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Abstract. Let W ⇢ P1
⇥ P1

⇥ P1 be a surface given by the
vanishing of a (2, 2, 2)-form. These surfaces admit three involutions
coming from the three projections W ! P1

⇥ P1, so we call them
tri-involutive K3 (TIK3) surfaces. By analogy with the classical
Marko↵ equation, we say that W is of Marko↵ type (MK3) if it
is symmetric in its three coordinates and invariant under double
sign changes. An MK3 surface admits a group of automorphisms G
generated by the three involutions, coordinate permutations, and
sign changes. In this paper we study the G-orbit structure of points
on TIK3 and MK3 surfaces. Over finite fields, we study fibral
connectivity and the existence of large orbits, analogous to work
of Bourgain, Gamburd, Sarnak and others for the classical Marko↵
equation. For a particular 1-parameter family of MK3 surfaces
Wk, we compute the full G-orbit structure of Wk(Fp) for all primes
p  113, and we use this data as a guide to find many finite G-orbits
in Wk(C), including a family of orbits of size 288 parameterized
by a curve of genus 9.
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1. Introduction

The classical Marko↵ equation is the a�ne surface

M : x2 + y2 + z2 = 3xyz. (1)

It admits three involutions coming from the three projectionsM ! A2,
and these three involutions, together with double sign changes and
coordinate permutations, generate the automorphism group GM :=
Aut(M) of M. A classical theorem of Marko↵ [27] says that the set
of integer solutions in (Z�0,Z�0,Z�0, ), which we denote by M(Z),
consists of two GM-orbits, one “small” GM-orbit containing the single
point (0, 0, 0), and one “large” GM-orbit containing (1, 1, 1).

The orbit structure structure of M(Fp) under the action of GM has
been studied by a number of authors. Baragar [1] conjectured that
for every prime p, there is only one large orbit in M(Fp), and this
was proved for almost all p by Bourgain–Gambard–Sarnak [11] and
subsequently for all su�ciently large p by Chen [16]. The proofs rely on
an ingenious algorithm that jumps between di↵erently oriented fibers,
using the Hasse–Weil estimate to say that if a point on a “vertical” fiber
has a large enough orbit, then one of the “horizontal” orbits consists of
an entire “horizontal” fiber. The proof implicitly relies on the fact that
each fiber of M is a torus and that the fibral automorphisms are toral
translations (i.e., Gm-translations), which in [11] are called rotations.
See Section 2 for more details.

The first goal of this paper is to study similar questions on an anal-
ogous family of projective surfaces that admit three involutions. We
define the family of tri-involutive K3 (TIK3) surfaces to be the hyper-
surfaces

W ⇢ P1
⇥ P1

⇥ P1 (2)
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given by the vanishing of a (2, 2, 2)-form such that the three projection
maps

⇡12, ⇡13, ⇡23 : W �! P1
⇥ P1

are finite double covers. These three double covers induce three invo-
lutions

�1, �2, �3 : W �! W

coming from switching the two sheets. The study of the geometry and
arithmetic of these surfaces is of course not new; see Section 2 for a
brief history.1

The first goal of this paper is to study the orbit structure of W(Fp)
under the action of Aut(W). To do this, we start by analyzing the
connectivity of the fibers of W(Fp) for the three projections

⇡1, ⇡2, ⇡3 : W(Fp) �! P1(Fp).

We prove the following fibral linking result, which is a TIK3 analogue
of [11, Proposition 6] for the Marko↵ equation. See Theorem 5.5 for
further details and a proof.

Theorem 1.1. Assume that p > 100, and let W/Fp be a TIK3 surface.

Let F1 and F2 be fibers of W(Fp) for any two (possibly identical) of the
three projections ⇡1, ⇡2, ⇡3 : W(Fp) ! P1(Fp). Then there is a fiber F3

for one of the projections satisfying

F1 \ F3 6= ; and F2 \ F3 6= ;.

Our second goal is inspired by the classification of finite orbits on
Marko↵-type surfaces over C. For example, the papers [7, 14, 21, 26]
contain a detailed description of the (a, b, c, d, e) 2 C5 for which the
Marko↵–Hurwitz surface

x2 + y2 + z2 + ax+ by + cz + dxyz + e = 0. (3)

has one or more finite orbits. The existence of such orbits turns out
to be related to algebraic solutions to Painlevé di↵erential equations.
It is likewise true [13] that a (non-degenerate) TIK3 surface W(C) has
only finitely many finite orbits, but the methods used to classify the
orbits for Marko↵-type equations do not seem easily applicable to the
TIK3 situation.

Generically, the automorphism group of W is generated by the three
automorphisms. Since the Marko↵ equation (1) admits additional au-
tomorphisms, we consider an analogous family of TIK3 surfaces, which

1We remark that although the generic member of the family of surfaces given by
the vanishing of a (2, 2, 2)-form is a K3 surface, there are special members that for
not. For example, the classical Marko↵ equation defines a rational surface.
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we call Marko↵-type K3 (MK3) surfaces. These are the TIK3 sur-
faces (2) that are invariant under coordinate permutations and dou-
ble sign changes. See Proposition 6.5 for a description of the full 4-
dimensional family of MK3 surfaces, and Proposition B.1 for a proof
that a regular minimal model of a generic member of this family is a K3
surface..

A typical example, which we use as a prototype, is the following one-
parameter family of MK3-surfaces Wk. For non-zero k, we define Wk

to be the projective closure in (P1)3 of the a�ne surface

Wk : x
2 + y2 + z2 + x2y2z2 + kxyz = 0. (4)

We note that for all k 6= 0, a regular minimal model of Wk is a K3
surface; see Proposition B.1. In order to understand the orbit struc-
ture in Wk(Fp), we computed all orbits for p  113 and all k 2 F⇤

p;
see Section 10 and Appendix C. We use these computations for two
purposes.

First, by studying small orbit sizes that appear in Wk(Fp) for many
di↵erent p and k, we find patterns which we use to construct finite orbits
in Wk(C). Proposition 1.2 illustrates most of our findings. Explicit
equations for all of the orbits described in Proposition 1.2 may be found
in Table 3, and Section 9 describes how we used the Fp data to find, or in
some cases rule out, finite orbits over C. We found especially interesting
the examples of 1-parameter families having orbits of sizes 24, 192,
and 288.

Proposition 1.2. Let Wk be the projective closure in (P1)3 of the a�ne

surface (4).

• W4(Q) contains an orbit of size 4.
• Wk

�
Q(i)

�
contains an orbit of size 48 for every k 2 Q(i).

• There is a field K/Q of degree 3 and an element k 2 K so

that Wk(K) has an orbit of size 64.
• There is a k 2 Q(i,

p
2) so that Wk

�
Q(i,

p
2)
�
has an orbit of

size 96.
• There is a field K/Q of degree 8 and an element k 2 K so

that Wk(K) has an orbit of size 144.
• There is a field K/Q of degree 8 and an element k 2 K so

that Wk(K) has an orbit of size 160.
• There is a k(t) 2 Q(t) so that Wk(t)

�
Q(t)

�
has an orbit of

size 24.
• There is a k(t) 2 Q(i, t) so that Wk(t)

�
Q(i, t)

�
has an orbit of

size 192.
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• There is an irreducible curve C/Q of genus 9 and an element k 2

Q(C) in the function field of C so that Wk

�
Q(C)

�
has an orbit

of size 288.

In the spirit of the many uniform boundedness theorems and con-
jectures in arithmetic geometry and arithmetic dynamics, we pose the
following question:

Question 1.3. Does there exist a constant N so that

#{P 2 Wk(C) : the orbit of P is finite}  N for all k 2 C⇤?

More generally, does there exist a constant N so that for every non-
degenerate2 TIK3 surface W we have

#{P 2 W(C) : the h�1, �2, �3i-orbit of P is finite}  N?

See Question 9.1 for a further discussion of uniform boundedness of
finite orbits.

Second, we investigate large orbits in Wk(Fp) to see if the methods
employed in [11] for the Marko↵ equation are potentially applicable
to the MK3 setting. The fiber-to-fiber jumping strategy employed
by [11] uses the fact, which they prove for (3) with (a, b, c, d, e) =
(0, 0, 0,�3, 0), that if a vertical fibral orbit is su�ciently large, then at
least one of the points in that vertical orbit has a horizontal orbit that
consists of the entire horizontal fiber. (See Section 4 and Remark 4.5
for further details.) We are interested in the question of whether such a
fiber-to-fiber jumping strategy will work on the MK3-surface Wk(Fp).
In Section 11 we show that the surfaceW1(F53) has an orbit of size 3456,
but that the fiber-to-fiber jumping strategy cannot be used to prove
that these 3456 points all lie in the same orbit. This suggests that
additional ideas may be needed to prove the existence of a large orbit
in Wk(Fp).

Acknowledgements. The authors would like to thank Philip Boalch, Wei
Ho, Ram Murty, and Igor Shparlinski for their helpful advice and Peter
Sarnak for his encouragement. We also thank the referees for their very
careful reading and many helpful suggestions that greatly improved the
paper. Calculations in this article were done using Magma [8] and GP-
PARI [31].

2See Definition 3.1, but briefly, non-degeneracy means that the three involutions
are well-defined.
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2. A brief survey of related work on the Markoff

surface and on tri-involutive K3 surfaces

Definition 2.1. Let K be a field, for example a number field or a finite
field. Let a 2 K⇤ and k 2 K. The associated Marko↵ equation is

Ma,k : x
2 + y2 + z2 = axyz + k, (5)

and GM denotes the group of automorphisms of Ma,k generated by
the involutions �1, �2, �3, double sign changes, and permutations of the
coordinates.

Theorem 2.2. (a) (Marko↵ [27])

M3,0(Z) =
�
(0, 0, 0)

 
[ GM · (1, 1, 1).

(b) More generally, for all a, k 2 Z with a 6= 0, there is a finite set of

points P1, . . . , Pr 2 Ma,k(Z) such that

Ma,k(Z) =
r[

i=1

GM · Pi

except in the case of the so-called Cayley cubic M1,4.
3

Conjecture 2.3. (Baragar [1, Section V.3], Bourgain–Gambard–Sarnak
[10, 11]) For all primes p � 5 we have

M3,0(Fp) =
�
(0, 0, 0)

 
[
�
GM · (1, 1, 1)

�
.

As noted in Theorem 2.2(b), the set Ma,k(Z) generally consists of
finitely many orbits. However, we may still ask to what extent the
points in Ma,k(Fp) lift to points in Ma,k(Z), or alternatively, to what
extent Ma,k(Fp) is essentially a single GM-orbit. One di�culty that
occurs comes from finite orbits in Ma,k(Q), since their mod p reduction
leads to (small) finite orbits in various Ma,k(Fp). This leads to the
following conjectures.

Conjecture 2.4. Let a, k 2 Z.
(a) There is a constant M1(a, k) such that for all primes p - a we have

#Ma,k(Fp)  #
⇣
largest GM-orbit in Ma,k(Fp)

⌘
+M1(a, k).

(b) If #Ma,k(Z) = 1, then there is a constant M2(a, k) such that for

all primes p - a we have

#Ma,k(Fp)  #
�
Ma,k(Z) mod p

�
+M2(a, k).

3For the Cayley cubic M1,4, the points (2, t, t) for positive integers t generate
distinct orbits, and their union is M1,4(Z).



ORBITS ON K3 SURFACES OF MARKOFF TYPE 7

(One might further ask whether M1(a, k) and M2(a, k) may be chosen

independently of a and k.)

Bourgain–Gambard–Sarnak and Chen have a number of results re-
lated to Conjectures 2.3 and 2.4, including the following:

Theorem 2.5. (a) [11, Theorem 1]

#M3,0(Fp) = #
�
GM · (1, 1, 1)

�
+ po(1), as p ! 1.

(b) [11, Theorem 2] Conjecture 2.3 holds for all but possibly Xo(1)

primes p  X, as X ! 1.

(c) [16] Conjecture 2.3 holds for all but finitely many primes p.

Remark 2.6. Chen’s result (Theorem 2.5(c)) supersedes the results of
Bourgain–Gambard–Sarnak (Theorem 2.5(a,b)), but Chen’s proof de-
pends strongly on the particular form of the equation M3,0. More pre-
cisely, Chen proves that the orbit of (1, 1, 1) inM3,0(Fp) has cardinality
divisible by p. This combined with the methods used to prove [11, The-
orem 1] yield the desired result. However, we note that the methods
used to prove the results in [11] should extend to give versions of Con-
jecture 2.4 analogous to Theorem 2.5(a,b) for all Ma,k, while for now
Chen’s method seems to apply only to M3,0.

Remark 2.7. Other recent notable results include the following:

• Konyagin–Makarychev–Shparlinski–Vyugin [25] prove that

#M3,0(Fp)r
�
GM · (1, 1, 1)

�
 exp

�
(log p)2/3+o(1)

�
.

This improves Theorem 2.5, and the methods should extend to
more general Marko↵ equations.

• Given a pseudo-Anosov element g 2 Out(F2), g induces a permu-
tation gp on M1,k(Fp) for each prime p. Cerbu–Gunther–Magee–
Peilen [15] prove that asymptotically, the action of gp on M1,k(Fp)

has an orbit of size at least log(p)
log |�|+Og(1), where � is the eigenvalue

of largest modulus of g when viewed as an element of GL2(Z).
• M. de Courcy-Ireland and S. Lee [19] verify strong approximation
for the Marko↵ surface for all primes p < 3000. Additionally,
they completely characterize the orbit structure of the degenerate
Cayley cubic, M1,4(Fp), providing both the number of orbits as
well as their sizes, given in terms of divisors of p2 � 1.

• M. de Courcy-Ireland and M. Magee [20] demonstrate that the
eigenvalues of the family of Marko↵ graphs modulo p converge
to the Kesten-McKay measure, which is a heuristic indicator that
Marko↵ graphs are suitably “random”. This also provides a (very)
weak bound on the spectral gap of such graphs.
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• M. de Courcy-Ireland [18] shows that if p > 7, then the Marko↵
graph mod p is not planar.

• A. Gamburd , M. Magee and R. Ronan [22] prove an asymptotic
formula for the function Nn,a,k(R) that counts the number of inte-
ger solutions to x2

1 + · · · + x2
n = ax1 · · · xn + k with max |xi|  R,

excluding potential exceptional sets. They prove that Nn,a,k(R)
is asymptotic to C(n, a, k)(logR)�n , where as indicated, the con-
stant depends on n, a, k, while exponent �n, which generally is not
an integer, depends only on n. See also A. Baragar [2] for related
work.

We conclude this section by briefly describing some earlier work on
the geometry and arithmetic of tri-involutive K3 surfaces, which we
recall are certain K3 surfaces admitting three non-commuting invo-
lutions. Wang [32] explicitly constructed canonical heights on TIK3
surfaces defined over number fields associated to the infinite order au-
tomorphisms �i��j, similar to those constructed in [30] for K3 surfaces
having two involutions. Baragar [3, 4, 5] further studied these height
functions and asked, in particular, whether they fit together to form
a vector canonical height. Kawaguchi [24] answered this in the nega-
tive for certain K3 surfaces, and Cantat and Dujardin [13] completely
characterized the surfaces on which vector canonical heights exist.

We next state a recent result regarding finite orbits on TIK3 surfaces
in characteristic 0.

Theorem 2.8 ([13, Cantat–Dujardin]). Let W/C be a TIK3 surface,

and let h�1, �2, �3i ✓ Aut(W) be the subgroup of W generated by the

three involutions �1, �2, �3. Then
�
P 2 W(C) : the h�1, �2, �3i-orbit of P is finite

 

is a finite set.

Proof. This is a special case of the results in [13], since in the language
of [13], the TIK3-surfaceW and its group of automorphisms h�1, �2, �3i

do not form a Kummer group, and W contains no h�1, �2, �3i-invariant
curves. ⇤

Finally, we mention Cantat’s fundamental paper [12], although it is
not specifically about TIK3 surfaces. Let ' : X ! X be an automor-
phism of positive entropy of a K3 surface defined over C, e.g., �i � �j

for a TIK3 surface. Then Cantat proves that there exists a unique
invariant probability measure µ with maximal entropy, that (', µ) is
measurably conjugate to a Bernoulli shift, and that µ gives the asymp-
totic distribution of periodic points.
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3. Tri-Involutive K3 (TIK3) Surfaces

Definition 3.1. A Tri-Involutive K3 (TIK3) Surface is a K3 surface4

W = {F = 0} ⇢ P1
⇥ P1

⇥ P1

defined by a (2, 2, 2)-form5

F (X1, X2;Y1, Y2;Z1, Z2) 2 K[X1, X2;Y1, Y2;Z1, Z2]. (6)

For distinct i, j 2 {1, 2, 3}, we denote the various projections of W
onto one or two copies of P1 by

⇡i : W �! P1 and ⇡ij : W �! P1
⇥ P1.

We say that the TIK3 is non-degenerate if it satisfies the following two
conditions:

(i) The projection maps ⇡12, ⇡13, ⇡23 are finite.6

(ii) The generic fibers of the projection maps ⇡1, ⇡2, ⇡3 are (irreducible,
geometrically connected) smooth curves, and thus the smooth
fibers are curves of genus 1, since they are (2, 2) curves in P1

⇥P1,
i.e., curves given by the vanishing of a (2, 2)-form.

