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ABSTRACT. Let W C P! x P' x P! be a surface given by the
vanishing of a (2, 2, 2)-form. These surfaces admit three involutions
coming from the three projections W — P! x P!, so we call them
tri-involutive K3 (TIK3) surfaces. By analogy with the classical
Markoff equation, we say that W is of Markoff type (MK3) if it
is symmetric in its three coordinates and invariant under double
sign changes. An MK3 surface admits a group of automorphisms G
generated by the three involutions, coordinate permutations, and
sign changes. In this paper we study the G-orbit structure of points
on TIK3 and MK3 surfaces. Over finite fields, we study fibral
connectivity and the existence of large orbits, analogous to work
of Bourgain, Gamburd, Sarnak and others for the classical Markoff
equation. For a particular l-parameter family of MK3 surfaces
Wi, we compute the full G-orbit structure of Wy, (F,,) for all primes
p < 113, and we use this data as a guide to find many finite G-orbits
in Wy (C), including a family of orbits of size 288 parameterized
by a curve of genus 9.
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1. INTRODUCTION

The classical Markoff equation is the affine surface
M2+ + 2 = 3ayz. (1)

It admits three involutions coming from the three projections M — A2,
and these three involutions, together with double sign changes and
coordinate permutations, generate the automorphism group Gy :=
Aut(M) of M. A classical theorem of Markoff [27] says that the set
of integer solutions in (Z=°,Z2°,7=° ), which we denote by M(Z),
consists of two G-orbits, one “small” Gas-orbit containing the single
point (0,0,0), and one “large” Gp-orbit containing (1,1, 1).

The orbit structure structure of M(F,) under the action of G has
been studied by a number of authors. Baragar [I| conjectured that
for every prime p, there is only one large orbit in M(F,), and this
was proved for almost all p by Bourgain-Gambard-Sarnak [I1] and
subsequently for all sufficiently large p by Chen [16]. The proofs rely on
an ingenious algorithm that jumps between differently oriented fibers,
using the Hasse—Weil estimate to say that if a point on a “vertical” fiber
has a large enough orbit, then one of the “horizontal” orbits consists of
an entire “horizontal” fiber. The proof implicitly relies on the fact that
each fiber of M is a torus and that the fibral automorphisms are toral
translations (i.e., G,,-translations), which in [11] are called rotations.
See Section 2 for more details.

The first goal of this paper is to study similar questions on an anal-
ogous family of projective surfaces that admit three involutions. We
define the family of tri-involutive K3 (TIK3) surfaces to be the hyper-
surfaces

W C P! x P! x P! (2)
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given by the vanishing of a (2, 2, 2)-form such that the three projection
maps
12,713, 7923 © W — ]P)l X ]P)l
are finite double covers. These three double covers induce three invo-
lutions
01,092,053 : W — W

coming from switching the two sheets. The study of the geometry and
arithmetic of these surfaces is of course not new; see Section 2 for a
brief history.

The first goal of this paper is to study the orbit structure of W(F,)
under the action of Aut(W). To do this, we start by analyzing the
connectivity of the fibers of W(F,) for the three projections

T, T, w3 2 W(F,) — PL(F,).

We prove the following fibral linking result, which is a TIK3 analogue
of [11, Proposition 6] for the Markoff equation. See Theorem 5.5 for
further details and a proof.

Theorem 1.1. Assume that p > 100, and let W/F, be a TIK3 surface.
Let Fy and F be fibers of W(FF,)) for any two (possibly identical) of the
three projections 1, m, 3 : W(F,) — P(F,). Then there is a fiber F3
for one of the projections satisfying

flﬂfg?é@ and ./T"meg#(z).

Our second goal is inspired by the classification of finite orbits on
Markoff-type surfaces over C. For example, the papers [7, 11, 21, 20]
contain a detailed description of the (a,b,c,d,e) € C® for which the
Markoff-Hurwitz surface

4y + 22 far+by+cz+dryz +e=0. (3)

has one or more finite orbits. The existence of such orbits turns out
to be related to algebraic solutions to Painlevé differential equations.
It is likewise true [13] that a (non-degenerate) TIK3 surface W(C) has
only finitely many finite orbits, but the methods used to classify the
orbits for Markoff-type equations do not seem easily applicable to the
TIK3 situation.

