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Figure 1: Unique dendrites from the fine grained dendrite dataset

ABSTRACT

Dendrites are easy to synthesize branching structures that exhibit
randomness; yet they are unique, non-repeatable, and identifiable
with the right algorithmic innovations. This has created a novel
application area where manufactured dendritic structures are being
used as product identifiers - essentially "fingerprints for things". Un-
like barcodes, which are linear structures, dendrites exhibit spatial
randomness. This, coupled with a unique optical signal generated
by light scattering from material inhomogeneities, ensures that
each dendrite is unique and unclonable. While there have not yet
been any established methods on reading dendritic patterns for
verification using image data, identifying dendrites using computer
vision techniques could have high potential. Due to limited data
and low variance, dendrite identification can be considered to be a
fine-grained classification task. In this paper, we examine how the
selection of pre-trained models influences dendrite classification.
The dendrites we work with share similarity to human fingerprints,
thus we begin with a model trained for matching fingerprint data
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to extract features relevant to dendrites. Additionally, we explore
broader pre-training approaches, using ImageNet-1K for our sec-
ond model and ImageNet-21K for our third model. Surprisingly, our
results indicate that even with the visual similarity with human fin-
gerprints, more general pre-training with common image datasets
achieves better performance on dendrite classification.
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1 INTRODUCTION

Dendrites are branching structures that look similar to fingerprints,
and other naturally random structures found in nature. The use of
dendrites in the supply chain is a new and emerging area of research
[10, 15]. While blockchain technologies exist to create a digital
record of product circulation within the supply chain, dendrites
act as a physically unclonable function, providing another level of
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Figure 2: Dendrites with a scale comparison. Scale in cm.

security while linking the physical world to the cloud. The entropy
of a dendrite’s manufacturing process results in uniqueness among
all dendrites, and due to the complexity of a dendrite’s appearance,
it is very dificult to replicate or physically remove without altering
[9].

Current research on dendrite identification is ongoing, and pub-
lished results are very limited. Most methodologies use 2D feature
point detection and matching (c.f. [1]). As machine learning ap-
proaches provide a more scalable approach for learning image fea-
tures, they offer greater potential for secure identification. In this
paper, we analyze a few popular approaches for image matching
using features learned from deep neural architectures, and apply
them toward dendrite classification. We investigate different pre-
training architectures and datasets for eficacy. We employ models
pre-trained on ImageNet-1K and ImageNet-21K. We also explore
more specific pre-training through a custom fingerprint dataset.
We assess the results of these different pre-training choices on
our target dataset.

In this paper, we analyze a few popular approaches for image
matching using features learned from deep neural architectures, and
apply them toward dendrite classification. We investigate different
pre-training architectures and datasets for eficacy. We employ
resnet models pre-trained on ImageNet-1K and ImageNet-21K. We
also explore more specific pre-training through a custom fingerprint
dataset. We assess the results of these different pre-training choices
on our target dataset.

The main aim of this paper is to set a baseline on the dendrite
classification problem with deep-learning methods and emphasizes
the challenges of developing solutions for small yet demanding
datasets commonly encountered in real-world applications.

2 DATASET CREATION

We have focused on a dendrites formation method that has shown
great promise for high speed, high volume, low-cost manufactur-
ing based on the Saffman-Taylor effect in viscous fluids [13]. In
this scheme, we compress a few microliters of a bulk-produced
low-cost fluid mixture between two surfaces and then separate
the surfaces to form a dendritic shape in the fluid, which is then
allowed to harden into a permanent trigger pattern. This is both
simple and inexpensive and lends itself to roll-to-roll volume man-
ufacturing using existing printing equipment. The patterns also
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have a subtle relief, with ridges typically in the order of 20 pm
high in branches that are several hundred pm wide. This allows
material inhomogeneities to generate a 3D optical signal that would
be extremely dificult to replicate, ensuring that the pattern is not
merely a photographic copy of the original trigger.

We developed two dendrite datasets that are described below.

(1) Fine Grain Dendrite Dataset. The dataset consists of 10
dendrites, with approximately 25 images per dendrite class.
The images were captured from 5 different perspectives in
order to fully encompass the dendrite’s branches and the
distinctive patterns or “constellations” created from the re-
flections of metal flakes in the substrate. The first dataset
was created with a 20% test split, with 212 images in the
training set, and 50 images in the test split.

(2) Ultra Fine Grain Dendrite Dataset. This dataset consists
of 97 dendrites, without constellations. Like the first dataset,
the images were captured from five different perspectives.
However, there are only 5 images per class, making this
dataset extremely fine grain. The second dataset was also
created with a 20% test split, with 382 images in the training
set, and 97 images in the test split. Both datasets were resized
to 224 x 224 pixels.

