International Journal of Computer Vision
https://doi.org/10.1007/s11263-024-02133-4

®

Check for
updates

RNAS-CL: Robust Neural Architecture Search by Cross-Layer
Knowledge Distillation

Utkarsh Nath' - Yancheng Wang' - Pavan Turaga? - Yingzhen Yang'

Received: 10 October 2023 / Accepted: 17 May 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract

Deep Neural Networks are often vulnerable to adversarial attacks. Neural Architecture Search (NAS), one of the tools for
developing novel deep neural architectures, demonstrates superior performance in prediction accuracy in various machine
learning applications. However, the performance of a neural architecture discovered by NAS against adversarial attacks has
not been sufficiently studied, especially under the regime of knowledge distillation. Given the presence of a robust teacher,
we investigate if NAS would produce a robust neural architecture by inheriting robustness from the teacher. In this paper, we
propose Robust Neural Architecture Search by Cross-Layer knowledge distillation (RNAS-CL), a novel NAS algorithm that
improves the robustness of NAS by learning from a robust teacher through cross-layer knowledge distillation. Unlike previous
knowledge distillation methods that encourage close student-teacher output only in the last layer, RNAS-CL automatically
searches for the best teacher layer to supervise each student layer. Experimental results demonstrate the effectiveness of
RNAS-CL and show that RNAS-CL produces compact and adversarially robust neural architectures. Our results point to new
approaches for finding compact and robust neural architecture for many applications. The code of RNAS-CL is available at
https://github.com/Statistical-Deep-Learning/RNAS-CL.

Keywords Adversarial attacks - Neural architecture search - Cross-layer knowledge distillation

1 Introduction

Neural Architecture Search (NAS) has become a highly
regarded tool for driving new advancements in deep neural
networks, improving state-of-the-art (SOTA) performance in
various tasks, including computer vision and natural lan-
guage processing. NAS has been attracted a lot of attention in
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recent years. NAS automatically searches for a neural archi-
tecture according to user-specified criteria without human
intervention, thus avoiding the time-consuming and burden-
some manual design of neural architectures. Earlier studies
in NAS are based on Evolutionary Algorithms (EA) (Real
et al., 2017) and Reinforcement Learning (RL) (Zoph and
Le, 2017; Tan et al., 2019). However, despite their perfor-
mance, they are computationally expensive. For instance,
some these methods take order of 3000 GPU days to achieve
state-of-the-art performance on the ImageNet dataset. Most
recent studies (Liu et al., 2019; Cai et al., 2019; Wu et al.,
2019; Wan et al., 2020; Nath et al., 2020) encode architec-
tures as a weight-sharing supernet and optimize the weights
using gradient descent. Architectures found by NAS exhibit
two significant advantages. First, they achieve SOTA per-
formance for various computer vision tasks. Second, the
architectures found by NAS are efficient in terms of speed
and size. Both advantages make NAS incredibly useful for
real-world applications. However, most NAS methods are
designed to optimize accuracy, parameters, or FLOPs. It is
not clear how these architectures perform against adversar-
ial attacks, which is an important dimension for deploying
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secure and robust machine learning methods. Limited works
(Yueetal.,2022; Ning et al., 2020; Xie et al., 2023) have stud-
ied NAS from the perspective of optimizing both adversarial
accuracy and efficiency. In this paper, we propose RNAS-CL,
a NAS method that jointly optimizes accuracy, latency, and
robustness against adversarial attacks by inheriting robust-
ness from a robust teacher.

Adversarial samples are constructed by modifying the
inputs, for example, by adding small sophisticated perturba-
tions to a clean image, such that the model misclassifies the
given image. It has been established that nearly all deep neu-
ral networks are susceptible to adversarial attacks (Szegedy
etal., 2014). Therefore, it is critical to analyze the robustness
of models against adversarial attacks. Models that are robust
to adversarial attack are crucial for high-stakes applications
such as autonomous vehicles, health care, and physical secu-
rity.

Adversarial training (Goodfellow et al., 2015; Madry et
al., 2018; Kannan et al., 2018; Tramer et al., 2018; Zhang et
al., 2019) is a common approach to help create a more robust
defense mechanism against adversarial attacks. In this case,
models are trained on adversarial examples, which are often
generated by fast gradient sign method (FGSM) (Goodfellow
et al., 2015) or projected gradient descent (PGD) (Madry et
al., 2018). Other types of defense mechanisms include mod-
els trained by loss functions or regularizations (Cissé et al.,
2017; Hein & Andriushchenko, 2017; Yan et al., 2018; Pang
et al., 2020), transforming inputs before feeding to model
(Dziugaite et al., 2016; Guo et al., 2018; Xie et al., 2019),
and using model ensemble (Kurakin et al., 2018; Liu et al.,
2018).

Complementary to these methods, recent research (Madry
et al., 2018; Guo et al., 2020; Su et al., 2018; Xie & Yuille,
2020; Huang et al., 2021) has found an intrinsic influence
of network architecture on adversarial robustness. Motivated
by these findings, we propose Robust Neural Architecture
Search by Cross-Layer knowledge distillation (RNAS-CL).
We use knowledge distilled from a robust teacher model
to find a robust student architecture. Knowledge distilla-
tion transfers knowledge from a competent and complicated
teacher model to a small student model. In standard knowl-
edge distillation (Hinton et al., 2015), outputs from the
teacher model are used as the “soft labels” to train the stu-
dent model. However, apart from the final teacher outputs,
intermediate layers can contain rich attention information.
Different intermediate layers attend to different parts of the
input object (Zagoruyko & Komodakis, 2017).

The central question of our investigation is: can a robust
teacher improve the robustness of the student model by pro-
viding information about where to look, that is, where to pay
attention? The proposed RNAS-CL method provides affir-
mative answers to the above question. In RNAS-CL, apart
from learning from the output of the robust teacher model,
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each layer in the student learns “where to look" from the lay-
ers in the teacher model. Since the teacher and student often
have different numbers of layers, a student layer should iden-
tify the potential best teacher layer that it should learn from.
In RNAS-CL, apart from searching for the architecture of the
student model, we search for the perfect tutor (teacher) layer
for each student layer.

Furthermore, motivated by recent advances in self-
supervised and semi-supervised learning that enforce consis-
tency between predictions from different augmented views,
we propose a novel Confidence-Aware Consistency loss, or
CAClloss, that maximizes the prediction consistency between
the adversarial view and the original view of input data.
A wide range of adversarial training objectives, such as
TRADES, are compatible with CAC. In our experimental
section, we report that RNAS-CL significantly outperforms
most existing models trained without adversarial training, in
terms of robust accuracy on the CIFAR-10 dataset. Adver-
sarially training RNAS-CL models with CAC and TRADES
further significantly improves the robustness. RNAS-CL also
renders promising result on the large-scale ImageNet dataset.

1.1 Contributions

Our contributions are presented as follows.

First, we propose RNAS-CL, a new approach which
searches for a robust and efficient neural architecture that
optimizes the tradeoff between robustness and prediction
accuracy in a differentiable manner. To the best of our
knowledge, RNAS-CL is the first work which shows that
a student model can inherit robustness from a robust teacher
model through cross-layer knowledge distillation and neural
architecture search, and the student model can be trained
potentially without robust training. The searched neural
architecture can be adversarially trained using the loss func-
tion such as the loss in TRADES (Zhang et al., 2019) so as to
further improve the adversarial robustness of the searched
neural network. While there are existing works, such as
AdvRush (Mok et al., 2021), which use neural architec-
ture search to find adversarially robust neural architecture,
RNAS-CL shows that a student model can inherit robust-
ness from a robust teacher model by a novel cross-layer
knowledge distillation method and enjoy better adversarial
robustness than AdvRush (Mok et al., 2021). Leveraging the
penalty on model size and inference cost, the neural architec-
ture found by RNAS-CL is compact compared to competing
NAS methods. We compare RNAS-CL with other computa-
tionally efficient and robust models (Sehwag et al., 2020; Ye
et al., 2019; Gui et al., 2019; Goldblum et al., 2020; Dong
et al., 2020; Huang et al., 2021). Compared to these models,
similar-sized RNAS-CL models achieve significantly higher
clean and PGD accuracy on the CIFAR-10 dataset, as shown
in Fig. 1, and the ImageNet dataset.
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Second, our work advances the research of Knowledge
Distillation (KD) using NAS. In particular, while conven-
tional KD only uses fixed connections between teacher
and student models to guide the student model, RNAS-
CL extends the teaching scheme to learnable connections
between layers of the teacher and the student models. Such
observation is of independent interest and it potentially
guides the design of the future adversarially robust NAS
methods.