Generically, the automorphism group of W is generated by the three
automorphisms. Since the Markoff equation (1) admits additional au-
tomorphisms, we consider an analogous family of TIK3 surfaces, which

'We remark that although the generic member of the family of surfaces given by
the vanishing of a (2,2, 2)-form is a K3 surface, there are special members that for
not. For example, the classical Markoff equation defines a rational surface.
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we call Markoff-type K38 (MK3) surfaces. These are the TIK3 sur-
faces (2) that are invariant under coordinate permutations and dou-
ble sign changes. See Proposition 6.5 for a description of the full 4-
dimensional family of MK3 surfaces, and Proposition B.1 for a proof
that a regular minimal model of a generic member of this family is a K3
surface..

A typical example, which we use as a prototype, is the following one-
parameter family of MK3-surfaces W;. For non-zero k, we define Wy
to be the projective closure in (P')? of the affine surface

Wy s 2 +y° + 22 + 2%y?2* + kayz = 0. (4)

We note that for all & # 0, a regular minimal model of W is a K3
surface; see Proposition B.1. In order to understand the orbit struc-
ture in Wj,(FF,,), we computed all orbits for p < 113 and all k € F;;
see Section 10 and Appendix C. We use these computations for two
purposes.

First, by studying small orbit sizes that appear in Wy (F,) for many
different p and k, we find patterns which we use to construct finite orbits
in W;(C). Proposition 1.2 illustrates most of our findings. Explicit
equations for all of the orbits described in Proposition 1.2 may be found
in Table 3, and Section 9 describes how we used the I, data to find, or in
some cases rule out, finite orbits over C. We found especially interesting
the examples of 1-parameter families having orbits of sizes 24, 192,
and 288.

Proposition 1.2. Let W, be the projective closure in (PY)3 of the affine
surface (4).

e W,(Q) contains an orbit of size 4.

e Wi, (Q(4)) contains an orbit of size 48 for every k € Q(i).

o There is a field K/Q of degree 3 and an element k € K so
that Wy (K') has an orbit of size 64.

e There is a k € Q(i,v2) so that Wy (Q(i,v2)) has an orbit of
size 96.

o There is a field K/Q of degree 8 and an element k € K so
that Wy (K') has an orbit of size 144.

e There is a field K/Q of degree 8 and an element k € K so
that Wi.(K) has an orbit of size 160.

o There is a k(t) € Q(t) so that Wiw (Q(t)) has an orbit of
size 24.

e There is a k(t) € Q(i,t) so that Wi (Q(i,t)) has an orbit of
size 192.
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o There is an irreducible curve C'/Q of genus 9 and an element k €
Q(C) in the function field of C so that Wy (Q(C)) has an orbit
of size 288.

In the spirit of the many uniform boundedness theorems and con-
jectures in arithmetic geometry and arithmetic dynamics, we pose the
following question:

Question 1.3. Does there exist a constant N so that
#{P € Wi(C) : the orbit of P is finite} < N for all k € C*?

More generally, does there exist a constant N so that for every non-
degenerate® TIK3 surface VW we have

#{P € W(C) : the (01, 09, 03)-orbit of P is finite} < N7

See Question 9.1 for a further discussion of uniform boundedness of
finite orbits.

Second, we investigate large orbits in W (IF,) to see if the methods
employed in [l 1] for the Markoff equation are potentially applicable
to the MK3 setting. The fiber-to-fiber jumping strategy employed
by [11] uses the fact, which they prove for (3) with (a,b,c,d,e) =
(0,0,0,-3,0), that if a vertical fibral orbit is sufficiently large, then at
least one of the points in that vertical orbit has a horizontal orbit that
consists of the entire horizontal fiber. (See Section 4 and Remark 4.5
for further details.) We are interested in the question of whether such a
fiber-to-fiber jumping strategy will work on the MK3-surface Wi (IF,).
In Section 11 we show that the surface W (F53) has an orbit of size 3456,
but that the fiber-to-fiber jumping strategy cannot be used to prove
that these 3456 points all lie in the same orbit. This suggests that
additional ideas may be needed to prove the existence of a large orbit

in Wk(IFp)

Acknowledgements. The authors would like to thank Philip Boalch, Wei
Ho, Ram Murty, and Igor Shparlinski for their helpful advice and Peter
Sarnak for his encouragement. We also thank the referees for their very
careful reading and many helpful suggestions that greatly improved the

paper. Calculations in this article were done using Magma [] and GP-
PARI [31].