Images in both the fingerprint and dendrite datasets were resized
to be 224 x 224 pixels, as ResNet was trained on images of this size,
and has been shown to perform better on these dimensions. A
cutout augmentation technique was applied, randomly masking
rectangular regions of the image, promoting better generalization
by discouraging overfitting. Additionally, we applied a randomized
sequence of image transformations, to enhance dataset diversity
and encourage the model to learn more robust features. Finally, the
images were converted to tensors for input into our model.

3 BACKGROUND AND RELATED WORK

Fine-grained identification is concerned with recognizing and dis-
tinguishing subordinate categories, such as dog species, monkey
faces, or models of car. Generally, problems become increasingly
“fine-grained” when there is less data and similar structure among
subcategories [4]. There are several major challenges that are asso-
ciated with fine grain identification problems [16], usually a lack
of training data, and low class variance. Many fine-grained prob-
lems utilize a transfer learning paradigm, wherein a model is first
trained on a large and diverse source dataset, in a process known
as pre-training, then fine-tuned on a specific target dataset. The
vast majority of transfer learning models are pre-trained using
a supervised learning approach, where pre-training takes place
on large labeled datasets such as ImageNet [3]. A frequently used
version of ImageNet is ImageNet-1K [12], which contains 1281167
training images, 50000 validation images and 100000 test images,
and is frequently the benchmark of most computer vision models.
ImageNet-1K is sourced from the original ImageNet dataset, which
contains more than 14 million images across more than 20000 cat-
egories, and is commonly referred to as ImageNet-21K. Despite
being overlooked due to large size, complexity, and a perceived size-
value disparity, ImageNet-21K has demonstrated enhanced model
performance on various benchmarking datasets [11]. However, the
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effectiveness of this approach in a fine-grained classification setting
remains relatively unexplored.

However, there are possible limitations to pre-training on datasets
such as ImageNet for fine-grain identification problems. Often,
much of the image features in these large datasets are not relevant to
the target datasets [2]. Choosing data for model pre-training that
is more aligned with the target dataset has shown to improve
performance, as the features extracted from the source dataset are
more likely to match that of the target dataset. We explore the
impact of specific and general pre-training data on dendrite classi-
fication by utilizing transfer learning with fingerprint data, as well as
with ImageNet-1K and ImageNet-21K weights.

3.1 Existing work on Dendrite Classification

3.1.1  Non Deep Learning Approaches. Current research on den-
drite classification is ongoing, and published results are very limited.
Most non-deep-learning approaches tend to utilize graph matching
algorithms, where images of dendrites are encoded as graph struc-
tures, which are then utilized by graph-matching algorithms. Early
approaches like [15] outline a conceptual graph-based matching
algorithm approach to identify the closest dendrites from a sample
after reduction techniques have been performed on the dataset.
However, the paper lacks information regarding the eficacy of the
approach. Similarly, [1] also developed a graph matching approach
and represented test as well as reference images are graphs before
matching. While this approach achieved a high identification rate,
it is important to note that this matching rate refers to comparisons
between dendrite image representations that had minimal noise
or interference. The paper also explored some image modification
results, such as rotation and scratch, but does not consider the al-
teration in shape that occurs when observing branching structures
from various perspectives.

Itis crucial to note that existing works are specifically focused
on the matching of identical dendrite image (or image extracted
data) pairs. Our paper is highly unique as it focuses on the challeng-
ing task of classifying unique dendrite images captured at various
angles, which acknowledges the change in form when branching
structures are viewed at different angles, an area where graph meth-
ods face limitations. Our training and test data consists entirely of
unique images, as will be expanded on later in the paper.

3.1.2  Deep Learning Approaches. Machine learning approaches
offer a scalable solution for learning image features, presenting sig-
nificant potential for enhancing secure identification. As datasets
increase in size, deep-learning approaches are more appropriate, fol-
lowing the same development in the areas of fingerprint biometrics,
where deep-learning approaches have taken over simpler
minutiae-matching approaches in the past. For example, [15]
introduced a conceptual but untested method for training a neural
network on

3D dendrite extractions using digital holography. Despite this, there
is currently a lack of research concerning deep learning method-
ologies specifically focused on dendrite classification.

4 APPROACH

An overview of our approach is given in Algorithm 1. To establish
baseline on the collected dendrites dataset, we develop pre-trained
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pre-training Finetuning/test-data Avg. accuracy

Fingerprint Fine-grain dendrites 95.73%
ImageNet-1K Fine-grain dendrites 100%
ImageNet-21K Fine-grain dendrites 100%

Fingerprint  Ultra Fine-grain dendrites n.a.
ImageNet-1K  Ultra Fine-grain dendrites 93.39%
ImageNet-21K  Ultra Fine-grain dendrites 96.13%

Table 1: Performance of ResNet50 architecture pre-trained
with different choices, fine-tuned on our dendrites dataset,
and final test performance on a held-out test-set from our
dendrites dataset. Accuracies are reported as an average over
5 runs. The fingerprint pre-training approach did not con-
verge when finetuned on the ultra fine-grain dendrites data.

models based on ImageNet and Fingerprint datasets which are then
finetuned on our datasets.