Definition 3.2. To ease notation, we write P1 = A1
[ {1}, and we

let

F (x, y, z) = F (x, 1; y, 1; z, 1).

Then W is the closure in (P1)3 of the a�ne surface, which by abuse of
notation we also denote by W ,

W : F (x, y, z) = 0.

Definition 3.3. Let W be a TIK3 surface with projections ⇡1, ⇡2, ⇡3 :
W ! P1 We define a fiber of W to be a set of the form

⇡�1
i (t) for some i 2 {1, 2, 3} and some t 2 P1.

4We recall that an algebraic K3 surface is a smooth projective geometrically
connected surface with trivial canonical bundle and irregularity zero. In this paper
we work directly with equations of the form (6) satisfying the non-degeneracy con-
dition, so it not important for our purposes that our surfaces are K3. However, for
completeness, we show in Section B that minimal regular models of generic surfaces
in our families are K3 surfaces.

5In general, an (a, b, c)-form is a global section to O(P1)3(a, b, c), or more pro-
saically, an (a, b, c)-form is a polynomial f in K[X1, X2;Y1, Y2;Z1, Z2] satisfying
f(uX1, uX2; vY1, vY2;wZ1, Zw2) = uavbwcf(X1, X2;Y1, Y2;Z1, Z2).

6We note that ⇡12,⇡13,⇡23 are finite if and only if their fibers are 0-dimensional,
in which case they are maps of degree 2.
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Thus fibers may lie in any of three di↵erent directions, and we may
view W as being triply cross-hatched by the various fibers. We denote
the set of fibers by

Fiber(W) = {fibers of W}.

If we need to refer to fibers over a particular point and corresponding
to a particular projection, we use the following more precise notation.
We denote the fibers of ⇡1, ⇡2, ⇡3 : W ! P1 over points x0, y0, z0 2 P1

by, respectively,

W
(1)
x0

= ⇡�1
1 (x0), W

(2)
y0 = ⇡�1

2 (y0), W
(3)
z0 = ⇡�1

3 (z0).

For P = (xP , yP , zP ) 2 W , we let

W
(1)
P = W

(1)
xP

, W
(2)
P = W

(2)
yP

, W
(3)
P = W

(3)
zP

.

Definition 3.4. Let W be a non-degenerate TIK3 surface. For dis-
tinct i, j, k 2 {1, 2, 3}, we write

�k : W �! W (7)

for the involution that swaps the sheets of ⇡ij, i.e., �k 2 Aut(W) is the
unique non-identity automorphism satisfying

⇡ij � �k = ⇡ij.

The automorphism group of a TIK3 surface W contains the non-
commuting involutions �1, �2, �3, and depending on the symmetries
of W ’s defining polynomial F , the automorphism group may con-
tain additional automorphisms. Typical examples include symmetry
in x, y, z that allows permutation of the coordinates, and power sym-
metry that allows the signs of two of x, y, z to be reversed. For example,
the Marko↵ equation (1) permits these extra automorphisms; and in
Section 6 we consider analogous TIK3 surfaces. In any case, we will be
interested in subgroups of the automorphism group that move points
around individual fibers.

Definition 3.5. Let W be a non-degenerate TIK3 surface, let

Gen(G) ⇢ Aut(W)

be a (finite) set of automorphisms of W , and let

G =
⌦
' : ' 2 Gen(G)

↵
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be the subgroup of Aut(W) generated by the elements of Gen(G).
Let F 2 Fiber(W) be a fiber of W . We denote the (restricted) stabi-
lizer of F by7

GF =
⌦
' 2 Gen(G) : '(F) = F

↵
.

We further define (restricted) fibral automorphism groups in each of
the three directions by8

G
(1) =

⌦
' 2 Gen(G) : '(W (1)

x ) = W
(1)
x for all x 2 P1

↵
,

G
(2) =

⌦
' 2 Gen(G) : '(W (2)

y ) = W
(2)
y for all y 2 P1

↵
,

G
(3) =

⌦
' 2 Gen(G) : '(W (3)

z ) = W
(3)
z for all z 2 P1

↵
.

For example, if {i, j, k} = {1, 2, 3} and W is generic, then typically
we take G

(k) = h�i, �ji, since the k-direction fibers are invariant for �i

and �j.

Definition 3.6. Let W be a non-degenerate TIK3 surface, let G ✓

Aut(W) be a group of automorphisms of W , and let P0 = (x0, y0, z0) 2
W(K). The G-orbit of P is

G · P =
�
'(P ) : ' 2 G

 
.

The fibral G-orbits of P are

G
(k)

· P =
�
'(P ) : ' 2 G

(k)
 

for k = 1, 2, 3.

4. A strategy for proving that W(Fq) has a large

G-connected component

In this section we consider a non-degenerate TIK3-surface W defined
over a finite field Fq, and a group of automorphisms G ✓ Aut(W).

Definition 4.1. Let t 2 P1(Fq), and let i 2 {1, 2, 3}. We say that

the fiber W (i)
t (Fq) is G-connected if G(i) acts transitively on W

(i)
t (Fq).

Following terminology from [10], we define the G-cage of W(Fq) to be
the set

CageG
�
W(Fq)

�
=

(
P 2 W(Fq) :

at least one of W (1)
P (Fq), W

(2)
P (Fq),

and W
(3)
P (Fq) is G-connected

)
.

7The reason that we do not use
�
' 2 G : '(F) = F

 
, which is the full subgroup

that leaves F invariant, is because when using G to move around points in fibers
of W, we will want to apply one generator at a time.

8We do not include the set of generators Gen(G) in the notation for the fibral
automorphism groups, since it will generally be clear from context. For example, for
a generic TIK3 surface, we take Gen(G) = {�1,�2,�3}. If W has extra symmetries,
for example if W is one of the MK3 surfaces described in Section 6, then Gen(G)
will also include some coordinate permutations and sign shifts.



12 E. FUCHS, M. LITMAN, J.H. SILVERMAN, AND A. TRAN

We denote the set of G-connected fibers by

ConnFibG
�
W(Fq)

�
=

⇢
W

(i)
t (Fq) :

i 2 {1, 2, 3}, t 2 P1(Fq),

W
(i)
t (Fq) is G-connected

�
.

With this notation, an alternative description of the cage is as the
union of the points in the fibers in ConnFibG

�
W(Fq)

�
.

We further say that W(Fq) is cage-connected if for every pair of
points P,Q 2 CageG

�
W(Fq)

�
there exists a sequence of G-connected

fibers F1,F2, . . . ,Fn 2 ConnFibG
�
W(Fq)

�
such that

P 2 F1, Q 2 Fn, Fi \ Fi+1 6= ; for all 1  i < n.

Remark 4.2. We can also describe cage-connectivity of W(Fq) us-
ing a standard construction in graph theory. Let X be any set, and
let S ⇢ 2X be a collection of subsets of X. The intersection graph of S

is the graph whose vertices are the elements of S, and whose edges
are all [A,B] such that A,B 2 S satisfy A \ B 6= ;. Then W(Fq) is
cage-connected if the intersection graph of its collection of G-connected
fibers ConnFibG

�
W(Fq)

�
is a connected graph. Similarly, the content

of Theorem 5.5 is that if q > 100, then the intersection graph of the
collection of all G-fibers of W(Fq) is connected, and indeed its graph
diameter is at most 2.

The starting point used in [10] to prove the connectivity of the Mar-
ko↵ graph M3,0(Fq)r {(0, 0, 0)} is to show that the associated cage is
connected. This is done via a process that jumps from one connected
fiber to another using a version of the following property:

Definition 4.3. We say that W(Fq) has the fiber-jumping property if
for all fibers F1 and F2 of W(Fq) there exists a G-connected fiber F3 2

ConnFib
�
W(Fq)

�
satisfying

F1 \ F3 6= ; and F2 \ F3 6= ;.

As described in [10], the fiber-jumping property implies that W(Fq)
is cage-connected. For the convenience of the reader, we recall the
short proof.

Proposition 4.4. Suppose that W(Fq) has the fiber-jumping property.

Then W(Fq) is cage-connected.

Proof. Let P,Q 2 CageG
�
W(Fq)

�
. By definition, this means that they

lie on G-connected fibers, say

P 2 F1 and Q 2 F2 with F1,F2 2 ConnFibG
�
W(Fq)

�
.
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We apply the assumption that W(Fq) has the fiber-jumping property
to the fibers F1 and F2. This allows us to find a G-connected fiber F3 2

ConnFib
�
W(Fq)

�
satisfying

F1 \ F3 6= ; and F3 \ F2 6= ;.

Then the sequence F1,F3,F2 takes us from P to Q, and since P,Q 2

CageG
�
W(Fq)

�
were arbitrary, this proves from the definition thatW(Fq)

is cage-connected. ⇤
The strategy that is employed in [10] to prove that most of the points

in the Marko↵ set M3,0(Fq) form a connected set has several steps. We
reformulate these steps for TIK3-surfaces, retaining (and expanding
on) their chess terminology.

Setting the board (Cage connectivity):

W(Fq) is cage-connected.
End game (Large fibral orbits):

Let P 2 W
(i)
t (Fq) be a point whose fibral orbit G(i)

· P is mod-
erately large. Then G

(i)
· P contains a point of the cage, i.e., it

intersects a G-connected fiber.
Middle game (Small fibral orbits):

Let P 2 W
(i)
t (Fq) be a point whose fibral orbit G

(i)
· P is of

small, but non-negligible, size. Then G
(i)

· P contains a point
lying in a fibral orbit of strictly larger size.

Opening (Tiny fibral orbits):

There are no non-trivial points P 2 W
(i)
t (Fq) whose fibral or-

bit G(i)
· P is tiny.

Remark 4.5 (The Bourgain–Gamburd–Sarnak Connectivity Proof for
the Marko↵ Equation). We briefly sketch the connectivity proof for

M
⇤(Fp) = M3,0(Fp)r (0, 0, 0)

in [10]. They prove connectivity using the subgroup G ⇢ Aut(M3,0)
generated by the compositions

⇢(i) = �i � ⌧jk, where {i, j, k} = {1, 2, 3},

and ⌧jk denotes the transposition of the j and k coordinates. They

call ⇢(i) a rotation, since it acts on the fibers (M3,0)
(i)
t via a 2-by-

2 (rotation) matrix acting on the jk-coordinates. Writing ⇢(i)t for the

restriction of ⇢(i) to this fiber, they note that the order of ⇢(i)t divides one
of p� 1, p, or p+1, with the exact order depending on the eigenvalues
of the matrix ⇢(i)t . It follows that

(M3,0)
(i)
t (Fp) ⇢ Cage

�
M3,0(Fp)

�
() ⇢(i)t has maximal order.
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The first step in proving that M⇤(Fp) is G-connected is an argument
that uses curve coverings, point counting, and inclusion/exclusion to
show that M3,0(Fp) has the fiber jumping property for G. It follows
that CageG

�
M3,0(Fp)

�
is connected, cf. Proposition 4.4. They then use

a similar argument for the endgame, where a fiber is deemed large if it
has p1/2+✏ points. Next they consider the middle game, which consists
of points whose (small) fibral orbit has at least p✏ points. This comes
down to showing that certain equations have few solutions whose coor-
dinates are elements of F⇤

p of small order. They provide three proofs of
the required statement, one via Stepanov’s auxiliary polynomial proof
of Weil’s conjecture for curves over Fp, one using directly a sharp es-
timate due to Corvaja and Zannier [17] for the gcd of polynomials
over finite fields, and one using a projective Szemeredi-Trotter theo-
rem due to Bourgain [9]. Indeed, they can handle the middle game
for even smaller fibral components provided that p2 � 1 does not have
too many prime divisors. Finally, for the opening, they first observe
that finite orbits in Ma,k(Q) will cause tiny orbits in Ma,k(Fp) for
infinitely many p. However, in their case M3,0(Q) contains no finite
orbits other than

�
(0, 0, 0)

 
, so this is not a problem. They next show

that every point P 2 M
⇤(Fp) lies in a fibral component containing at

least (log20 p)
1/3 points. This and some further calculations su�ce to

prove that M⇤(Fp) is G-connected unless p2 � 1 is very smooth, i.e., is
a product of a large number of small primes. (Conjecturally, there are
only finitely many such primes.)

Remark 4.6 (Fiber Jumping and Cage Connectivity for TIK3-Sur-
faces). As explained in Remark 4.5, Bourgain, Gamburd, and Sar-
nak [10] prove that the Marko↵ equation M3,0(Fp) r

�
(0, 0, 0

 
is G-

connected by first verifying the fiber-jumping property, which sets the
board by implying that the cage is cage-connected. Later we will give
an example showing that the analogous statement need not be true for
TIK3 surfaces. More precisely, in Example 11.1 we describe a TIK3-
surface W such that W(F53) has one large G-connected component,
which we denote by W

⇤(F53), that contains 3456 points. However, a
direct calculation show thatW⇤(F53) does not have the G-fiber-jumping
property. More precisely, the G-connected fibers in W(F53) form two
connected components, so any proof that W⇤(F53) is G-connected must
find a way to connect points in ConnFib

�
W(F53)

�
that does not travel

purely along G-connected fibers. Of course, the prime p = 53 is not
huge, so our example may simply be a small number phenomenon.
However, other examples (see Table 5) suggest that the number of fi-
bral components in a TIK3 cage tends to be smaller than the number
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of fibral components in a Marko↵ surface cage. So a proof that TIK3
surfaces over finite fields have large G-connected components may need
to find a way to expand the cage in order to fit it into a G-connected
set that can be used for the “setting the board” step.

In addition, the issue concerning smoothness of fibral group orders
that arises in the method of BGS will be exacerbated for TIK3 surfaces.
The analogous rotations (translations) on a TIK3 surface come from
the actions of elliptic curves on homogeneous spaces. These actions
are translations by a point whose order can range from p + 1 � 2

p
p

to p + 1 + 2
p
p. So now we are not concerned with smoothness of

only p± 1, but instead with the smoothness of all numbers within this
range. Ideally, we would like to restrict to values of p for which this
range of numbers contains no smooth numbers, but there are unlikely
to be infinitely many such p.

5. The incidence graph of the fibers of a TIK3 surface

Definition 5.1. A TIK3 surface has three fibral directions associated
to the three projections onto P1. For expositional convenience, we will
say that fibers corresponding to di↵erent projections are (pairwise)
orthogonal to one another, while fibers corresponding to the same pro-
jection are parallel. So for example, the fibers W

(1)
x0 and W

(2)
y0 are or-

thogonal, while the fibers W (1)
x0 and W

(1)
x1 are parallel.

Remark 5.2. Distinct parallel fibers clearly do not intersect, while
orthogonal fibers in W(Fq) may intersect in 0, 1, or 2 points. For
example, if x0, y0 2 P1(Fq), then⇣

W
(1)
x0

(Fq) \W
(2)
y0 (Fq)

⌘
=
�
(x0, y0, z) : F (x0, y0, z) = 0

 
.

Thus the intersection is non-empty if and only if a certain quadratic
form9 has a zero in P1(Fq).

Our goal in this section is to give an easily verifiable condition which
ensures that, given two orthogonal fibers F1 and F2 in W(Fq), there is
a third fiber F3 ⇢ W(Fq) satisfying

F1 \ F3 6= ; and F2 \ F3 6= ;.

In more evocative terms, although the union F1 [ F2 of two orthogonal
fibers may be “disconnected,” there is a third fiber so that F1 [ F2 [ F3

is a “connected” set of orthogonal fibers. See Figure 1.

9We recall that although we write F using a�ne coordinates to ease notation,
in our calculations it always represents a (2, 2, 2) form. In particular, the polyno-
mial F (x0, y0, z) denotes a degree 2 homogeneous form in the variables Z1 and Z2;
cf. Definition 3.2.
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t
(x0, y1, z1)

t
(x1, y0, z1)

������������������������

W
(1)
x0

W
(2)
y0

W
(3)
z1 Given x0 and y0, find z1

so that there exist x1 and y1
satisfying (x0, y1, z1) 2 W

(1)
x0

and (x1, y0, z1) 2 W
(2)
y0 .

Figure 1. Finding a fiberW (3)
z1 that intersects two given

fibers W (1)
x0 and W

(2)
y0

Definition 5.3. For x0, y0, z0 2 P1, we define linking sets that describe
how to link two given fibers via a third fiber.

L
(1)
y0,z0 =

�
x 2 P1 : W (2)

y0 \W
(1)
x 6= ; and W

(3)
z0 \W

(1)
x 6= ;

 
,

L
(2)
x0,z0 =

�
y 2 P1 : W (1)

x0
\W

(2)
y 6= ; and W

(3)
z0 \W

(2)
y 6= ;

 
,

L
(3)
x0,y0 =

�
z 2 P1 : W (1)

x0
\W

(3)
z 6= ; and W

(2)
y0 \W

(3)
z 6= ;

 
.

Thus for example, the points in L
(3)
x0,y0 tell us which z fibers can be used

to link the x = x0 fiber with the y = y0 fiber.

Definition 5.4. For x0, y0, z0 2 P1, we define the following algebraic
sets10 that are useful in creating fibral links:

C
(1)
y0,z0 =

�
(x, y, z) 2 (P1)3 : F (x, y0, z) = F (x, y, z0) = 0

 
,

C
(2)
x0,z0 =

�
(x, y, z) 2 (P1)3 : F (x0, y, z) = F (x, y, z0) = 0

 
,

C
(3)
x0,y0 =

�
(x, y, z) 2 (P1)3 : F (x0, y, z) = F (x, y0, z) = 0

 
.

