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Abstract
Two-dimensional reductions of the Kadomtsev–Petviashvili(KP)–Whitham
system, namely the overdetermined Whitham modulation system for five
dependent variables that describe the periodic solutions of the KP equation,
are studied and characterized. Three different reductions are considered cor-
responding to modulations that are independent of x, independent of y, and of t
(i.e. stationary), respectively. Each of these reductions still describes dynamic,
two-dimensional spatial configurations since the modulated cnoidal wave, gen-
erically, has a nonzero speed and a nonzero slope in the xy plane. In all three
of these reductions, the integrability of the resulting systems of equations is
proven, and various other properties are elucidated. Compatibility with con-
servation of waves yields a reduction in the number of dependent variables to
two, three and four, respectively. As a byproduct of the stationary case, the
Whitham modulation system for the classical Boussinesq equation is explicitly
obtained.
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1. Introduction and background

The description of dispersive wave propagation has been a classical topic of study dating back
to the works of Boussinesq, Stokes, Rayleigh, Korteweg and de Vries and others in the nine-
teenth century, and it continues to attract significant attention. A scenario of both theoretical
and applicative interest is that in which dispersive effects are much smaller than nonlinear
ones, a regime that often leads to the generation of dispersive shock waves. Indeed, a large
number of works have been devoted to this subject (e.g. see [18] and references therein). The
mathematical framework for the description of small dispersion problems in one spatial dimen-
sion and the formation of dispersive shock waves in that context have been well characterized,
beginning with the seminal work of Whitham [41]. However, our understanding of dispersive
wave propagation and dispersive shock waves in more than one spatial dimension is much less
developed.

The purpose of this work is to study special approximate solutions of the Kadomtsev–
Petviashvili (KP) equation [25],(

ut+ 6uux+ ε2uxxx
)
x
+σuyy = 0 , (1.1)

where 0< ε� 1, subscripts x, y and t denote partial differentiation and the values σ =∓1
distinguish between the KPI and KPII variants of the KP equation, respectively. The KP
equation, which is a two-dimensional generalization of the celebrated Korteweg–deVries
(KdV) equation, similarly arises in such diverse fields as plasma physics [24, 25, 28], fluid
dynamics [6, 26], nonlinear optics [7, 31], Bose–Einstein condensates [23, 38] and ferro-
magnetic media [39]. The KP equation is also, like the KdV equation, a completely integ-
rable infinite-dimensional Hamiltonian system whose solutions possess a rich mathematical
structure [5, 8, 22, 24, 26, 27, 29]. The initial-value problem for the KP equation is in prin-
ciple amenable to exact solution via the inverse scattering transform (IST) [5, 27, 29]. Yet,
even though considerable work has been devoted to the development of the IST for the KP
equation throughout the last twenty years [12–15, 42], the IST has rarely been used to study
the dynamical behavior of solutions of the KP equation [43]. Conversely, asymptotic methods
such as Whitham modulation theory have recently been shown to be quite effective in this
regard [4, 11, 32, 34].

In this work, we derive and characterize several asymptotic reductions of the KP equation,
which we rewrite in evolution form as

ut+ 6uux+ ε2uxxx+σvy = 0 , vx = uy . (1.2)

The linear dispersion relation of (1.2), obtained by looking for small-amplitude plane-
wave solutions u(x,y, t) = uo+Aeiθ(x,y,t) with |A| � |uo|, θ(x,y, t) = (kx+ ly−ωt)/ε, is ω =
(6uo+σq2)k− k3, with q= l/k. In addition, the KP equation admits nonlinear, exact traveling
wave solutions in the form of ‘cnoidal waves’

u(x,y, t) = r1 − r2 + r3 + 2(r2 − r1)cn
2 (2θKm;m) , v(x,y, t) = qu+ p , (1.3)

where cn(·) denotes the Jacobian elliptic cosine [30], θ(x,y, t) is as above, Km = K(m) and
Em = E(m) are the complete elliptic integrals of the first and second kind, respectively, and

m=
r2 − r1
r3 − r1

(1.4)

is the elliptic parameter. The above solution is completely determined by five parameters: r1,
r2, r3, q and p. The local wavenumber k and l in the x and y directions and the frequency ω are
then obtained as
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k=
√
r3 − r1

/
2Km , (1.5a)

l= qk , (1.5b)

ω =
(
V+σq2

)
k , (1.5c)

with parameter

V=
ω

k
−σq2 = 2(r1 + r2 + r3) . (1.6)

In [4], the method of multiple scales was used to derive the so-called KP–Whitham sys-
tem (KPWS), i.e. a system of quasilinear first-order partial differential equations (PDEs) that
describes the slow modulation of the above periodic solutions of the KP equation. One begins
by seeking a solution of (1.2) in the form u= u(θ,x,y, t), with rapidly varying variable θ(x,y, t)
defined through its derivatives:

θx = k(x,y, t)/ε, θy = l(x,y, t)/ε, θt =−ω (x,y, t)/ε. (1.7)

Here, k(x,y, t) and l(x,y, t) are the local wave numbers in the x and y directions, respectively,
and ω(x,y, t) is the wave’s local frequency. Imposing the equality of the mixed second deriv-
atives of θ results in the compatibility conditions

kt+ωx = 0 , (1.8a)

lt+ωy = 0 , (1.8b)

ky− lx = 0 , (1.8c)

called the ‘conservation of waves’ equations. One also introduces the dependent variable

q(x,y, t) =
l
k

(1.9)

consistent with the above periodic solutions, along with the slowly varying independent vari-
ables x, y and t. It was then shown in [4] that to leading order one recovers the solution (1.3).
When the parameters of the above periodic solution are slowly modulated with respect to x,
y or t, they satisfy a system of Whitham modulation equations. When writing down these
equations, it is convenient to define the ‘convective derivative’

D
Dy

=
∂

∂y
− q

∂

∂x
. (1.10)

In component form, the KPWS is then comprised of the following PDEs

∂ri
∂t

+
(
Vj+σq2

) ∂rj
∂x

+ 2σq
Drj
Dy

+σνj
Dq
Dy

+σ
Dp
Dy

= 0 , j = 1,2,3, (1.11a)

∂q
∂t

+
(
V2 +σq2

) ∂q
∂x

+ 2σq
Dq
Dy

+(4− ν4)
Dr1
Dy

+(2+ ν4)
Dr3
Dy

= 0 , (1.11b)

∂p
∂x

− (1−α)
Dr1
Dy

−α
Dr3
Dy

+ ν5
∂q
∂x

= 0 , (1.11c)

b1
Dr1
Dy

+ b2
Dr2
Dy

+ b3
Dr3
Dy

+ b4
∂q
∂x

= 0 . (1.11d)
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[Note that (1.8a) is a consequence of the three equations (1.11a), while (1.8b) and (1.8c) are
equivalent to (1.11b) and (1.11d), respectively.] Here, V1, . . . ,V3 are the characteristic speeds
of the Whitham system for the KdV equation, namely

V1 = V− 2b
Km

Km−Em
,V2 = V− 2b

(1−m)Km
Em− (1−m)Km

,V3 = V+ 2b
(1−m)Km

mEm
, (1.12)

and b= 2(r2 − r1) is the amplitude of the cnoidal wave solution (1.3), while the remaining
coefficients are

ν1 =
V
6
+

b
3m

(1+m)Em−Km
Km−Em

, ν2 =
V
6
+

b
3m

(1−m)2Km− (1− 2m)Em
Em− (1−m)Km

, (1.13a)

ν3 =
V
6
+

b
3m

(2−m)Em− (1−m)Km
Em

, ν4 =
2mEm

Em− (1−m)Km
, (1.13b)

ν5 = r1 − r2 + r3 , α=
Em
Km

, b1 = (1−m)(Km−Em) , (1.13c)

b2 = Em− (1−m)Km, b3 =−mEm, b4 = 2(r2 − r1)(1−m)Km. (1.13d)

Importantly, the modulation system (1.11) contains six PDEs for the five dependent vari-
ables r1, r2, r3, q and p, and is therefore overdetermined in general. In [4], the initial
value problem for the system (1.11) was shown to be compatible provided that (1.11c)
and (1.11d) hold at t= 0, in which case it was shown that (1.11c) and (1.11d) remain sat-
isfied for all t> 0. Consequently, in [4] a reduced system consisting of the five PDEs (1.11a)–
(1.11c) was considered, which is a minimal set of equations for the five dependent variables
r= (r1,r2,r3,q,p)T that can be written as

I4
∂r
∂t

+A5
∂r
∂x

+B5
∂r
∂y

= 0 , (1.14)

where I4 = diag(1,1,1,1,0) and A5 and B5 are 5 × 5 matrices whose explicit form is given
in (A.6). In [4] and [11] the term ‘KPWS’ was used to refer to the five equations (1.14).
However, in this work we will show that, in order for the modulation system to inherit the
integrability properties of the KP equation, it is crucial to consider all six equations (1.11) on
an equal footing. Accordingly, we will henceforth refer to the five-component system (1.14)
as the ‘partial’ KPWS, and we will refer to the six equations (1.11) as the ‘full’ KPWS.