Model Pre-Training. We pretrained our models using two datasets.
ImageNet-1K and ImageNet-21K are large image datasets used for
computer vision, featuring 1000 and 21000 classes, respectively.
Carefully curated through crowd-sourcing and expert curation,
they offer diverse and high-quality images. The datasets were
constructed with standardized 224 x 224 resolution images, fa-
cilitating compatibility with popular deep learning architectures
like ResNet. ImageNet-21K contains 14197122 images across 21841
classes. ImageNet-1K, which was created from ImageNet-21K, con-
tains 1281167 training images, 50000 validation images and 100000
test images, across 1000 classes.

Additionally we also pretrained the model with The NIST SD
302b Fingerprint dataset [5]. This dataset was collected with a
rolling technique which aimed to capture the entire fingerprint sur-
face from nail to nail as well as a segmented 4-4-2 slap configuration,
wherein the target fingerprints were simultaneously captured with
imaging. Both methods of collection are visually distinctive. For
this reason, the source dataset is split between these two capture
methods, with 8002 images in the roll subset and 2921 images in
the segmented slap subset. The dataset was created with a 20% test
split, with 10920 images in the training set, and 2184 images in the
test split.

Model details. We use a ResNet50 architecture [6] trained us-
ing the Adam optimizer [8] with a learning rate of 3e-4. The loss
function employed is the standard cross-entropy loss with label
smoothing [14]. The data is loaded in batches of 64 with 8 worker
threads for data loading. Mixed precision training is utilized for im-
proved performance and reduced memory usage, through PyTorch’s
Automatic Mixed Precision (AMP) feature and the GradScaler.

5 EXPERIMENTAL SETUP AND RESULTS

ResNet50 pre-trained with NIST Fingerprint SD 302b finetuned
with Fine Grain Dendrite Dataset. The ResNet50 architecture
trained from scratch on the fingerprint source dataset for 20 epochs,
with a batch size of 64. The model reached a test accuracy of 100% at
the eleventh epoch, and this performance was maintained through
the rest of training. The model achieved a perfect ROC curve, zero
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Algorithm 1 Evaluate Pre-training Datasets for Dendrite Classifi-
cation
1 Initialize an empty list to store dataset evaluation scores
2: for each pre-training dataset Oin the list of candidate datasets
do
3. /] Step 1: Pre-train a model on dataset O
4. Initialize a new model Owith architecture suitable for den-
drite classification (e.g., ResNet)
5. Pre-train model Jon dataset O
6: /I Step 2: Fine-tune and evaluate the model on the dendrite
dataset
7. Fine-tune model Oon the dendrite target dataset
8. Evaluate the fine-tuned model on a held-out validation set
of the dendrite dataset
9. Compute the evaluation metric (e.g., accuracy, F1 score)
10:  // Step 3: Store the evaluation score
11:  Add the evaluation metric score to the list of dataset evalua-
tion scores
12: /I Step 4: Clean up for the next iteration
13:  Reset model Ofor the next dataset
14: end for
15: // Step 5: Analyze the evaluation scores
16: Identify the dataset [hax with the highest evaluation score
17: Select [hax as the optimal pre-training dataset
18:
19: return [hax along with its evaluation score
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Figure 3: ResNet50 pre-trained on Fingerprint dataset, model
training history on Fine-grain dendrite dataset.

false positives, and a threshold of 1, indicating extremely high model
performance on the source dataset.

This pre-trained ResNet50 model was fine-tuned on the fine
grain dendrite dataset for 200 epochs. The model reached a highest
test accuracy of 96.36% at epoch 174 and one vs all precision, recall,
and f1 scores (averaged across classes) of 0.9731, 0.8233, 0.8754,
respectively, at the end of training. The model achieved a nearly
perfect one-vs-all ROC curve. The average test accuracy reached a
test accuracy of 95.73% across five individual training sessions.
The overall model training and convergence history is displayed in
figure 3.
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Figure 4: ResNet50 pre-trained on ImageNet-1K, model train-
ing history on Fine-Grain dendrite dataset.
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Figure 5: ResNet50 pre-trained on ImageNet-21K, model
training history on Fine-Grain dendrite dataset.

ResNet50 pre-trained with ImageNet-1K finetuned with Fine
Grain Dendrite Dataset. The ResNet50 model loaded with ImageNet-
1K weights was trained on the fine grain dendrite dataset for 200
epochs with a batch size of 64. The model reached a test accuracy
of 100% at epoch 108, and perfect one-vs-all precision, recall, and
F1 scores at the 111th epoch. However, at the final epoch, the test
accuracy declined to 98.18%, while the recall and F1 score for one
of the dendrite classes had declined to 0.8 and 0.8889 respectively.
The model achieved a perfect one-vs-all ROC curve. The overall
performance history is displayed in figure 4. The average test accu-
racy reached 100% across five training sessions.