2See Definition 3.1, but briefly, non-degeneracy means that the three involutions
are well-defined.
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2. A BRIEF SURVEY OF RELATED WORK ON THE MARKOFF
SURFACE AND ON TRI-INVOLUTIVE K3 SURFACES

Definition 2.1. Let K be a field, for example a number field or a finite
field. Let a € K* and k € K. The associated Markoff equation is

My 2°+y* + 2% = avyz + k, (5)

and G denotes the group of automorphisms of M, generated by
the involutions oy, 09, 03, double sign changes, and permutations of the
coordinates.

Theorem 2.2. (a) (Markoff [27])
Mso(Z) = {(0,0,0)} UGrs- (1,1,1).

(b) More generally, for all a,k € Z with a # 0, there is a finite set of
points Py, ..., P. € Myx(Z) such that

Mar(Z) = JGm - P
=1

except in the case of the so-called Cayley cubic My 4.°

Conjecture 2.3. (Baragar |1, Section V.3|, Bourgain—-Gambard—Sarnak
[10, 11]) For all primes p > 5 we have

M3,O(Fp) = {(07070)} U (gM ) (17 17 1))

As noted in Theorem 2.2(b), the set M, x(Z) generally consists of
finitely many orbits. However, we may still ask to what extent the
points in M, (F,) lift to points in M, x(Z), or alternatively, to what
extent M, x(F,) is essentially a single Gyq-orbit. One difficulty that

occurs comes from finite orbits in M, x(Q), since their mod p reduction
leads to (small) finite orbits in various M, x(FF,). This leads to the
following conjectures.

Conjecture 2.4. Let a,k € 7.

(a) There is a constant M, (a, k) such that for all primes p 1 a we have
#Mo i (F,) < #(largest Gm-orbit in /Vla,k(Fp)) + Mi(a, k).

(b) If # Mk (Z) = oo, then there is a constant My(a, k) such that for

all primes p 1 a we have
#M, i (F,) < #(Ma,k(Z) mod p) + Ms(a, k).

3For the Cayley cubic M 4, the points (2,t,t) for positive integers ¢ generate
distinct orbits, and their union is M 4(Z).
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(One might further ask whether Mi(a, k) and Ms(a, k) may be chosen
independently of a and k.)

Bourgain—-Gambard—Sarnak and Chen have a number of results re-
lated to Conjectures 2.3 and 2.4, including the following:

Theorem 2.5. (a) [l1, Theorem 1]
#Mso(F,) = #(QM (1,1, 1)) + M as p = 0.

(b) [11, Theorem 2] Conjecture 2.3 holds for all but possibly X°W
primes p < X, as X — oo.
(c) [16] Conjecture 2.3 holds for all but finitely many primes p.

Remark 2.6. Chen’s result (Theorem 2.5(c)) supersedes the results of
Bourgain—-Gambard-Sarnak (Theorem 2.5(a,b)), but Chen’s proof de-
pends strongly on the particular form of the equation Mj,. More pre-
cisely, Chen proves that the orbit of (1,1, 1) in M3 (FF,) has cardinality
divisible by p. This combined with the methods used to prove [1 1, The-
orem 1] yield the desired result. However, we note that the methods
used to prove the results in [11] should extend to give versions of Con-
jecture 2.4 analogous to Theorem 2.5(a,b) for all M, j, while for now
Chen’s method seems to apply only to M3 .