Generally, all the dependent variables in (1.11) depend on two spatial dimensions (x and y)
and one temporal dimension (t), so we refer to the KPWS (1.11) as (2 + 1)-dimensional,
or equivalently 3-dimensional. Various asymptotic reductions of the system (1.11) and their
properties were studied in [11], and the soliton limit of (1.11) was used in [32–34] to study
various concrete physical problems. However, a number of important questions remain open.
Among them is the issue of integrability. It is generally believed that asymptotic expansions
of integrable systems preserve integrability at any order, and since the KPWS arises as the
leading order of such an expansion for the KP equation (1.1), which is integrable, one would
naturally expect that the modulation system is also integrable. The Haantjes tensor test is a
necessary condition for the integrability of a system of strictly hyperbolic hydrodynamic type
equations [20] (see also the appendix). On the other hand, as was already mentioned in [4],
the partial KPWS (1.14) fails the Haantjes tensor test. The reason why this is the case is that,
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in order for (1.14) to be compatible with the KP equation (1.2), the initial conditions for k and
q must be related by the constraint (1.8c), i.e. ky = lx, or, equivalently, (1.11d). When they are
not, solutions of the partial KPWS do not describe an asymptotic expansion of solutions of
the KP equation, which explains why (1.14) alone is not integrable despite the integrability
of the KP equation. Thus, one is faced with the conundrum that the partial KPWS (1.14) is
compatible but not integrable, while the full KPWS (1.11) is overdetermined and therefore not
compatible in general.

At the same time, it was shown in [11] that the harmonic and soliton limits of the sys-
tem (1.11) are in fact integrable. An obvious question is then whether there are other integ-
rable reductions of (1.14) and compatible reductions of (1.11), and if so how one can identify
them. In this work, we begin to address this question by studying and characterizing the two-
dimensional (1+ 1 and 2+ 0) reductions of the full KPWS (1.11).

Specifically, in the following sections we prove the following:

Theorem. If the dependent variable r(x,y, t) = (r1,r2,r3,q,p)T of the full KPWS (1.11) is
independent of any one of the independent variables, the system admits an integral of motion,
and r satisfies a reduced modulation system that is both compatible and integrable. In
particular:

• If ∂r/∂x≡ 0, the wavenumber k is constant and r satisfies (2.2), (2.5), (2.16), and (2.19).
• If ∂r/∂y≡ 0, the wavenumber l is constant and r satisfies (3.2) and (3.14).
• If ∂r/∂t≡ 0, the frequency ω is constant and r satisfies (4.7).

The above theorem is proved in sections 2–4. Specifically, in section 2 we consider the
situation in which all fields are independent of x, and in section 3 the situation in which all
fields are independent of y. In section 4 we study the situation in which all fields are station-
ary, i.e. independent of t. In the course of proving the theorem, we will also show that the
corresponding reductions of the partial KPWS (1.14) are integrable if and only if the third
conservation of waves equation is added to them.

Several further remarks on integrability are worth mentioning. Whitham modulation
equations are within the class of quasi-linear, first-order PDE known as equations of hydro-
dynamic type [17]. In [36, 37], Tsarev obtained necessary and sufficient conditions for the
integrability of (1+1)-dimensional hydrodynamic type equations. Equations that are diagon-
alizable in Riemann invariants and satisfy the so-called semi-Hamiltonian property exhibit
an infinite number of conservation laws and are locally solved using a generalization of the
hodograph method. But obtaining Riemann invariants is, in general, an unsolved problem for
systems of more than two equations. It turns out that, in the case of strictly hyperbolic, con-
servative hydrodynamic type equations in (1+1) or (2+0)-dimensions, the vanishing of the
Haantjes tensor is not only necessary but also sufficient to prove diagonalizability and the
semi-Hamiltonian property [19]. Our proof of the theorem rests on this fact so it is not neces-
sary to diagonalize the modulation systems.

As noted earlier, the KPWS (1.11) was derived using the multiple scales method in [4].
In addition to the conservation of waves equations (1.8), three solvability conditions determ-
ine the full KPWS. An alternative method to derive the Whitham modulation equations is the
method of averaged conservation laws, Whitham’s original approach to modulation theory
[40]. In the appendix, we average the KP conservation laws associated with mass, momentum
(in the x direction), and irrotationality, then show that they are equivalent to the three solvab-
ility conditions obtained in [4]. Consequently, the KPWS and its dimensional reductions are
conservative so that we can use the Haantjes tensor test to prove their integrability.
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We emphasize that, as in [32–34], even when the solution of the KPWS is independent of
one independent variable, the reduced systems of equations still generically describe two-
dimensional, dynamical configurations of the KP equation, because a nonzero value of ω
in (1.5c) implies propagation of the cnoidal wave, and q describes the orientation of the peri-
odic wave in the xy plane. Variations of q with respect to x or y correspond to curved wave
profiles.

To avoid possible confusion, we should note that in this workwe are using the normalization
of [4], not that of [11, 32–34]. In the latter works, the coefficient 6 in front of the term uux
in (1.2) was absent and the cnoidal wave’s period was normalized to 2π, whereas here it is
normalized to unity. As a result, several formulas are adjusted accordingly.

2. The YT system

In this section we consider solutions of the KPWS in which all fields are independent of x.
When solutions are independent of x, the partial KPWS (1.14) reduces to a system of five
PDEs in the independent variables y and t, which we refer to as the ‘YT system’. In vector
form, this YT system is

I4
∂r
∂t

+B5
∂r
∂y

= 0 , (2.1)

where r= (r1,r2,r3,q,p)T and I4 = diag(1,1,1,1,0) as before, and the coefficient matrix B5 is
given in (A.6b). The corresponding reduction of the full KPWS (1.11) is simply given by (2.1)
augmented with (1.11d) (which again expresses the compatibility condition ky = lx). Below
we show that, on the one hand, (2.1) is not integrable by itself. On the other hand, upon enfor-
cing the compatibility condition ky = lx required by the full KPWS (1.11), the x-independent
reduction of the KPWS is both compatible and integrable.

2.1. Reduction of the YT system to a three-component system

The system (2.1) can be reduced through a suitable change of variables. Explicitly, the last row
of (2.1) is

∂r1
∂y

+α
∂s2
∂y

= 0 , (2.2)

where we use the transformation

s1 = r3 − r2 , s2 = r3 − r1 , s3 = r2 − r1 . (2.3)

We make the choice not to define these variables in cyclic fashion in order to preserve the
property that sj ⩾ 0 ∀j = 1,2,3 when the Riemann-type variables r1, . . . ,r3 are well-ordered.
The transformation (2.3) leads to the set of four equations

∂sj
∂t

+ 2σq
∂sj
∂y

+σ∆νj
∂q
∂y

= 0 , j = 1,2,3, (2.4a)

∂q
∂t

+ 6
∂r1
∂y

+(ν4 + 2)
∂s2
∂y

+ 2σq
∂q
∂y

= 0 , (2.4b)
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with ∆ν1 = ν3 − ν2, ∆ν2 = ν3 − ν1 and ∆ν3 = ν2 − ν1. Note that the variable p does not
appear in (2.4) nor in (1.11d). Therefore, its value can be determined by integrating (1.11a)
for one j ∈ {1,2,3}, e.g.

σ
∂p
∂y

=−∂r2
∂t

−
(
V2 +σq2

) ∂r2
∂x

− 2σq
∂r2
∂y

−σν2
∂q
∂y

. (2.5)

Note also that the transformation (2.3) from r1, . . . ,r3 to s1, . . . ,s3 is not invertible. However,
(2.4a) with j= 1 is decoupled from the rest of the system, since s1 does not appear in the
remaining equations. Thus we can simply disregard it moving forward, since the four depend-
ent variables r1, s2, s3 and q, determined by the PDEs (2.2), plus (2.4a) with j = 2,3 and (2.4b),
are a closed system. These dependent variables are sufficient to recover the solution of the KP
equation.

Next, one can use (2.2) to eliminate r1 from (2.4b), obtaining the following closed system
of three PDEs for the three dependent variables s2, s3 and q:

∂s2
∂t

+ 2σq
∂s2
∂y

+σ (ν3 − ν1)
∂q
∂y

= 0 , (2.6a)

∂s3
∂t

+ 2σq
∂s3
∂y

+σ (ν2 − ν1)
∂q
∂y

= 0 , (2.6b)

∂q
∂t

+(ν4 − 6α+ 2)
∂s2
∂y

+ 2σq
∂q
∂y

= 0 . (2.6c)

All the coefficients appearing in (2.6) are completely determined by s2,s3&q, since

m=
s3
s2

,
b
m

= 2s2 , (2.7)

Note that r1 is also needed to recover the asymptotic solution of the KP equation, but
its value, up to an integration constant determined by the initial conditions, can be obtained
from s2, s3 by integrating (2.2). Introducing the vector v= (s2,s3,q)T, we can write the above
system (2.6) in vector form as

∂v
∂t

+B3
∂v
∂y

= 0 , (2.8)

with

B3 =

 2σq 0 σ (ν3 − ν1)
0 2σq σ (ν2 − ν1)

ν4 − 6α+ 2 0 2σq

 . (2.9)

The eigenvalues of B3 are

λ1 = 2σq, λ2,3 = 2σq±
√
∆ , (2.10a)

where

∆= σ (ν1 − ν3)(6α− ν4 − 2) = 4σs2

(
(1−m)Km− 2(2−m)EmKm+ 3E2

m

)2
3EmKm (Km−Em)(Em− (1−m)Km)

. (2.10b)

By properties ofKm and Em, sgn∆= sgnσ since s2 > 0. Hence, if σ =−1, as for KPI, some
of the eigenvalues are imaginary, implying that the initial value problem for the above system
is ill-posed, confirming known results [4]. Incidentally, note that the PDEs for s2 and q do not
contain s3 explicitly. However, the value of s3 is required to determine m.
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2.2. Integrability and Riemann invariants of the YT system

The three-component YT system (2.8) fails the Haantjes tensor test for integrability, as not all
of the 27 components of the Haantjes tensor vanish in general. As already discussed above,
this is because, to preserve integrability, it is necessary for (2.8) to be compatible with (1.11d)
[i.e. ky = lx]. Conversely, we now show that, once this constraint is imposed, the corresponding
reduction of the partial KPWS (1.14) becomes integrable, and that of the full KPWS (1.11)
becomes compatible.