We note that the C
(1)
y0,z0 is the intersection in (P1)3 of a hypersurface of

type (2, 0, 2) and a hypersurface of type (2, 2, 0), and similarly for C(2)
x0,z0

and C
(3)
x0,y0 . See Lemma 5.6 for a proof that if W is a non-degenerate

TIK3 surface, then these sets have dimension 1 and their irreducible
components have geometric genus at most 5.

Theorem 5.5 (K3 Analogue of [11, Proposition 6]).
Let K be a field, and let x0, y0, z0 2 P1(K).

10Lemma 5.6(a) contains a proof that if W is a non-degenerate TIK3 surface,
then these algebraic sets are 1-dimensional, although they need not be irreducible.
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(a) There are surjective maps

C
(1)
y0,z0(K)

(x,y,z) 7!x
�����! L

(1)
y0,z0(K),

C
(2)
x0,z0(K)

(x,y,z) 7!y
�����! L

(2)
x0,z0(K),

C
(3)
x0,y0(K)

(x,y,z) 7!z
�����! L

(3)
x0,y0(K).

(b) Assume that q � 100. Then

L
(1)
y0,z0(Fq) 6= ;, L

(2)
x0,z0(Fq) 6= ;, L

(3)
x0,y0(Fq) 6= ;.

Proof. (a) By symmetry, it su�ces to consider the first map. We first

show that the map is well-defined. Let (x, y, z) 2 C
(1)
y0,z0(K). By defini-

tion of C(1)
y0,z0 , this means that

F (x, y0, z) = F (x, y, z0) = 0, and thus (x, y0, z), (x, y, z0) 2 W(K).

Hence

(x, y0, z) 2 W
(2)
y0 (K)\W

(1)
x (K) and (x, y, z0) 2 W

(3)
z0 (K)\W

(1)
x (K),

which by definition of L(1)
y0,z0 shows that x 2 L

(1)
y0,z0(K). This completes

the proof that the projection map

⇡1 : C
(1)
y0,z0(K) �! L

(1)
y0,z0(K) (8)

is well-defined.
To prove surjectivity, we start with some x 2 L

(1)
y0,z0(K). By definition

of L(1)
y0,z0 , this means that we can find points

(x, y0, z1) 2 W
(2)
y0 (K)\W (1)

x (K) and (x, y1, z0) 2 W
(3)
z0 (K)\W (1)

x (K).

Then the definition of C(1)
y0,z0 tells us that

(x, y1, z1) 2 C
(1)
y0,z0(K).

We have thus constructed a point in C
(1)
y0,z0(K) whose image in L

(1)
y0,z0(K)

is x, which completes the proof that the projection map (8) is surjective.
(b) We use (a) with K = Fq. Again by symmetry, it su�ces to prove
the first assertion. And from the surjectivity of the map in (a), it

su�ces to prove that C(1)
y0,z0(Fq) is not empty.

Lemma 5.6(a) tells us that the algebraic set C(1)
y0,z0 has dimension 1.

We let
]
C
(1)
y0,z0 be a non-singular model of an irreducible component

of C(1)
y0,z0 . (Although generically C

(1)
y0,z0 will be a smooth irreducible curve,

there are cases in which it is singular and/or reducible; see Remark 5.7.)
There is then a well-defined map

]
C
(1)
y0,z0(Fq) �! C

(1)
y0,z0(Fq).
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Since our goal is simply to show that C
(1)
y0,z0(Fq) is non-empty, it suf-

fices to prove that
]
C
(1)
y0,z0(Fq) is non-empty. Weil’s estimate gives the

inequality

#
]
C
(1)
y0,z0(Fq) � q + 1� 2 ·

�
genus

]
C
(1)
y0,z0

�
·
p
q. (9)

In particular, we see that

q + 1 > 2 ·
�
genus Ĉ(1)

y0,z0)
�
·
p
q =)

]
C
(1)
y0,z0(Fq) 6= ;. (10)

Lemma 5.6(b) says that the genus of
]
C
(1)
y0,z0 is at most 5. Hence (9)

and (10) imply that C
(1)
y0,z0(Fq) is non-empty provided q + 1 > 10

p
q,

which is true for all q > 100. ⇤
We now prove the dimension and genus estimates used in the proof

of Theorem 5.5.

Lemma 5.6. Let W be a non-degenerate TIK3 surface defined over a

field whose characteristic is not equal to 2 or 3, and let C be one of the

algebraic sets C
(1)
y0,z0, C

(2)
x0,z0, or C

(3)
x0,y0 described in Definition 5.4.

(a) The algebraic sets C
(1)
y0,z0, C

(2)
x0,z0, C

(3)
x0,y0 described in Definition 5.4

have dimension 1.
(b) Each irreducible component of each of the algebraic sets C

(1)
y0,z0, C

(2)
x0,z0, C

(3)
x0,y0

described in Definition 5.4 has geometric genus at most 5.

Proof. Since this lemma is purely geometric, we assume that we are
working over an algebraically closed field. By symmetry, it su�ces to
fix y0, z0 2 P1 and to consider the algebraic set C(1)

y0,z0 .
(a) We need to rule out the possibility that C

(1)
y0,z0 is the empty set

or has dimension 0 or 2 or 3. The algebraic set C
(1)
y0,z0 is equal to the

intersection of the following two algebraic sets:

V1 :=
�
(x, y, z) 2 (P1)3 : F (x, y0, z) = 0

 
,

V2 :=
�
(x, y, z) 2 (P1)3 : F (x, y, z0) = 0

 
.

We first note that if V1 = (P1)3, then F (x, y0, z) is identically 0,
so for any value of x0, the fiber ⇡�1

12 (x0, y0) is a copy of P1. This
contradicts the assumed non-degeneracy of W . Hence V1 6= (P1)3, and
similarly V2 6= (P1)3. Thus

dim(V1) = 2 and dim(V2) = 2,

and hence
dim(C(1)

y0,z0) = dim(V1 \ V2)  2.
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Suppose that C(1)
y0,z0 has dimension 2. This means that the algebraic

sets V1 and V2 have a 2-dimensional component in common. Writing

(P1)3 = P1
x ⇥ P1

y ⇥ P1
z

so that we can keep track of the three factors, we see from their defi-
nition that V1 and V2 are products,

V1 = {curve in P1
x ⇥ P1

z}⇥ P1
y and V2 = {curve in P1

x ⇥ P1
y}⇥ P1

z.

The assumption that V1 and V2 have a 2-dimensional component in
common implies that they have one or more common components of
the form {x0}⇥ P1

y ⇥ P1
z. There is thus a (1, 0, 0)-form A(x) vanishing

at x0 and a (1, 0, 2)-form B(x, z) and a (1, 2, 0)-form C(x, y) so that
the polynomial F defining W factors as both

F (x, y0, z) = A(x)B(x, z) and F (x, y, z0) = A(x)C(x, y).

But then W is degenerate, since it contains the lines {x0}⇥ {y0}⇥ P1
z

and {x0}⇥ P1
y ⇥ {z0}, which means that the projection maps ⇡12 and ⇡13

have positive-dimensional fibers.
We now know that dim(C(1)

y0,z0)  1. This implies in particular that V1

and V2 intersect properly (or not at all). We let

H1 = {pt}⇥ P1
⇥ P1, H2 = P1

⇥ {pt}⇥ P1, H3 = P1
⇥ P1

⇥ {pt},

be generic hypersurfaces (divisors on (P1)3) of the indicated form. Then
usually V1 and V2 will be linearly equivalent to, respectively, 2H1 +
2H3 and 2H1 + 2H2, but there are potentially cases where F (x, y0, z)
and/or F (x, y, z0) depends on only one of the variables x, y, z. In any
case, we have

V1 ⇠ aH1 + bH3 and V2 ⇠ cH1 + dH2

with a, b, c, d 2 {0, 2}, (a, b) 6= (0, 0), (c, d) 6= (0, 0).

Using H1 \H2 \H3 = 1 and Hi \Hj \Hk = 0 if i, j, k are not distinct,
we compute intersections

V1 · V2 ·H1 = bd, V1 · V2 ·H2 = bc, V1 · V2 ·H3 = ad. (11)

Suppose now that the algebraic set

C
(1)
y0,z0 = V1 \ V2

is a finite set of points or the empty set. This implies that the inter-
sections in (11) all vanish, since they are intersections of points (or the
empty set) with hypersurfaces. We consider three cases:

b 6= 0 =) c = d = 0 contradiction.

d 6= 0 =) a = b = 0 contradiction.
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b = d = 0 =) a = c = 2 =) V1 ⇠ V2 ⇠ 2H1.

This last case implies that F (x, y0, z) does not depend on z and that
F (x, y, z0) does not depend on y. But then W is degenerate, since
the fiber of ⇡12 over any point of the form (x, y0) has dimension 1,
and similarly the fiber of ⇡13 over any point of the form (x, z0) has

dimension 1. This concludes the proof that the algebraic set C(1)
y0,z0 has

dimension 1.
(b) We let F be the (2, 2, 2)-form that defines the non-degenerate TIK3
surface W . We define a projection map

⇡ : C(1)
y0,z0 �! P1, ⇡(x, y, z) = x.

This map has degree 4. Keeping in mind that y0 and z0 are fixed,
for x1 2 P1 we have

⇡�1(x1) =
�
(x1, y, z) 2 (P1)3 : F (x1, y0, z) = F (x1, y, z0) = 0

 
.

The equations for y and z are independent, so we find that

#⇡�1(x1) = #
�
z 2 P1 : F (x1, y0, z) = 0

 
·#
�
y 2 P1 : F (x1, y, z0) = 0

 
.

The non-degeneracy assumption tells us that F (x1, y0, z) and F (x1, y, z0)
are not identically 0, so they are non-trivial quadratic forms in, respec-
tively, z and y. As such, they have either 1 or 2 roots, and we can
determine which is the case by computing an appropriate discriminant:

#
�
z 2 P1 : F (x1, y0, z) = 0

 
=

(
1 if Discz F (x1, y0, z) = 0,

2 if Discz F (x1, y0, z) 6= 0.

#
�
y 2 P1 : F (x1, y, z0) = 0

 
=

(
1 if Discy F (x1, y, z0) = 0,

2 if Discy F (x1, y, z0) 6= 0.

Combining these estimates yields the following formulas

#⇡�1(x1) Discy F (x1, y, z0) Discz F (x1, y0, z)

4 6= 0 6= 0
2 = 0 6= 0
2 6= 0 = 0
1 = 0 = 0

We next observe that Discy F (x, y, z0) is a degree 4 form in x, and
thus has at most 4 roots in P1 when considered as a polynomial in x;
and similarly for Discz F (x, y0, z). So there are at most 8 points x1 2 P1

with #⇡�1(x1) = 2. Further, each time we get an x1 with #⇡�1(x1) =
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1, we see that 2 of those 8 potential values of x1 coalesce into 1 value.
So if we let

A = #
�
x1 2 P1 : ⇡�1(x1) = 2

 
,

B = #
�
x1 2 P1 : ⇡�1(x1) = 1

 
,

(12)

then we see that

B 0 1 2 3 4
A  8  6  4  2 = 0

(13)

We assume for the moment that C(1)
y0,z0 is irreducible,11 and we let

� :
]
C
(1)
y0,z0 �! C

(1)
y0,z0

be a desingularization of C(1)
y0,z0 , so the geometric genus of C(1)

y0,z0 is simply

the genus of
]
C
(1)
y0,z0 . We use the Riemann–Hurwitz genus formula

2 genus
�]
C
(1)
y0,z0

�
�2 = �2 deg(⇡��)+

X

x12P1

⇣
deg(⇡��)�#(⇡��)�1(x1)

⌘
.

(Our assumption that the characteristic is not 2 or 3 ensures that the
degree 4 map ⇡ � � is tamely ramified.) Substituting

deg(⇡ � �) = deg(⇡) · deg(�) = 4 · 1 = 4,

we get

genus
�]
C
(1)
y0,z0

�
= �3 +

1

2

X

x12P1

#(⇡��)�1(x1)<4

⇣
4�#(⇡ � �)�1(x1)

⌘

 �3 +
1

2

X

x12P1

#⇡�1(x1)<4

⇣
4�#⇡�1(x1)

⌘

= �3 + #
�
x1 2 P1 : #⇡�1(x1) = 2

 

+
3

2
#
�
x1 2 P1 : #⇡�1(x1) = 1

 

= �3 + A+
3

2
B using the notation in (12),

 5 from (13), since the max is at (A,B) = (8, 0).

Finally, we note that if C(1)
y0,z0 is reducible, then the above argument

works mutatis mutandis if we replace C
(1)
y0,z0 with any of its irreducible

components and note that now the map ⇡ has degree 1 or 2. This
completes the proof of Lemma 5.6. ⇤

11See Remark 5.7 for examples where C
(1)
y0,z0 is reducible.
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Remark 5.7. Lemma 5.6(a) says that that the algebraic sets described
in Definition 5.4 have dimension 1, but we note that they need not be
irreducible. For example, let W be a TIK3 surface whose equation F is
symmetric in y and z, i.e., F (x, y, z) = F (x, z, y). Then for any ⇠ 2 K
there is a factorization

F (x, ⇠, z)� F (x, y, ⇠) = F (x, z, ⇠)� F (x, y, ⇠) = (z � y)L(x, y, z),

where L(x, y, z) has degree 1 in y and z. It follows that the algebraic

set C(1)
⇠,⇠ is reducible, and indeed it is the union of two genus 1 curves,

each of which is isomorphic to the fibral curve

W
(3)
⇠

⇠=
�
(x, y) 2 A2 : F (x, y, ⇠) = 0

 

6. Tri-Involutive Markoff-Type K3 (MK3) Surfaces

The Marko↵ equation (1) and many of its variants admit not only
the involutions coming from the projections M ! A2, they also ad-
mit sign-change involutions and coordinate permutations coming from
the symmetry of the Marko↵ equation. We give a name to the TIK3
surfaces that have these extra automorphisms.

Definition 6.1. We let S3, the symmetric group on 3 letters, act
on (P1)3 by permuting the coordinates, and we let the group

(µ3
2)1 :=

�
(↵, �, �) : ↵, �, � 2 µ2 and ↵�� = 1

 
(14)

act on (P1)3 via sign changes,

✏↵,�,�(x, y, z) = (↵x, �y, �z). (15)

In this way we obtain an embedding12

G
� := (µ3

2)1 oS3 ,�! Aut(P1
⇥ P1

⇥ P1).

Definition 6.2. A Marko↵-type K3 (MK3) surface W is a TIK3 sur-
face whose (2, 2, 2)-form (6) is invariant under the action of G�, i.e.,
the (2, 2, 2)-form F describing W satisfies

F (x, y, z) = F (�x,�y, z) = F (�x, y,�z) = F (x,�y,�z),

F (x, y, z) = F (z, x, y) = F (y, z, x) = F (x, z, y) = F (y, x, z) = F (z, y, x).

Definition 6.3. Let W be an MK3 surface. We define a set of gener-
ators

Gen(G) = {�1, �2, �3} [ (µ3
2)1 [S3, (16)

12We remark that (µ3
2)1 oS3 is isomorphic to S4, but for our applications the

group G
� appears more naturally as the semi-direct product.
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and we let

G
� = h�1, �2, �3i ⇢ Aut(W),

G =
⌦
' : ' 2 Gen(G)

↵
=
⌦
G
�,G�↵

✓ Aut(W).

We remind the reader that the choice of Gen(G) a↵ects the description
of fibral automorphism groups and of G-connected fibers; see Defini-
tion 3.5.

We suspect that the full automorphism group of a generic MK3-
surface is G; but as we shall see in Remark 8.7, some MK3-surfaces
admit additional automorphisms. We start by describing some ele-
mentary properties of the group G.

Proposition 6.4. Let W be an MK3-surface, and let G
�
, G

�
, and G

be the subgroups of Aut(W) described in Definitions 6.1 and 6.3.

(a) G
�
is a normal subgroup of G.

(b) G = G
�
G
�
.

Proof. (a) Since G is defined to be the group generated by G
� and G

�,
it su�ces to show that G

� is contained in the normalizer of G�. We
let {i, j, k} = {1, 2, 3}, and for the purposes of this proof, we define
transpositions and sign changes

⌧ij = swap the i and j coordinates,

✏ij = multiply the i and j coordinates by �1.

Since S3 is generated by transpositions and (µ3
2)1 is generated by the

sign changes, it su�ces to check that G
� is normalized by the ⌧ij

and the ✏ij. This can be checked by an explicit computation, or al-
ternatively we can use the defining property ⇡ij � �k = ⇡ij of �k,
where ⇡ij is the projection map; see Definition 3.4. Thus momen-
tarily letting ⌧ : (P1)2 ! (P1)2 be the map that swaps the coordinates
and ✏i : (P1)2 ! (P1)2 be the map that changes the sign of the ith
coordinate, we compute

⇡ij � (⌧
�1
ij � �k � ⌧ij) = ⌧ � ⇡ij � �k � ⌧ij = ⌧ � ⇡ij � ⌧ij = ⇡ij,

⇡jk � (⌧
�1
ik � �k � ⌧ik) = ⌧ � ⇡ij � �k � ⌧ik = ⌧ � ⇡ij � ⌧ik = ⇡jk

⇡ij � (✏
�1
ij � �k � ✏ij) = ✏ij � ⇡ij � �k � ✏ij = ✏ij � ⇡ij � ✏ij = ✏2ij � ⇡ij = ⇡ij,

⇡ij � (✏
�1
ik � �k � ✏ik) = ✏i � ⇡ij � �k � ✏ik = ✏i � ⇡ij � ✏ik = ✏2i � ⇡ij = ⇡ij.

