-Aldrich, ≥99 %), HF(aq) (Sigma- 
Aldrich, 48 % wt. in H2O, ≥99.99+% trace metals basis) were used as 
received. Reagent amounts of deionized water were used. 

2.2. Hydrothermal Synthesis 

The compounds reported in this article were synthesized via the 
hydrothermal pouch method [15]. In each reaction, heat sealed Teflon 
pouches were charged with reagents and loaded into a 125 mL Parr 
autoclave in sets of six with 40 mL deionized water added as backfill. 
Autoclaves were heated at a rate of 5 ◦C/min to 200 ◦C (compound 1) or 
150 ◦C (compounds 2 and 3) and held for 24 h before slow cooling at a 
rate of 0.1 ◦C/min to room temperature. Solid products were recovered 
by vacuum filtration. 

Compound 1, [Cu(bpy)2][TaF6] was synthesized in a pouch con-
taining 0.1707 mmol CuO, 0.0854 mmol Ta2O5, 0.2538 mmol bpy, 0.4 
mL HF(aq) (11.04 mmol), and 0.7 mL deionized water. Orange block 
crystals were recovered by vacuum filtration along with the phase [Cu 
(bpy)3][TaF6]2 [34]. 

Compound 2, [Cu(bpy)2][Ta2OF10] was synthesized in a pouch 
containing 0.0415 mmol CuO, 0.0829 mmol Ta2O5, 0.2070 mmol bpy, 
0.4 mL HF(aq) (11.04 mmol), and 0.15 mL deionized water. Blue plate 
crystals were recovered by vacuum filtration along with other uniden-
tified phases. 

Compound 3, [Cu(bpy)F(H2O)2]2[TaF7]•H2O was synthesized in a 
pouch containing 0.1707 mmol CuO, 0.0854 mmol Ta2O5, 0.2538 mmol 
bpy, 0.1 mL HF(aq) (2.76 mmol), and 1 mL deionized water. Blue block 
crystals were recovered by vacuum filtration along with other uniden-
tified phases. 

2.3. Single Crystal X-ray Diffraction 

Suitable single crystals were mounted on a MitiGen mount with 
paratone oil. The crystals were analyzed on a XtaLAB Synergy diffrac-
tometer equipped with a micro-focus sealed X-ray tube PhotonJet 
(MoKα, λ = 0.71073 Å) source and a Hybrid Pixel Array (HyPix) detector 
at 100 K. Temperature was controlled by with an Oxford Cryostystems 
low-temperature device. Run list generation, data integration and 
finalization were performed with the CrysAlisPro software; [35] a nu-
merical absorption correction was applied. The structure was solved 
using Intrinsic Phase matching as implemented in ShelXT [36] within 
the Olex2 program [37]. The crystallographic models were refined with 
ShelXT using a least squares minimization. 

2.4. Diffuse Reflectance UV–Visible Spectrometry 

The UV-VIS-NIR spectrum in diffuse reflectance mode was collected 
on lightly grounded powder using a Cary 5000 UV–Vis–NIR double 
beam spectrophotometer with a monochromator. BaSO4 powder was 
used for the baseline collection, whereas a mixture of sample powder 
with BaSO4 was used for the data collection at room temperature. 
Absorbance data was converted from reflectance data in-software using 
the Kubelka-Munk equation α/S = (1-R)2/2R, where α and S are the 
absorption and scattering coefficients respectively, and R is the 
reflectance. 

3. Results and Discussion 

3.1. Structural Descriptions 

The formation conditions of different Ta-fluoride and Ta-oxyfluoride 
building units were investigated through their combination with Cu-bpy 
chiral units. Exploration of the CuO/Ta2O5/bpy/HF(aq) system (bpy =
2,2′-bipyridine) yielded three new centrosymmetric compounds with 
three different Ta-oxyfluoride anions: TaF6− (compound 1), Ta2OF102−

(compound 2), and TaF72− (compound 3). An overview of the crystal 
structures of these compounds is given in Table 1. 

Compound 1 has the formula [Cu(bpy)2][TaF6] and crystallizes in 
the triclinic space group P 1. The asymmetric unit is composed of one 
[Cu(bpy)2]+ cation and one [TaF6]- anion. The cation displays C1 sym-
metry and has both handedness (Δ and Λ), with the enantiomers being 
related by an inversion center. The Cu2+ compound [Cu(bpy)3][TaF6]2 
was also found in all samples containing compound 1, the tri-bpy 
complex has been characterized by Nisbet et al. [34] 

To further investigate the geometry of the cations, the τ4 parameter 
(τ4 = 360−(α+β)

360−2θ
, θ = cos−1(-13)≈109.5◦) [38] was used, were α and β are 

the two largest angles of the coordination center. The τ4 parameter is an 
indicator of molecular geometry, with a value of 0 indicating a square 
planar geometry and a value of 1 corresponds to a tetrahedral geometry. 
In compound 1, the τ4 value is 0.665 suggesting a distorted geometry 
that is neither square planar or tetrahedral. 