Our research also reveals an interesting observation that
that there may be only a few layers in the teacher network that
are more robust to adversarial attacks, which are referred to as
the robust teacher layers and discussed in detail in Sect.5.1.
RNAS-CL identifies such robust teacher layers and uses these
robust layers to teach the student network.

2 Related Work
2.1 Knowledge Distillation

Knowledge Distillation (KD) transfers knowledge from a
large, cumbersome model to a small model. (Hinton et al.,
2015) proposed the teacher-student model, where they use
the soft targets from the teacher to train the student model.
KD forces the student to generalize, similar to the teacher
model. Since the work (Hinton et al., 2015) was proposed,
numerous KD variants (Romero et al., 2015; Yimetal., 2017,
Zagoruyko & Komodakis, 2017; Li et al., 2019; Tian et al.,
2020; Sun et al., 2019) which are based on feature map,
attention map, or contrastive learning have been proposed.
(Romero et al., 2015) introduced intermediate-level hints
from the teacher model to guide the student model train-
ing. (Romero et al., 2015) trained the student model in two
stages. First, they trained the student model such that the stu-
dent’s middle layer predicts the output of the teacher’s middle
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layer (hint layer). Next, they fine-tuned the pre-trained stu-
dent model using the standard KD optimization function.
Thanks to the intermediate hint, the student model achieved
better performance with fewer parameters. Moving a step fur-
ther, (Yim et al., 2017; Zagoruyko & Komodakis, 2017) and
(Li et al., 2019) used information from multiple teacher lay-
ers to guide students’ training. (Yim et al., 2017) computed
Gramian matrix between the first and the last layer’s output
features to represent the flow of problem-solving. (Yim et
al., 2017) transferred knowledge by minimizing the distance
between student and teacher’s flow matrix. (Li et al., 2019)
calculated the inter-layered Gramian matrix and inter-class
Gramian matrix to find the most representative layer and then
minimized the distance between a few of the most represen-
tative student and teacher layers. (Zagoruyko & Komodakis,
2017) minimized the distance between teacher and student
attention maps at the various block. (Li et al., 2020) dis-
tilled knowledge from teachers’ blocks to supervise students’
block-wise architecture search. In contrast with the above
methods which map few teacher-student layers or blocks,
we propose to map every student layer to a teacher layer.
To this end, we propose RNAS-CL to search for the per-
fect tutor layer for each student layer. Similar to (Zagoruyko
& Komodakis, 2017), we minimize the distance between
mapped student-teacher attention maps.

2.2 Neural Architecture Search

Neural Architecture Search (NAS) is a technique that
automatically designs neural architecture without human
intervention. Given a search space, we can find the best
architecture by training all architectures from scratch to con-
vergence, however, it is computationally impractical. Earlier
studies in NAS were based on RL (Zoph and Le, 2017,
Tan et al., 2019) and EA (Real et al., 2017), but they still
required lots of computation resources. Most recent studies
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(Liu et al., 2019; Cai et al., 2019; Wu et al., 2019) encoded
architectures as a weight-sharing super-network. Specifi-
cally, they trained an over-parameterized network containing
all candidate paths. During training, they introduced weights
corresponding to each path. These weights were optimized
using gradient descent to select a single network in the end.
The selected network is then trained in a standard fash-
ion. Typically, NAS incurs substantial training time. Recent
studies (Yang et al., 2020, 2021; Lian et al., 2019) have con-
centrated on devising efficient training schemes to mitigate
this challenge. Some NAS approaches incorporate knowl-
edge distillation into architecture search. For instance, (Peng
et al., 2020) transfers knowledge between architectures with-
out an external teacher, allowing its subnetworks to learn in
a collaborative manner. The majority of these NAS studies
concentrate on searching for CNN-based architectures. More
recently, there has been a surge in NAS work addressing the
search for transformer-based models, as seen in (Chen et al.,
2021; Mo et al., 2022). Despite the state-of-the-art (SOTA)
performance achieved by these methods across various clas-
sification tasks, their resilience against adversarial attacks
remains uncertain. (Devaguptapu et al., 2021; Guo et al.,
2020; Li et al., 2021; Madry et al., 2018; Su et al., 2018;
Xie & Yuille, 2020; Huang et al., 2021) found an intrinsic
influence of network architecture on adversarial robustness.
(Devaguptapu et al., 2021) observed handcrafted architec-
tures are more robust against adversarial attacks as compared
to NAS models. Furthermore, they empirically observed that
an increase in model size increased the robustness of the
model against adversarial attacks. (Guo et al., 2020) discov-
ered that densely connected architectures are more robust
to adversarial attacks. As a result, they proposed a NAS
method that conducts adversarial training on supernet and
then selects the architecture with dense connections. (Li
et al., 2021) dilated the backbone network to preserve its
standard accuracy and then optimized the architecture and
parameters using adversarial training. Despite its good per-
formance, a major drawback is that adversarial training is
highly time-consuming and decreases the performance on
standard (clean) images. Our RNAS-CL can optimize robust-
ness and prediction accuracy without adversarial training.

2.3 Efficient and Robust Models

The deep learning research community has extensively
studied building efficient and adversarially robust models
individually. However, few works combine both domains,
that is, building an efficient model which is also adversarially
robust. (Sehwag et al., 2020) proposed to make the pruning
technique aware of the robust training objective. They for-
mulate pruning as an empirical risk minimization (ERM)
problem and integrate it with a robust training objective.
(Huang et al., 2021) investigated the impact of network width
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and depth configurations on the robustness of adversarial-
trained DNNs. They observed that reducing capacity at last
blocks improves adversarial robustness. (Goldblum et al.,
2020), proposed Adversarially Robust Distillation (ARD),
where they encouraged student networks to mimic their
teacher’s output within an e-ball of training samples. Fur-
thermore, there are few NAS methods (Yue et al., 2022;
Ning et al., 2020; Xie et al., 2023) that jointly optimize accu-
racy, latency, and robustness. (Ning et al., 2020) trained a
multi-shot NAS method to search for adversarially robust
architectures. They interpolate multiple one-shot methods to
find architecture at the targeted capacity. (Xie etal.,2023; Yue
et al., 2022) proposed a one-shot NAS method that selects
an efficient model from the adversarially trained supernet.
Compared to these methods, similar-sized RNAS-CL mod-
els achieve higher accuracy for both clean and and advarsarial
images.

3 Robust Knowledge Distillation for Neural
Architecture Search

We use knowledge distilled from a robust teacher model
to search for a robust and efficient architecture. Knowl-
edge distillation is the transfer of knowledge from a large
teacher model to a small student model. In standard knowl-
edge distillation, outputs from the teacher model are used as
the “soft labels” to train the student model. However, apart
from the final teacher outputs, intermediate features consti-
tute important attention information. Different intermediate
layers "attend" to different parts of the input object. In RNAS-
CL, apart from learning from the teacher’s soft labels, the
student model learns where to pay attention among interme-
diate teacher layers. That is, each student layer is mapped to
arobust teacher layer so that the attention maps of the student
layer and the robust teacher layer are similar to each other.
We define the attention maps in Sect.3.1. We hypothesize
that learning where to pay attention from a robust teacher
would inherently make the student model more robust to
adversarial attacks. RNAS-CL searches for a tutor layer for
each student layer. In addition to increasing the robustness,
we are also interested in searching for an efficient student
architecture. In Sect.3.2 and 3.3, we discuss our tutor and
architecture search algorithm. Similar to other state-of-the-
art NAS methods (Liu et al., 2019; Wu et al., 2019; Wan
et al., 2020), RNAS-CL consists of the searching and the
training phase. In the search phase, we optimize the neural
architecture weights. In the training phase, we train the archi-
tecture sampled from the search phase in a standard fashion.
In Sect.3.4, we introduce our searching and training opti-
mization objectives. While RNAS-CL can find the neural
architecture which is already robust for the student, we use
adversarial training to further increase the robustness of the
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student model. In Sect. 3.5, we propose a regularization term,
Confidence-Aware Adversarial Consistency Loss (or CAC),
which can be used with any adversarial objective, such as
TRADES and FastAT (Wong et al., 2020), to increase the
robustness of the student model.