It follows from the definitions of the �i that

⌧�1
ij � �k � ⌧ij = �k, ✏�1

ij � �k � ✏ij = �k,

⌧�1
ik � �k � ⌧ik = �i, ✏�1

ik � �k � ✏ik = �k.
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Hence G
� normalizes G�, and indeed, (µ3

2)1 is in the centralizer of G�.
(b) By definition the group G is generated by G

� and G
�, and from (a),

we know that G
� is a normal subgroup of G. It follows that every

element of G can be written as �� with � 2 G
� and � 2 G

�. Hence G =
G
�
G
�. ⇤

Proposition 6.5. Let W/K be a (possibly degenerate) MK3-surface.

(a) There exist a, b, c, d, e 2 K so that the (2, 2, 2)-form F that de-

fines W has the form

Fa,b,c,d,e(x, y, z) = ax2y2z2 + b(x2y2 + x2z2 + y2z2)

+ cxyz + d(x2 + y2 + z2) + e = 0. (17)

(b) Let F be as in (a). Then W is non-degenerate, i.e., the projec-

tions ⇡ij : W ! (P1)2 are quasi-finite, if and only if

c 6= 0 and be 6= d2 and ad 6= b2.

(c) For generic values of (a, b, c, d, e) 2 A5
, a minimal regular model

for the MK3-surface defined by (17) is a K3 surface.

Remark 6.6. We can recover the classical (translated) Marko↵ equa-
tion for the surface Ma,k in Definition 1 as a special case of an Fa,b,c,d,e.
Thus Ma,k is given by the a�ne equation

F0,0,�a,1,�k(x, y, z) = x2 + y2 + z2 � axyz � k = 0.

We note, however, that the Marko↵ equation is degenerate, despite
the involutions being well-defined on the a�ne Marko↵ surface Ma,k.
This occurs because the involutions are not well-defined at some of the
points at infinity in the closure of Ma,k in (P1)3. Further, the Marko↵
surface is a rational surface, not a K3 surface.

Proof of 6.5. (a) The space of S3-invariant quadratic polynomials in
Z[x, y, z] is spanned by the following 10 polynomals:

(1) x2y2z2 (2) xyz2 + xy2z + x2yz

(3) xyz (4) x2y2z + x2yz2 + xy2z2

(5) x2 + y2 + z2 (6) x2y2 + x2z2 + y2z2

(7) x2y + x2z + xy2 + xz2 + yz2 + y2z

(8) xy + xz + yz (9) x+ y + z (10) 1

Of these, the polynomials that are also invariant for the double-sign
changes in (µ3

2)1 are (1), (3), (5), (6), and (10). Hence all
�
(µ3

2)1oS3

�
-

invariant (2, 2, 2)-polynomials have the form indicated in (a).
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(b) By symmetry, it su�ces to consider ⇡12 and �3. The map ⇡12 is
quasi-finite if and only if the fibers of the map ⇡12 are 0-dimensional.
Let F be the homogenization of the polynomial in (a). Then ⇡12 is
quasi-finite over the point

�
[↵, �], [�, �]

�
2 P1

⇥ P1

if and only if the polynomial F (↵, �; �, �;X3, Y3) is not identically 0.
Suppose first that c 6= 0. Since

⇣
the X3Y3 term of F (↵, �; �, �;X3, Y3)

⌘
= c↵���X3Y3,

we see that ⇡12 is quasi-finite unless ↵��� = 0. By the symmetry of F ,
it su�ces to consider the cases that ↵ = 0 and � = 0.

If ↵ = 0, then

F (0, 1; �, �;X3, Y3) = (b�2 + d�2)X2
3 + (d�2 + e�2)Y 2

3 .

Hence ⇡12 is quasi-finite at
�
[0, 1], [�, �], [↵3, �3]

�
unless

b�2 + d�2 = d�2 + e�2 = 0.

Since (�, �) 6= (0, 0), this is possible if and only if be = d2.
Similarly, if � = 0, we look at

F (1, 0; �, �;X3, Y3) = (a�2 + b�2)X2
3 + (b�2 + d�2)Y 2

3 .

Thus �3 is well-defined at
�
[1, 0], [�, �], [↵3, �3]

�
unless

a�2 + b�2 = b�2 + d�2 = 0.

Since (�, �) 6= (0, 0), this is possible if and only if ad = b2.
We next consider the case that c = 0. Then

F (↵, �; �, �;X3, Y3) = (a↵2�2 + b↵2�2 + b�2�2 + d�2�2)X2
3

+ (b↵2�2 + d↵2�2 + d�2�2 + e�2�2)Y 2
2 . (18)

We claim that there is always a point
�
[↵, �], [�, �]

�
2 (P1)2 such

that (18) is identically 0. This follows from the fact that the (1, 1)-
forms

aU1V1 + bU1V2 + bV1U2 + dU2V2 = 0, (19)

bU1V1 + dU1V2 + dV1U2 + eU2V2 = 0, (20)

define a non-empty subvariety of (P1)2, since taking
�
[u1, v1], [u2, v2]

�

to be a solution to (19) and (20), we see that
�
[u1/2

1 , v1/21 ], [u1/2
2 , v1/22 ]

�
is

a point at which (18) is identically 0. (If one or both of (19) and (20) is
identically 0, that makes it even easier to find a point on the subvariety
that they define.)
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This completes the proof that ⇡12 is quasi-finite if and only if c 6= 0
and be 6= d2 and ad 6= b2.
(c) See Proposition B.3(a) for the proof of this assertion. ⇤

7. Connected Fibral Components and the Cage for MK3

Surfaces

For this section we let W be an MK3-surface, as described in Defi-
nition 6.2, defined over a finite field Fq. We note that the S3-symmetry

ofW implies that for any t 2 P1(Fq), the three fibersW
(1)
t (Fq),W

(2)
t (Fq)

and W
(3)
t (Fq) have the same orbit structure, so in particular13

W
(i)
t (Fq) 2 ConnFib

�
W(Fq)

�
for some i 2 {1, 2, 3}

() W
(i)
t (Fq) 2 ConnFib

�
W(Fq)

�
for all i 2 {1, 2, 3}.

Thus the G-connected fibers inW(Fq) are determined by the projection
to P1(Fq) of ConnFib

�
W(Fq)

�
onto any of its coordinates. We denote

this set by

⇡ ConnFib
�
W(Fq)

�
=
n
t 2 P1(Fq) : W

(i)
t (Fq) 2 ConnFib

�
W(Fq)

�o
.

Then we have the useful characterization (for MK3-surfaces):

P 2 Cage
�
W(Fq)

�
() some coordinate of P is in ⇡ ConnFib

�
W(Fq)

�
.

8. A One Parameter Family of MK3 Surfaces

In the next few sections we study an interesting 1-parameter family of
MK3-surfaces. We assume throughout thatK is a field with char(K) 6=
2.

Definition 8.1. For k 2 K⇤ we define Wk to be the MK3-surface

Wk : x
2 + y2 + z2 + x2y2z2 + kxyz = 0.

Remark 8.2. We note that a minimal regular model for Wk is a K3
surface; see Proposition B.3(b). Further, in the notation of Proposi-
tion 6.5, the (2, 2, 2)-form defining Wk has (a, b, c, d, e) = (1, 0, k, 1, 0).
Hence

c = k 6= 0 and be = 0 6= 12 = d2 and ad = 1 6= 02 = b2,

so Proposition 6.5(b) tells us that Wk is non-degenerate.

13We note that for MK3-surfaces, we take Gen(G) as described in (16), so �-
connectivity of fibers on MK3-surfaces may employ coordinate permutations and
sign changes, as well as the usual �i automorphisms.
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Remark 8.3. Let ⇣ 2 K be an element satisfying ⇣4 = 1. Then there
is a K-isomorphism

Wk �! W⇣3k, (x, y, z) 7�! (⇣x, ⇣y, ⇣z). (21)

So we always have an identification Wk(K) ⇠= W�k(K), and if K
contains i =

p
�1, then there are further identifications Wk(K) ⇠=

W±ik(K).

Remark 8.4. The three involutions (7) on Wk are given explicitly by

�1(x, y, z) =

✓
�

kyz

1 + y2z2
� x, y, z

◆
,

�2(x, y, z) =

✓
x,�

kxz

1 + x2z2
� y, z

◆
,

�3(x, y, z) =

✓
x, y,�

kxy

1 + x2y2
� z

◆
.

We recall from Section 6 that G� is the group (µ3
2)1 oS3 of order 24

sitting in Aut(Wk) composed of sign changes and coordinate permuta-
tions, that G� is the normal subgroup of Aut(Wk) generated by �1, �2, �3,
and that G = G

�
G
� is the subgroup of Aut(Wk) generated by G� and G

�.

Remark 8.5. Let W
(i)
k,⇠ be a fiber of Wk. Then each of the involu-

tions �1, �2, �3 and each of the automorphisms in G
� defines an iso-

morphism from W
(i)
k,⇠ to some other (or possibly the same) fiber of Wk.

It follows that the singular points on a fiber are mapped to singular
points on a fiber. Hence the set

3[

i=1

[

⇠2P1

Sing(W (i)
k,⇠)

of fibral singular points is a finite subset of Wk that is G-invariant,
so it breaks up into a finite number of finite G-orbits. If ⇠ 6= 0,1
and ⇠4 6= 1, then it will be a G-orbit of size 24; cf. Table 3.

Proposition 8.6. Let k 2 K⇤
. The set of singular points of Wk always

contains the 4 points
�
(0, 0, 0), (0,1,1), (1, 0,1), (1,1, 0)

 
. (22)

The point (0, 0, 0) is fixed by G, and the other 3 singular points form

a G-orbit.
14

If k /2 {±4,±4i}, then the set (22) is the full set of singular
points of Wk.

14If we also allow the �-inversion involutions described in Remark 8.7, then the 4
singular points form a single orbit.
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For k = 4 the set of singular points is

Sing(W4) =
�
(0, 0, 0), (0,1,1), (1, 0,1), (1,1, 0)

(1, 1,�1), (1,�1, 1), (�1, 1, 1), (�1,�1,�1)
 
; (23)

and for the other k 2 {±4,±4i}, the singular points can be found using

the isomorphisms described in Remark 8.3. The points in (23) with

non-zero coordinates form a single G-orbit of size 4.

Remark 8.7 (MK3-Surfaces with Extra Involutions). The family of
MK3-surfaces Wk admit additional involutions in which two of x, y, z
are replaced by their multiplicative inverses.15 Thus analogously to (14)
and (15), we can define another action of (µ3

2)1 on (P1)3 via the formula

�↵,�,�(x, y, z) = (x↵, y�, z�), where (↵, �, �) 2 (µ3
2)1. (24)

We observe that the � and ✏ actions commute (since (�1)�1 = �1), so
we obtain an embedding

Ĝ
� :=

�
(µ3

2)1 ⇥ (µ3
2)1

�
oS3| {z }

We view this as a subgroup of Aut
�
(P1)3

�
.

,�! Aut(Wk),

where Ĝ
� has order 96. Since the classical Marko↵ equation (5) and

general MK3-surfaces (17) do not admit these extra automorphisms, we
will not include them when constructing orbits in Wk. So for example,
the finite orbits and G

�-generators in Wk(C) that we list in Table 3
are G-orbits, as are the finite field orbits in Wk(Fp) in Appendix C.
There would be some collapsing of generators and merging of orbits
if we also used the �-automorphisms. However, the existence of these
extra automorphisms can aid in studying the geometry of Wk, as will
be illustrated in the proof of Propositions 8.6 and 8.8.

More generally, Proposition 6.5 says that MK3-surfaces Wa,b,c,d,e are
described by (2, 2, 2)-forms Fa,b,c,d,e(x, y, z) that depend on 5 homoge-
neous parameters [a, b, c, d, e]. Then the formula

Fa,b,c,d,e(x, y, z)� Fa,b,c,d,e(x
�1, y�1, z)x2y2

=
⇣
(a� d)z2 + (b� e)

⌘
(x2y2 � 1),

combined with the x, y, z symmetry of Fa,b,c,d,e, imply that

�↵,�,� 2 Aut(Wa,b,c,d,e) () a = d and b = e.

Thus Wk = W1,0,k,1,0 corresponds to a = d = 1 and b = e = 0.

15Note that we’re really working in P1, so we formally set 0�1 = 1 and1
�1 = 0.
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Proof of Proposition 8.6:
We let

F (x, y, z) = x2 + y2 + z2 + x2y2z2 + kxyz (25)

be the polynomial defining Wk, and we use subscripts to denote partial
derivatives. The singular points on this a�ne piece of Wk are the
solutions to

F = Fx = Fy = Fz = 0. (26)

The ideal of Q[x, y, z, k] generated by the four polynomials in (26)
contains the following polynomials:16

x2
� y2 x(x4

� 1) x(24x2
� k2) x(k4

� 28)
x2

� z2 y(y4 � 1) y(24y2 � k2) y(k4
� 28)

y2 � z2 z(z4 � 1) z(24z2 � k2) z(k4
� 28)

(27)

The point (0, 0, 0) is always singular. Since (27) says that singular
points satisfy x2 = y2 = z2, any other singular point (x, y, z) necessarily
has xyz 6= 0, and then (27) forces

k4 = 28, 24x2 = 24y2 = 24z2 = k2, and x4 = y4 = z4 = 1.

From k4 = 28, we see that k 2 {±4,±4i}; and from x4 = y4 = z4 = 1,
we see that x, y, z 2 {±1,±i}. For each of these 4 possible values of k,
it can be directly checked that the points satisfying F = Fx = Fy = Fz

are those given in the table in the statement of the proposition.
It remains to check the points on the complement in (P1)3 of the a�ne

piece. To do that, we use the fact that (0, 0, 0) is the only singular point
of the a�ne piece of Wk that has a coordinate mapped to 1 under
the �↵,�,� inversion maps described in Remark 8.7. By symmetry, it
su�ces to check points P of the following forms, where y and z are
non-zero:

P Singular? Why?

(1, y, z) No ��1,�1,1(P ) = (0, y�1, z)
(1,1, z) No ��1,�1,1(P ) = (0, 0, z)
(1, y, 0) No ��1,�1,1(P ) = (0, y�1, 0)
(1,1, 0) Yes ��1,�1,1(P ) = (0, 0, 0)
(1, 0, 0) � /2 Wk

(1,1,1) � /2 Wk

⇤

16Indeed, this is true in the ring Z[2�1, x, y, z, k].
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Proposition 8.8. Let K be a field with char(K) 6= 2, let k 2 K⇤
, and

let ⇠ 2 P1(K). Then the fiber W
(1)
k,⇠ is singular if and only if

⇠ = 0 or ⇠ = 1 or k = ±2(⇠ ± ⇠�1).

The singular points on the singular fibers are as follows :

Sing
�
W

(1)
k,0

�
=
�
(0, 0, 0), (0,1,1)

�
,

Sing
�
W

(1)
k,1

�
=
�
(1,1, 0), (1, 0,1)

�
,

and for all ⇠ /2 {0,1} and for all u 2 {±1} and all v 2 {±1,±i},

Sing
�
W

(1)
u(⇠+v⇠�1),⇠

�
=
�
(⇠, v,�uv3), (⇠,�v, uv3)

 
.

By symmetry, analogous statements are true for W
(2)
k,⇠ and W

(3)
k,⇠ .

Proof. As in the proof of Proposition 8.6, we let F be the polyno-
mial (25) defining Wk, and we use subscripts to denote partial deriva-

tives. The fiber W (1)
k,⇠ is singular if and only if the simultaneous equa-

tions
F (⇠, y, z) = Fy(⇠, y, z) = Fz(⇠, y, z) = 0 (28)

have a solution. We compute

Resy
⇣
Resz(F, Fz),Resz(Fy, Fz)

⌘
= 212 · k8

· x26
· (2x2

� kx� 2)2

· (2x2
� kx+ 2)2 · (2x2 + kx� 2)2 · (2x2 + kx+ 2)2.

We first consider the case that ⇠ = 0. Then (28) forces y = z =
0, so the only a�ne singular point is (0, 0, 0). Using the inversion
automorphism fixing the x-coordinate that is described in Remark 8.7,
there is an additional singular point (0,1,1), so we find that

Sing(W (1)
k,0) =

�
(0, 0, 0), (0,1,1)

 
.

And similarly, using the inversion automorphisms in Remark 8.7 that
replace the x-coordinate with x�1, we see that

Sing(W (1)
k,1) =

�
(1,1, 0), (1, 0,1)

�
.