To see this, note that, if all variables are independent of x, the three conservation of waves
equation (1.8) immediately yield kt = ky = 0, i.e. the local wavenumber k in the x direction is
constant. At the same time, k is in fact a Riemann invariant of the three-component system (2.8)
as we show next. Using the left eigenvector corresponding to the eigenvalue λ= 2σq in (2.10),
we obtain the characteristic form

(ν2 − ν1)ds2 − (ν3 − ν1)ds3 = 0 , (2.11)

along dy/dt= 2σq. The above differential form can be integrated by eliminating s3 in favor of
m using (2.7), to obtain

(ν2 − ν1 −m(ν3 − ν1)) ds2 − s2 (ν3 − ν1) dm= 0 . (2.12)

Multiplying by the integrating factor 1/[s2(ν2 − ν1 −m(ν3 − ν1))] yields

1
s2
ds2 +

(
1
m

− Em
m(1−m)Km

)
dm= 0 , (2.13)

and recalling the derivative of Km [cf (A.9a)], we express the above characteristic relation as

d

[
1
2
logs2 − logKm

]
= 0, (2.14)

which yields the PDE

∂k
∂t

+ 2σq
∂k
∂y

= 0 , (2.15)

demonstrating that k as defined by (1.5a) is in fact a Riemann invariant. The fact that k is a
Riemann invariant is thus deeply connected with the integrability of the KPWS. On the one
hand, enforcing the constancy of k is needed to ensure the compatibility of the full KPWS
with the KP equation, as per the above discussion. On the other hand, when k is constant, the
system (2.8) reduces to a two-component system. Any two-component system can always be
reduced to Riemann invariant form and is therefore always locally integrable via the classical
hodograph transform. We will see in sections 3 and 4 that a similar phenomenon also arises
for the y-independent and t-independent reductions of the KPWS.

2.3. Further reduction of the YT system and its diagonalization

We now consider in detail the reduction of the YT system obtained when k= k0 is constant.
One can choose two different sets of dependent variables: a reduced system for the dependent
variables (s2,q)T or a reduced system for the dependent variables (m,q)T. There is a one-to-one
correspondence between the two sets of variables because their relationship in equation (1.5a)

√
s2 = 2k0Km , (2.16)

is monotone (∂s2/∂m> 0).

8



Nonlinearity 37 (2024) 025012 G Biondini et al

We begin by performing a change of variable from v= (s2,s3,q)T to ṽ= (s2,q,k)T. We
choose to keep s2 as opposed to s3 because s2 never vanishes, whereas s3 → 0 in the harmonic
limit. Then ṽ satisfies the system ṽt+ B̃3 ṽy = 0, with B̃3 = T−1B3T and T=

(
∂vi/∂ṽj

)
. One

can verify that the new coefficient matrix is block-diagonal, B̃3 = diag(B2,2σq), with the 2× 2
matrix B2 given by

B2 =

 2σq 2σs2
(1−m)K2

m− 2(2−m)KmEm+ 3E2
m

3Em (Em−Km)

2+ 2

(
m

Em− (1−m)Km
− 3
Km

)
Em 2σq

 .

(2.17)

Since compatibility of the KPWS requires kt = ky = 0, we therefore must use the compatible
solution k≡ k0, which simplifies the 3× 3 system ṽt+ B̃3 ṽy = 0 to the following 2× 2 system
for the dependent variable u= (s2,q)T:

ut+B2ux = 0 . (2.18)

The coefficientmatrixB2 in (2.17) contains the elliptic parameterm, which is defined implicitly
in terms of s2 and k0 by the relation (2.16). We can solve for m by inverting Km via m=
K−1
m (

√
s2/(2k0),m) = 1− dn2(

√
s2/(2k0),m), where dn is a Jacobi elliptic function.

In light of (2.16), we see that (2.18) is actually a one-parameter family of hydrodynamic type
systems, parametrized by the constant value of k0. Equivalently, one can use (2.16) to express
s2 as a function ofm and k0. Note however that q does not enter in the relation between s2 andm.
One can therefore replace (2.18) with the equivalent hydrodynamic system ṽt+ B̃2 ṽx = 0 for
the modified dependent variable ṽ= (m,q)T, i.e. in component form

∂m
∂t

+ 2σq
∂m
∂y

+σΦ1 (m)
∂q
∂y

= 0, (2.19a)

∂q
∂t

+ 2σq
∂q
∂y

+ k20Φ2 (m)
∂m
∂y

= 0, (2.19b)

where

Φ1 (m) =
2m(1−m)Km

(
3E2

m− 2(2−m)EmKm+(1−m)K2
m

)
3Em (Em−Km)(Em− (1−m)Km)

, (2.20a)

Φ2 (m) =
8
(
3E2

m− 2(2−m)EmKm+(1−m)K2
m

)
m(1−m)

. (2.20b)

Note that the constant parameter k0 in the system (2.19) can be eliminated by the rescaling
q 7→ k0q and y 7→ k0y when k0 6= 0.

Finally, we use the eigenvalues and eigenvectors of B2 to complete the diagonalization of
the YT system. The eigenvalues λ±, which coincide with λ2,3 in (2.10), are now expressed as

λ± = 2σq± k0
√
σΦ1 (m)Φ2 (m) , (2.21)

while the associated left eigenvectors are

w± =
(
±
√
3σEm(Km−Em)/ [s2Km(Em− (1−m)Km))] , 1

)
, (2.22)

9
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leading to the characteristic relations

dq±

√
3σEm (Km−Em)

s2Km (Em− (1−m)Km)
ds2 = 0 (2.23a)

along the characteristic curves

dy/dt= 2σq∓
√
∆ , (2.23b)

with ∆ as in (2.10). We now differentiate (2.16) and use the known differential
equations for Km, (A.9a), to express ds2 = s2[(Em− (1−m)Km)/(m(1−m)Km)]dm, thereby
simplifying (2.23a) to

dq±
√
σk0 f(m) dm= 0 , (2.24a)

where

f(m) =
2
√
3Em (Km−Em)(Em− (1−m)Km)

m(1−m)
√
Km

. (2.24b)

Therefore, Riemann invariants for the two-component hydrodynamic system for ũ are

R± = q±
√
σk0F(m) , (2.25a)

with

F(m) =
ˆ m

0
f(µ) dµ. (2.25b)

The above expression of the Riemann invariants is the same as those for the p-system mod-
eling isentropic gas dynamics and nonlinear elasticity [35] where f (m) is related to the sound
speed of the medium. A plot of f (m) is shown in figure 1. Note that f(m)> 0 for all m ∈
[0,1), and limm→0+ f(m) = π/2. However, f(m) = 2[1+ 2/(log(1−m)− 4log2)]1/2/(1−
m)+O(1) asm→ 1−. As a result, we also have F(m)→+∞ and R± →±∞ logarithmically
in the limit m→ 1−, implying that two-component system for m and q is singular in this limit.
This is expected because k= k0 6= 0 is incompatible with the soliton limit, for which k→ 0
(cf (1.5a)). In figure 1 we also plot F(m) as a function of m, which can be used to obtain the
relationship between m and q satisfied by simple wave solutions of (2.18) with either R+ or
R− identically constant.

It is well known that systems of the form (2.19) are integrable by the hodograph method,
and the general solution (R+(y, t),R−(y, t)) is given locally in a neighborhood of points where
∂R±/∂y 6= 0 by

y+λ± (R+,R−) t+W± (R+,R−) = 0,

where W±(R+,R−) are solutions of the following system of linear PDEs:

1
W+ −W−

∂W±

∂R∓
=

1
λ+ −λ−

∂λ±

∂R∓
.

In closing, we return our attention to the eigenvalues λ± of the system, given by λ± =
2σq±

√
∆(m) (cf (2.10)), where in light of (2.16), we can now express∆ as

∆(m) = 16σk20Km

(
(1−m)Km− 2(2−m)EmKm+ 3E2

m

)2
3Em (Km−Em)(Em− (1−m)Km)

. (2.26)

10
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Figure 1. The quantities∆(m)/(σk20) (left), f (m) (center) and F(m) (right) as functions
of m.

Note that ∆(m)/(σk20)→ 0 as m→ 0 and ∆(m)/(σk20)→+∞ as m→ 1 (cf figure 1). When
m= 0, λ± = 2σq and R± = q so that (2.18) exhibits a one-component reduction in the har-
monic limit to the inviscid Burgers equation. By monotonicity of∆(m), the reduced 2× 2 sys-
tem is strictly hyperbolic according to the following definition of strict hyperbolicity: λ+ = λ−
if and only if R+ = R− [18]. It can also be shown that (∇m,qλ±) · z± 6= 0, where z± are the
right eigenvectors of the matrix for the hydrodynamic-type system (2.19) associated with
eigenvalues λ±, which implies that the system is genuinely nonlinear.