Heterochiral π-π stacking interactions between cation enantiomers of 
different handedness run along both the c (Fig. 1a) and b (Fig. 1b) axes. 
Torsion angles T1 and T2 were used to describe these interactions 
further, with the T1 angle representing the relative direction of the 
interacting ligands and the T2 angle defining the stacking interactions of 
the ligands (additional information on these angles can be found in the 
Supporting Information) [39,40]. For the heterochiral overlap along the 
b axis, T1 is equal to 122.812◦ indicating the cations are arranged in a 
head-to-tail orientation; the T2 angle is equal to 86.887◦ signifying a 
nonparallel stacking interaction with one of the two C5N rings over-
lapping. The same types of overlap are observed in heterochiral π-π 

stacking interactions along the c axis, where head-to-tail interactions 
with one overlapping C5N ring overlap were observed (T1 = 113.733◦, 
T2 = 48.827◦) (see Figure 1). 

The [TaF6]- anion features six Ta–F bonds with lengths ranging from 
1.8874 to 1.9005 Å: the variance in Ta–F bond lengths hints at a small 
out of center distortion creating a polar axis within the anion. The 
inversion center relating the two anions leads to a net cancellation of the 
anions’ polar moments. 

Compound 2 has the formula [Cu(bpy)2][Ta2OF10]and crystallizes in 
the space group P 1 and its asymmetric unit contains one cation and one 
anion. The full structure contains two of each, with cation and anion 

Table 1 
Basic crystallographic information for compounds 1, 2, and 3. Complete crys-
tallographic information is available in the Supporting Information.   

1 2 3 
Formula [Cu(bpy)2] 

[TaF6] 
[Cu(bpy)2] 
[Ta2OF10] 

[Cu(bpy)F(H2O)2]2[TaF7]•
H20 

Anion TaF6− Ta2OF102- TaF72- 

Space 
Group 

P 1 (2) P 1 (2) P21/c (14) 

a (Å) 8.6142(2) 9.9747(2) 21.5414(2) 
b (Å) 9.4665(2) 10.1496(2) 7.44480(10) 
c (Å) 14.3714(2) 13.4325(3) 33.4908(2) 
α (◦) 107.742(2) 73.894(2) 90 
β (◦) 92.637(2) 74.678(2) 99.3450(10) 
γ (◦) 107.465(2) 70.793(2) 90 
V (Å3) 1052.48(4) 1211.16(5) 5299.69(9) 
Z 2 2 8 
CCDC 2293940 2293941 2293943  
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pairs related by an inversion center. The cation, Cu(bpy)22+ has C1 
symmetry and displays both Δ and Λ enantiomers stacking along the c 
axis. With a τ4 parameter value of 0.326, the geometry is between square 
planar and a tetrahedra. Torsion angles of 127.383◦ and 88.638◦ for T1 
and T2 respectively, indicate a head-to-tail orientation of the hetero-
chiral cations with nonparallel stacking and overlap of only one C5N ring 
between (Figure 2). 

The anion Ta2OF102− is a dimer of TaOF52− anions corner sharing 
through the O atom. The dimer is not entirely linear with a Ta1–O–Ta2 
angle of 168.564◦; further, out of center distortions occur within the Ta- 
centered octahedra as the Ta–O bonds range from 1.9026 (Ta1–O) to 
1.9111 Å (Ta2–O) and the Ta–F bonds range from 1.8962 to 1.9268 Å. It 
should be noted that the dimer anion observed differs from previous 
literature reports for its non-linear connection of the dimer as well as its 
longer Ta–O/F bond lengths [26,41,42]. 

Compound 3 has the formula [Cu(bpy)F(H2O)2]2[TaF7]•H2O and 
crystallizes in the monoclinic space group P21/c. The asymmetric unit 
contains four Cu(bpy)F(H2O)22+ cations, two TaF72− anions, and two 
unbound water molecules (Figure 3). Unlike the cations in compounds 1 
and 2, compound 3 is five coordinate and there are two of each Δ and Λ 

enantiomer in the asymmetric unit. There are two sets of heterochiral 
π-π stacking interactions: located at ~ 12 c and ~ 14 c and running along 
the b axis (Figure 3b). The resulting π-π stacking interactions are of a 
head-to-tail orientation (T1 = 131.904◦) with both C5N rings over-
lapping (T2 = 97.766◦) for interactions at ~ 12 c, while interactions at ~ 14 
c are also head-to-tail oriented (T1 = 100.111◦) but with only one C5N 
ring overlapping (T2 = 51.043◦). Further characterization of the cation 
included an evaluation with the τ5 parameter. This parameter is a 
measure of the molecular geometry of a 5-coordinate metal center with 
the formula τ5 = β−α

60 , where β and α are the two largest valence angles 

[43]. For compound 3, τ5 ranges from 0.206 to 0.371, which are inter-
mediate between a square pyramidal geometry (τ5 = 0) and a trigonal 
bipyramidal geometry (τ5 = 1). 