Remark 2.7. Other recent notable results include the following:
e Konyagin—-Makarychev—Shparlinski-Vyugin [25] prove that

#M;0(F,) N (Gaa - (1,1,1)) < exp ((logp)”* V).
This improves Theorem 2.5, and the methods should extend to
more general Markoff equations.
e Given a pseudo-Anosov element g € Out(F3), g induces a permu-
tation g, on M, ;(F,) for each prime p. Cerbu-Gunther-Magee~
Peilen [15] prove that asymptotically, the action of g, on M ;(FF,)

}gi(& +0,(1), where X is the eigenvalue
of largest modulus of g when viewed as an element of GLy(Z).

e M. de Courcy-Ireland and S. Lee [19] verify strong approximation
for the Markoff surface for all primes p < 3000. Additionally,
they completely characterize the orbit structure of the degenerate
Cayley cubic, M 4(F,), providing both the number of orbits as
well as their sizes, given in terms of divisors of p? — 1.

e M. de Courcy-Ireland and M. Magee [20] demonstrate that the
eigenvalues of the family of Markoff graphs modulo p converge
to the Kesten-McKay measure, which is a heuristic indicator that
Markoff graphs are suitably “random”. This also provides a (very)
weak bound on the spectral gap of such graphs.

has an orbit of size at least
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e M. de Courcy-Ireland [18] shows that if p > 7, then the Markoff
graph mod p is not planar.

e A. Gamburd , M. Magee and R. Ronan [22] prove an asymptotic
formula for the function N, ,x(R) that counts the number of inte-
ger solutions to z? + -+ + 22 = az; - - - ¥, + k with max |z;| < R,
excluding potential exceptional sets. They prove that N, ,x(R)
is asymptotic to C(n, a, k)(log R)?", where as indicated, the con-
stant depends on n, a, k, while exponent (3,,, which generally is not
an integer, depends only on n. See also A. Baragar [2] for related
work.

We conclude this section by briefly describing some earlier work on
the geometry and arithmetic of tri-involutive K3 surfaces, which we
recall are certain K3 surfaces admitting three non-commuting invo-
lutions. Wang [32] explicitly constructed canonical heights on TIK3
surfaces defined over number fields associated to the infinite order au-
tomorphisms o; 00, similar to those constructed in [30] for K3 surfaces
having two involutions. Baragar [3, 4, 5] further studied these height
functions and asked, in particular, whether they fit together to form
a vector canonical height. Kawaguchi [24] answered this in the nega-
tive for certain K3 surfaces, and Cantat and Dujardin [13] completely
characterized the surfaces on which vector canonical heights exist.

We next state a recent result regarding finite orbits on TIK3 surfaces
in characteristic 0.

Theorem 2.8 ([13, Cantat—Dujardin]). Let W/C be a TIKS3 surface,
and let (o1, 09,03) C Aut(W) be the subgroup of W generated by the
three involutions oy, 09, 03. Then

{P e W(C) : the (01,02, 03)-0rbit of P is finite}
s a finite set.

Proof. This is a special case of the results in [13], since in the language
of [13], the TTK3-surface W and its group of automorphisms (o, 02, 03)
do not form a Kummer group, and W contains no (o1, 09, 03)-invariant
curves. 0

Finally, we mention Cantat’s fundamental paper [12], although it is
not specifically about TIK3 surfaces. Let ¢ : X — X be an automor-
phism of positive entropy of a K3 surface defined over C, e.g., g; 0 0;
for a TIK3 surface. Then Cantat proves that there exists a unique
invariant probability measure p with maximal entropy, that (p, u) is
measurably conjugate to a Bernoulli shift, and that p gives the asymp-
totic distribution of periodic points.
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3. Tri-INvoLUTIVE K3 (TIK3) SURFACES
Definition 3.1. A Tri-Involutive K3 (TIK3) Surface is a K3 surface’

W={F=0}CP' xP'xP*
defined by a (2,2, 2)-form®

F(X17X2;)/17)/2;ZI7Z2> S K[XIJXQ;}/DYQ;ZhZ?]‘ (6)

For distinct 4,5 € {1,2,3}, we denote the various projections of W
onto one or two copies of P! by

W —P' and m; W — P x P

We say that the TIKS3 is non-degenerate if it satisfies the following two
conditions:

(i) The projection maps 712, 713, T3 are finite.

(ii) The generic fibers of the projection maps 7y, my, w3 are (irreducible,
geometrically connected) smooth curves, and thus the smooth
fibers are curves of genus 1, since they are (2,2) curves in P* x P!,
i.e., curves given by the vanishing of a (2, 2)-form.

Definition 3.2. To ease notation, we write P! = A’ U {c0}, and we
let

F(z,y,2) = F(x,1;y,1; 2,1).