3. The XT system

Next we consider the reduction of the KPWS in which all fields are independent of y. Similarly
to section 2, when solutions are independent of y the five-component KPWS (1.14), becomes
what we call the ‘XT system’, which in vector form is

I4
∂r
∂t

+A5
∂r
∂x

= 0 , (3.1)

with r= (r1,r2,r3,q,p)T as before, and A5 given in (A.6a). The corresponding reduction of
the full KPWS (1.11) is given by (3.1) augmented with (1.11d). We will obtain analogous
results to section 2 even though the analysis of the systems and the physics they describe are
significantly different.

3.1. Reduction to a four-component system

In this case, reducing the size of the system is much easier than in section 2, because when all
derivatives in y vanish, the last equation in (3.1) (equivalently, equation (1.11c)) determines p
by direct integration of

∂p
∂x

=−q(1−α)
∂r1
∂x

− qα
∂r3
∂x

− ν5
∂q
∂x

. (3.2)

Substituting the resulting expression into the PDEs for r1,r2,r3 leads to the reduced system

∂rj
∂t

+
(
Vj−σq2

) ∂rj
∂x

+σq2 (1−α)
∂r1
∂x

+σq2α
∂r3
∂x

+σq(ν5 − νj)
∂q
∂x

= 0 , j = 1,2,3 ,

(3.3a)

∂q
∂t

− q(4− ν4)
∂r1
∂x

+ q(2+ ν4)
∂r3
∂x

+
(
V2 −σq2

) ∂q
∂x

= 0 , (3.3b)

11
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or equivalently, in vector form,

∂r4
∂t

+A4
∂r4
∂x

= 0 , (3.4)

where now r4 = (r1,r2,r3,q)T and

A4 =


V1 −σq2α 0 σq2α σq(ν5 − ν1)
σq2 (1−α) V2 −σq2 σq2α σq(ν5 − ν2)
σq2 (1−α) 0 V3 +σq2 (α− 1) σq(ν5 − ν3)
−q(4− ν4) 0 −q(2+ ν4) V2 −σq2

 . (3.5)

3.2. Riemann invariant, integrability, further reduction and diagonalization of the XT system

The matrix A4 has the eigenvalue

λo = V2 −σq2 , (3.6)

with associated left eigenvector

wo = (q(1−m)(Km−Em) , q(Em− (1−m)Km) , qmEm ,−2m(1−m)(r3 − r1)Km ) .
(3.7)

These expressions allow us to find a Riemann invariant and, in turn, to partially diagonalize
the XT system (3.4). In this case, however, the calculations are more complicated than those
of section 2. We begin by applying wT

o to (3.4), obtaining the characteristic relation

1
(r3 − r1)Km

(
Km−Em

m
dr1 +

Em− (1−m)Km
(1−m)m

dr2 −
Em

1−m
dr3

)
− 2

dq
q

= 0 (3.8)

along dx/dt= V2 −σq2 . To integrate this differential form and find the Riemann invariant, we
first eliminate r2 in favor of m using (1.4), implying dr2 = (1−m)dr1 +mdr3 +(r3 − r1)dm,
which yields

−d(r3 − r1)
r3 − r1

+
Em− (1−m)Km
m(1−m)Km

dm− 2
dq
q

= 0 . (3.9)

Using equation (A.9a), this expression is the differential −dlog((r3 − r1)q2/K2
m) = 0, which,

upon substituting (1.9) and (1.5a), is equivalent to dl= 0. The Riemann invariant Ro in this
case is nothing other than the wavenumber in the y direction, Ro = l, which satisfies the PDE

∂Ro
∂t

+
(
V2 −σq2

) ∂Ro
∂x

= 0 . (3.10)

The fact that l is a Riemann invariant for the XT system is not an accident, and is related to
its compatibility with the full KPWS and with its integrability. This is because, when all fields
are independent of y, the conservation of waves equations (1.8) yield lx = lt = 0, implying
that, for one-phase solutions of the KP equation, l must be constant. We can use this relation
to reduce the XT system (3.4) to a three-component system. To do this, we perform a change of
dependent variable from r4 = (r1,r2,r3,q)T to v= (r1,r2,r3, l)T, which results in the partially
decoupled system

vt+A ′
4 vx = 0 , (3.11)

with

A ′
4 =

(
A3 a3
0T3 V2 −σq2

)
, (3.12)

12
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where the three-component vector a3 is immaterial for our purposes, 03 = (0,0,0)T and

A3 = AKdV +
4σKml20

3(r2 − r1)
A(2)
3 , (3.13a)

AKdV = diag(V1,V2,V3) , (3.13b)

A(2)
3 =

 2a3
a1a4

(1−m)(Km−Em)
mEma2

(1−m)(Km−Em)
−(Km−Em)a4

a1
− 2a2

1−m − Emma3
(1−m)a1

(Km−Em)a2
Em

a1a3
(1−m)Em − 2ma4

1−m

 , (3.13c)

with V1, . . . ,V3 as in (1.12) and

a1 = Em− (1−m)Km , a2 = (1−m)Km+(2m− 1)Em , (3.13d)

a3 = (1−m)Km− (1+m)Em , a4 = 2(1−m)Km− (2−m)Em . (3.13e)

Since l is constant for compatible solutions of the full KPWS, we can solve the fourth
equation in (3.11) by taking l≡ l0, thereby arriving at the three-component system

∂r3
∂t

+A3
∂r3
∂x

= 0 , (3.14)

where r3 = (r1,r2,r3)T and the coefficient matrix A3 is given by (3.13). The case l0 = 0 yields
A3 = AKdV, so the system (3.14) reduces exactly to the KdV-Whitham system of Whitham
modulation equations for the KdV equation [40].We have therefore showed that, once compat-
ibility is enforced, theXT system reduces to a one-parameter deformation of theKdV-Whitham
system, parametrized by the value of the wavenumber l0 along the transverse dimension. The
transformation rj 7→ l0rj, when l0 6= 0, eliminates l0 from the system (3.14). Nevertheless, we
will retain l0 in what follows because it is helpful to highlight certain properties of the deformed
system.

We now turn to the issue of the integrability of the XT system. The four-component XT sys-
tem (3.3) fails the Haantjes test, since, on its own, the system is not compatible with the KP
equation. On the other hand, the three-component reduced system (3.14) does pass theHaantjes
test, in that all the terms of its Haantjes tensor associated with A3 in (3.13) vanish identically.
Thus, while the system (3.1) is not integrable, the conservative system (3.14) is an integrable,
one-parameter family of deformations of the KdV-Whitham system.

The harmonic limit (i.e. r2 → r1, implying m→ 0) of the deformed three-component sys-
tem (3.14) yields the coefficient matrix

lim
r2→r1

A3 =

 12r1 − 6r3 −σq2 0 σq2

0 12r1 − 6r3 −σq2 σq2

0 0 6r3

 , (3.15)

with q2 = π2l20/(r3 − r1). On the other hand, like with the reduced YT system, the soliton limit
(i.e. r2 → r3, implying m→ 1) of the reduced XT system (3.14) is singular for l0 6= 0, since
some of the entries of A(2)

3 diverge in that limit. Again, this is to be expected, because in the
soliton limit one has l0 = 0 [cf (1.5a)].

13
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3.3. Deformed Riemann invariants

Since the one-parameter deformation (3.14) of the KdV-Whitham system is integrable, it can
be written in diagonal form.We have not been able to determine the deformed Riemann invari-
ants for all parameter values l0 but we can obtain approximate Riemann invariants for small l0
following standard methodology (e.g. see [21]). It is convenient to define the coefficient

c2 =
4Km

3m(r2 − r1)
. (3.16)

so that (3.13) reads A3 = AKdV +Adef and the ‘deformation matrix’ is simply Adef = ℓc2A
(2)
3

with the (signed) deformation parameter

ℓ≡ σl20. (3.17)

We seek an expansion of the deformed eigenvalues Ṽj and corresponding right eigenvectors
ṽj in powers of ℓ near ℓ= 0 as

Ṽj = Vj+ ℓV(2)
j (r3)+O

(
ℓ2
)
, ṽj = ej+ ℓv(2)j (r3)+O

(
ℓ2
)
, j = 1,2,3, (3.18)

where r3 = (r1,r2,r3)T are the unperturbed KdV-Whitham Riemann invariants, the unper-
turbed speeds Vj are given in (1.12), and the unperturbed eigenvectors e1,e2,e3 are simply the
canonical basis in R3, i.e. (e1,e2,e3) = I3, where In is the n× n identity matrix. We begin by
computing the perturbation to the characteristic speeds. Since Adef = O(ℓ), the first correction
terms appear at O(ℓ). The deformed eigenvalue problem is

(AKdV +Adef) ṽj = Ṽjṽj , j = 1,2,3. (3.19)

The unperturbed eigenvalue problem, obtained at O(1), is simply AKdVei = Vi ei, which is sat-
isfied because the KdV-Whitham system is the ℓ= 0= l0 reduction of the XT system (3.14).
Collecting terms O(ℓ) in (3.19) yields

(AKdV −VjI3)v(2)j =
(
V(2)
j − c2A

(2)
3

)
ej , (3.20)

and multiplying from the left by eTj yields the first-order correction to the characteristic
velocities as

V(2)
j = eTj c2A

(2)
3 ej , j = 1,2,3 , (3.21)

since the ej are orthonormal. Explicitly,

Ṽ1 = V(0)
1 − 2c2ℓ((1+m)Em− (1−m)Km)+O

(
ℓ2
)
, (3.22a)

Ṽ2 = V(0)
2 − 2c2ℓ

(1−m)Km− (1− 2m)Em
1−m

+O
(
ℓ2
)
, (3.22b)

Ṽ3 = V(0)
3 + 2c2ℓm

(2−m)Em− 2(1−m)Km
1−m

+O
(
ℓ2
)
. (3.22c)

Note that if σ= 1, the corrections to the first and second characteristic velocities are neg-
ative, while the correction to the third characteristic velocity is positive (opposite if σ =−1).
Note also that all three expansions remain well-ordered in the limit m→ 0, but diverge as
m→ 1. Next, we use (3.20) and (3.21) to compute the correction to the eigenvectors. The

14
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matrix AKdV −VjI3 is singular for j = 1,2,3. The solvability condition (3.21) implies the exist-
ence of a solution to (3.20) in the form

ṽ1 =

 1
0
0

+ c2ℓ

 0
1
m

 , ṽ2 =

 0
1
0

+ c2ℓ

 m− 1
0
m

 , ṽ3 =

 0
0
1

+ c2ℓ

 m− 1
1
0

 ,

(3.23)

which is unique up to a linear combination of ℓej in ṽj. The approximate eigenvectors in (3.23)
are accurate to O(ℓ2) corrections.