We now assume that ⇠ 6= 0,1. Then our assumptions that char(K) 6=

2 and W
(1)
k,x0

is singular imply that ⇠ is a root of one of the polynomials
2x2

± kx± 2. We will consider the case that

2⇠2 + k⇠ + 2 = 0,

and leave the similar computation for the other three cases to the
reader. Thus we assume that

k = �2(⇠ + ⇠�1) and W
(1)
k,⇠ is singular.
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Substituting the expression for k into (28), we find that (y0, z0) is a

singular point on the fiber W (1)
k,⇠ if and only if (y0, z0) satisfy

(y2z2 � 2yz + 1)⇠2 � 2yz + y2 + z2 = 0,

(yz2 � z)⇠2 � z + y = 0,

(y2z � y)⇠2 � y + z = 0.

Eliminating x or y or z from these three equations, we find that (y0, z0)
satisfy

y2 � 1 = z2 � 1 = (y � z)(yz � 1) = 0,

and these equations have two solutions,

(y0, z0) = (1, 1) and (y0, z0) = (�1,�1).

Finally, we substitute k = �2(⇠ + ⇠�1) and (x, y, z) = (⇠,±1,±1)
into (28) and verify that F , Fy, and Fz vanish. This proves that

Sing
�
W

(1)
�2(⇠+⇠�1),⇠

�
=
�
(⇠, 1, 1), (⇠,�1,�1)

 
for all ⇠ 6= 0,1,

which completes the proof of Proposition 8.8. ⇤
Remark 8.9. For a general TIK3-surface, the three projection maps
W ! P1 give W three di↵erent structures as a surface fibered by
genus 1 curves, and the corresponding Jacobian variety has a section
of infinite order whose translation action on W is the �i associated to
the projection. For MK3-surfaces, the S3-symmetry implies that the
three structures are the same. Using the explicit description of the
singular points on Wk in Proposition 8.6 and the singular fibers of Wk

in Proposition 8.8, one could compute a Néron model for Wk ! P1 and
compute the canonical height of the point on its Jacobian, but we will
not do this computation in the present article.

Proposition 8.10. Let Wk be the MK3-surface given in Definition 8.1,
let F be the associated polynomial, let y0, z0 2 P1

, and let C
(1)
y0,z0 be the

curve associated to F as given in Definition 5.4. If C
(1)
y0,z0 is singular,

then one of the following is true:

y0 or z0 = 0 or 1, y20 = z20 , y20z
2
0 = 1, y0 or z0 =

±k ±
p
k2 ± 16

4
.

By symmetry, analogous statements are true for C
(2)
x0,z0 and C

(3)
x0,y0.

Corollary 8.11. Let k 2 F⇤
q. Then

#

(
(x0, y0, z0) 2 Wk(Fq) :

one or more of C
(1)
y0,z0,

C
(2)
x0,z0, C

(3)
x0,y0 is singular

)
 144q.
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Proof of Proposition 8.10. To ease notation, we let b = y0 and c = z0.
An a�ne piece of the curve C

(1)
b,c is given by the equations

F (x, b, z) = F (x, y, c) = 0.

Hence a point (x, y, z) 2 C
(1)
b,c is a singular point if and only if

rank


Fx(x, b, z) 0 Fz(x, b, z)
Fx(x, y, c) Fy(x, y, c) 0

�
 1.

The rank condition and a bit of algebra yields three cases, which we
consider in turn.
Case 1: Fz(x, b, z) = Fy(x, y, c) = 0. In this case we are looking
for values of b, c, k such that the equations

F (x, b, z) = F (x, y, c) = Fz(x, b, z) = Fy(x, y, c) = 0

have a solution (x, y, z) 2 A3. Eliminating x, y, z from these four equa-
tions gives the equation

(b2 � c2)(b2c2 � 1) = 0.

Hence if there is a singular point, then c = ±b±1.
Case 2: Fx(x, b, z) = Fz(x, b, z) = 0. In this case, which is a ver-
sion of Proposition 8.8, we are looking for values of b, c, k such that the
equations

F (x, b, z) = F (x, y, c) = Fx(x, b, z) = Fz(x, b, z) = 0

have a solution (x, y, z) 2 A3. Eliminating x, y, z from these four equa-
tions gives the equation

b2(2b2 � bk � 2)(2b2 � bk + 2)(2b2 + bk � 2)(2b2 + bk + 2) = 0.

Hence if there is a singular point, then

b = 0 or b =
±k ±

p
k2 ± 16

4
.

Case 3: Fx(x, y, c) = Fy(x, y, c) = 0. By symmetry, this is the
same as Case 2 with y $ z and b $ c. ⇤

Proof of Corollary 8.11. It su�ces to bound the number of (y0, z0) 2

P1(Fq) such that C(1)
y0,z0 is singular, and then multiply by 3 for the xyz-

symmetry and also multiply by 2 because each (y0, z0) may yield 2
points on Wk. (This includes some duplicates, so some improvement is
possible.)
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According to Proposition 8.10, the singular cases are included in the
following table, where again we do not worry that some points appear
more than once:

(y0, z0) # with C
(1)
y0,z0 singular

y0 or z0 = 0 or 1  4q
y20 = z20 6= 0 or 1  2(q � 1)

y20z
2
0 = 1  2(q � 1)

y0 or z0 =
±k±

p
k2±16
4  16q

Hence there are at most 24q pairs (y0, z0), and as noted earlier, this
must be multiplied by 6 to account for the other cases. ⇤

9. Finite Orbits in Wk(C)
Table 3 describes finite G-orbits in Wk(C). We do not claim that this

is the complete list of possibilities. However, we note that the varied
nature of the finite orbits in the 1-parameter family Wk suggests that
any description of finite orbits over C on general TIK3-surfaces, or even
on MK3-surfaces, is likely to be quite complicated.

Most of the orbits in Table 3 were unearthed by examining small
orbits in Wk(Fp) that appear in Appendix C and looking at specific
properties of the points in the orbits. We explain the process for a
number of examples.

Question 9.1 (Uniform Boundedness Question). For each k 2 C,
we know from [13] that there are only finitely many finite G-orbits
in Wk(C). Is there a bound that is independent of k for the largest
such orbit? More generally, is there such a bound for finite orbits
in W(C) as W runs over all MK3-surfaces? And even more generally,
how about for all TIK3-surfaces, although in this case we look at orbits
for the group generated by the three involutions �1, �2, �3?

Remark 9.2. We mention that if we consider h�1, �2, �3i-orbits, then
the orbit of size 144 in Remark 9.6 consist of 12 orbits of size 12, the
orbit of size 160 in Remark 9.7 consist of 4 orbits of size 40, and the
orbit of size 288 described in Remark 9.8 consist of 12 orbits of size 24.
These provide lower bounds for the putative uniform bounds discussed
in Questions 1.3 and 9.1.

Definition 9.3 (Trivial Orbits). As noted in Proposition 8.6, the four
singular points in Wk form two G-orbits, namely the fixed point

�
(0, 0, 0)
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and the orbit of size 3,
�
(0,1,1), (1, 0,1), (1,1, 0)

 
.

We will call these orbits the trivial orbits in Wk, and as such, we have
not included them in the table in Appendix C.

Remark 9.4 (One-dimensional families of finite orbits in Wk(C)). Ta-
ble 3 contains several examples of one-dimensional families of finite
orbits in Wk(C), and indeed, these families are defined over Q or Q(i).
Ignoring the trivial orbits described in Definition 9.3, we have the fol-
lowing examples:

Size 24: There is a k 2 Q(t) such that Wk

�
Q(t)

�
has a G-orbit

of size 24.
Size 48: The set Wk

�
Q(i)

�
has a G-orbit of size 48

Size 192: There is a k 2 Q(t) such that Wk

�
Q(t)

�
has a G-orbit

of size 192.
Size 288: There is a curve C/Q of genus 9 and an element k 2

Q(C) in the function field of C so that Wk

�
Q(C)

�
has a G-orbit

of size 288.

Remark 9.5 (Orbits of Size 64). We describe the derivation of the
orbit of size 64 in Table 3. Experimentally in Appendix C we see
orbits of size 64 inWk(Fp) for various values of p and k, but the relation
between p and k is not clear. Examining the actual orbits in several
of these cases, we found that there was a single point in Wk(Fp) of the
form (�, �, �), and that the point (�, �, 1) also appeared in Wk(Fp).
We next computed

(�, �, �) 2 Wk () �6 + k�3 + 3�2 = 0,

(�, �, 1) 2 Wk () �4 + (k + 2)�2 + 1 = 0.

Eliminating k and the trivial solutions � 2 {0, 1} gives the equation17

�3 + �2 + � � 1 = 0.

This gives k = �(� + ��1)2. It is then an exercise to compute the G-
orbit of (�, �, �). It turns out to be the union of the G

� orbits of the
following five points:

Point (�, �, �) (�, 1
� ,

1
� ) (�, �, 1) ( 1� ,

1
� , 1) (�, 1

� , 1)
Size of G�-orbit 4 12 12 12 24

17We note that � = 0 gives the contradiction 1 = 0, while � = 1 yields k = �4
and an orbit with fewer than 64 elements.
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Remark 9.6 (Orbits of Size 144). The orbits of size 144 in Appendix C
tend to feature points of the form (↵, �, 1) and (↵, �,��) that satisfy

�1(↵, �,��) = (↵, �,��) and �3(↵, �,��) = (↵, �, 1).

We assume that ↵, � /2 {0,1} and that � 6= �1, and then we obtain
four conditions on k,↵, �:

(↵, �, 1) 2 Wk () k = �(↵ + ↵�1)(� + ��1),

(↵, �,��) 2 Wk () ↵�2k = ↵2(�4 + 1) + 2�2,

�1(↵, �,��) = (↵, �,��) () ↵2�2(�4 + 1) = 2�2,

�3(↵, �,��) = (↵, �, 1) () (�2
� � + 1)↵2 + � = 0.

The ideal in Z[↵, �, k] generated by these four relations is also generated
(according to Magma) by the three relations

↵4 + 4↵2
� 1 = 0, k = 4↵(↵2 + 4), �2 + (↵2 + 3)� + 1 = 0.

(We also note that since ↵ 6= 0, we can replace the formula for k
by k = 4↵�1.)

Remark 9.7 (Orbits of Size 160). The orbits of size 160 in Appendix C
tend to include a single point of the form (�, �, �) having the property
that

�1 � �3(�, �, �) = (1, �, ⇤). (29)

The assumption that (�, �, �) 2 Wk gives k = �(3 + �4)/�, and then
computing (29) explicitly gives

�1 � �3(�, �, �) =

✓
�9 + 2�5 + 5�

�8 + 6�4 + 1
, �,

2�

�4 + 1

◆
.

Setting the first coordinate to 1 and discarding the trivial solution � =
1 yields the condition

�8 + 2�4
� 4�3

� 4�2
� 4� + 1.

Setting � = 2�/(�4 + 1) for convenience, we find that the union of
the G

�-orbits of the following points is an orbit of size 160.

Point Size of G�-orbit

(�, �, �) 4
(��1, ��1, �) 12
(�, �, �) 12

(��1, ��1, �) 12
(�, ��1, ��1) 24

Point Size of G�-orbit

(1, �, �) 24
(1, ��1, �) 24
(1, �, ��1) 24
(1, ��1, ��1) 24
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Remark 9.8 (Orbits of Size 288). There is an orbit of size 288 inW11(F47)
whose points have coordinates in the following set of values:

t �t t�1
�t�1

↵ 3 44 16 31
� 6 41 8 39
� 11 36 30 17
� 15 32 22 25

In particular, we find that

�3(3, 6, 11) = (3, 6, 15) in W11(F47).

If we now treat ↵, �, � as indeterminates and want to require that

(↵, �, �) 2 Wk and that �3(↵, �, �) = (↵, �, �),

then we find that k and � are given by the formulas

k = �
↵2 + �2 + �2 + ↵2�2�2

↵��
, (30)

� =
↵2 + �2

�(↵2�2 + 1)
. (31)

Let P1 = (3, 6, 11) 2 W11(F47). Then the G-orbit of P1 has size 288,
while the sub-orbit for G

� = h�1, �2, �3i has size 24 and is described
in detail in Table 1. We observe that the subgroup of G� leaving the
orbit G�

· P1 invariant is

StabG�(G�
· P1) = {e,�}, where � : (x, y, z) 7�! (x,�z,�y).

Hence the full G-orbit of P1 2 W11(F47) has order

#G · P1 =
⇣
#G

�
· P1

⌘
·

✓
#G

�

#StabG�(G� · P1)

◆
= 24 ·

24

2
= 288.

Looking at Table 1, we find many relations in W11(F47), including
for example18

� = �1(↵, �, �)[1]
�1 = ��2(↵, �, �)[2] = �3(↵, �, �)[3], (32)

and
�2 � �3(↵, �, �) = �1 � �3(���1,��,↵�1). (33)

If we now view (32) and (33) as determining conditions on the indeter-
minate quanitites ↵, �, �, we find that ↵, �, � must satisfy certain equa-
tions, and restricting to those equations that are satisfied by (3, 6, 11)

18We use the convenient notation v[j] to denote the jth coordinate of the vec-
tor v.
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in F47, we find that ↵, �, � must satisfy

↵3�2
� ↵2� + ↵� �3 = 0, (34)

�3�3
� �2 + �� � �2 = 0, (35)

↵3�2 + ↵2� + ↵ + �3 = 0. (36)

These three relations for ↵, �, � define a reducible subset of A3, and a
computation using Magma shows that this set consists of two pieces.
There is a finite set of points defined by

3↵ + �3 = � + � = �4 + 3 = 0, (37)

and there is a geometrically irreducible reduced a�ne curve in A3 given
by the equations

C =

8
><

>:
(↵, �, �) :

↵2� � ↵2� + ↵�2�2
� ↵ + �2� � ��2 = 0

↵2�2
� ↵�2�3 + ↵� + ��3 = 0

�3�3
� �2 + �� � �2 = 0

9
>=

>;
(38)

We discard the points (37), since the orbit collapses if � = ��. A
further computation shows that the a�ne curve C has a unique singular
point at (0, 0, 0) and that it has (geometric) genus 9.

We let I denote the ideal in Q[↵, �, �] generated by the three polyno-
mials (38) defining the curve C. Then for each of the points Pj in Ta-
ble 1, treating ↵, �, � as indeterminates and taking k and � in Q(↵, �, �)
as specified by (30) and (31), we used Magma to check that �i(Pj) is as
specified in Table 1 if we work in the fraction field of the quotient ring
Q[↵, �, �]/I. Hence the G

�-orbit of (↵, �, �) has size 24 when we work
over this ring, and then as noted earlier, the full G-orbit has size 288.

In summary, we have shown that there is an irreducible a�ne curve
C/Q of geometric genus 9 and an element k 2 Q(C) in the function
field of C so that Wk

�
Q(C)

�
contains twelve G

�-orbits of size 24 that
combine to form one G-orbit of size 288.

However, we note that there are points on the curve C(C) for which
the orbit collapses. Thus if we set � to be equal to any of ↵�1, ��, or �,
then the G

�-orbits of the 12 points listed in Table 3 collapse pairwise,
and we obtain a total G-orbit of size 144, instead of 288. A short
computation shows that if we don’t allow ↵, �, � to be in {0,±1,±i},
then

� = ↵�1 =) 3↵4 = �1, � = �� =) �4 = �3, � = � =) �4 = �3.

Remark 9.9 (Orbits of Size 288: A Cautionary Tale). We have seen
in Remark 9.8 that there is an entire 1-parameter family of orbits of
size 288 in characteristic 0. However, there are also exceptional orbits
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P P �1(P ) �2(P ) �3(P )

P1 (↵, �, �) P2 P5 P7

P2 (��1, �, �) P1 P3 P11

P3 (��1,�↵�1, �) P4 P2 �P11

P4 (���1,�↵�1, �) P3 P6 P10

P5 (↵,��, �) P6 P1 �P7

P6 (���1,��, �) P5 P4 �P10

P7 (↵, �, �) P8 �P5 P1

P8 (��1, �, �) P7 P9 P12

P9 (��1,�↵�1, �) P10 P8 �P12

P10 (���1,�↵�1, �) P9 �P6 P4

P11 (��1, �,↵�1) P12 �P3 P2

P12 (��1, �,↵�1) P11 �P9 P8

Table 1. The G
�-orbit of (↵, �, �) = (3, 6, 11) 2

W11(F47), which we want to lift to a G
�-orbit in char-

acteristic 0. The map � 2 G
� is �(x, y, z) = (x,�z,�y).

of size 288 in finite characteristic that do not lift. For example, we
consider the orbit of size 288 in W11(F53). This orbit contains many
points of the form (↵,�↵, 1) and many points of the form (0, �, i�). We
note that an orbit containing points of this form does not fit into the
family described in Remark 9.8, but this does not preclude it coming
from some other characteristic 0 orbit, so we continue analyzing the
present example. In particular, we see that W11(F53) contains the
points

(�38, 38, 1)
�3
��! (15, 38, 12)

�2
��! (15, 11, 12)

�1
��! (0, 11, 12).