3.1 Attention Map

We are interested in learning where to pay attention from
a robust teacher model. Let us consider a convolution layer
with the activation tensor A € R€*#*W where C is the num-
ber of channels, and H and W are spatial dimensions. We
define a mapping function F : REXHXW __ RHXW that
takes A as input and outputs an attention map F(A) € R*W
by [F(A) ] = ZCC:lAih’w, where A. j ., represents the
element of A with channel coordinate ¢ and spatial coordi-
nates i and w. We use the activation-based mapping function
F as proposed in (Zagoruyko & Komodakis, 2017). The map-
ping function F is applied to the activation tensor after each
convolution layer to generate an attention map. Several sam-
ple attention maps are illustrated in Fig.2. RNAS-CL aims
to find a teacher layer, referred to as a tutor, for each student
layer such that the student layer’s attention map is similar to
that of its tutor in the teacher model. The student attention
map may have different dimensions from that of its tutor. To
address this issue, we interpolate all the attention maps to
common dimensions.

3.2 Tutor Search

As described above, we aim to find a tutor (teacher layer)
for each student layer, which teaches the student layer where
to pay attention. Each student layer may choose any teacher
layer as its tutor, resulting in an exponentially large search
space. For example, the search space for a student model
with 20 layers and a teacher model with 50 layers is of size
5020 In order to make the tutor searching process computa-
tionally efficient, we employ Gumbel-Softmax (Jang et al.,
2017) to search for the tutor for each student layer in a differ-
entiable manner. Given network parameter v = [vy, ..., U]
and a constant 7, the Gumbel-Softmax function is defined
as g(v) = I[g1,...,8n] where g = %,
¢ ~ N(0,1) is the uniform random noise which is also
referred to as Gumbel noise. When © — 0, Gumbel-Softmax
tends to the arg max function. Gumbel-Softmax is a “re-
parametrization trick”, that can be regarded as a differentiable
approximation to the argmax function.

Now consider a teacher 7' and student S model with n;
and n; number of layers, respectively. A! and Al are the i-th
activation tensors of teacher and student layers. In RNAS-CL,
each student layer (i) is associated with n; Gumbel weights
(/) such that g; € RV Let g;; be the Gumbel weight

associated with the i-th student and the j-th teacher layer.
Then the attention loss is defined as

LAttn (At P As)

1 ng ng
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where A and A, are the activation tensors of all the stu-
dent and the teacher convolution layers. F is the mapping
function defined in Sect.3.1, | - ||2 is the £2-norm. We expo-
nentially decay the temperature t of Gumbel-Softmax during
the searching process, leading to an encoding close to a one-
hot vector.

3.3 Architecture Search

Apart from searching for the tutor for each layer, we are
interested in searching for an efficient architecture with low
latency for the student model. Inspired by FBNetV2 (Wan
et al., 2020), we search for the optimal number of filters,
or the number of output channels, for each convolution
block. Let A = {f1, f2,..., fn} be the choices of filters
and {z1, 22, ..., 2, } be their corresponding outputs for a con-
volution block. Then the output of the convolution block
is defined as Z = Zf’zlgl(j)z,-, where g,(,j) is the Gumbel
weight corresponding to i-th filter choice. Let FLOP(i) be
the number of floating point operations for the i-th filter
choice, then the number of FLOPs at the convolution block
isy ', g,(,ﬂ)FLOP(i), which can be optimized in a differen-
tial manner using SGD. Similar to tutor search, temperature
is exponentially decayed to obtain an encoding that is close
to a one-hot vector, that is, only one of the Gumbel weights
{g,(j)}f‘:l is close to 1 and the others are close to 0. The fil-
ter choice corresponding to the maximum Gumbel weight
decides the number of filters of the convolution block in
the searched architecture for the student model. Figure 12
in the appendix illustrates the architecture search process by
FBNetV2.

3.4 RNAS-CL Loss

Following the convention of state-of-the-art NAS methods
(Liu et al., 2019; Wu et al., 2019), RNAS-CL has the search
and the training phases. In the search phase, we update the
Gumbel weights and other model parameters at each epoch.
Here the Gumbel weights refer to the Gumbel weights { 8ij }
for the student-teacher connection in (1) and the Gumbel
weights { gg)} for the filter choices described in Sect.3.3.
The weights are optimized using our RNAS-CL search loss
to be described below.

RNAS-CL search loss Let y be the ground-truth one-hot
encoded vector, p and g be output probabilities of the student
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and teacher network, and Ay, A; be activation tensors for all
student and teacher convolution layers. Then the RNAS-CL
search loss function is defined as

L(y,p,q, A, Ay) =(—ylog p + KL(p, q)
+ ¥sLaun(Ar, A))n ¢ (G), 2

where KL(p,q) = Y, pilog % is the Kullback-Leibler
(KL) divergence between two probability measures. L a¢n
is the attention loss as defined in (1) and y; is a normaliza-
tion constant. The latency penalty term 7 ; (G) measures the
latency of a neural network during the architecture search
process, where G = [gy, (1), ..., gw(L)] are the Gumbel
weights with g,,(¢) being the Gumbel weight vector for the
£-th layer. n¢(G) is the Gumbel weighted FLOPs for the
searched network, that is,

L m;

np(G) =YY" gW(OFLOP(, ), 3)

=1 i=1

where m; denotes the total number of filter choices at the £-th
layer, FLOP(¢, i) is the number of floating point operations
at the £-th layer corresponding to the i -th filter choice. In this
manner, larger architecture corresponding to higher FLOPs
has a larger value of n (G), so that the optimization of the
search loss (2) encourages smaller and more compact neural
architecture with less latency.

After the search phase, a tutor is selected as the j* teacher
layer with j* = argmax j &ij foreach student layeri. In addi-
tion, the filter choices described in Sect. 3.3 for the student’s
neural architecture are decided as the ones corresponding to
the maximum Gumbel weights for each convolution block.
We then start the training phase, where the searched archi-
tecture is trained using the RNAS-CL training loss defined
below.

RNAS-CL training loss. Let y be the ground-truth one-
hot encoded vector, p and g be output probabilities of the
student and teacher network, and A;, A; be the activation
tensors of all the student and the teacher convolution layers.
Then the RNAS-CL training loss function is

L(y, p.q, A, As) =Lce(y, p) + KL(p, q)
+ ¥ Lawn(As, Ay), 4)

where Lcg(y, p) = —ylogp is the cross-entropy loss,
KL(p, q) is the KL-divergence, y; is a normalization con-
stant. Note that g; in L, 1S a one-hot vector. As a result,
each student attention map is optimized with respect to a
single tutor layer.
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3.5 Confidence-Aware Adversarial Consistency Loss

Inspired by recent works in self-supervised learning (Zhai
et al., 2019) and semi-supervised learning (Berthelot et al.,
2019) that enforce consistency between predictions from dif-
ferent augmented views, we propose a consistency loss that
maximizes the prediction consistency between the adversar-
ial view and original view of input data. The optimization is
only performed on samples that have high confidence in the
prediction by the adversarial view. For an input image x, we
first generate its adversarial view x,4, and obtain the predic-
tions of x and x,4, with the student network as p and pgqy.

Next, we take the average of p and pgqy as p = 254 Then
1

1

we sharpen the average prediction p by p; = [3]? / Z,{;l ﬁk?
where K is the number of classes, p; is the j-th element of
p. © € (0, 1] is the sharpening factor. p is close to one-hot
distribution with small 7. The sharpened p is regarded as a
pseudo label for x based on the predictions by both x and
Xadv- We aim to enforce consistency between p and p,q, by
minimizing their distances to p. Therefore, the confidence-
aware adversarial consistency loss is defined as

Leac(x) = 1(max(p) > v) (KL(p, p) + KL(p, paav))
%)

where 1(-) is an indicator function, y € [0, 1) is the con-
fidence threshold. In Lcac, the consistency between the
prediction of an image and its adversarial view will be opti-
mized only when the maximum element of its prediction p
is not less than y, indicating that Lcac imposes consistency
only on images with confident predictions. The optimization
of Lcac reduces the negative impact of the noisy adversarial
view and improves the robustness of the student network. We
adversarially train our model with Lcac and existing adver-
sarial objectives such as TRADES (Zhang et al., 2019) and
FastAT (Wong et al., 2020). The training loss for adversarial
training with TRADES and Lcac is defined by

Lapv = Lcac + Ltrapes + LkL + Vi Lawns (6)

where LTtrapgs i1s TRADES optimization objective and
LKL, ¥+, Laun are the same as those in (4).