Next we compute the deformed Riemann invariants. It is non-trivial to find the correct integ-
rating factor for the deformed Riemann invariants. To circumvent this issue, we take advantage
of the fact that the total differential of each Riemann invariant is zero along the associated char-
acteristic curve. We expand the deformed Riemann invariants R̃1, R̃2, R̃3 as

R̃j = rj+ ℓR(2)
j (r3)+O

(
ℓ2
)
, j = 1,2,3 . (3.24)

We have

dR̃j = 0 (3.25)

along the characteristic curve dx/dt= Ṽj, for j = 1,2,3. Expanding (3.25) yields

dR̃j =∇rR̃j · dr=∇rR̃j ·
(
∂r3
∂t

dt+
∂r3
∂x

dx

)
= 0 , j = 1,2,3 , (3.26)

where∇r = (∂r1 ,∂r2 ,∂r3)
T. Next we use (3.14) and (3.19) to rewrite (3.26) as(

∇rR̃j
)T (

ṼjI3 −A3
) ∂r3
∂x

dt= 0 , j = 1,2,3 , (3.27)

along the curve dx/dt= Ṽj. If the above differential must be zero for all ∂r3/∂x, one can
constrain each component to be zero, i.e.(

∇rR̃j
)T (

ṼjI3 −A3
)
= 0T , j = 1,2,3 . (3.28)

One can check that det(ṼjI3 −A3) = O(ℓ2) for j = 1,2,3, which allows for a nontrivial solu-

tion at O(ℓ). For each j = 1,2,3, (3.28) yields a system of three differential equations for R(2)
j .

Note that, even though it might not seem obvious a priori, these differential equations must
necessarily be compatible since we know that the system is integrable and therefore admits
Riemann invariants.

We present the calculations for R(2)
1 in detail. Keeping terms up to O(ℓ), the first equation

in (3.28) is trivially satisfied, while the remaining two equations are

∂R(2)
1

∂r2
=

(Em− (1−m)Km)
2

3(1−m)(r2 − r1)
2 , (3.29a)

∂R(2)
1

∂r3
=− m2E2

m

3(1−m)(r2 − r1)
2 . (3.29b)

and one can check that the equality of the mixed second derivatives, namely ∂2R(2)
1 /∂r2∂r3 =

∂2R(2)
1 ∂r3∂r2, is indeed satisfied. Next, we need to integrate (3.29) to find R

(2)
1 . We can integ-

rate the equations manually, employing a process akin to that of finding a potential for a con-
servative vector field. We begin with (3.29b) since it is simpler. Because of the presence of
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elliptic integrals, it is convenient to perform a change of variables from r1,r2,r3 to r1,r2 and
m. Solving (1.4) for r3 as a function of m, we have

∂R(2)
1

∂m
=

∂R(2)
1

∂r3

∂r3
∂m

=
E2
m

3(1−m)(r2 − r1)
. (3.30)

Integrating this equation (with r1 and r2 held constant) then yields R
(2)
1 as

R(2)
1 =

g(m)
3(r2 − r1)

, (3.31a)

with

g ′ (m) =
E2
m

1−m
. (3.31b)

Note that we have taken the arbitrary function of r1 and r2 in (3.31a) to be zero. By substitut-
ing (3.31a) into (3.29a) yields

g(m) =−(1−m)K2
m+ 2EmKm−E2

m , (3.31c)

and one can confirm that (3.31c) is indeed compatible with (3.31b), which means we have
successfully integrated (3.29), obtaining the first approximate deformed Riemann invariant of
the XT system as

R̃1 = r1 +
ℓ

3(r2 − r1)

(
2KmEm−E2

m− (1−m)K2
m

)
+O

(
ℓ2
)
. (3.32a)

One can apply an identical process to find the remaining deformed Riemann invariants as

R̃2 = r2 +
ℓ

4Km

(
2KmEm+

E2
m

1−m
− (1−m)K2

m

)
+O

(
ℓ2
)
, (3.32b)

R̃3 = r3 −
ℓ

3(r2 − r1)

m
(
(1−m)K2

m−E2
m

)
1−m

+O
(
ℓ2
)
. (3.32c)

The expressions of the deformed speeds and deformed Riemann invariants may prove to be
useful when investigating the dynamics of weakly slanted wave fronts in the KP equation.

3.4. Hyperbolicity

The hyperbolicity of the three-component reduction (3.14) of the full KPWS can be determined
by analyzing the eigenvalues of the coefficient matrix A3(r3), given in (3.13), which are the
characteristic velocities Ṽj, j = 1,2,3. Because the characteristic polynomial

p(λ) = det(A3 −λI3) =−λ3 + b2λ
2 + b1λ+ b0, (3.33)

is a cubic with real coefficients, it has either three real roots or one real root and a complex
conjugate pair. Equation (3.22) demonstrates that the Ṽj are real for all rj ∈ R with r1 ⩽ r2 ⩽
r3 when the deformation parameter ℓ= σl20 is sufficiently small in magnitude. Because the
coefficients b0,b1,b2 in (3.33) are smooth functions of r3, a bifurcation from all real roots to
a complex conjugate pair can only occur if the discriminant of p(λ),

D(r3) = 4b31 + b22b
2
1 − 18b0b2b1 − 4b0b

3
2 − 27b20 , (3.34)

16



Nonlinearity 37 (2024) 025012 G Biondini et al

Figure 2. The functions L±(m) that determine the critical values m= m± at which two
characteristic velocities of the XT system coalesce.

is zero. To evaluate D(r3), we first simplify the calculation by restricting ourselves to the set

S=
{
r3 = (0,m,1)T | 0⩽ m⩽ 1

}
, (3.35)

and we simply writeD= D(m), which can be shown to be a quintic polynomial in ℓwith coef-
ficients depending onm. SettingD(m) = 0 and solving for ℓ, one finds two complex conjugate
solutions, which are not of interest, plus two real solutions ℓ= L−(m) and ℓ= L+(m), the
latter of which is a double root. Explicitly,

L+ (m) =
((2−m)Em− 2(1−m)Km)((1+m)Em− (1−m)Km)((1−m)Km− (1− 2m)Em)

3Em (Km−Em)(Em− (1−m)Km)
(
2(2−m)KmEm− 3E2

m− (1−m)K2
m
) ,

(3.36)

while the expression for L−(m) is more complicated, so it is omitted for brevity. The
expansions of L±(m) for small m are

L+ (m) =
12
π2

(1−m)+O
(
m2

)
, (3.37)

L− (m) =−12
π2

(
1− 4

3
(2m)2/3 −m

)
+O

(
m4/3

)
. (3.38)

Figure 2 shows that L+(m)> 0 and L−(m)< 0 for m ∈ [0,1). Therefore, there are two
critical values of m: ℓ=±l20 = L±(m±). The fact that Ṽj ∈ R for |ℓ| sufficiently small implies
that D(m)> 0 when 0< m< m±, namely the XT system is (strictly) hyperbolic when m ∈
(0,m±). When m= m±, two characteristic velocities coalesce.

In the case of the plus sign, the fact that ℓ= L+(m+) is a double root of D(m) = 0 implies
that dD/dm |m+ = 0. Then, in a neighborhood of m= m+, the discriminant (3.34) exhibits
parabolic behavior

D(m) =
1
2
d2D
dm2

∣∣∣∣
m+

(m−m+)
2
+O(m−m+)

3
, (3.39)

and it must be the case that D(m)≥ 0, i.e. d2D/dm2|m+ > 0, because D(m)> 0 for
0< m< m+. Since m+ is the only point at which D(m) = 0, this implies D(m)> 0 for

17



Nonlinearity 37 (2024) 025012 G Biondini et al

m ∈ [0,m+)∪ (m+,1) and that the characteristic speeds are always real. Indeed, a direct cal-
culation shows that, when m= m+,

Ṽ1 = Ṽ2 =
6
(
(1+m)E(m)2 − (1−m)2K(m)2 − 2(1−m)mK(m)E(m)

)
(1−m)K(m)2 − 2(2−m)K(m)E(m)+ 3E(m)2

, (3.40a)

Ṽ3 =
2
3

(
3(m+ 1)+

2mE(m)
(m− 1)K(m)+E(m)

+
2mE(m)

K(m)−E(m)
− 2(1−m)K(m)

E(m)

)
, (3.40b)

and there are three corresponding linearly independent eigenvectors ṽj, j = 1,2,3.
Consequently, we conclude that the XT system is hyperbolic for m ∈ (0,1) and strictly hyper-
bolic when m 6= m+.