Then W is the closure in (P')? of the affine surface, which by abuse of
notation we also denote by W,

W: F(x,y,z)=0.

Definition 3.3. Let W be a TIK3 surface with projections 7y, 7o, 73 :
W — P! We define a fiber of VW to be a set of the form

7 1(t) for some i € {1,2,3} and some ¢ € P'.

4We recall that an algebraic K3 surface is a smooth projective geometrically
connected surface with trivial canonical bundle and irregularity zero. In this paper
we work directly with equations of the form (6) satisfying the non-degeneracy con-
dition, so it not important for our purposes that our surfaces are K3. However, for
completeness, we show in Section B that minimal regular models of generic surfaces
in our families are K3 surfaces.

°In general, an (a,b, c)-form is a global section to Op1ys(a, b, c), or more pro-
saically, an (a,b,c)-form is a polynomial f in K[X;, Xo;Y1,Ys; Z1, Zs] satisfying
FuXy, uXo;vYy,vYo; wZy, Zwy) = uvPw f( X1, Xo; Y1, Yo; Z1, Zo).

6We note that m 2, 713, 723 are finite if and only if their fibers are 0-dimensional,
in which case they are maps of degree 2.
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Thus fibers may lie in any of three different directions, and we may
view W as being triply cross-hatched by the various fibers. We denote
the set of fibers by

Fiber(W) = {fibers of W}.

If we need to refer to fibers over a particular point and corresponding
to a particular projection, we use the following more precise notation.
We denote the fibers of 7, ma, w5 : W — P! over points g, yo, 2o € P
by, respectively,

W = 7 (o), Wéi) =5 (o), WS = 737 (20).

Zo 20

For P = (xp,yp, zp) € W, we let

Wy =we

zZp °

W) =w?

yp’

we) =wl)

Tp?

Definition 3.4. Let W be a non-degenerate TIK3 surface. For dis-
tinct i, 7, k € {1,2,3}, we write

oW —W (7)

for the involution that swaps the sheets of 7;;, i.e., oy € Aut(W) is the
unique non-identity automorphism satisfying

Tij © O = Tyj.

The automorphism group of a TIK3 surface VW contains the non-
commuting involutions oy, 09,03, and depending on the symmetries
of W’s defining polynomial F', the automorphism group may con-
tain additional automorphisms. Typical examples include symmetry
in x,y, z that allows permutation of the coordinates, and power sym-
metry that allows the signs of two of x, y, z to be reversed. For example,
the Markoff equation (1) permits these extra automorphisms; and in
Section 6 we consider analogous TIK3 surfaces. In any case, we will be
interested in subgroups of the automorphism group that move points
around individual fibers.

Definition 3.5. Let W be a non-degenerate TIK3 surface, let
Gen(G) C Aut(W)
be a (finite) set of automorphisms of W, and let
G = {p:pecGen(g))
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be the subgroup of Aut(W) generated by the elements of Gen(G).
Let F € Fiber(W) be a fiber of W. We denote the (restricted) stabi-
lizer of F by’

Gr = (¢ € Gen(G) : p(F) = F).
We further define (restricted) fibral automorphism groups in each of
the three directions by®

GV = (¢ € Gen(9) : p(W,Y) = W}V for all w € P'),
G¥ = (p € Gen(G) : p(W?) = Wy for all y € P),

(
Y
G® = (p € Gen(G) : (W) = WS for all » € P*).

For example, if {7, j, k} = {1,2,3} and W is generic, then typically
we take G¥) = (0, 0;), since the k-direction fibers are invariant for o;
and o;.

Definition 3.6. Let VW be a non-degenerate TIK3 surface, let G C
Aut(W) be a group of automorphisms of W, and let Py = (¢, yo, 20) €
W(K). The G-orbit of P is

G-P={p(P):peg}.
The fibral G-orbits of P are
Gk . p= {go(P) Cp € g(k)} for k=1,2,3.

4. A STRATEGY FOR PROVING THAT W(F,) HAS A LARGE
G-CONNECTED COMPONENT

In this section we consider a non-degenerate TIK3-surface WV defined
over a finite field Fy, and a group of automorphisms G C Aut(W).