4 Experiments

In this section, we conduct experiments on real-world
datasets to show the effectiveness of the proposed frame-
work. The experiments section is organized as follows. In
Sect. 4.1, we discuss our experimental setup and implemen-
tation details. In Sect.4.2, we compare models trained by
RNAS-CL against state-of-the-art efficient and robust mod-
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els on CIFAR-10. In Sect. 4.3, we compare RNAS-CL against
various knowledge distillation methods. In Sect. 4.4, we com-
pare RNAS-CL against stronger attacks such as such as CW
(Carlini & Wagner, 2017) and AutoAttack (Croce & Hein,
2020). In Sect.4.5 and 4.7, we compare RNAS-CL models
trained on ImageNet and ImageNet-100 datasets. In Sect. 4.9,
we empirically show the effectiveness of cross-connections
and Confidence-Aware Adversarial Consistency Loss (CAC)
in improving the adversarial robustness of the model.

4.1 Implementation Details

In this paper, we evaluate RNAS-CL on three public bench-
marks for image classification: (1) CIFAR-10, a collection of
60k images in 10 classes (Krizhevsky, 2009); (2) ImageNet,
an image classification dataset (Russakovsky et al., 2015)
with 1000 classes and about 1.2M images; (3) ImageNet-
100, a subset of ImageNet-1k dataset (Russakovsky et al.,
2015) with 100 classes and about 130k images (Tian et al.,
2020). We use standard data augmentation techniques for
each dataset, such as random-resize cropping and random
flipping. On each dataset, we first perform the searching step.
We train our model using RNAS-CL search loss (2), and we
search for the channel number and the connected teacher
layer for each student layer. We conduct experiments with
different search spaces and various robust teacher models. In
this section, we refer to our model by RNAS-CL-X-T where
X represents our search space, and T represents the robust
teacher model. Detailed search space is provided in Table
13 and Table 14. We use 4 robust teacher model, ResNet-50,
ResNet-18, WideResNet-50, and WideResNet-34, which are
referred to as R-50, R-18, WRT-50, and WRT-34 respectively.
For example, RNAS-CL-S3-R-18 represents a model trained
in the S3 search space using ResNet-18 as the adversarially
robust teacher model.

We use the SGD optimizer for all the three datasets. The
default values of momentum and weight decay are set to 0.9
and 4 x 107> for ImageNet and ImageNet-100. The batch
size is 256. The learning rate is initialized as 0.1 and annealed
down to zero following a cosine schedule. After the search
stage which takes 100 epochs, the searched architecture is
trained from scratch using RNAS-CL training loss (4) for
200 epochs. For CIFAR-10, default values of momentum
and weight decay are set to 0.9 and 2 x 10~*. The batch size
is 128. We train our model for 100 epochs in both the search-
ing and training phases. The learning rate is initialized as 0.1
and reduced by a factor of 10 after the 75-th and the 90-th
epoch. Following the settings of FBNetV2, the temperature
(r) in Gumbel-Softmax is initialized as 5.0 and exponen-
tially annealed by e ~*9% at every epoch in the search phase.
The hyper-parameters A; and X; are set to 1.0 for all exper-
iments. In the search phase, we use 80% of the data in each
batch to optimize the model weights and the remaining 20%

data to optimize the architecture weights, which are Gumbel
weights described in Sect. 3.4. For robustness evaluation, we
choose five powerful attacks, including FGSM (Goodfellow
et al., 2015), MI-FGSM (Dong et al., 2018), PGD (Madry et
al., 2018), CW (Carlini & Wagner, 2017), and AutoAttack
(Croce & Hein, 2020). To be consistent with the adversarial
literature (Madry et al., 2018; Zhang et al., 2019), the adver-
sarial perturbation is considered under the £, norm with a
total perturbation scale of 8/255(= 0.031).

4.2 Comparison with Efficient and Robust CIFAR-10
Models

In this section, we compare the robustness of our method
against other SOTA efficient and robust models. In Table
1, we compare RNAS-CL to both efficient models trained
with and without adversarial training. All RNAS-CL models
are trained with robust WideResNet-34 (Rice et al., 2020)
as the teacher model. It can be observed from Table 1 that
RNAS-CL significantly outperforms all models trained with-
out adversarial training in terms of adversarial accuracy.
While being significantly smaller, our RNAS-CL models
achieve significantly higher adversarial accuracy when com-
pared to models trained without adversarial training. For
example, RNAS-CL-S7-WRT-34 achieves more than 28%
higher PGD accuracy compared to most of the other similar-
sized models.

Next, we compare RNAS-CL against adversarially trained
robust models. For a fair comparison, after the training stage,
we further train our RNAS-CL models with our adversarial
training loss (6) for 20 epochs. Adversarially training RNAS-
CL models improves their adversarial accuracy. RNAS-CL
models achieve similar or higher adversarial accuracy com-
pared to other adversarially trained models. Furthermore,
RNAS-CL models are much smaller and achieve signif-
icantly higher clean accuracy. For example, in Table 1,
RNAS-CL-M-WRT-34 achieves similar or higher adversar-
ial accuracy than most other methods while being smaller
and significantly exceeding in terms of clean accuracy. We
also obtain much smaller models using RNAS-CL. The Tiny
RNAS-CL model, RNAS-CL-S5-WRT-34, exceed its coun-
terpart Hydra ResNet 34 (Sehwag et al., 2020) by more than
~ 12% in terms of clean accuracy with the same model size.
Similar results can also be visualized in Fig.1. In Fig.1,
RNAS-CL models are on the top right corner of the plot,
representing the models with the highest clean and adver-
sarial accuracy. Results for RNAS-CL models trained with
different robust teachers have been discussed in Sect. 5.2.

Comparison against various perturbation budgets. To
further illustrate the effectiveness of RNAS-CL, we compare
RNAS-CL with previously proposed defense mechanisms
against various perturbation budgets. In Fig.5, we compare
various methods against PGD and FGSM attacks. For both
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Table 1 The table shows the performance of various efficient and robust methods on the CIFAR-10 dataset

Method Clean Acc FGSM PGD20 MI-FGSM Params (M) MACs (M)
Without adversarial training

DARTS (Liu et al., 2019) 97.03 42.48 7.09 0.28 33 500*
PC-DARTS (Xu et al., 2020) 97.05 49.18 9.84 1.21 3.6 600*
RACL (Dong et al., 2020) 97.44 50.53 1.93 4.68 3.6 500*
AmoebaNet (Real et al., 2019) 97.39 44.79 0.25 0.80 32 500*
NasNet (Zoph et al., 2018) 97.37 47.53 0.42 1.01 3.8 600*
MVV2-ARD (Goldblum et al., 2020) 76.13 - 38.21 - 34 300
E2RNAS-C16 (Yue et al., 2022) 93.97 - 6.76 - 0.44 -
RNAS-CL-S3-WRT-34 (our) 894 44.95 343 38.92 0.11 6.64
RNAS-CL-S5-WRT-34 (our) 90.4 46.72 35.59 40.57 0.21 11.02
RNAS-CL-S7-WRT-34 (our) 90.62 48.93 37.24 42.27 0.32 15.58
RNAS-CL-M-WRT-34 (our) 92.46 50.51 39.84 44.54 3 326
RNAS-CL-L-WRT-34 (our) 92.6 52.37 419 46.66 11 1210
With adversarial training