Two TaF72− anions are present in each asymmetric unit, both with 
pentagonal bipyramidal geometry. Neither pentagonal ring is planar and 
between the anions, the 14 Ta–F bond lengths vary from 1.900 to 2.010 
Å, with the longest bond in each anion present in the pentagonal ring. 

Compound 3 exhibits a hydrogen bonding network that in-
terconnects the cations, anions, and free water molecules (Fig. 3c). On 
each anion, four of the five equatorial F atoms hydrogen bond with 
water molecules bound to the cation; one F interacts with both bound 
water molecules on a neighboring cation, two F interact with free water 
molecules. 

3.2. Reduction of Cu in Compound 1 

The crystals of compound 1 were observed as an orange/amber 
color, suggesting the reduction of the Cu2+ starting reagent to Cu+ in the 
products. This reduction was further confirmed by structural solution of 
compound 1, as the cation co-crystalizes with a known 1- anion (TaF6−), 
necessitating a cation charge of 1+ for charge balance. 

While the precise mechanism of the reduction of Cu2+ to Cu + cannot 
be elucidated with certainty, and the reducing agent unidentified, the 
authors speculate that the increased reaction temperature—and there-
fore pressure—from which compound 1 crystallized from contributed to 
an increased susceptibility of Cu2+ reduction [44]. Reduction of Cu2+

Fig. 1. Structure of Compound 1 as viewed down the (a) a axis, and the (b) b 
axis. Dark green, yellow, light green, blue, and gray spheres represent Ta, Cu, F, 
N, and C respectively, green polyhedra represent Ta-centered anions. Hydrogen 
atoms on the ligands have been omitted for clarity. 

Fig. 2. Structure of Compound 2 as viewed down the (a) b axis, and the (b) c 
axis. Dark green, yellow, light green, red, blue, and gray spheres represent Ta, 
Cu, F, O, N, and C respectively, green polyhedra represent Ta-centered anions. 
Hydrogen atoms on the ligands have been omitted for clarity. 
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was only observed at the elevated temperature of 200 ◦C and observed in 
all reactions conducted at this temperature, implying that the increase in 
temperature is a major driving force for the formation of Cu+ ions. 
Further, the Cu+ ions are stabilized in solution at 200 ◦C owing to the 
considerably decreased dielectric constant of water at this temperature, 
allowing the suppression of the Cu+ disproportionation reaction [45]. 

3.3. Formation of Different Ta-Oxyfluoride Anions 

Since the 1970s, the formation of different oxyfluoride anions has 
been studied in relation to the organic bases in solution—beginning with 
Olah’s reagent as a nucleophilic fluorinating agent [18,19,46–50]. 
Within the realm of Ta-oxyfluoride anion formation in the presence of 
hydrofluoric acid, the pKa of the organic bases allows for control over 
which anion species form: for instance, a high pKa base such as quinu-
clidine (pKa = 10.87) grants a higher concentration of fluoride anions, 
while a smaller pKa base—like 2,2′-bipyridine (pKa = 4.23)—yields 

lower fluoride concentrations [18,19]. Ligands with high pKa value are 
more readily protonated by hydrofluoric acid in solution, leading to a 
higher dissociation of the acid into H+ and F− ions. The opposite is also 
true, ligands with low pKa values are protonated less and therefore do 
not lead to much HF dissociation. It was also observed that formation of 
oxyfluoride anions does not occur with organic ligands with pKa values 
lower than that of the weak hydrofluoric acid (pKa = 3.17) [18]. 

In this study, only one organic base, 2,2′-bipyridine (bpy), was used 
across a large phase space with differing ratios of base to metal-oxides 
(Fig. 4, x axis) as well as through a range of pH values (Fig. 4, y axis) 
with the aim of creating compounds formed of discrete Ta-oxyfluoride 
anions and Cu-bpy cations. The case of making metal-ligand cations 
differs from the aforementioned studies in that the protonation of the 
ligand does not occur appreciably, and therefore the equilibrium 
established between ligand basicity and HF dissociation is less 
pronounced. 