This suggests that we should take a point (↵,�↵, 1) 2 Wk satisfying

�1 � �2 � �3(↵,�↵, 1) = (0, �, i�). (39)

The assumption that (↵,�↵, 1) 2 Wk forces k = (↵ + ↵�1)2, and the
assumption that the first coordinate in (39) is 0 forces

↵18
�3↵16+12↵14

�16↵12+62↵10
�38↵8+44↵6

�8↵4+9↵2+1 = 0. (40)

We next observe that in W11(F53), the orbit of (38,�38, 1) has a �3

fixed point, specifically

�2 � �3(38,�38, 1) = (15, 11, 12) is fixed by �3. (41)

So in general we might want to impose the further condition that

�3 � �2 � �3(↵,�↵, 1) = �2 � �3(↵,�↵, 1) (42)
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to mirror the behavior in W11(F53). Assuming that ↵ 6= ±1, we find
that (42) forces ↵ to satisfy

↵12 + 2↵10 + 15↵8 + 12↵6 + 15↵4 + 2↵2 + 1 = 0. (43)

However, the conditions (40) and (43) are incompatible in characteris-
tic 0. Indeed, the resultant of the two polynomials in (40) and (43) is
equal to 280 · 532, so the fact that (41) is true in W11(F53) comes from
our choice of the specific finite field F53.

Remark 9.10 (Orbits of size 256: Another Cautionary Tale). There
is an orbit of size 256 in W8(F53) whose points have coordinates in the
following set of values:

{±1,±↵±1,±�±1,±�±1
} with ↵ = 16, � = 21, � = 39.

In particular, there are points

P1 = (↵,↵,↵) = (16, 16, 16) 2 W8(F53),

P2 = (↵,↵, ��1) = (16, 16, 34) 2 W8(F53),

P3 = (1,↵, �) = (1, 16, 21) 2 W8(F53),

P4 = (↵, �, �) = (16, 21, 39) 2 W8(F53).

We first note that

P1 = (↵,↵,↵) 2 Wk =) k = �
↵4 + 3

↵
,

P2 = (↵,↵, ��1) 2 Wk =) ↵4 + 1� 2↵� = 0 (assuming P2 6= P1),
(44)

P3 = (1,↵, �) 2 Wk =) (↵2 + 1)�2
� (↵4 + 3)� + ↵2 + 1 = 0,

(45)

P4 = (↵, �, �) 2 Wk =) ↵2 + �2 + �2 + ↵2�2�2
� (↵4 + 3)�� = 0.

(46)

This gives three relations on ↵, �, �. We can use the orbit structure
of W8(F53) to generate additional relations such as

�1(16, 16, 16) = (39�1, 16, 16) 2 W8(F53)

=) �1(↵,↵,↵) = (��1,↵,↵) 2 Wk

=) ↵4
� 2↵� + 1 = 0, (47)

�1(16, 21, 39) = (16, 21, 39) 2 W8(F53)

=) �1(↵, �, �) = (↵, �, �) 2 Wk

=) ↵2(↵4 + 3)�2
� (↵4

� 1) = 0. (48)
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The five relations (44)–(48) are incompatible in characteristic 0, al-
though they do of course have the solution (↵, �, �) = (16, 21, 39)
in F53. More precisely, the resultant of the five polynomials (44)–
(48) is 9752 = 23 · 23 · 53, and indeed in W2(F23) we find an orbit
of size 256 corresponding to (↵, �, �) = (6, 11, 18). So the orbits of
size 256 in W2(F23) and W8(F53) do not lift to characteristic 0.

Remark 9.11 (Orbits of Size 384: A Third Cautionary Tale). There
is a point P1 = (22, 22,�23) 2 W13(F71). A direct computation shows
that #G ·P1 = 384. We let (↵, �, �, �) = (22, 23, 9, 44), and we consider
the six points P1 . . . , P6 2 W13(F71) described in Table 2. We also
let Ĝ�

⇢ Aut(Wk) be the subgroup containing 96 automorphisms that
is described in Remark 8.7. Again by direct computation19 we find
that G · P1 ⇢ W13(F71) is invariant for Ĝ

�, and that it splits up into
six Ĝ

�-orbits with orbit representatives P1, . . . , P6 and orbits of size 48
or 96 as indicated in Table 2.

We now try to lift to characteristic 0, so we view ↵, �, �, � as inde-
terminates. However, it turns out that the six conditions

Pi 2 Wk for i = 1, . . . , 6

are inconsistent in Q[↵, �, �, �, k].

#Ĝ
�P P P �1(P ) �2(P ) �3(P )

48 P1 (↵,↵,��) (��1,↵,��) (↵, ��1,��) (↵,↵,��)
48 P2 (↵,↵,��) (��1,↵,��) (↵,��1,��) (↵,↵,��)
48 P3 (�,�, �) (�↵�1,�, �) (�,�↵�1, �) (�,�, �)
48 P4 (�,�, �) (�1,�, �) (�,�1, �) (�,�, �)
96 P5 (↵,��, ��1) (���1,��, ��1) (↵,�↵�1, ��1) (↵,��,↵)
96 P6 (�,��, 1) (��1,��, 1) (�,���1, 1) (�,��,��)

Table 2. The G-orbit of (↵,↵,��) = (22, 22,�23) 2

W13(F71), with � = 9 and � = 44. We want to lift it to a
G-orbit in characteristic 0. We note that every point in
the last three columns is in the Ĝ

�-orbit of one of
P1, . . . , P6.

19Somewhat surprisingly, for this example we find that G�
·P1 = G·P1 = Ĝ

�
G
�
·P1

in W13(F71).
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orbit
size

k G
�-generators

1 all k (0, 0, 0)
3 all k (0,1,1)
4 k = 4 (�1,�1,�1)
24 ⇠4 6= 1

k = �2(⇠ + ⇠�1)
(⇠, 1, 1), (⇠�1, 1, 1)

48 all k (1, i, 0), (1, i,1)
64 �3 + �2 + � � 1 = 0

k = �(� + ��1)2
(�,�,�), (�,�, 1)
(��1,��1, 1) (�,��1,��1)
(�,��1, 1)

96 ⌘4 = �1
k = �2⌘2

(⌘, ⌘3, 0) (⌘, ⌘3, ⌘6)
(⌘, ⌘2, ⌘5) (⌘, ⌘2,1)

144 ↵4 + 4↵2
� 1 = 0

�2 + (↵2 + 3)� + 1 = 0
�4 + 2�3

� 2�2 + 2� + 1 = 0
k = 4↵�1

(↵,�, 1), (↵�1,�, 1),
(↵,��1, 1), (↵�1,��1, 1),
(↵,�,��), (↵�1,��1,��)

160 �8 + 2�4
� 4�3

� 4�2
� 4� + 1 = 0

� = 2�/(�4 + 1)
k = �(3 + �4)/�

(�,�,�) (1,�, �)
(��1,��1,�) (1,��1, �)
(�,�, �) (1,�, ��1)
(��1,��1, �) (1,��1, ��1)
(�,��1, ��1)

192 ⇠8 6= 1
k = i(⇠2 � ⇠�2)

(⇠, i⇠, 0), (⇠,�i⇠, 1),
(⇠, i⇠�1, 1), (⇠, i⇠�1,1),
(⇠�1,�i⇠, 1), (⇠�1, i⇠,1),
(⇠�1, i⇠�1, 0), (⇠�1, i⇠�1, 1)

288
or

144⇤

↵2� � ↵2� + ↵�2�2

�↵+ �2� � ��2 = 0
↵2�2 � ↵�2�3 + ↵� + ��3 = 0
�3�3 � �2 + �� � �2 = 0

� =
↵2 + �2

�(↵2�2 + 1)

k = �
↵2 + �2 + �2 + ↵2�2�2

↵��

(↵,�, �) (��1,�, �)
(��1,�↵�1, �) (���1,�↵�1, �)
(↵,�, �) (��1,�, �)
(��1,�↵�1, �) (���1,�↵�1, �)
(↵,��, �) (���1,��, �)
(��1,�,↵�1) (��1,�,↵�1)

⇤Orbit size 144 if 3↵4 = �1
or �4 = �3 or �4 = �3

Table 3. Examples of finite G-orbits in Wk(C), where
in each case we list only one of W±k and W±ik; cf. Re-
mark 8.3.
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10. G-Orbits in Wk(Fp)

In this section we consider G-orbits in Wk(Fp), where we recall
that G is the set of automorphisms of Wk generated by the three in-
volutions �1, �2, �3, permutations of the three coordinates, and double
sign changes. Orbits in Wk(Fp) are necessarily finite, since Wk(Fp)
is itself a finite set. In Appendix C we list the G-orbit structure for
each 3  p  113. We first did these computations with a custom pro-
gram that we wrote in PARI-GP [31]. This program used a straight-
forward algorithm to compute the points in Wk(Fp), and then a hash
table to optimize finding and checking o↵ points in orbits. This pro-
gram allowed us to compute the components of Wk(Fp) for p  79.
We then reprogrammed the problem in Magma [8]. This allowed us to
double-check the PARI-GP program, and ultimately to extend the com-
putations to larger primes. Our first Magma implementation used the
permutation group package in Magma and was a bit slower than PARI-
GP. When we replaced the Magma permutation group package with the
Magma graph theory package, the computations were roughly 10 times
faster. This implementation used a Magma function that computes
points on projective subvarieties of (P1)3(Fp). When we replaced this
with a Magma function that computes points on a�ne subvarieties
of A3(Fp) and filled in the few extra points on Wk(Fp) lying at infinity,
we picked up roughly another order of magnitude in speed. To give an
idea of the resources used, we note that the program computed the or-
bits in Wk(F113) for 29 values of k in roughly 31 minutes on a MacBook
Pro (2021) using an Apple M1 Pro chip.

In view of the isomorphisms provided by Remark 8.3, for p ⌘ 3 (mod 4)
we compute the orbit structure of Wk(Fp) for only one of ±k 2 F⇤

p; and
for p ⌘ 1 (mod 4), we compute the orbit structure of Wk(Fp) for only
one of ±k,±ik 2 F⇤

p, where i =
p
�1 2 Fp. In the tables in Appen-

dix C, we have also omitted the trivial orbits of size 1 and 3 described
in Definition 9.3.

Reducing the characteristic 0 orbits in Table 3 modulo p yields some
of the small characteristic p orbits in Appendix C. In particular, Table 4
lists the characteristic p orbits of sizes 144, 160 and 288 for p  79 that
come from characteristic 0.

11. Fibral Orbits in Wk(Fp)

As usual, we let

G = h�1, �2, �3, ⌧12, ⌧13, ⌧23, ✏12, ✏13, ✏23i ⇢ Aut(Wk).
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p k ↵ � Orbit size

11 1 4 5 144
19 8 11 4 144
29 1 4 18 144
29 11 3 2 144
31 2 2 3 144
59 9 7 21 144
71 34 21 59 144
79 6 27 63 144

Orbits of size 144: Remark 9.6

p k � � Orbit size

19 2 6 10 160
23 5 20 19 160
31 6 22 8 160
41 1 25 35 160
41 4 31 34 160
59 8 36 38 160
67 27 11 49 160
73 18 9 16 160

Orbits of size 160: Remark 9.7

p k ↵ � � Orbit size

19 9 7 2 3 144 �4 = �3
23 4 10 8 9 288
43 2 28 13 14 144 3↵4 = �1
47 11 3 6 11 288
59 23 13 33 8 288
61 15 4 7 18 288
67 31 5 30 12 144 3↵4 = �1
71 13 10 44 16 288
79 35 36 8 59 288
79 36 12 19 51 288
Orbits of sizes 144 and 288: Remark 9.8

Table 4. W(Fp) orbits of sizes 144, 160 and 288 in Ta-
bles 8–11 coming from W(Q) orbits in Table 3.

For x0, y0, z0 2 K, we denote the fibers of Wk(K) as usual by

W
(1)
k,x0

=
�
(x0, y, z) 2 Wk(K)

 
,

W
(2)
k,y0

=
�
(x, y0, z) 2 Wk(K)

 
,

W
(3)
k,z0

=
�
(x, y, z0) 2 Wk(K)

 
.

The G-fibral automorphism group of a fiber is the subgroup of G that
maps the fiber to itself, and we use the action of G-fibral automor-
phism group to define the fibral orbit(s) of the points on the fiber. See
Definitions (3.5) and (3.6) for further details.

The G-fibral automorphism group of the fiber W (1)
k,x0

is generated by
the two involutions �2 and �3 that fix x0, the transposition ⌧23 that
swaps the y and z coordinates, and the map ✏23 that changes the sign
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of y and z; and similarly for the other fibers. Thus20

G
(1)
x0

= h�2, �3, ⌧23, ✏23i ⇢ Aut
�
W

(1)
x0

�
,

G
(2)
y0 = h�1, �3, ⌧13, ✏13i ⇢ Aut

�
W

(2)
y0

�
,

G
(3)
z0 = h�1, �2, ⌧12, ✏12i ⇢ Aut

�
W

(3)
z0

�
.

We recall that since Wk is an MK3-surface, there is a set of points

⇡ ConnFib
�
Wk(Fq)

�
⇢ P1(Fq)

such that

t 2 ⇡ ConnFib
�
Wk(Fq)

�
()

W
(i)
t (Fq) ✓ Cage

�
Wk(Fq)

�
for one (equivalently all) i 2 {1, 2, 3}.

Example 11.1. We consider the surface W1 over the finite field F53.
The set W1(F53) has six G-orbits of sizes, respectively, 1, 3, 24, 24, 48
and 3456. We are going to show that the cage in the big G-component
of W1(F53) is not cage-connected, and hence from Proposition 4.4, the
big G-component of W1(F53) does not have the fiber jumping property.

We compute the number of components on the various fibers, and
when we do so, we find that

⇡ ConnFib
�
W1(F53)

�
= {±2,±4,±6,±8,±9,±11,±13,±20,±24,±26}.

(49)
Next, for each t in ⇡ ConnFib

�
W1(F53)

�
, we would like to know which

of the coordinates in ⇡ ConnFib
�
W1(F53)

�
appear as the coordinate of

some point in the (connected) fiber W (i)
t (F53). In general, if S is any

set of points in (P1)3, we define

Flatten(S) = the set of all coordinates of all points in S.

20We have listed more generators than needed. For example, �3 = ⌧23 � �2 � ⌧23,

so Aut
�
W

(1)
x0

�
= h�2, ⌧23, ✏23i, and similarly for the other fibers.
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20○

6○

9○
8○

26○

2○
24○

11○

4○ 13○

Figure 2. The two cage-connected components of the
cage of the big G-connected component of W1(F53),
where the segment labeled t○ denotes the union of the
six connected fibers [i=1,2,3 [✏=±1 W

(i)
1,✏t(F53)

Then we may compute the connectivity of the cage of W1(F53) using
the data in the following table.

t Flatten
�
W

(1)
1,t (F53)

�
\ ⇡ ConnFib

�
W1(F53)

�
r {t}

±2 {±6,±8,±9,±20}
±4 {±11,±24}
±6 {±2,±8,±20,±26}
±8 {±2,±6,±9,±20,±26}
±9 {±2,±8,±20,±26}
±11 {±4,±13,±24}
±13 {±11,±24}
±20 {±2,±6,±8,±9,±26}
±24 {±4,±11,±13}
±26 {±6,±8,±9,±20}

Thus the cage in the big component of W1(F53) is not cage-connected.
It consists of the following two pieces, which are illustrated in Figure 2:

[

t2{±2,±6,±8,±9,±20,±26}

[

i2{1,2,3}

W
(i)
1,t and

[

t2{±4,±11,±13,±24}

[

i2{1,2,3}

W
(i)
1,t
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t0\p 5 7 11 13 17 19 23 29 31 37 41

1 2 1 1 4 6 1 1 8 1 10 12
0 3 2 2 5 6 2 2 9 2 11 12
1 2 1 1 2 2 2 2 3 3 4 3
2 1 1 1 2 3 1 1 1 1 2 3
3 1 1 1 2 2 0 1 2 1 3 1
4 2 1 1 2 4 1 1 2 1 6 2
5 1 1 2 3 1 1 1 1 4 2
6 1 1 1 2 0 1 2 1 3 2
7 1 1 2 1 1 3 1 1 1
8 1 2 2 1 1 2 1 2 1
9 1 2 2 1 1 2 1 4 4
10 1 2 2 1 1 1 1 3 2
11 2 2 1 2 2 2 2 1
12 2 3 1 2 2 1 3 1
13 4 0 1 2 1 3 4
14 2 1 1 1 1 3 1
15 3 1 1 1 1 2 2
16 2 0 1 2 1 1 1
17 1 1 2 1 3 1
18 2 1 2 1 1 1
19 1 1 1 1 6
20 1 2 2 3 2
21 1 2 1 1 2
22 2 3 1 2 6
23 2 1 3 1
24 1 1 3 1
25 2 1 3 1
26 2 1 2 2
27 1 1 3 1
28 3 1 4 4
29 1 2 1
30 3 1 1
31 3 2
32 4 4
33 6 1
34 3 1
35 2 2
36 4 2
37 2
38 1
39 3
40 3

Table 5. # of fibral Aut(W (i)
1,t0)-orbits in W1(Fp) for i = 1, 2, 3
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12. The curious case of W4(Fp) with p ⌘ 1 (mod 8)

We close with the curious case ofW4(Fp), which seems to consistently
have two large orbits when p ⌘ 1 (mod 8). We remark that the classical
a�ne surface M1,4, which is known as the Cayley surface, also has an
unusual Fp-orbit structure due to the fact that it admits a double cover
by (Gm)2 in which the involutes �1, �2, �3 become monomial maps; see
for example [19]. There are analogous MK3 surfaces in which (Gm)2 is
replaced by E2, but the fibers of such surfaces are all isomorphic curves,
while the j-invariants of the fibers of W4 vary, so W4 does not appear
to be an MK3 analogue of the Cayley surface. In any case, we list in
Table 6 the sizes of the components of W(Fp) for all primes p  113
satisfying p ⌘ 1 (mod 8).