Hydra ResNet 18 (Sehwag et al., 2020) 69 - 41.6 - 0.11 37.63
Hydra ResNet 34 (Sehwag et al., 2020) 71.8 - 44.4 - 0.21 75.43
Hydra ResNet 50 (Sehwag et al., 2020) 73.9 - 45.3 - 0.25 85.92
ADV-ADMM ResNet 18 (Ye et al., 2019) 58.7 - 36.1 - 0.11 37.63
ADV-ADMM ResNet 34 (Ye et al., 2019) 68.8 - 41.5 - 0.21 75.43
ADV-ADMM ResNet 50 (Ye et al., 2019) 69.1 - 422 - 0.25 85.92
RobNet-Small (Guo et al., 2020) 78.05 53.93 48.32 48.98 441 -
RobNet-Medium (Guo et al., 2020) 78.33 54.55 49.13 49.34 5.66 -
RobNet-Large (Guo et al., 2020) 78.57 54.98 49.44 49.92 6.89 -
AmoebaNet (Real et al., 2019) 83.41 56.40 39.47 47.60 32 500*
NasNet (Zoph et al., 2018) 83.66 55.67 48.02 53.05 3.8 600*
DARTS (Liu et al., 2019) 83.75 55.75 4491 51.63 33 500*
PC-DARTS (Xu et al., 2020) 83.94 52.67 41.92 49.09 3.6 600*
RACL (Dong et al., 2020) 83.89 57.44 49.34 54.73 3.6 500*
VGG-11-R (Huang et al., 2021) 79.63 57.35 43.93 - 5.83 -
DN-121-R (Huang et al., 2021) 87.22 67.12 52.52 - 6 -
DARTS-R (Huang et al., 2021) 87.2 66.74 52.36 - 2.53 -
MVV2-ARD (Goldblum et al., 2020) 84.70 - 46.28 - 34 300
MSRobNet-1000 (Ning et al., 2020) 84.5 59.6 52.7 - 3.16 -
MSRobNet-2000 (Ning et al., 2020) 85.7 60.6 53.6 - 6.46 -

S§ 255 (Xie etal., 2023) 76.54 - 31.83 - 1.68 -
AdvRush (Mok et al., 2021) 87.30 60.87 53.07 - 42 659
RNAS-CL-S3-WRT-34 (ours) 83.11 50.67 4341 43.98 0.11 6.64
RNAS-CL-S5-WRT-34 (ours) 84.81 51.99 45.34 46.3 0.21 11.02
RNAS-CL-S7-WRT-34 (ours) 85.06 49.11 43.88 45.53 0.32 15.58
RNAS-CL-M-WRT-34 (ours) 87.29 59.71 51.76 53.43 3 326
RNAS-CL-M2-WRT-34 (ours) 87.17 60.98 53.14 54.64 5.6 604
RNAS-CL-L-WRT-34 (ours) 86.28 61.12 53.69 55.07 11 1210

Clean Acc represents top-1 accuracy on clean images. FGSM, PGD?°, MI-FGSM represent top-1 accuracies on images perturbed by the corre-
sponding attacks. PGD?° represents 20 step PGD attack. = represents approximate values. Columns with unreported values are represented by
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Fig.2 a Training paradigm based on RNAS-CL. We connect attention
maps from each student layer to each robust teacher layer. For each
student layer, we search for the optimum teacher layer. g;; represents
the Gumbel weight associated with the i-th student layer and the jth
teacher layer. RNAS-CL induces robustness of the student model by
searching for the optimum teacher layer for each student layer. We also

attacks, RNAS-CL outperforms its counterparts at all pertur-
bations. RNAS-CL significantly outperforms other methods
as perturbation size increases. For ¢ = 0.1, RNAS-CL
exceeds other methods by ~20% for both PGD and FGSM
attacks.

4.3 Comparison Against KD Variants

In this section, we compare our methods against various
knowledge distillation methods (Park et al., 2019; Ahn et al.,
2019; Tung & Mori, 2019; Tian et al., 2020; Passalis & Tefas,
2018). We use Robust WRT-34 as the teacher model for all
KD methods and train three different student architectures:
RNAS-CL-S3, RNAS-CL-S5, and RNAS-CL-S7. In Fig.3,
models trained using our paradigm are explicitly on the upper
right-most part of the graph, demonstrating the effectiveness
of intermediate cross-connections. RNAS-CL-S3 architec-
ture trained using RKD (Park et al., 2019) performs similarly
to the model trained using our method. Apart from this, all
models trained using RNAS-CL significantly outperform all
other methods in terms of clean and adversarial accuracy.

4.4 Compare CIFAR-10 Model Against CW and
AutoAttack

In this section, we compare RNAS-CL and (Huang et al.,
2021) against recent attacks including CW, (Carlini &
Wagner, 2017) and AutoAttack (Croce & Hein, 2020) on
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search for the number of filters in each convolution block of the stu-
dent model to build an efficient model inspired by FBNetV2 (Wan et
al., 2020). b Sample attention maps corresponding to the input image
(i) from low-level (ii), mid-level (iii), and high-level (iv) convolution
layers
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Fig. 3 The figure compares various knowledge distillation variants
(Similarity (Tung & Mori, 2019), VID (Ahn et al., 2019), RKD (Park
et al., 2019), CRD (Tian et al., 2020), PKT (Passalis & Tefas, 2018))
against RNAS-CL on the CIFAR-10 dataset. Adversarial Accuracy rep-
resents top-1 Accuracy on images perturbed by 20 step PGD attack.
Clean Accuracy represents top-1 Accuracy on clean images. Larger
marker size indicates larger architecture. For each method, RNAS-CL-
S3, RNAS-CL-S5, and RNAS-CL-S7 are represented by increasing
marker size

the CIFAR-10 dataset. CW attacks were proposed to defeat
defensive distillation. In Table 2, we use the £~ version of
the CW attack optimized by PGD with maximum perturba-
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Table 2 Comparison between the performance of (Huang et al., 2021)
and RNAS-CL against CW , (Carlini & Wagner, 2017) and AutoAttack
(Croce & Hein, 2020) on the CIFAR-10 dataset

Method CWq AA

VGG-R (Huang et al., 2021) 46.49 38.44
DN-121-R (Huang et al., 2021) 53.07 47.75
RNAS-CL-S3-WRT-34 (our) 47.07 37.17
RNAS-CL-S5-WRT-34 (our) 48.33 39.28
RNAS-CL-S7-WRT-34 (our) 4791 38.36
RNAS-CL-M-WRT-34 (our) 53.52 46.89
RNAS-CL-L-WRT-34 (our) 52.63 48.49

tion budget set to € = 8/255. AutoAttack is a parameter-free
ensemble attack currently considered to be one of the most
reliable and widely acknowledged evaluation benchmark in
Adversarial Defences.

4.5 Results for ImageNet

In this section, we compare our model against the SOTA com-
pact and efficient methods (Huang et al., 2021; Guo et al.,
2020) on the ImageNet (ILSVRC-12) dataset (Russakovsky
etal.,2015). The searching phase of RNAS-CL model is con-
ducted on the ImageNet-100 dataset. The searched model
is then adversarially trained on the full ImageNet dataset
using FastAT (Wong et al., 2020) or Free Training (Shafahi
et al., 2019). We compare RNAS-CL to the robust meth-
ods in (Huang et al., 2021; Guo et al., 2020) against 10
step PGD attack with € = 4/255 on the ImageNet dataset.
The robust models in (Huang et al., 2021) are adversarially
trained using FastAT whereas (Guo et al., 2020) employs
Free Training (Shafahi et al., 2019). In the training phase of
RNAS-CL, we train the models using FastAT/Free Training
and CAC to enhance their robustness. As shown in Table
3, the RNAS-CL models significantly outperform (Huang
et al.,, 2021) in terms of clean accuracy, robust accuracy,
and the number of parameters. Although RNAS-CL achieves
lower PGD accuracy compared to RobNet, it excels in clean
accuracy with a 30% smaller model. Furthermore, RNAS-
CL exhibits notably reduced training times in comparison to
RobNet models, as indicated in Table 6.

4.6 Confidence-Aware Adversarial Consistency Loss
(CAQ)

In this section, we conduct an ablation study on the choice
of the objective function used during adversarial training
of RNAS-CL models on the CIFAR-10 dataset. For all
three models, we observe that models trained using CAC
have higher robust accuracy than models trained using
TRADES as shown in Table 4. However, models trained
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using TRADES have higher clean accuracy. Therefore, we
train RNAS-CL models with both TRADES and CAC to
get a better trade-off. Models trained using both objective
functions have higher clean accuracy than CAC and higher
robust accuracy than TRADES. For example, the RNAS-
CL-S3 model trained using both objective functions has
1.08% higher clean accuracy compared to CAC and 0.34%
higher robust accuracy compared to TRADES. We see sim-
ilar results for all other models. Thus, throughout the paper,
we used both CAC and TRADES for adversarially training
our RNAS-CL models unless otherwise mentioned.