Definition 4.1. Let t € P}(F,), and let < € {1,2,3}. We say that
the fiber W\ (F,) is G-connected if G& acts transitively on W (F,).
Following terminology from [10], we define the G-cage of W(F,) to be
the set
0 2)
Cage, (W(E,)) = {P € W(F,) at least(gc))ne of Wp'(F,), Wp (Fq),} '
and Wp' (F,) is G-connected

"The reason that we do not use {<p €G:p(F)= f}, which is the full subgroup
that leaves F invariant, is because when using G to move around points in fibers
of W, we will want to apply one generator at a time.

8We do not include the set of generators Gen(G) in the notation for the fibral
automorphism groups, since it will generally be clear from context. For example, for
a generic TIK3 surface, we take Gen(G) = {01, 02, 05}. If W has extra symmetries,
for example if W is one of the MK3 surfaces described in Section 6, then Gen(G)
will also include some coordinate permutations and sign shifts.
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We denote the set of G-connected fibers by

1e{1,2,3}, t ¢ IP’I(IFq),}

: _ (4)
ConnFibg (W(F,)) = {Wt (Fo) w (F,) is G-connected

With this notation, an alternative description of the cage is as the
union of the points in the fibers in ConnFibg (W(F,)).

We further say that W(F,) is cage-connected if for every pair of
points P, () € Cageg (W(Fq)) there exists a sequence of G-connected
fibers Fi, Fo, ..., F, € ConnFibg (W(]Fq)) such that

PeF, QeF, FNFu#Dforalll<i<n.

Remark 4.2. We can also describe cage-connectivity of W(F,) us-
ing a standard construction in graph theory. Let X be any set, and
let S C 2% be a collection of subsets of X. The intersection graph of S
is the graph whose vertices are the elements of S, and whose edges
are all [A, B] such that A, B € S satisfy AN B # (. Then W(F,) is
cage-connected if the intersection graph of its collection of G-connected
fibers ConnFibg (W(F,)) is a connected graph. Similarly, the content
of Theorem 5.5 is that if ¢ > 100, then the intersection graph of the
collection of all G-fibers of W(F,) is connected, and indeed its graph
diameter is at most 2.

The starting point used in [10] to prove the connectivity of the Mar-
koff graph M o(F,) ~ {(0,0,0)} is to show that the associated cage is
connected. This is done via a process that jumps from one connected
fiber to another using a version of the following property:

Definition 4.3. We say that W(F,) has the fiber-jumping property if
for all fibers F; and F; of W(F,) there exists a G-connected fiber F3 €
ConnFib(W(F,)) satisfying

flﬁfg%@ and fgﬁfg%@.

As described in [10], the fiber-jumping property implies that W(F,)
is cage-connected. For the convenience of the reader, we recall the
short proof.

Proposition 4.4. Suppose that W(F,) has the fiber-jumping property.
Then W(F,) is cage-connected.

Proof. Let P, Q) € Cageg (W(Fq)) By definition, this means that they
lie on G-connected fibers, say

PeF and Qe€F with Fi,F, € ConnFibg(W(F,)).
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We apply the assumption that W(F,) has the fiber-jumping property
to the fibers F; and F». This allows us to find a G-connected fiber F5 €
ConnFib(W(F,)) satisfying

flﬂfg#@ and fgﬁfQ#@.

Then the sequence Fi, F3, Fo takes us from P to @), and since P, Q) €
Cageg (W(F,)) were arbitrary, this proves from the definition that W(F,)
is cage-connected. 0

The strategy that is employed in [10] to prove that most of the points
in the Markoff set M3 (F,) form a connected set has several steps. We
reformulate these steps for TIK3-surfaces, retaining (and expanding
on) their chess terminology.

Setting the board (Cage connectivity):
W(F,) is cage-connected.

End game (Large fibral orbits):
Let P e WY (F,) be a point whose fibral orbit G& - P is mod-
erately large. Then G - P contains a point of the cage, i.e., it
intersects a G-connected fiber.

Middle game (Small fibral orbits):
Let P € W (F,) be a point whose fibral orbit G& - P is of
small, but non-negligible, size. Then G - P contains a point
lying in a fibral orbit of strictly larger size.

Opening (Tiny fibral orbits):
There are no non-trivial points P € Wt(l) (IF,) whose fibral or-
bit G& . P is tiny.