Remark 12.1 (Addendum). After submission of this paper, one of
the authors spoke about the material in this section at a conference.
Evan O’Dorney, who was in the audience, then came up with an expla-
nation [29]. His proof uses an ingenious construction of a G-invariant
map

W4(Fp) �! F⇤
p/(F⇤

p)
2,

which he uses to show that W4(Fp) has G-invariant sets, each of size
roughly 1

2p
2.

p small orbits two largest orbits

17 4, 16, 24, 482 64, 288
41 4, 24, 40, 48, 72, 120, 160, 1923, 216 288, 576
73 4, 24, 40, 48, 120, 160, 192, 2882 1920, 2976
89 4, 24, 48, 1602, 1922, 2882 3264, 4512
97 4, 24, 48, 192, 960 3840, 5408
113 4, 24, 48 6656, 7488

Table 6. Orbit sizes in W4(Fp) for p ⌘ 1 (mod 8). We
omit the trivial orbit {(0, 0, 0)} and that of (1,1, 0) of
size 3. The notation Nd indicates d orbits of size N .
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Appendix A. Geometry of (2, 2)-curves in P1
⇥ P1

In this section we briefly discuss the well-known geometry of smooth
(2, 2)-curves C ⇢ P1

⇥P1. Such a curve C has genus 1, so its Jacobian

E = Jac(C) = Pic0(C)

is an elliptic curve. There is a natural action of E on C. If we identify C
with Pic1(C), then the action is simply

Pic0(C)⇥ Pic1(C)| {z }
this is E ⇥ C

�! Pic1(C),
�
L,OC(D)

�
7�! L⌦OC(D).

The two double-cover projections ⇡i : C ! P1 have associated in-
volutions si characterized by ⇡i � si = ⇡i. The degree 2 line bun-
dles Li = ⇡⇤

OP1(1) are independent elements of Pic(C), so their dif-
ference L1 ⌦ L

�1
2 gives a non-trivial element of Pic0(C) = E. The

involutions and line bundles are related as follows. To ease notation,
we write

s1(P1, P2) = (P1, P̄2) and s2(P1, P2) = (P̄1, P2).

Then

L1 = OC

�
⇡⇤
1(P1)

�
= OC

�
(P1, P2) + (P1, P̄2)

�

= OC

�
(P1, P2) + s1(P1, P2)

�
,

and similarly
L2 = OC

�
(P1, P2) + s2(P1, P2)

�
.

Hence

OC

�
s1(P1, P2)

�
= L1 ⌦OC

�
(P1, P2)

��1
,

OC

�
s2(P1, P2)

�
= L2 ⌦OC

�
(P1, P2)

��1
,

so the composition s2 � s1 is given by

OC

�
s2 � s1(P1, P2)

�
= L2 ⌦OC

�
s1(P1, P2)

��1

= L2 ⌦

⇣
L1 ⌦OC

�
(P1, P2)

��1
⌘�1

= L2 ⌦ L
�1
1 ⌦OC

�
(P1, P2)

�
.

Thus s2 � s1 : C ! C is translation by the point L2 ⌦ L
�1
1 2 E that is

constructed using the two projection maps.
One can use invariant theory to give explicit formulas for E and its

translation point explicitly in terms of the equation for C. We thank
Wei Ho for providing us with these formulas, which appear in her joint
paper [6, Section 6.1].
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We write the equation of

C ⇢ P1
⇥ P1 = ProjK[X1, X2]⇥ ProjK[Y1, Y2]

as

C :
�
X2

1 X1X2 X2
2

�
0

@
a b c
d e f
g h i

1

A

0

@
Y 2
1

Y1Y2

Y 2
2

1

A = 0. (50)

N.B. The a, b, c, . . . we use in (50) and Table 7 are not the same as
the a, b, c, . . . used for the coe�cients of MK3 surfaces.

Table 7 gives explicit formulas for four invariants X0, Y0, A,B 2

Z[a, b, . . . , h, i] of C having respective degrees 2, 3, 4, and 6. Then E =
Jac(C) and the point L2 ⌦ L

�1
1 on E are given by

E : Y 2 = X3 + AX +B and (X0, Y0) 2 E.

Appendix B. Generic TIK3 and MK3 surfaces are K3, and

all Wk surfaces are K3

At the suggestion of a referee, we sketch a proof that smooth minimal
models of generic TIK3 and MK3 are K3 surfaces, and that smooth
minimal models of all Wk surfaces are K3 surfaces. We start with the
case of TIK3 surfaces.

Proposition B.1. A minimal regular model of a generic TIK3 surface

is a K3 surface.

Proof. A generic TIK3 surface W is smooth, so we may assume that W
is a smooth surface of type (2, 2, 2) in (P1)3. The fact that such surfaces
are K3 is well-known, but for the convenience of the reader, we sketch
a proof. To ease notation, we momentarily write P = (P1)3.

We need to show that H1(OW) = 0 and KW ⇠= OW . Taking coho-
mology of the exact sequence

0 �! OP(�2,�2,�2) �! OP �! OW �! 0

gives a long exact sequence containing the fragment

�! H1(P,OP) �! H1(P,OW) �! H2
�
P,OP(�2,�2,�2)

�
�!

The left-hand group is H1(P1,OP1)3 = 0. For the right-hand group, we
compute

H2
�
P,OP(�2,�2,�2)

�
⇠= H0

�
P,KP ⌦OP(�2,�2,�2)_

�0

Serre duality [23, III.7.7],

⇠= H0
�
P,OP(�2,�2,�2)⌦OP(2, 2, 2)

�0

since KP
⇠= OP(�2,�2,�2)
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X0 = 3(e2 � 4df + 8cg � 4bh+ 8ai),

Y0 = 108(ceg � bfg � cdh+ afh+ bdi� aei),

A = �27(e4 � 8de2f + 16d2f2
� 8ce2g � 16cdfg + 24befg � 48af2g

+ 16c2g2 + 24cdeh� 8be2h� 16bdfh+ 24aefh� 16bcgh

+ 16b2h2 � 48ach2 � 48cd2i+ 24bdei� 8ae2i� 16adfi

� 48b2gi+ 224acgi� 16abhi+ 16a2i2),

B = �54(e6 � 12de4f + 48d2e2f2
� 64d3f3

� 12ce4g + 24cde2fg

+ 36be3fg + 96cd2f2g � 144bdef2g � 72ae2f2g + 288adf3g

+ 48c2e2g2 + 96c2dfg2 � 144bcefg2 + 216b2f2g2 � 576acf2g2

� 64c3g3 + 36cde3h� 12be4h� 144cd2efh+ 24bde2fh+ 36ae3fh

+ 96bd2f2h� 144adef2h� 144c2degh+ 24bce2gh+ 48bcdfgh

� 144b2efgh+ 720acefgh� 144abf2gh+ 96bc2g2h+ 216c2d2h2

� 144bcdeh2 + 48b2e2h2 � 72ace2h2 + 96b2dfh2 � 144acdfh2

� 144abefh2 + 216a2f2h2 + 96b2cgh2 � 576ac2gh2 � 64b3h3 + 288abch3

� 72cd2e2i+ 36bde3i� 12ae4i+ 288cd3fi� 144bd2efi+ 24ade2fi

+ 96ad2f2i� 576c2d2gi+ 720bcdegi� 72b2e2gi� 480ace2gi� 144b2dfgi

� 960acdfgi+ 720abefgi� 576a2f2gi� 576b2cg2i+ 2112ac2g2i� 144bcd2hi

� 144b2dehi+ 720acdehi+ 24abe2hi+ 48abdfhi� 144a2efhi+ 288b3ghi

� 960abcghi+ 96ab2h2i� 576a2ch2i+ 216b2d2i2 � 576acd2i2 � 144abdei2

+ 48a2e2i2 + 96a2dfi2 � 576ab2gi2 + 2112a2cgi2 + 96a2bhi2 � 64a3i3).

Table 7. Invariants of the biquadratic form (50)

⇠= H0(P,OP)
0 = 0.

Hence H1(OW) = 0.
The general formula for the canonical bundle on a smooth subvari-

ety [23, II.8.20] gives

KW ⇠= KP⌦OP(W)⌦OW ⇠= OP(�2,�2,�2)⌦OP(2, 2, 2)⌦OW ⇠= OW .

This completes the proof that W is a K3 surface. ⇤

We next recall the classical geometric classification of elliptic surfaces
over P1 via their minimal Weierstrass models.



ORBITS ON K3 SURFACES OF MARKOFF TYPE 53

Lemma B.2. Let K be a field of characteristic not equal to 2 or 3,
let A(T ), B(T ) 2 K[T ] be polynomials such that

�(T ) := 4A(T )3 + 27B(T )2 6= 0

and

gcd(A(T )3, B(T )2) is 12th-power-free in K[T ],

let

r = max
n⌃

1
4 deg(A)

⌥
,
⌃
1
6 deg(B)

⌥o
, (51)

i.e., r is the smallest integer satisfying r � 1
4 deg(A) and r � 1

6 deg(B),
and let

�(A,B) :=
1

12

⇣
deg�(T ) + ordT=0 T

12r�(T�1)
⌘
.

Let EA,B/K(T ) be the elliptic curve defined by the Weierstrass equa-

tion

EA,B : Y 2 = X3 + AX +B,

and let EA,B ! P1
be the minimal regular elliptic surface with generic

fiber EA,B. Then the quantity �(A,B) is a non-negative integer, and

we have the following classification:

�(A,B) Geometry of EA,B

0 EA,B is a product

1 EA,B is a rational surface

2 EA,B is a K3 surface

� 3
EA,B is an elliptic surface

of Kodaira dimension 1

Proof. Let L be the fundamental line bundle attached to EA,B as de-
fined in [28, II §4], so in particular the minimal discriminant �(T )
defines a global section � of L12.

We first compute the order of � at 1 by setting T = S�1 and
changing coordinates of the Weierstrass equation to obtain a minimal
model at (S). Thus

EA,B : Y 2 = X3 + S4rA(S�1)X + S6rB(S�1), (52)

where defining r by (51) makes (52) into a minimal Weierstrass equa-
tion at (S). Then

ord1(�) = ordS=0

⇣
4
�
S4rA(S�1)

�3
+ 27

�
S6rB(S�1)

�2⌘

= ordS=0 S
12r�(S�1). (53)

We use this to compute

12 deg(L) = deg(�) since � is a section of L12,
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=

✓X

�2A1

ord�(�)

◆
+ ord1(�)

=

✓X

�2A1

ordT=�

�
�(T )

�◆
+ ord1(�)

= deg
�
�(T )

�
+ ordT=0 T

12r�(T�1) from (53).

This shows that deg(L) = �(A,B), and the classification given in the
table is then an immediate consequence of [28, Lemma III.4.6(a)]. ⇤

We now have the tools required to show that generic MK3 surfaces
are K3 surfaces, and that all Wk surfaces (always with the restriction
that k 6= 0) are K3 surfaces.

Proposition B.3. Let W/K be an MK3 surface defined over a field

of characteristic not equal to 2 or 3, so from Proposition 6.5 there

exist a, b, c, d, e 2 K so that W = Wa,b,c,d,e is defined by a (2, 2, 2)-form
of the following shape:

Fa,b,c,d,e(x, y, z) = ax2y2z2 + b(x2y2 + x2z2 + y2z2)

+ cxyz + d(x2 + y2 + z2) + e = 0. (54)

Let cWa,b,c,d,e be a minimal regular model for Wa,b,c,d,e.

(a) For generic (a, b, c, d, e) 2 A5
, the surface cWa,b,c,d,e is a K3 surface.

(b) The surface cWk := cW1,0,k,1,0 is a K3 surface for all values of k 6= 0.

Proof. Viewing Wa,b,c,d,e as being fibered via ⇡3 : Wa,b,c,d,e ! P1, we
can write the a�ne equation (54) for Wa,b,c,d,e as a matrix product

�
x2 x 1

�
0

@
az2 + b 0 bz2 + d

0 cz 0
bz2 + d 0 dz2 + e

1

A

0

@
y2

y
1

1

A = 0

The material in Section A, and in particular the formulas in Table 7,
say that the Jacobian of Wa,b,c,d,e has Weierstrass equation

Ea,b,c,d,e = Jac(Wa,b,c,d,e) : Y
2 = X3 + AX +B,

where A B, and � have the form

A(z) = A(a, b, c, d, e; z)

= �24 · 33 · (a2d2 + 14ab2d+ b4)z8 + (l.o.t.),

B(z) = B(a, b, c, d, e; z)

= 27 · 33 · (ad+ b2) · (a2d2 � 34ab2d+ b4)z12 + (l.o.t.),

� = �(a, b, c, d, e; z)
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= 28 · 312 · f1 · f2 · f
2
3 · f 2

4 · f 2
5 , (55)

with f1, . . . , f5 given by the formulas

f1 = az2 + b, f2 = dz2 + e, f3 = bz2 + d, (56)

f4 = 4(ad� b2)z4 � 4bcz3 + (4ae� 4bd� c2)z2

� 4cdz + 4(be� d2), (57)

f5 = 4(ad� b2)z4 + 4bcz3 + (4ae� 4bd� c2)z2

+ 4cdz + 4(be� d2). (58)

(a) Since we are interested in generic values of a, b, c, d, e, we may as-
sume that

d2a2 + 14db2a+ b4 6= 0,

(ad+ b2) · (a2d2 � 34ab2d+ b4) 6= 0,

abd(ad� b2) 6= 0.

These conditions ensure that

deg(A) = 8, deg(B) = 12, deg(�) = 24,

so in the notation of Lemma B.2, we have

r = 2 and �(A,B) =
1

12

�
24 + (24� 24)

�
= 2.

It follows from Lemma B.2 that cWa,b,c,d,e is a K3 surface provided that
we check the minimal Weierstrass equation condition that generically,
the quantity gcd

�
A(z)3, B(z)2

�
is 12th-power-free. The definition � =

4A3 + 27B2 implies that

� is 12th-power-free =) gcd(A3, B2) is 12th-power-free.

so it su�ces to show that � is generically 12th-power-free. Using the
factorization (55) of �, it su�ces to restrict to values of (a, b, c, d, e)
such that the polynomials f1, . . . , f5 described by (56)–(58) are square-
free and pairwise relatively prime as polynomials in z. It thus su�ces
to take (a, b, c, d, e) satisfying

✓ 5Y

i=1

Discz(fi)

◆
·

✓ 5Y

i,j=1
i 6=j

Resz(fi, fj)

◆
6= 0. (59)

The non-equality (59) is a Zariski open condition in A5. This completes
the proof that there is a non-empty Zariski open subset U of A5 such
that fWa,b,c,d,e is a K3 surface for all (a, b, c, d, e) 2 U .
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(b) For the Wk surfaces, the formulas are much simplified, and we find
that

A = �432z8 + 216k2z6 + · · · ,

B = �3456z12 + 2592k2z10 + · · · ,

� = 28 · 312 · z4 · (2z2 � kz � 2)2 · (2z2 � kz + 2)2

· (2z2 + kz � 2)2 · (2z2 + kz + 2)2. (60)

As in the proof of (a), it su�ces to show that � is 12th-power-free.
The explicit factorization (60) of � tells us that

� is not 12th-power-free =)

0

@
at least two of the
polynomials 2z2 ± kz ± 2
have a common root

1

A .

There are six pairs of polynomials, and their pairwise resultants can be
computed from

Res(2z2 + ✏kz + 2✏, 2z2 + �kz � 2✏) = 64✏2 + 4k2✏(�2 � ✏2),

Res(2z2 + ✏kz + ✏2, 2z2 � ✏kz + ✏2) = 16k2✏3,

by taking �, ✏ 2 {±1}. In particular, we see that

k 6= 0 =) � is 12th-power-free,

and indeed k 6= 0 implies that � is 5th-power-free.
This allows us to compute, using the notation from Lemma B.2,

r = max
n⌃

1
4 deg(A)

⌥
,
⌃
1
6 deg(B)

⌥o
= max

n⌃
8
4

⌥
,
⌃
12
6

⌥o
= 2,

�(A,B) =
1

12

⇣
deg�(z) + ordz=0 z

12r�(z�1)
⌘

=
1

12

⇣
20 + ordz=0 z

24(216312z�20 + · · · )
⌘

= 2.