4.7 Compare Efficient and Robust ImageNet-100
Models

We compare RNAS-CL to adversarially robust pruning meth-
ods on the ImageNet-100 dataset, with results shown in
Table 5. We train RNAS-CL models with three robust teach-
ers, ResNet-18, ResNet-50, and WideResNet-50 (Engstrom
et al., 2019). RNAS-CL models consistently exceed other
models by a large margin in terms of clean accuracy while
exhibiting similar or higher adversarial robustness. In Table
5, Hydra and LWM are adversarially trained using TRADES
(Zhang et al., 2019). For a fair comparison, we retrain our
RNAS-CL models with the TRADES optimization objec-
tive after the regular training. We replace the cross-entropy
term in (4) with the TRADES optimization objective. With
such training, RNAS-CL achieves similar or higher adver-
sarial accuracy while significantly outperforming Hydra and
LWM in clean accuracy with only a fraction of MACs.

We further study adversarial accuracy at various perturba-
tion budgets for three different teacher models. As illustrated
in Fig.4, RNAS-CL exceeds its counterpart in adversar-
ial accuracy at various perturbation budgets for all teacher
models on the ImageNet-100 dataset. This demonstrates the
significance of cross-layer connections in RNAS-CL.

4.8 Training Time Comparison

We compare the training time between our proposed RNAS-
CL and previous state-of-the-art robust and efficient methods.
As shown in Table 6, RNAS-CL achieves higher adversar-
ial accuracy than competing methods with significantly less
training time than most baselines. Compared with DN-121-
R, RNAS-CL-M2-WRT-34 takes a slightly longer training
time. However, it exceeds DN-121-R in terms of adversarial
accuracy and exhibits fewer parameters and MACs.

4.9 Ablation Study

This ablation study demonstrates the significance of student-
teacher cross-layer connections in RNAS-CL. We compare
three types of training paradigms. In the first training
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Table 3 Performance of various
efficient and robust methods on

the ImageNet dataset

Method Objective Clean  PGD' Params (M) GFLOPs
ResNet-50-R (Huang et al., 2021)  FastAT 56.63 31.14 25.5 4*
RobNet-large (Guo et al., 2020) Free Training 61.26 37.17 12.76 -
RNAS-CL-IL-WRT-50 FastAT 61.7 325 8.5 0.35
RNAS-CL-IL-WRT-50 FastAT + CAC  61.5 33.5 8.5 0.35

Clean and PGD are the same as that in Table 1. * represents approximate values

Table 4 Ablation study on the objective function used during adver-
sarial training on the CIFAR-10 dataset

Method Objective function Clean PGD?°
RNAS-CL-S3 TRADES 83.45 43.07
CAC 82.03 43.53
TRADES + CAC 83.11 43.41
RNAS-CL-S5 TRADES 84.75 44.68
CAC - -
TRADES + CAC 84.81 45.34
RNAS-CL-S7 TRADES 85.81 43.24
CAC 82.35 44.07
TRADES + CAC 85.06 43.88

Clean and PGD are the same as that in Table 1

paradigm, we conduct searching and training using cross-
entropy loss without any teacher model. We refer to this as
standard. In the second paradigm, we conduct searching and
training by minimizing the cross-entropy loss and standard
KL Divergence with a robust teacher model. We refer to
the corresponding models as KL-X-T, where X represents
the search space, and T represents the robust teacher model.
Finally, the third model type is RNAS-CL, where we include
all three terms, cross-entropy loss, KL Divergence, and cross-
layer student-teacher connections.

In Fig.5A, we compare the attention maps from stu-
dent models trained using RNAS-CL-I-R-50 against students
trained using KL-I-R-50. We compare attention maps for
various convolution layers at regular intervals. As expected,
adding cross-layer connections obtains attention maps from

the student model closer to the teacher model. Each stu-
dent layer learns where to pay attention from its connected
teacher layer. For example, in column (b), the KL-I-R-50
layer attends to various parts of the image, whereas the
RNAS-CL layer learning from the 28-th teacher layer pays
more attention to the informative central part of the image.
Similarly, in column (c), the RNAS-CL layer learns from
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Fig. 4 Illustration of the adversarial accuracy of various models at
various perturbation budgets on the ImageNet-100 dataset. Please refer
to Sect.4.9 for the definition of models named “Standard” and models
named with the format of “KL-X-T”

Table 5 Performance of various
efficient and robust methods on

the ImageNet-100 dataset

Method Clean PGD?0 # Params (M) MACs (M)
Hydra (ResNet-18)—90% (Sehwag et al., 2020) 59.96 29.79 11 1200
LWM (ResNet-18)—90% (Han et al., 2015) 59.02 27.67 1.1 1200
RNAS-CL-I-R-18 85.22 3.36 3.94 241.98
RNAS-CL-I-R-50 85.98 8.3 3.96 244.76
RNAS-CL-I-WRT-50 85.46 5.08 4.01 255.37
RNAS-CL-I-R-18 + TRADES 78.94 28.06 3.94 241.98
RNAS-CL-I-R-50 + TRADES 79.95 32.44 3.96 244.76
RNAS-CL-I-WRT-50 + TRADES 79.42 29.02 4.01 255.37

Clean and PGD are the same as that in Table 1. All MACs are calculated without special hardware (Han et
al., 2016) or special software (Park et al., 2017)
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Table 6 Training time (in GPU hours) comparison on the CIFAR-10 dataset

Method Clean PGD?0 # Params (M) MACs (M) Training Time (h)
RoboNet-Small (Guo et al., 2020) 78.05 48.32 4.4 1260 130
RACL (Dong et al., 2020) 83.89 49.34 33 500 44
MSRobNet-1000 (Ning et al., 2020) 84.5 52.7 3.16 1018 48.7
MVV2-ARD (Goldblum et al., 2020) 84.7 46.28 3.4 300 41.1
DN-121-R (Huang et al., 2021) 87.22 52.52 6 900 16.6
AdvRush (Mok et al., 2021) 87.30 53.07 4.2 659 71.74
RNAS-CL-M2-WRT-34 87.17 53.14 5.6 604 22.5
RNAS-CL-L-WRT-34 86.28 53.69 11 1210 28.7
We calculate the training time on a single Tesla V100 card with 16 G memory
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Fig. 5 A KL-I-R-50 represents attention maps from a model trained
using cross-entropy loss and knowledge distillation without any cross-
layer connections. Teacher and RNAS-CL represent the attention maps
from the robust teacher (ResNet-50) and the RNAS-CL model. The
name for each RNAS-CL layer includes its connected teacher layer. For

the teacher model and pays more attention to the central and
upper portions of the image. In Table 7, we compare the per-
formance of various components of RNAS-CL. We observe
that under both training schemes, KL and ICC (Intermedi-
ate Cross-Connections) significantly increase the robustness
compared to the standard network. Finally, combining KL
and ICC, that is, RNAS-CL, outperforms its counterparts. In
Fig. 6, we compare RNAS-CL models to KL-X-T and stan-
dard models for PGD attacks at various perturbation budgets
on the CIFAR-10 dataset.
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Total Perturbation Size
(ii) FGSM
(B) Robustness evaluation

example, in the Oth layer (13), 13 represents the corresponding teacher
layer. RNAS-CL drives the attention maps of the student layers closer
to that of their corresponding teacher layers. B Robustness evaluation
under different perturbation sizes for the PGD and FGSM attacks on
the CIFAR-10 dataset

4.10 Comparison Against Layerwise KL-Divergence

In this paper, we use the attention loss (1) to search for the
tutor layer for each student layer. It is interesting to inves-
tigate different attention losses, such as the KL-divergence.
We replace the attention loss in (4) with the layer-wise KL-
divergence between the feature maps of the tutor layers in the
teacher model and the student layers in the student model,
with the results reported in Table 8. We observe that there
is a trade-off between clean accuracy and robust accuracy.
Compared to layer-wise KL-divergence, the original atten-
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Taple 7 Ablation study on . Training type Objective function Clean PGD?0
various components used during
RNAS-CL training on the Without adversarial training CE 90.98 193
CIFAR-10 dataset with
RNAS-CL-S7-WRT-34 as the CE+KL 90.76 363
base model CE +ICC 90.33 35.54
CE + KL + ICC 90.62 37.24
With adversarial training CE 80.85 39.67
CE + KL 85.07 41.63
CE +ICC 82.45 41.03
CE + KL + ICC 85.06 43.88
CE represents models trained using Cross-Entropy Loss. CE + KL represents models trained by minimizing
the Cross-Entropy loss and standard KL Divergence with a robust teacher model. CE + ICC represents models
trained by minimizing the Cross-Entropy loss and Intermediate Cross-Connections (ICC). Clean and PGD
are the same as that in Table 1
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Fig.6 Adversarial accuracy of various models at various perturbation budgets on the CIFAR-10 dataset