In the case of the minus sign, the critical pointm− satisfying ℓ=−l20 = L−(m−) is a simple
root ofD(m). SinceD(m)> 0 for 0< m< m− andD depends uponm smoothly, it necessarily
is the case that dD/dm |m− < 0, so that the discriminant (3.34) becomes negative in a right
neigborhood ofm= m−. This implies that, form− < m< 1, the XT system exhibits a complex
conjugate pair of characteristic speeds and is not hyperbolic.

The above discussion of hyperbolicity of the XT system was limited to the set S defined
in (3.35), where it was observed that a bifurcation occurs at the point m= mσ. However, using
the scaling symmetry rj(x, t)→ a2rj(ax,a3t), q(x, t)→ aq(ax,a3t) with a= (r3 − r1)−1/2 and
the Galilean symmetry rj(x, t)→ b+ rj(x− 6bt, t), q(x, t)→ q(x− 6bt, t)with b=−r1 [4], we
can map any vector r3 = (r1,r2,r3)T ∈ R3 with r1 ⩽ r2 ⩽ r3 to a vector r̃3 = (0,m,1)T ∈ S. For
r3, the bifurcation occurs on the surface

Σ± =

{
r3 = (r1,r2,r3)

T
∣∣∣ ± l20 = L± (m±)(r3 − r1)

2
, m± =

r2 − r1
r3 − r1

}
. (3.41)

In the case of the plus sign, the XT system is hyperbolic, and strictly so for r3 /∈ Σ+. In the
case of the minus sign, the XT system is hyperbolic so long as (r2 − r1)/(r3 − r1)< m− where,
L−(m−) =−l20(r3 − r1)2. When (r2 − r1)/(r3 − r1)> m−, the XT system loses hyperbolicity.

4. The XY system

4.1. KPWS in a comoving frame and the XY system

The third and final class of reductions of the KPWS we consider is that of time-independent
solutions, to be defined precisely below. While in sections 2 and 3 we considered reductions
that are evolutionary, exhibiting well-posed initial value problems (at least when σ= 1), here
we are considering a spatial problem, independent of t, for themodulations. As wewill see, this
does not preclude dynamics in the full solution to KP itself. In the previous sections we saw
that, in order to ensure the compatibility of the XT and YT reductions with the KP equation,
one must make sure that all three conservation of waves equations (1.8) are satisfied. We will
see that this is also the case with stationary reductions of the KPWS.

Note that, even though one may think that a more general scenario is obtained by looking
for traveling wave solutions, i.e. solutions that are stationary in a traveling frame of reference
(x̃, ỹ, t̃), with x̃= x− ct, ỹ= y− dt and t̃= t, this is not the case in practice. This is because the
Galilean and pseudo-rotation invariance of the KP equation allow one to perform appropriate
transformations of the dependent and independent variables to rewrite any traveling wave solu-
tion of the KP equation as stationary in a suitable reference frame. Since the KPWS preserves
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these invariances, the same transformations will also work for the KPWS, see appendix (A.3)
for details.

Based on the above discussion, consider situations in which the temporal derivatives in the
partial KPWS (1.14) can be neglected, which then yields

A5
∂r
∂x

+B5
∂r
∂y

= 0 . (4.1)

The corresponding reduction of the full KPWS (1.11) is (4.1) augmented with (1.11d),
which is unchanged in this reduction. Contrary to the reductions discussed in 2 and 3, here
the independence from one of the coordinates does not automatically result in a reduction in
the number of components. That is, all five dependent variables appear in (4.1). Assuming
invertibility of A5 and B5, one could equivalently write (4.1) as an evolutionary system with
respect to either x or y, e.g. as rx+Cry = 0. However, the resulting coefficient matrix C=
(A5)

−1B5 is quite complicated, and therefore the resulting system is difficult to analyze.

4.2. Riemann invariant, reduction and integrability

In light of what we learned by studying the YT and XT systems, we expect that, when consid-
ering solutions that are independent of t, the frequencyω will be one of the Riemann invariants.
Indeed, in this case the three compatibility conditions (1.8) yield immediatelyωx = ωy = 0.We
now show that this expectation is correct. In this case, however, the complexity of the system
makes it impractical to use the direct approach based on the use of the characteristic relations
and left eigenvectors that was used in the previous sections. We therefore use an alternative
approach, based on calculating the total differential of ω = ω(r) as

dω =∇rω · dr=∇rω ·
(
∂r
∂x

dx+
∂r
∂y

dy

)
, (4.2a)

with ∇r = (∂r1 ,∂r2 ,∂r3 ,∂q,∂p)
T and directly verifying that ω is a Riemann invariant of (4.1).

The evolution of ω as dictated by the system (4.1) along the characteristic coordinates dy/dx=
λ is then

dω =∇rω
T
(
λI5 −A−1

5 B5
) ∂r
∂y

dx . (4.2b)

Computing∇rω, substituting in (4.2b) and setting dω = 0 then yields a linear equation that
determines the characteristic speed λ as

λ=
2σq

V2 −σq2
. (4.3)

With V2 given in (1.12), which confirms that ω is indeed a Riemann invariant for the
system (4.1).

As per the above discussion, in order for the KPWS to be compatible, we must enforce
ωx = ωy = 0. Following the procedures of sections 2 and 3, we partially diagonalize the XY
system (4.1) by performing a dependent coordinate transformation so that ω is one of the new
dependent variables. We then solve the resulting PDE by taking ω ≡ const and obtain a one-
parameter family of reduced four-component systems, parametrized by the constant value of
ω. Once again, however, the calculations are more involved than in the previous cases.
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The complication is that the expression (1.6) for ω does not allow one to uniquely obtain
any one of the dependent variables in terms of the others (recall (1.5a)). The best one can do
is to solve for q, which entails a choice of sign:

q=±
√
σ
(ω
k
−V

)
, (4.4)

Following the same methods as in the previous sections, one can then obtain a four-component
hydrodynamic system of equations for v= (r1,r2,r3,p)T. A single coefficient matrix of the
form

∂v
∂x

+C ′
4
∂v
∂y

= 0 , (4.5)

is quite complicated. However, the system (4.1) can be transformed, using the same methods,
into the concise form

A ′ ∂u
∂x

+B ′ ∂u
∂y

= 0 , (4.6)

where A ′ = AT and B ′ = BT, u= (r1,r2,r3,ω,p)T, and T= ∂v/∂u. Once the PDE for ω is
disregarded, since ω ≡ ω0 solves it, we arrive at the system

A ′
4
∂p
∂x

+B ′
4
∂p
∂y

= 0 , (4.7)

where p= (r1,r2,r3,p)T, the coefficient matrices are

A ′
4

=


q
(
(c1 + 1)ν1 + q2 (−σ)+ V1

)
−(c1 + c2 − 1)ν1q (c2 + 1)ν1q −q2σ

(c1 + 1)ν2q −q
(
(c1 + c2 − 1)ν2 + q2σ− V2

)
(c2 + 1)ν2q −q2σ

(c1 + 1)ν3q −(c1 + c2 − 1)ν3q q
(
(c2 + 1)ν3 + q2 (−σ)+ V3

)
−q2σ

−σ (c1 + 1)ν5 −
(
(α− 1)q2

)
σ (c1 + c2 − 1)ν5 αq2 −σ (c2 + 1)ν5 q

 ,

(4.8)

and

B ′
4 =


2σq2 − (c1 + 1)ν1 (c1 + c2 − 1)ν1 −((c2 + 1)ν1) qσ
−((c1 + 1)ν2) 2σq2 +(c1 + c2 − 1)ν2 −((c2 + 1)ν2) qσ
−((c1 + 1)ν3) (c1 + c2 − 1)ν3 2σq2 − (c2 + 1)ν3 qσ

(α− 1)q 0 −αq 0

 , (4.9)

with

c1 =
ω0 (Em−Km)
16mk3K3

m
and c2 =

ω0Em
16k3K3

m (1−m)
. (4.10)

Note that q is present in the matrices for readability, however its definition is given in equations
(1.9) and (4.4) in terms of the constant parameter ω0 and the Riemann type variables rj.
Furthermore, one can use computer algebra software to perform the Haantjes tensor test on
the resulting system. Doing so, we have verified that, as in the case of the XT and YT systems,
the Haantjes tensor of the reduced XY system does indeed vanish identically, proving that the
latter conservative system is integrable as well.

The above reduced XY system possesses a finite harmonic limit, similarly to those in the
previous sections. Specifically, in the limit r2 → r+1 , the PDEs for r1 and r2 coincide, and the
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four-component system (4.7) reduces to a 3× 3 system in the independent variables x and y
for the three-component dependent variable r3 = (r1,r3,p)T, with coefficient matrices

A3 =


(h1 + 16)r1 − 3

8 (3h1 + 8)r3 1
4 (h1 + 4)r3 −

√
σh2

r3 − h1r3
8 (h1 + 4)r1 − 3h1r3

4 + 9r3 −
√
σh2

(h1−8)r3
8
√
σh2

3(h1−4)r3−4(h1+4)r1
4
√
σh2

1

 , (4.11a)

B3 =
1
h2

 −(
√
σ (16(h1 + 4) r1 +(40− 17h1) r3)) −2(h1 + 4) r3

√
σ σh2

(h1 − 8) r3
√
σ −2

√
σ (8(h1 + 4) r1 +(20− 7h1) r3) σh2

0 −h2 0

 ,

(4.11b)

where

h1 =
πω0√

(r3 − r1)
3
, h2 = 8

√
(h1 − 2)r3 − (h1 + 4)r1. (4.12)

Like with the XT and YT reductions, however, the system (4.7) does not admit a finite soliton
limit in general, since ω→ 0 as m→ 1 (cf (1.5a)), which is incompatible with having ω =
ω0 6= 0 in (4.7).