It follows from Lemma B.2 that cWk is a K3 surface for all k 6= 0. ⇤

Appendix C. Orbits of Wk over finite fields

This appendix contains tables listing the orbit sizes for Wk(Fp).
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p k orbit sizes

3 1 4

5 1 4, 48

7 1 64
7 2 24
7 3 4

11 1 144
11 2 64
11 3 24
11 4 4, 128
11 5 24, 64

13 1 24, 48, 192
13 2 24, 40, 48, 64, 120
13 4 4, 48, 192

17 1 4, 16, 24, 482, 64, 288
17 2 48, 96, 192
17 3 24, 48, 384
17 6 24, 48, 160, 192

19 1 24, 160
19 2 24, 160
19 3 320
19 4 4, 320
19 5 24, 288
19 6 24, 288
19 7 432
19 8 288
19 9 48, 64, 1442

23 1 24, 448
23 2 256, 352
23 3 24, 336
23 4 4, 96, 288
23 5 24, 112, 160
23 6 448
23 7 576
23 8 24, 448
23 9 608
23 10 448
23 11 24, 384

p k orbit sizes

29 1 40, 48, 120, 144, 192, 352
29 2 24, 48, 352, 672
29 3 242, 48, 1152
29 4 4, 48, 1922, 2882

29 6 242, 48, 1184
29 8 24, 48, 64, 96, 288, 576
29 11 48, 144, 1922, 384

31 1 24, 800
31 2 24, 144, 544
31 3 896
31 4 4, 768
31 5 24, 688
31 6 24, 160, 256, 384
31 7 24, 864
31 8 864
31 9 864
31 10 1024
31 11 1056
31 12 24, 624
31 13 1120
31 14 24, 800
31 15 1024

37 1 362, 48, 722, 160, 192,
216, 288, 384

37 2 24, 48, 72, 216, 576, 672
37 3 242, 48, 768, 1056
37 4 4, 48, 192, 384, 960
37 5 242, 48, 1792
37 8 24, 48, 480, 1152
37 9 24, 48, 160, 192, 1312
37 10 24, 48, 1664
37 15 48, 160, 1922, 288, 624

Table 8. Non-trivial orbits in Wk(Fp); cf. Defini-
tion 9.3. The notation Nd indicates d orbits of size N .
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p k orbit sizes

41 1 48, 64, 160, 1632
41 2 24, 40, 48, 96, 120, 192, 1536
41 3 24, 48, 192, 1824
41 4 4, 24, 40, 48, 72, 120, 160,

1923, 216, 288, 576
41 6 16, 24, 482, 192, 1632
41 7 24, 48, 192, 1792
41 8 24, 48, 192, 1792
41 11 24, 48, 384, 1600
41 12 242, 48, 2160
41 16 48, 96, 192, 1440

43 1 1728
43 2 24, 48, 144, 1536
43 3 24, 1536
43 4 4, 1856
43 5 24, 1408
43 6 1632
43 7 1936
43 8 1968
43 9 1760
43 10 24, 64, 1600
43 11 1936
43 12 256, 1504
43 13 24, 1408
43 14 1728
43 15 2032
43 16 24, 1408
43 17 24, 384, 1024
43 18 1968
43 19 24, 1664
43 20 24, 256, 1408
43 21 24, 1728

p k orbit sizes

47 1 24, 1712
47 2 2304
47 3 2112
47 4 4, 1920
47 5 24, 2080
47 6 2336
47 7 64, 2016
47 8 24, 2080
47 9 24, 1776
47 10 24, 2080
47 11 64, 96, 160, 288, 1728
47 12 24, 64, 2016
47 13 24, 2080
47 14 1984
47 15 24, 1776
47 16 864, 1216
47 17 2304
47 18 2336
47 19 24, 1712
47 20 24, 2016
47 21 24, 1776
47 22 2400
47 23 1984

53 1 242, 48, 3456
53 2 48, 192, 2736
53 3 242, 48, 192, 3360
53 4 4, 48, 3072
53 5 24, 48, 64, 3168
53 6 24, 48, 192, 3040
53 8 48, 64, 192, 256, 336, 2016
53 10 24, 48, 192, 3072
53 11 24, 48, 64, 192, 288, 2688
53 13 24, 48, 192, 288, 2752
53 15 24, 48, 192, 2944
53 17 24, 48, 192, 3040
53 22 24, 48, 1922, 2752

Table 9. Non-trivial orbits in Wk(Fp); cf. Defini-
tion 9.3. The notation Nd indicates d orbits of size N .
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p k orbit sizes

59 1 3232
59 2 3328
59 3 3360
59 4 4, 3392
59 5 24, 2880
59 6 24, 3264
59 7 3696
59 8 24, 160, 2848
59 9 144, 160, 3328
59 10 24, 3008
59 11 24, 2880
59 12 3792
59 13 24, 3328
59 14 24, 2880
59 15 160, 3072
59 16 24, 3008
59 17 3600
59 18 3232
59 19 3632
59 20 3328
59 21 24, 3264
59 22 3232
59 23 24, 96, 288, 2944
59 24 24, 3328
59 25 24, 2880
59 26 3632
59 27 24, 3328
59 28 24, 3136
59 29 3696

61 1 24, 48, 4224
61 2 242, 48, 4512
61 3 24, 48, 192, 256, 384, 3424
61 4 4, 48, 192, 384, 3456
61 5 242, 48, 4480
61 7 24, 48, 192, 4032
61 8 242, 48, 192, 4288
61 9 242, 48, 1922, 4192
61 10 362, 48, 72, 192, 288, 3168

p k orbit sizes

61 13 48, 64, 544, 3248
61 14 24, 48, 352, 3904
61 15 24, 48, 96, 2883, 3264
61 19 48, 1922, 288, 3184
61 20 48, 288, 3568
61 25 24, 48, 192, 3936

67 1 4320
67 2 24, 4256
67 3 24, 3808
67 4 4, 4544
67 5 24, 4256
67 6 4656
67 7 24, 3936
67 8 4624
67 9 24, 4320
67 10 24, 3808
67 11 4720
67 12 4352
67 13 24, 4128
67 14 4624
67 15 4352
67 16 24, 3936
67 17 4224
67 18 24, 4256
67 19 24, 4256
67 20 24, 3936
67 21 24, 3808
67 22 4720
67 23 4320
67 24 24, 3808
67 25 24, 4128
67 26 480, 3840
67 27 96, 160, 288, 4080
67 28 288, 4528
67 29 24, 4320
67 30 4624
67 31 48, 144, 4032
67 32 4352
67 33 24, 3808

Table 10. Non-trivial orbits in Wk(Fp); cf. Defini-
tion 9.3. The notation Nd indicates d orbits of size N .
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p k orbit sizes

71 1 5280
71 2 4768
71 3 24, 4560
71 4 4, 4608
71 5 24, 4800
71 6 24, 4864
71 7 5376
71 8 24, 4368
71 9 5184
71 10 4864
71 11 5280
71 12 24, 4304
71 13 96, 288, 384, 4096
71 14 24, 4864
71 15 5216
71 16 24, 4800
71 17 24, 4864
71 18 24, 4672
71 19 5184
71 20 24, 4864
71 21 5216
71 22 4864
71 23 24, 4368
71 24 4864
71 25 4768
71 26 5216
71 27 24, 4672
71 28 24, 4304
71 29 4864
71 30 24, 4304
71 31 4864
71 32 5216
71 33 24, 4368
71 34 24, 144, 4224
71 35 24, 4800

73 1 48, 192, 5248
73 2 24, 48, 96, 5760
73 3 24, 48, 64, 5920
73 4 4, 24, 40, 48, 120, 160,

192, 2882, 1920, 2976
73 5 242, 48, 6448
73 6 48, 192, 5376
73 7 24, 48, 5952
73 9 242, 48, 6288
73 10 48, 192, 5248
73 12 24, 48, 192, 5792

p k orbit sizes

73 13 48, 192, 672, 4576
73 15 48, 192, 544, 4704
73 17 24, 48, 192, 5760
73 18 242, 48, 160, 192, 6000
73 20 16, 24, 482, 192, 5728
73 23 24, 48, 5856
73 26 242, 48, 6256
73 31 24, 48, 192, 5792

79 1 24, 5856
79 2 24, 5424
79 3 24, 5488
79 4 4, 5760
79 5 24, 6048
79 6 24, 144, 5344
79 7 5952
79 8 5792
79 9 24, 5488
79 10 24, 5984
79 11 24, 5984
79 12 24, 5424
79 13 6432
79 14 24, 6048
79 15 24, 5488
79 16 6400
79 17 24, 5984
79 18 6592
79 19 6400
79 20 6048
79 21 5952
79 22 24, 5488
79 23 6496
79 24 6496
79 25 6048
79 26 6432
79 27 24, 5984
79 28 6080
79 29 5792
79 30 6496
79 31 24, 6048
79 32 5952
79 33 24, 5984
79 34 6592
79 35 96, 288, 6112
79 36 24, 96, 288, 5664
79 37 24, 5680
79 38 5952
79 39 24, 64, 5616

Table 11. Non-trivial orbits in Wk(Fp); cf. Defini-
tion 9.3. The notation Nd indicates d orbits of size N .
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p k orbit sizes

83 1 24, 96, 288, 5664
83 2 7248
83 3 6720
83 4 4, 7040
83 5 24, 6176
83 6 7088
83 7 24, 6048
83 8 24, 6496
83 9 24, 6496
83 10 24, 6176
83 11 7248
83 12 6720
83 13 24, 6624
83 14 7056
83 15 6688
83 16 6432
83 17 7088
83 18 24, 6688
83 19 7152
83 20 6688
83 21 24, 6688
83 22 7088
83 23 7088
83 24 6592
83 25 24, 6496
83 26 6592
83 27 24, 6048
83 28 24, 96, 288, 6304
83 29 24, 6048
83 30 6688
83 31 6688
83 32 24, 6176
83 33 24, 6176
83 34 24, 6176
83 35 7056
83 36 7088
83 37 24, 6624
83 38 24, 6048
83 39 24, 64, 6624
83 40 24, 6496
83 41 6688

p k orbit sizes

89 1 24, 48, 1922, 8320
89 2 24, 48, 96, 192, 8320
89 3 24, 48, 96, 192, 2882, 7872
89 4 4, 24, 48, 1602, 1922,

2882, 3264, 4512
89 5 24, 48, 8608
89 6 24, 48, 192, 8416
89 7 48, 192, 288, 7584
89 9 24, 48, 8448
89 10 24, 48, 8448
89 11 24, 48, 192, 8512
89 12 242, 48, 9264
89 14 242, 48, 9072
89 15 16, 482, 8128
89 17 48, 8192
89 19 242, 48, 144, 1922, 8640
89 20 48, 192, 7872
89 22 24, 48, 8608
89 25 24, 48, 8736
89 27 24, 48, 8704
89 30 40, 48, 120, 8032
89 33 24, 48, 8704
89 38 242, 48, 144, 192, 8768

Table 12. Non-trivial orbits in Wk(Fp); cf. Defini-
tion 9.3. The notation Nd indicates d orbits of size N .
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p k orbit sizes

97 1 48, 192, 9504
97 2 24, 48, 96, 672, 9408
97 3 16, 24, 482, 160, 10080
97 4 4, 24, 48, 192, 960, 3840, 5408
97 5 24, 48, 10304
97 6 48, 192, 9376
97 7 242, 48, 10672
97 8 24, 48, 10304
97 10 48, 192, 9376
97 11 24, 40, 48, 120, 9856
97 12 24, 48, 10304
97 14 24, 48, 192, 10080
97 15 24, 48, 10304
97 16 48, 9696
97 19 242, 48, 10864
97 20 24, 48, 1922, 9792
97 21 48, 9696
97 24 24, 48, 192, 10080
97 25 24, 48, 192, 10080
97 28 242, 48, 192, 10576
97 29 242, 48, 192, 10512
97 33 24, 48, 192, 10080
97 37 24, 48, 96, 2882, 9344
97 42 24, 48, 192, 9824

p k orbit sizes

101 1 24, 48, 192, 10912
101 2 24, 48, 11104
101 3 24, 48, 192, 10944
101 4 4, 48, 1922, 2882, 9792
101 5 24, 48, 192, 10912
101 6 242, 48, 11552
101 7 242, 48, 11712
101 8 24, 48, 1922, 10464
101 9 242, 48, 192, 11360
101 12 48, 602, 120, 1922, 9728
101 13 242, 48, 192, 11328
101 14 24, 48, 352, 10656
101 15 48, 10608
101 16 24, 48, 160, 192, 10656
101 17 24, 48, 11104
101 18 242, 48, 11552
101 23 48, 10352
101 24 24, 48, 11008
101 25 48, 64, 962, 144, 192, 2882, 9184
101 26 24, 48, 11104
101 27 24, 40, 48, 120, 192, 480, 10272
101 34 48, 144, 192, 10080
101 35 48, 10416
101 36 242, 40, 48, 120, 1922, 11296
101 45 24, 48, 192, 10816

Table 13. Non-trivial orbits in Wk(Fp); cf. Defini-
tion 9.3. The notation Nd indicates d orbits of size N .
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p k orbit sizes

103 1 10112
103 2 24, 10304
103 3 10400
103 4 4, 9984
103 5 24, 9616
103 6 10368
103 7 24, 10176
103 8 11136
103 9 10400
103 10 10272
103 11 24, 9616
103 12 24, 9984
103 13 24, 9552
103 14 10848
103 15 96, 288, 10464
103 16 24, 9552
103 17 11008
103 18 10816
103 19 24, 9808
103 20 64, 10048
103 21 24, 10368
103 22 24, 10368
103 23 10368
103 24 10848
103 25 10400

p k orbit sizes

103 26 10912
103 27 11008
103 28 10400
103 29 24, 9616
103 30 24, 9616
103 31 24, 9616
103 32 24, 10176
103 33 11008
103 34 24, 10176
103 35 24, 64, 10240
103 36 10112
103 37 24, 9616
103 38 10112
103 39 24, 10304
103 40 64, 10944
103 41 24, 9808
103 42 24, 9808
103 43 24, 10368
103 44 24, 9808
103 45 24, 10304
103 46 10272
103 47 24, 10304
103 48 10848
103 49 24, 10304
103 50 10816
103 51 10912

Table 14. Non-trivial orbits in Wk(Fp); cf. Defini-
tion 9.3. The notation Nd indicates d orbits of size N .
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p k orbit sizes

107 1 24, 11136
107 2 11696
107 3 24, 10752
107 4 4, 11264
107 5 24, 10368
107 6 11104
107 7 24, 11008
107 8 24, 96, 288, 10624
107 9 96, 288, 11280
107 10 11104
107 11 24, 10496
107 12 11232
107 13 11696
107 14 11200
107 15 24, 10368
107 16 11696
107 17 11696
107 18 10944
107 19 11104
107 20 11760
107 21 11104
107 22 24, 11136
107 23 24, 10368
107 24 24, 64, 10432
107 25 11664
107 26 11664

p k orbit sizes

107 27 11760
107 28 24, 10816
107 29 24, 10368
107 30 11984
107 31 24, 10496
107 32 11856
107 33 24, 10496
107 34 11200
107 35 11104
107 36 11984
107 37 24, 10368
107 38 24, 10496
107 39 11200
107 40 24, 10496
107 41 11200
107 42 24, 11136
107 43 24, 11008
107 44 24, 11008
107 45 24, 11136
107 46 10944
107 47 24, 10496
107 48 24, 288, 10912
107 49 11984
107 50 24, 96, 288, 10816
107 51 11200
107 52 24, 11200
107 53 24, 11200

Table 15. Non-trivial orbits in Wk(Fp); cf. Defini-
tion 9.3. The notation Nd indicates d orbits of size N .
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p k orbit sizes

109 1 24, 48, 12864
109 2 242, 48, 13408
109 3 242, 48, 13632
109 4 4, 48, 192, 12288
109 5 24, 48, 1922, 12224
109 6 24, 48, 12768
109 7 48, 12112
109 8 242, 48, 192, 13312
109 9 24, 48, 12864
109 11 242, 48, 13504
109 12 48, 192, 288, 11568
109 14 24, 48, 12768
109 15 24, 48, 192, 12576
109 16 24, 48, 192, 12416
109 18 48, 1922, 11920
109 19 48, 12304
109 21 24, 48, 1923, 12032
109 22 24, 48, 160, 12736
109 24 24, 48, 12864
109 25 24, 48, 64, 96, 192, 288, 11968
109 28 24, 48, 192, 12704
109 31 242, 48, 192, 480, 12672
109 32 24, 48, 192, 12416
109 35 48, 192, 11920
109 38 24, 48, 192, 12576
109 41 48, 12304
109 48 242, 48, 13408

p k orbit sizes

113 1 24, 48, 13792
113 2 48, 96, 192, 12672
113 3 242, 48, 14256
113 4 4, 24, 48, 6656, 7488
113 5 242, 40, 48, 120, 192, 480, 13456
113 6 24, 48, 192, 13344
113 7 48, 13088
113 9 24, 48, 192, 13504
113 10 48, 288, 12800
113 11 24, 48, 160, 1922, 13152
113 12 24, 48, 13824
113 13 24, 48, 192, 13344
113 14 24, 48, 192, 256, 13344
113 17 48, 12960
113 18 242, 48, 14288
113 19 48, 192, 12768
113 20 24, 48, 192, 288, 13312
113 21 40, 48, 120, 1922, 480, 12064
113 25 16, 24, 482, 13728
113 26 242, 48, 192, 14160
113 27 48, 13088
113 28 24, 48, 96, 192, 13408
113 33 242, 48, 14256
113 34 48, 1923, 12768
113 35 24, 48, 96, 192, 2882, 12832
113 41 242, 48, 14448
113 42 242, 48, 14288
113 49 24, 48, 13824

Table 16. Non-trivial orbits in Wk(Fp); cf. Defini-
tion 9.3. The notation Nd indicates d orbits of size N .
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