Without organic bases to protonate, what is the relationship between 
the concentration of the organic base in solution and the fluoride ion 
concentration and subsequently, the Ta-oxyfluoride anion formed? 
When the ratio of ligand to metal-oxide starting reagents (CuO and 
Ta2O5, which are held at a constant ration of 1 mol Cu:1 mol Ta) is low, 
only Ta-fluoride anions form and as the ratio increases beyond 2:1, Ta- 
oxyfluoride anions appear at low acid concentrations. The preference for 
formation of fluoride ions over oxyfluoride ions appears to be an issue of 
solubility; at low acid and base concentrations (low ratio, 1:1 and high 
pH), the tantalum oxide starting reagent is not completely soluble, 
consistent with previous findings [51–53]. Incomplete dissociation of 
Ta2O5 creates a relatively higher [F−]:[Ta5+] ratio, leading to the for-
mation of fluoride-rich anions. As the base:metal-oxide ratio increases, a 
trend can be perceived by moving from left to right in Fig. 4, Ta2O5 
becomes more soluble, leading to the anion formation rules previously 
established by Lu and Wu [18,19]. At low base:metal-oxide starting 
ratios, the pKa of the solution can be thought of as being lower—closer 
to that of hydrofluoric acid—but instead of decreasing the dissociation 
of HF, there is limited Ta2O5. It has been noted that early transition 
metal(ETM)-oxyfluoride anions have not been observed with ratios of 
base:ETM less than 1.5, hinting that this is an upper limit for ETM-oxide 
reaction and a lower limit for base-HF dissociation relationships. 

When the organic base concentration in solution remains the same 
and the concentration hydrofluoric acid is added, the concentration of 
fluoride ions increases and the more fluoride rich anions form [28]. This 
trend can be viewed by taking any of the ligand:metal-oxide ratios found Fig. 3. Structure of Compound 3 as viewed down the (a) a axis, and the (b) b 

axis. Hydrogen bonding network between coordination water hydrogen and 
anions is shown in (c), H-bonds are depicted with dashed black lines. Dark 
green, yellow, light green, red, blue, and gray spheres represent Ta, Cu, F, O, N, 
and C, respectively, green polyhedra represent Ta-centered anions and yellow 
polyhedra represent Cu-centered cations. Non-coordinating water and 
hydrogen atoms on the ligands have been omitted for clarity. 

Fig. 4. Estimations of where different Ta–O/F anions can be found within the 
(Ta2O5,CuO)/bpy/HF(aq)/H2O phase diagram at 150 ◦C. 
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on the x-axis and moving upward. As the concentration of hydrofluoric 
acid is increased, the fluoride ion concentration increases to a level that 
eventually yields the fluoride only anions. A previous study showed that 
successively, the anions [TaOF5]2-, [TaF6]-, [TaF7]2-, [TaF8]3- and 
[TaF9]4- form as concentration of acid is increased [28], additionally, 
the present work found that the intermediate anion [Ta2OF10]2- forms 
between the anions [TaOF5]2- and [TaF6]2-, in what appears be a narrow 
range. The fluoride rich anions [TaF8]3- and [TaF9]4- were not observed 
within the limits of acid concentrations used in this study. 

Further, under the conditions tested in this study, the larger chain, 
prismatic, and tetrameric anions TaO4F42−, Ta6O9F186−, and Ta4O4F164−, 
respectively, were not observed, owing to the low pKa of the bpy ligand 
and the limited range of acid concentrations used. It must also be noted 
that the boundaries depicted in Fig. 4 are largely estimated on the areas 
of phase space explored in this work and do not represent an exhaustive 
investigation of the phase space nor have they been rigidly defined 
experimentally. 

4. Conclusions 

Three new compounds were synthesized featuring three distinct Ta- 
fluoride or Ta-oxyfluoride anions. The phase space of (CuO, Ta2O5)/ 
bpy/HF(aq)/H2O was investigated with differing ratios of ligand:metal- 
oxide starting reagents as well as range of acid concentrations. It was 
found that fluoride-rich anions form in regions of high acid concentra-
tion and where metal-oxide starting reagents have limited reactivity; 
oxyfluoride anions form after a 1:1.5 threshold ratio of ligand:metal- 
oxide and at low acid concentrations owing to limited dissociation of 
hydrofluoric acid. At any ligand:metal-oxide ratio, an increase in added 
acid concentration increases the amount of fluoride observed in the 
anion. These studies contribute to understanding new facets of mixed 
anion formation and allows for a targeted approach to designing mate-
rials with specific basic building units that can contribute to the emer-
gence of physical properties. 
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Additional X-ray crystallographic data for compounds 1–3 (CCDC 
2293940, 2293941, 2293943); additional structural characterization 
data for compound 1–3. 
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