Table 8 Ablation study on the attention loss on the CIFAR-10 dataset

Table9 Ablation study on using various distillation methods, including
PKT (Passalis & Tefas, 2018) and RKD (Park et al., 2019), in RNAS-CL

Method Objective function Clean PGD?° on the CIFAR-10 dataset
RNAS-CL-S3 Attention loss (our) 89.4 34.3 Method Distillation method Clean PGD?°
Layer-wise KL-Div 20.21 33.05 RNAS-CL-S3 Standard 89.4 34.3
RNAS-CL-S5 Attention loss (our) 90.4 35.59 PKT 89.92 34.61
Layer-wise KL-Div 90.77 35.39 RKD 89.79 36,25
RNAS-CL-S7 Attention loss (our) 90.64 37.24 RNAS-CL-S5 Standard 90.4 35.59
Layer-wise KL-Div 90.97 36.22 PKT 90.65 35.61
RKD 90.25 36.97
RNAS-CL-S7 Standard 90.64 37.24
tion loss (1) often achieves lower clean accuracy but higher PKT 91.13 36.63
robust accuracy. RKD 91.17 37.58

4.11 RNAS-CL with Other Knowledge Distillation
Methods

In this section, we conduct experiments using two differ-
ent knowledge distillation methods in RNAS-CL, including
RKD (Park et al., 2019) and PKT (Passalis & Tefas, 2018),
with the results reported in Table 9. RKD minimizes the
structural relationship between the outputs, emphasizing

the relationship rather than the distance between individual
outputs. On the other hand, PKT matches the probability dis-
tribution of the data in the feature space, rather than aligning
with the actual representation. We substitute the KL term
in the RNAS-CL search loss function (2) and training loss
function (4) with the KL objectives in RKD and PKT respec-
tively. We observe that using RKD or PKT distillation in
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Fig. 7 (Left) Illustration of the number of student layers connected to
each teacher layer on the CIFAR-10 for RNAS-CL-S5-WRT-34. (Right)
Illustration of the robustness score of all the teacher layers. We have

RNAS-CL enhances the clean and robust accuracy compared
to the standard knowledge distillation. This interesting obser-
vation evidences the potential of the proposed RNAS-CL
framework, because researchers in the communities of NAS
and adversarial training can use our RNAS-CL with more
advanced distillation methods to obtain better results in the
future.

5 Discussions
5.1 Robust Teacher Layers

In this section, we discuss robustness inducing capacity of
teacher layers. We hypothesize that there are teacher layers
which are more robust than others and thus should induce
more robustness to the student models. RNAS-CL identi-
fies such robust teacher layers and uses these robust layers
to teach the student network. In RNAS-CL, each student
layer is associated with a teacher layer. Figures 8 and 10
illustrate the number of student layers connected to each
robust teacher layer on the CIFAR-10 and the ImageNet-
100 datasets. For all the student models on CIFAR-10, we
observe thatlayers 15 and 21 of the robust teacher model have
significantly more intermediate connections with the student
models. Similarly, for ImageNet-100, layers 18, 32, and 40
are the dominant robust layers. In Figs. 9 and 11, we visualize
the most robust teacher layers on CIFAR-10 and ImageNet-
100, respectively. For both datasets, there are teacher layers
which have significantly more intermediate connections for
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Fig. 8 Illustrations of the number of student layers connected to each
teacher layer in RNAS-CL for various student models on the CIFAR-10
dataset. We choose adversarially trained Wide-ResNet-34 as the robust
teacher model for all four student models, with one plot for each student
model. All student architectures are described in Table 13

several models, suggesting that such chosen teacher layers
have higher robustness-inducing capacity than other layers.

‘We conduct more experiments to explore the robustness of
each teacher layer. We define the robustness of a teacher layer
as the difference between the output corresponding to a clean
and perturbed image. Let X be a clean input image and X,qy
be the perturbed image. Then, CO; and AO; represent the
output corresponding to the clean and the perturbed image
at the j-th teacher layer. We define the robustness score of
the j-th teacher layer as |CO; — AO;|/|CO;|. Intuitively, a
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Fig.9 Attention map for the most robust teacher layers on CIFAR-10
dataset. We chose the same robust teacher model as that in Fig. 8. The
illustrated layers are the two teacher layers with the maximum number
of intermediate connections for various RNAS-CL models (as described
in Fig.8)

more robust layer would lead to closer values of CO; and
AQ; with j being the index of that layer, so a lower robust-
ness score suggests more robustness. In Fig.7, we observe
that layers with the most student connections also often have
the minimum robustness loss. All the four teacher layers (11,
13, 15, 21) connected to the student model are within the
top-5 layers with the lowest robustness scores. This result
indicates that teacher layers with significantly more interme-
diate connections have more robustness-inducing capacity
than others using the definition of robustness score.

5.2 Teacher’s Influence on Student’s Performance

In this section, we discuss how the teacher influences the
student’s performance. We conduct experiments using three
different robust teacher models, which are adversarially
trained WRT-34 (Rice et al., 2020), ResNet-50 (Engstrom
et al., 2019), and ResNet-18 (Sehwag et al., 2021) on the

Teacher layer number

(a)

Fig. 10 Illustrations of the number of student layers connected to each
teacher layer in RNAS-CL for various student models on the ImageNet-
100 dataset. We choose adversarially trained Wide-ResNet-50 as the
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robust teacher for all the three student models, with one plot for each
student model. All RNAS-CL architectures are described in Table 14

26™ Layer 32 Layer 40 Layer

Fig. 11 Attention maps for the most robust teacher layers on ImageNet-100 dataset. We chose the same robust teacher model as in Fig. 10. The
illustrated layers are the teacher layers with maximum number of intermediate connections for various RNAS-CL models (as described in Fig. 10)
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Table 10 Performance of RNAS-CL method trained with various
robust teacher models on the CIFAR-10 dataset

Table 11 Performance of RNAS-CL models trained with vulnerable
and robust teacher on the CIFAR-10 dataset

Method Clean PGD?0 Model Clean PGD?
Standard-S3 89.92 17.69 ResNet-50 (vulnerable teacher) 93.67 18.5
Standard-S5 90.76 18.44 RNAS-CL-S3-R50 90.33 17.68
Standard-S7 90.98 19.3 RNAS-CL-S5-R50 91.51 19.11
RNAS-CL-S3-WRT-34 89.4 34.3 RNAS-CL-S7-R50 92.39 20.2
RNAS-CL-S5-WRT-34 90.4 35.59 WRT-34 (robust teacher) 86.07 58.33
RNAS-CL-S7-WRT-34 90.62 37.24 RNAS-CL-S3-WRT-34 89.4 34.3
RNAS-CL-S3-R50 89.39 35.76 RNAS-CL-S5-WRT-34 90.4 35.59
RNAS-CL-S5-R50 90.53 37.32 RNAS-CL-S7-WRT-34 90.62 37.24
RNAS-CL-S7-R50 90.41 37.98
RNAS-CL-S3-R18 88.47 26.35
Table 12 Performance of RNAS-CL models trained with robust trans-
RNAS-CL-S5-R18 88.77 2549 former based teacher models on the CIFAR-10 dataset
RNAS-CL-S7-R18 89.47 27.96
Model Clean PGD?°
“Standard” represents models searched and trained by cross-entropy
loss without any teacher model ViT 81.24 51.42
RNAS-CL-S3-ViT 88.1 33.39
CIFAR-10 dataset. All RNAS-CL models, while achi RNAS-CL-S>-ViT §77 542
AR 1D dataset. o models, While achiey= B NAS-CL-S7-ViT 87.0 343
ing similar clean accuracy, exceed its counterpart by more DT Ti 795 193
. . . e1 m . .
than 10% in PGD accuracy. RNAS-CL-R50 achieves higher RNAS CI}: $3.Dei %70 308
-CL-S3-Deit X .
robust accuracy than RNAS-CL-R18 and RNAS-CL-WRT-  “ " "0 D"’? e s
34. However, ResNet-50 has the lowest PGD accuracy among ~Chm5-Delt ‘ :
RNAS-CL-S7-Deit 88.2 32.1

the teacher models, suggesting that the teacher’s architecture
influences the student’s performance more than the teacher’s
performance. This result may be attributed to the fact that
higher number of teacher layers allows more options for the
student layer to learn from, leading to better robustness. We
also observe similar results for ImagNet-100 in Fig.4. The
teacher models’ performance is reported in Table 15 of the
appendix.