ResNet50 pre-trained with ImageNet-21K finetuned on Fine
Grain Dendrite Dataset. The Resnet50 model loaded with ImageNet-
21K weights was trained on the fine grain dendrite dataset for 200
epochs with a batch size of 64. The model reached a test accuracy
of 100% at epoch 30, and perfect one vs all percussion, recall, and
f1 scores at the 35th epoch. The model achieved a perfect one vs all
ROC curve. The overall training convergence history is displayed
in figure 4. The average test accuracy reached 100% across five
training sessions.

ResNet50 pre-trained with NIST Fingerprint SD 302b finetuned
with Ultra Fine Grain Dendrite Dataset. We were not able to
successfully fine tune the model on the Ultra Fine Grain dataset.
We also found, as we describe above, that the pre-training with
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Figure 6: ResNet50 pre-trained on ImageNet-1K, model train-
ing history on Ultra Fine-Grain dendrite dataset.

ImageNet already leads to better performance on the Fine Grain
dataset. Thus, we limit our comparisons below to ImageNet pre-
training only.

ResNet50 pre-trained with ImageNet-1K finetuned with Ultra
Fine Grain Dendrite Dataset. The ResNet50 model loaded with
ImageNet-1K weights was trained on the ultra fine grain dendrite
dataset for 200 epochs with a batch size of 8. The best performing
model reached a test accuracy of 94.85% at the end of training. The
model achieved a nearly perfect one-vs-all ROC curve. The overall
training history is displayed in figure 6. The average test accuracy
reached 93.39% test accuracy across five individual training sessions.

ResNet50 pre-trained with ImageNet-21K finetuned on Ultra
Fine Grain Dendrite Dataset. The ResNet50 model loaded with
ImageNet-21K weights was trained on the ultra fine grain dendrite
dataset for 200 epochs with a batch size of 8. The best performing
model reached a test accuracy of 97.94% at the end of training. The
model achieved a nearly perfect one-vs-all ROC curve. The overall
performance history is displayed in figure 7. The average test accu-
racy reached 96.13% test accuracy across four individual training
sessions.

Summary of findings. All of our results are summarized in table
1. Our findings underscore that, for dendrite classification using
the ResNet50 architecture, pre-training on ImageNet-21K stands
out as the most effective approach by a considerable margin. This
holds true when compared to ResNet50 models pre-trained on
ImageNet-1K and even fingerprint data. While our exploration of
the fingerprint pre-training approach did not yield the expected
outcomes, it nonetheless provided valuable insights. The unsatisfac-
tory performance can be attributed to several potential factors. Our
fingerprint source dataset encompassed only two classes, an insufi-
cient setup for effective fine-tuning on a multi-class dataset. While
not mentioned in this paper, preliminary experiments involving a
multiclass fingerprint source dataset displayed even poorer dendrite
classification performance, strongly suggesting that relying solely
on pre-training with a single object/type (in this case, fingerprints)
is not an effective approach. An intriguing extension of this study
could involve pre-training on a diverse multiclass dataset featuring
objects akin to dendrites, such as sea shells, coils, fingerprints, and
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Figure 7: ResNet50 pre-trained on ImageNet-21K, model
training history on Ultra Fine-Grain dendrite dataset.

other similarly structured entities. In conclusion, our findings high-
light the substantial promise that computer vision methods hold
for dendrite identification, provided the right pre-training data is
utilized.

6 CONCLUSION

Dendrite classification poses complexities due to their intricate
branching patterns. While computer vision has the potential to aid
this task, challenges arise from the intricate nature of dendrites and
the scarcity of data. In this paper, our focus lies in investigating the
influence of different pre-training datasets on dendrite classification.
We evaluate three models, each trained on distinct data sources:
ImageNet-21K, ImageNet-1K, and NIST 302b fingerprint data. These
models are then applied to our Dendrite dataset, with their layers
remaining fully adaptable. We aim to understand how the choice
of pre-training data impacts the classification process.

Intriguingly, as the target data becomes more ‘particular’, the
effectiveness of highly ‘general’ pre-training becomes more pro-
nounced in dendrite classification. This finding runs counter to
previous studies that have suggested the eficacy of pre-training on
source data closely resembling the target dataset. Ultimately, our
research reveals that computer vision, particularly when rooted
in hyper-general pre-training datasets like ImageNet-21K, holds
significant promise for dendrite classification. Recent results in the
broader computer vision literature have also explored pre-training
with synthetically generated images, including fractals, which can
provide competitive performance on natural image classification
tasks [7]. We would also explore these ideas in future work
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