4.3. Stationary solutions of the KP equation and Whitham modulation system for the
Boussinesq equation

Importantly, even though the system (4.1) describes stationary solutions of the KPWS, the cor-
responding solutions of the KP equation are not stationary, unless ω0 = 0. On the other hand,
if ω0 = 0, the modulated solutions of the KP equation described by (4.1) are also stationary.
This point is relevant because stationary solutions of the KP equation (1.2) satisfy versions of
the Boussinesq equation, namely [5, 6]

uττ − c2uxx+σ
(
6uux+ ε2uxxx

)
x
= 0 . (4.13)

With τ = y and c= 0. The case σ =+1 is the ‘good’ Boussinesq equation with real linear dis-
persion. Boussinesq derived the ‘bad’ version (σ =−1) as a long-wavelength model of water
waves, whose linearized equation is ill-posed [16]. Therefore, themodulation system (4.7) with
ω0 = 0 is also the genus-1Whithammodulation equations for the above Boussinesq equations.
This is noteworthy because the Boussinesq equations (4.13) are associated with a 3× 3 Lax
pair (e.g. see [5, 6]), which significantly complicates the analysis, and as a result, the develop-
ment of Whitham modulation theory using finite gap integration has not been achieved yet.

We point out that, when ω0 = 0, the modulation system (4.7) greatly simplifies because
c1 = c2 = 0 and q=±

√
−σV. Moreover, when ω0 = 0, the system (4.7) remains well-defined

both in the harmonic and the soliton limits.

5. Concluding remarks

In this work we investigated the two-dimensional reductions of the KPWS obtained when all
fields are independent of one of the spatial or temporal coordinates. We demonstrated that, on
the one hand, the reductions of the partial, five-component KPWS (1.14) are not integrable.
On the other hand, once all three conservation of waves are taken into account, i.e. when the
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full KPWS (1.11) is considered, each of these reductions results in a constant of motion which
makes each reduction compatible and integrable.

As far as the six-component KPWS (1.11) is concerned, in general, one does not expect an
overdetermined quasi-linear system to be either compatible or integrable, so some mechanism
of enforcing compatibility is required. In our previous work, we enforced the compatibility,
and thereby obtained integrable systems, by considering the harmonic or soliton limit, either
of which results in a reduction in the number of modulation equations. In this work, we added
to the catalog of integrable reductions of the KPWS by characterizing two-dimensional reduc-
tions of the KPWS.

The results of this work and the above discussion lead to the natural issue of whether there
are other integrable reductions of the KPWS, and whether it is possible to identify all such
integrable reductions. In other words, the question is whether it is possible to identify suitable
conditions that guarantee compatibility of the full KPWS. We plan to investigate this question
in future work.

We reiterate that, even though both the reduced YT, XT and XY systems admit a finite
harmonic limit, none of these systems admits a well-defined soliton limit in general. However,
setting the constant values of the wavenumber (k or l) or frequency (ω) for the YT, XT, or XY
system, respectively, to zero does result in well-defined soliton limits.

We should also mention that one could equivalently carry out all calculations by replacing
the PDE for q with the following simplified PDE, as derived in [3, 4]:

∂q
∂t

+
(
V+σq2

) ∂q
∂x

+
D
Dy

(
V+σq2

)
= 0 .

For brevity, however, we omit the details.
Finally, we reiterate that the XY reduction of the KPWS allowed us to explicitly obtain the

Whitham modulation system for the Boussinesq equation, which had not been derived before.
It is hoped that this novel systemwill prove to be as useful as the other reductions of the KPWS.

Another potential application of the results of this work are to situations in which initial
or boundary data for the KPWS are chosen to be independent of one independent variable. In
order to use the reduced YT, XT, or XY systems, the soliton limit will not be available except in
specialized situations. Nevertheless, one interesting class of problems are generalized Riemann
problems consisting of abrupt transitions between two periodic traveling waves. The reduced
KPWS obtained here could be used to study certain generalized Riemann problems.
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Appendix

A.1. Derivation of the KPWS via averaged conservation laws

Here the KPWS (1.11) is now derived by the method of averaged conservation laws [40].
Solutions (u, v) of the KP equation (1.2) satisfy the conservation laws

ut+
(
3u2 + ε2uxx

)
x
+σ (v)y = 0 , (A.1a)(

u2
)
t
+
(
2ε2uuxx− ε2u2x + 4u3 −σv2

)
x
+ 2σ (uv)y = 0 , (A.1b)

vx− uy = 0 . (A.1c)

Consider the expansion

u(x,y, t) = uo (θ,x,y, t)+ εu1 (θ,x,y, t)+ . . . , (A.2)

and similarly for v(x,y, t), where (uo,vo) is the cnoidal wave solution (1.3), the fast variable
θ(x,y, t) satisfies (1.7), and each term in the expansion is periodic in θ with unit period. The
derivatives are expanded as ∂x 7→ k∂θ/ε+ ∂x, ∂y 7→ l∂θ/ε+ ∂y, and ∂t 7→ −ω∂θ/ε+ ∂t. The
period average of a function F[u]≡ F(u,ux,uy,ut,uxy, . . .) of u and its derivatives is

F(x,y, t) = F [uo (·,x,y, t)]≡
ˆ 1

0
F [uo (θ,x,y, t)] dθ . (A.3)

Moreover,

∂F [u]
∂x

=
k
ε

∂F [uo+ εu1]
∂θ

+
∂F [uo+ εu1]

∂x
=

∂F [uo]
∂x

+O (ε) , (A.4a)

and, similarly,

∂F [u]/∂y= ∂F [uo]/∂y+O (ε) , ∂F [u]/∂t= ∂F [uo]/∂t+O (ε) . (A.4b)

Then, inserting the multiscale expansion (A.2) into the conservation laws (A.1) and aver-
aging results in the averaged conservation laws at O(1)

(uo)t+
(
3u2o

)
x
+σ (quo+ p)y = 0 , (A.5a)

(
u2o
)
t
+
(
−3k2u2o,θ + 4u3o−σq2u2o− 2σqpuo−σp2

)
x
+ 2σ

(
qu2o+ puo

)
y
= 0 , (A.5b)

(quo+ p)x− (uo)y = 0 . (A.5c)

These three conservation laws, combined with the three conservation of waves
equations (1.8), express the KPWS in conservative form. It is also straightforward to verify
that (A.5a)–(A.5c) are respectively equivalent to the three solvability conditions (2.21a),
(2.21b), and (2.21c), in [4].
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A.2. Coefficients matrices, harmonic and soliton limits, relations between elliptic integrals

The coefficient matrices A5 and B5 of the KPWS (1.14) are:

A5 =


V1 −σq2 0 0 −σν1q −σq

0 V2 −σq2 0 −σν2q −σq
0 0 V3 −σq2 −σν3q −σq

−(4− ν4)q 0 −(2+ ν4)q V2 −σq2 0
−(1−α)q 0 αq 0 0

 , (A.6a)

B5 =


2σq 0 0 σν1 σ
0 2σq 0 σν2 σ
0 0 2σq σν3 σ

4− ν4 0 2+ ν4 2σq 0
1−α 0 α 0 0

 . (A.6b)

The definitions of all the coefficients appearing in (A.6) are given in (1.12) through (1.13).
Next, for convenience, we list the limiting values of the coefficients appearing in the har-

monic and soliton limits of the KPWS, since these coefficients appear in all reductions. Recall
that, in the harmonic limit, the elliptic parameter m tends to 0 and r2 7→ r+1 . In this limit, the
various coefficients then become

m= 0 , V= 4r1 + 2r3 , (A.7a)

V1 = V2 = 12r1 − 6r3 , V3 = 6r3 , (A.7b)

ν1 = ν2 = ν3 = ν5 = r3, ν4 = 4, α= 1 . (A.7c)

Conversely, in the soliton limit the elliptic parameter tends to 1 and r2 7→ r−3 . The limiting
value of the various coefficients in this case is

m= 1 , V= r1 + 2r3 , (A.8a)

V1 = 6r1 , V2 = V3 = 2r1 + 4r3 , (A.8b)

ν1 = ν5 = r1 , ν2 = ν3 =
1
3
(4r3 − r1) , ν4 = 2 , α= 0 . (A.8c)

In this work we use the elliptic parameter m as opposed to the elliptic modulus k. Recall
that the two are related as m= k2. The complementary modulus is then simply k ′2 = 1− k2 =
1−m. While this choice is in line with modern works, it differs from the convention in [30] and
its associated references. Thus the various ODEs from [30] must be transformed accordingly.
Specifically, the derivatives of K and E with respect to the elliptic parameter m are

dKm
dm

=
Em− (1−m)Km

2m(1−m)
, (A.9a)

dEm
dm

=
Em−Km

2m
. (A.9b)

In addition, we have

d2Em
dm2

=− 1
2m

dKm
dm

. (A.10)
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A.3. Invariances, traveling wave and stationary solutions of the KP equation and KPWS

Here we show how, using the invariances of the KP equation and the KPWS, one can map all
traveling wave solutions of the KP equation and the KPWS (i.e. solutions that are stationary in
a comoving reference frame) into solutions that are stationary in a slanted but fixed reference
frame.