5.3 Characteristics of Robust Architecture

After the searching phase of RNAS-CL, the number of chan-
nels, which is also the filter choice, at each convolution block
of the network is decided. Consistent with the findings in
(Huang et al., 2021), we observe that width reduction in the
last few stages contributes to enhanced robust accuracy. For
instances such as RNAS-CL-S3, RNAS-CL-S5, and RNAS-
CL-S7, the filter choice is always made from the smallest
two output channels within the search space for the last
stage. The details about the search space of RNAS-CL for
the CIFAR-10, the ImageNet, and the ImageNet-100 datasets
are provided in Table 13 and Table 14 of the appendix.

5.4 Performance with Vulnerable Teacher
In this section, we examine the significance of robustness of

the teacher model in RNAS-CL. We train RNAS-CL models
using a vulnerable teacher with good clean accuracy but poor
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adversarial accuracy. In Table 11, we observe that RNAS-CL
models trained with the vulnerable teacher model have signif-
icantly lower adversarial accuracy than models trained with
a robust teacher. Here we use ResNet-50 as the vulnerable
teacher and the adversarially trained WRT-34 as the robust
teacher model.

5.5 Performance with Transformer-Based Models

In this section, we train RNAS-CL models using the trans-
former architecture with the results reported in Table 12. It
is noteworthy to note that RNAS-CL models trained with
the robust transformer-based models (Mo et al., 2022) as the
teacher models often exhibit lower clean and robust accuracy
compared to the RNAS-CL models trained with CNN-based
robust teachers, which can be verified from Table 11 and
Table 12. This decrease in robustness is attributed to the
inherently lower adversarial robustness of transformer-based
models. For example, the adversarially trained Vision Trans-
former (ViT) achieved a PGD accuracy of 51.42%, while its
counterpart, WRT-34, attained a much higher PGD accuracy
of 58.33%. Howeyver, it can be observed from Table 12 that
RNAS-CL models trained with the robust transformer-based
models still achieve a reasonable level of robustness. For
example, with a much less robust teacher (ViT), RNAS-CL-
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Table 13 The table describes

the search space for CIFAR- 10, Search Space Depth Stage 1 Stage 2 Stage 3

Sailﬁzt;fgiresems the depth of RNAS-CL-S3 333 16, 12 32,28, 24,20 64, 60, 56, 52
RNAS-CL-S5 5.5.5 16, 12 32,28, 24,20 64, 60, 56, 52
RNAS-CL-S7 777 16, 12 32,28, 24,20 64, 60, 56, 52
RNAS-CL-M 9-7-1 80, 76 160, 156, 152, 148 128, 124, 120, 116
RNAS-CL-L 9-7-1 160, 156 320, 316, 312, 308 256,252, 248, 244

For example, 3-3-3 represents three convolution blocks in each stage. All search spaces have three stages.
Stage 1, Stage 2, and Stage 3 represent the filter choices for the corresponding stage. For example, at stage 3
of RNAS-CL-S3, we search among 4 output channels, (64, 60, 56, 52), for each convolution block

Table 14 The table describes the search space for ImageNet and ImageNet-100

Search space Depth Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
RNAS-CL-IS 3-3-3 28,24, 20, 16 40, 36, 32, 28 96, 88, 80, 72, 64,
56, 48
RNAS-CL-IM  3-3-3-4 28,24, 20, 16 40, 36, 32, 28 96, 88, 80, 72, 64, 128 120, 108, 100,
56, 48 92, 84,76, 68
NAS-CL-I 3-3-3-4-4 28,24, 20, 16 40, 36, 32, 28 96, 88, 80,72, 64, 128 120, 108, 100, 216, 208, 200, 192,
56, 48 92, 84,76, 68 184,176, 168, 160,
152, 144,136, 128,
120, 108
RNAS-CL-IL 1-2-2-4-3 28,24, 20, 16 40, 36, 32, 28 96, 88, 80, 72, 64, 128 120, 108, 100, 216, 208, 200, 192,

56, 48 92, 84,76, 68 184,176, 168, 160,
152, 144,136, 128,

120, 108

Similar to Table 13, depth represents the depth of each stage. For ImageNet, we have up to 5 stages. Stage 1, Stage 2, Stage 3, Stage 4, and Stage
5 represent the filter choices for the corresponding stage. For example, at stage 1, we search among 4 output channel options, (28, 24, 20, 16), for

each convolution block

S5-ViT still achieves a robust accuracy of 35.42%, which
is very close to the robust accuracy of 35.59% achieved
by RNAS-CL-S5-WRT-34 trained with a much more robust
teacher (WRT-34).

6 Conclusions

In this paper, we propose Robust Neural Architecture Search
by Cross-Layer Knowledge Distillation (RNAS-CL), a novel
NAS algorithm that improves the robustness of the student
model by learning from a robust teacher through cross-layer
knowledge distillation. RNAS-CL optimizes neural archi-
tecture to achieve a good tradeoff between robustness and
clean accuracy in a differentiable manner either with or
without robust training. The experiments show that the com-
pact models trained by RNAS-CL outperform the competing
models obtained without robust training in terms of adver-
sarial robustness, and adding adversarial training can further
increase the adversarial robustness of the RNAS-CL models.
After robust training, RNAS-CL achieves better adversar-
ial robustness compared to competing models obtained via
robust training.

Table 15 Robustness results for

, Method Clean PGD?
various teacher models on the
CIFAR-10 dataset WRT-34  86.07 5833
ResNet 18  84.59 55.54
ResNet 50 87.03 49.25

Appendix A Robust Teacher Models

In this section, we report the robustness of adversarially
trained teacher models used throughout the paper on the
CIFAR-10 dataset in Table 15.

Appendix B Architecture

In this section, we discuss architectures for various pro-
posed supernets used in RNAS-CL for the CIFAR-10, the
ImageNet-100 and the ImageNet datasets. Table 13 describes
the supernets used for CIFAR-10. We use supernets with
three blocks. Supernets used for ImageNet-100 and Ima-
geNet are described in Table 14. For ImageNet-100, the
number of blocks varies from 3 to 5.

@ Springer



International Journal of Computer Vision

Convolution Filters of a Convolution Block (Student Layer)
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Fig. 12 Illustration of searching for the neural architecture of a con-
volution layer of a student model using the searching mechanism in

FBNetV2. {g,([;)} represents the Gumbel weights associated with dif-
ferent filter choices

Appendix C Architecture Search by FBNetV2

RNAS-CL builds an efficient and adversarially robust deep
learning model. In this work, we use the training paradigm of
FBNetV2 to search for efficient neural architecture. Figure 12
illustrates the searching process for the neural architecture
of a single convolution layer. Each filter choice is associated
with a Gumbel weight. These Gumbel weights are optimized
to decide the best filter choice for the convolution layer.
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Data Availibility The following datasets are employed in the exper-
iments of this paper. (1) CIFAR-10, a collection of 60k images in 10
classes (Krizhevsky, 2009), which is availableat ht tps: / /www.cs .
toronto.edu/~kriz/cifar.html; (2) ImageNet (ILSVRC-
12), an image classification dataset (Russakovsky et al., 2015) with
1000 classes and about 1.2M images, which is available at https://
www.image-net.org/challenges/LSVRC/; (3) ImageNet-100, a subset
of ImageNet-1k dataset (Russakovsky et al., 2015) with 100 classes
and about 130k images (Tian et al., 2020), which is available at https://
github.com/HobbitLong/CMC.
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