Remark 4.5 (The Bourgain-Gamburd-Sarnak Connectivity Proof for
the Markoff Equation). We briefly sketch the connectivity proof for
M*(F,) = M30(F,) ~ (0,0,0)
in [10]. They prove connectivity using the subgroup G C Aut(Msy)
generated by the compositions
p) = ;0 7, where {4, j,k} = {1,2,3},

and 7j; denotes the transposition of the j and k& coordinates. They
call p) a rotation, since it acts on the fibers (MB,O)l(fi) via a 2-by-
2 (rotation) matrix acting on the jk-coordinates. Writing pgi) for the

restriction of p(® to this fiber, they note that the order of pgi) divides one
of p—1, p, or p+1, with the exact order depending on the eigenvalues

of the matrix p\”. It follows that
(M&o)gi) (F,) C Cage(/\/lgp(lﬁ'p)) — pl(ti) has maximal order.
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The first step in proving that M*(F,) is G-connected is an argument
that uses curve coverings, point counting, and inclusion/exclusion to
show that Mj(FF,) has the fiber jumping property for G. It follows
that Cageg(Ms0(F,)) is connected, cf. Proposition 4.4. They then use
a similar argument for the endgame, where a fiber is deemed large if it
has p'/?*¢ points. Next they consider the middle game, which consists
of points whose (small) fibral orbit has at least p¢ points. This comes
down to showing that certain equations have few solutions whose coor-
dinates are elements of F} of small order. They provide three proofs of
the required statement, one via Stepanov’s auxiliary polynomial proof
of Weil’s conjecture for curves over F,, one using directly a sharp es-
timate due to Corvaja and Zannier [17] for the ged of polynomials
over finite fields, and one using a projective Szemeredi-Trotter theo-
rem due to Bourgain [J]. Indeed, they can handle the middle game
for even smaller fibral components provided that p?> — 1 does not have
too many prime divisors. Finally, for the opening, they first observe
that finite orbits in M, (Q) will cause tiny orbits in M, .(F,) for
infinitely many p. However, in their case M3,(Q) contains no finite
orbits other than {(O, 0, 0)}, so this is not a problem. They next show
that every point P € M*(F,) lies in a fibral component containing at
least (logy p)'/3 points. This and some further calculations suffice to
prove that M*(F,) is G-connected unless p? — 1 is very smooth, i.e., is
a product of a large number of small primes. (Conjecturally, there are
only finitely many such primes.)

Remark 4.6 (Fiber Jumping and Cage Connectivity for TTIK3-Sur-
faces). As explained in Remark 4.5, Bourgain, Gamburd, and Sar-
nak [10] prove that the Markoff equation Mjo(F,) ~ {(0,0,0} is G-
connected by first verifying the fiber-jumping property, which sets the
board by implying that the cage is cage-connected. Later we will give
an example showing that the analogous statement need not be true for
TIK3 surfaces. More precisely, in Example 11.1 we describe a TIK3-
surface W such that W(F;3) has one large G-connected component,
which we denote by W*(FFs3), that contains 3456 points. However, a
direct calculation show that W*(Fs3) does not have the G-fiber-jumping
property. More precisely, the G-connected fibers in W(F53) form two
connected components, so any proof that W*(Fs3) is G-connected must
find a way to connect points in ConnFib(W(Fs3)) that does not travel
purely along G-connected fibers. Of course, the prime p = 53 is not
huge, so our example may simply be a small number phenomenon.
However, other examples (see Table 5) suggest that the number of fi-
bral components in a TIK3 cage tends to be smaller than the number
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of fibral components in a Markoff surface cage. So a proof that TIK3
surfaces over finite fields have large G-connected components may need
to find a way to expand the cage in order to fit it into a G-connected
set that can be used for the “setting the board” step.

In addition, the issue concerning smoothness of fibral group orders
that arises in the method of BGS will be exacerbated for TIK3 surfaces.
The analogous rotations (translations) on a TIK3 surface come from
the actions of elliptic curves on homogeneous spaces. These actions
are translations by a point whose order can range from p + 1 — 2,/p
to p+ 1+ 2,/p. So now we are not concerned with smoothness of
only p+ 1, but instead with the smoothness of all numbers within this
range. Ideally, we would like to restrict to values of p for which this
range of numbers contains no smooth numbers, but there are unlikely
to be infinitely many such p.