To begin, it is useful to consider how the KPWS (1.14) with coefficient matrices I4, A5 and
B5 is affected by affine transformations of the independent variables. Recall first that the KP
equation (1.2) is invariant under Galilean boosts,

u(x,y, t) 7→ u ′ (x,y, t) = c+ u(x ′,y, t) , (A.11a)

v(x,y, t) 7→ v ′ (x,y, t) = v(x ′,y, t) . (A.11b)

With x ′ = x− 6ct, and ‘pseudo-rotations’,

u(x,y, t) 7→ u ′ (x,y, t) = u(x ′,y ′, t) . (A.12a)

v(x,y, t) 7→ v ′ (x,y, t) = v(x ′,y ′, t)+ au(x ′,y ′, t) . (A.12b)

With x ′ = x+ ay−σa2t and y ′ = y− 2σat, and with a and c arbitrary real parameters.
Namely, if the u(x,y, t) and v(x,y, t) comprise a solution of the KP equation, so does the pair
u ′(x,y, t) and v ′(x,y, t). Also recall that the above transformations are mapped respectively
into

r(x,y, t) 7→ r ′ (x,y, t) = 13c+ r(x ′,y, t) , (A.13a)

q(x,y, t) 7→ q ′ (x,y, t) = q(x ′,y, t) , (A.13b)

p(x,y, t) 7→ p ′ (x,y, t) = p(x ′,y, t)− cq(x ′,y, t) , (A.13c)

with r3 = (r1,r2,r3)T, 13 = (1,1,1)T and x ′ = x− 6ct, and

r(x,y, t) 7→ r ′ (x,y, t) = r(x ′,y ′, t) , (A.13d)

q(x,y, t) 7→ q ′ (x,y, t) = a+ q(x ′,y ′, t) , (A.13e)

p(x,y, t) 7→ p ′ (x,y, t) = p(x ′,y ′, t) , (A.13f )

with x ′ = x+ ay−σa2t and y ′ = y− 2σat. Finally, recall that both of these transformations
leave the partial KPWS (1.14) invariant [4]. Namely, if r(x,y, t), q(x,y, t) and p(x,y, t) are any
solutions of the KPWS, so are r ′(x,y, t), q ′(x,y, t) and p ′(x,y, t).

We now show that, using the above invariances, all one- and two-phase traveling wave
solutions of the KP equation can be transformed to a stationary reference frame. These are the
solutions of the KP equation that can be written in the form

u(x,y, t) = U(z1,z2) , (A.14a)

zn = knx+ lny−ωnt, n= 1,2 . (A.14b)

We show below that this formulation includes both classes of non-resonant elastic two-
soliton solutions, the genus-2 solutions, as well as the Miles resonance solution, the one-
soliton solutions and the genus-1 solutions as special cases. Starting with the two-phase solu-
tion (A.14), we apply a pseudo-rotation and Galilean boost, to obtain the new solution
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u ′ (x,y, t) = c+U(z ′1,z
′
2) , (A.15a)

z ′n = knx+ l ′ny−ω ′
nt , l ′n = ln− akn , ω ′

n = ωn+
(
6c+σa2

)
kn+ 2σaln , (A.15b)

for n= 1,2. The new solution u ′(x,y, t) is obviously stationary if ω ′
1 = ω ′

2 = 0. In turn, it is
trivial to see that it is always possible to achieve ω ′

1 = ω ′
2 = 0 by choosing

a=− k2ω1 − k1ω2

2σ (k2l1 − k1l2)
, (A.16a)

c=
4σ (k1l2 − k2l1)(l2ω1 − l1ω2)+ (k2ω1 − k1ω2)

2

24σ (k2l1 − k1l2)
2 . (A.16b)

[Note that the denominators in (A.16) are always non-zero for genuine two-phase solutions.
Conversely, if k2l1 = k1l1 the expression u(x,y, t) = U(z1,z2) describes a one-phase solution,
in which case it is sufficient to simply apply a Galilean boost.]

By definition, the two-phase representation (A.14) obviously includes all the genus-2 solu-
tions of the KP equation (e.g. see [8]), of which the genus-1 solutions are a special case. It
should then be clear that both of the non-resonant elastic two-soliton solutions as well as the
Miles resonance solution and the one-soliton solutions are also included (since the former are
obtained as a degeneration of the genus-2 solutions [1, 2], and the latter are in turn a degenera-
tion of the former [9]). Nonetheless, we can give a simple proof of this fact. Recall that general
soliton solutions of the KP equation can be obtained through theWronskian formalism as [10]

u(x,y, t) = 6
∂2

∂x2
[logτ (x,y, t)] , τ (x,y, t) =Wr( f1, . . . , fN) , (A.17a)

fn (x,y, t) =
M∑

m=1

Cn,me
θm , θm (x,y, t) = Kmx+

√
3K2

my− 4K3
mt , m= 1, . . . ,M . (A.17b)

In particular, the Miles resonance solution is obtained by taking N= 1 and M= 3, so
that τ(x,y, t) = eθ1 + eθ2 + eθ3 , and the two classes of non-resonant elastic two-soliton solu-
tions are obtained by taking N= 2 and M= 4 and the following: (i) for the ‘ordinary’ two
soliton solutions, f1 = eθ1 + eθ2 and f2 = eθ3 + eθ4 ; (ii) for the ‘asymmetric’ two soliton solu-
tions, f1 = eθ1 − eθ4 and f2 = eθ2 + eθ3 . The Miles resonance solution is then cast in the frame-
work of (A.14) by simply writing τ(x,y, t) = eθ1 (1+ ez1 + ez2), with z1 = θ2 − θ1 and z2 =
θ3 − θ1, since the common factor eθ1 disappears from the solution (because the θj are lin-
ear in x) [10]. Similarly, for the ordinary two-soliton solution we have τ(x,y, t) = eθ1+θ3 +

eθ1+θ4 + eθ2+θ3 + eθ2+θ4 = 2e
1
2 (θ1+θ2+θ2+θ4)(coshz1 + coshz2), where z1 = 1

2 (θ1 + θ3 − θ2 −
θ4) and z2 = 1

2 (θ2 + θ3 − θ1 − θ4), and a similar representation works for the asymmetric two-
soliton solution.

Finally, to complete our proof, we now show that no solutions containing more than two
independent phases can be traveling wave solutions of the KP equation. (In fact, this state-
ment applies to general nonlinear evolution equations in two spatial dimensions.) To see this,
consider a generic N-phase solution u(x,y, t) = U(z1, . . . ,zN), with zn still given by (A.14b)
for n= 1, . . . ,N. If u(x,y, t) is a traveling wave solution, there exists a coordinate transforma-
tions (x,y, t) 7→ (X,Y,T) with X= x− ct, Y= y− dt and T = t, such that u(x,y, t) = u ′(X,Y).
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But the transformation yields zn = kn(X+ ct)+ ln(Y+ dt)−ωnt, so in order for u ′(X,Y) to be
independent of T, we need c and d such that

knc+ lnd= ωn , n= 1, . . . ,N . (A.18)

IfN= 1, there are an infinite number of solutions to (A.18). (In particular, one can set d= 0 and
take c= ω1/k1.) If N= 2, (A.18) admits a unique solution, given by c= (ω1l2 −ω2l1)/(k1l2 −
k2l1) and d=−(ω1k2 −ω2k1)/(k1l2 − k2l1). If N> 2, however, the system (A.18) is overde-
termined, and no solution exists. (Here we assume that all phases are truly independent, which
implies knln ′ − kn ′ ln 6= 0 for all n,n ′ = 1, . . . ,N with n 6= n ′. If this condition is violated, one
can express the same solution with a smaller number of independent phases.)

A.4. Haantjes tensor test for integrability

An efficient criterion to test the diagonalizabiliy for a hydrodynamic system that does not
require the computation of the eigenvalues and eigenvectors of the coefficient matrix was pro-
posed in [20] and [19], involving the vanishing of the Haantjes tensor associated with the
coefficient matrix. Specifically, for strictly hyperbolic systems, [19, 20] give the following
theorem as a necessary condition for integrability: ‘a hydrodynamic type system with mutu-
ally distinct characteristic speeds is diagonalizable if and only if the corresponding Haantjes
tensor is identically zero.’ For (1+1)- and (2+0)-dimensional conservative hydrodynamic type
equations, the vanishing of the Haantjes tensor is also a sufficient condition for integrability.

The calculation of the Haantjes tensor requires calculation of the Nijenhuis tensor first. The
Nijenhuis tensor of a matrixMi

j is defined as

Ni jk =Mp
j ∂upM

i
k−Mp

k∂upM
i
j−Mi

p

(
∂ujM

p
k − ∂ukM

p
j

)
(A.19)

where ∂uk = ∂/∂uk. In our case, the matrix Mi
j is the corresponding coefficient matrix of the

system for which diagonlizability is being tested. Once the Nijenhuis tensor is known, the
Haantjes tensor can be obtained as

Hi
jk = Ni prM

p
jM

r
k−NpjrM

i
pM

r
k−NprkM

i
pM

r
j +NpjkM

i
rM

r
p . (A.20)

The calculation of the various tensors as applied to the various systems discussed in this work
was performed using the Mathematica software package.
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