5. THE INCIDENCE GRAPH OF THE FIBERS OF A TIK3 SURFACE

Definition 5.1. A TIK3 surface has three fibral directions associated
to the three projections onto P!. For expositional convenience, we will
say that fibers corresponding to different projections are (pairwise)
orthogonal to one another, while fibers corresponding to the same pro-
jection are parallel. So for example, the fibers Ww(é) and Wéz) are or-
thogonal, while the fibers ng(l)) and Wg(gp are parallel.

Remark 5.2. Distinct parallel fibers clearly do not intersect, while
orthogonal fibers in W(F,) may intersect in 0, 1, or 2 points. For
example, if xg,yo € P'(F,), then

(W:g(l))(Fq) N Wé?(ﬂ)) = {('T07y072) : F(20,0,2) = 0}'

Thus the intersection is non-empty if and only if a certain quadratic
form” has a zero in P!(F,).

Our goal in this section is to give an easily verifiable condition which
ensures that, given two orthogonal fibers F; and F, in W(F,), there is
a third fiber F3 C W(F,) satisfying

flmfg#(b and fgﬂfg#@.

In more evocative terms, although the union F; U F; of two orthogonal
fibers may be “disconnected,” there is a third fiber so that F; U F, U F3
is a “connected” set of orthogonal fibers. See Figure 1.

9We recall that although we write F' using affine coordinates to ease notation,
in our calculations it always represents a (2,2,2) form. In particular, the polyno-
mial F(zo, Yo, 2) denotes a degree 2 homogeneous form in the variables Z; and Zy;
cf. Definition 3.2.
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2)
./ W

(331, Yo, 21)

Given zg and g, find 21

(1)
o so that there exist x; and y;

satisfying (xo,y1,21) € W}c}))

and (x1,y0,21) € Wg)

(36’07 Y1, 21)

FiGURE 1. Finding a fiber Wg’) that intersects two given
fibers ng(l)) and Wéﬁ)

Definition 5.3. For zq, 4o, 20 € P!, we define linking sets that describe
how to link two given fibers via a third fiber.

£y ={reP: Wﬁ) AWM £ and W n Wl £ g},

Yo,20
£2, = {yeP WO AW £0 and WP WD £},
LB ={z P WD W £ 0 and W2 nWE £ 0}

Thus for example, the points in E;‘?,yo tell us which z fibers can be used
to link the z = zq fiber with the y = y, fiber.

Definition 5.4. For x¢, o, z0 € P!, we define the following algebraic
sets'® that are useful in creating fibral links:

C((l))z0 = {(:zf,y, z) c (P : F(x,y0,2) = F(z,y, 20) O}
C(Q) - { T, Y,z (P1)3 : F(m07y7 ) F ZL’ y7ZO 0}

0,20
Cxo,yo - { T,Y,z (Pl)?) : F(x(b% ) F 'T yYo, 2) = O}

We note that the Cyo,z0 is the intersection in (P!)? of a hypersurface of
type (2,0, 2) and a hypersurface of type (2,2,0), and similarly for Cg(c%),z()
and Cg({z),yo. See Lemma 5.6 for a proof that if ¥V is a non-degenerate

TIK3 surface, then these sets have dimension 1 and their irreducible
components have geometric genus at most 5.

Theorem 5.5 (K3 Analogue of [11, Proposition 6]).
Let K be a field, and let xg, o, 20 € P1(K).

OLemma 5.6(a) contains a proof that if W is a non-degenerate TIK3 surface,
then these algebraic sets are 1-dimensional, although they need not be irreducible.
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(a) There are surjective maps

cW_ () LvAn p) (),

Y0,20 Y0,20

CO_ () LAV L0 (g

x0,20 20,20
3 (z,y,2)—~z 3
Céo)yyo (K) - ﬁﬂ(ﬂo),yo (K)

(b) Assume that ¢ > 100. Then

Lo Fy) 0, L3 (F) #0, L3, (F,) #0.

Proof. (a) By symmetry, it suffices to consider the first map. We first
show that the map is well-defined. Let (z,y, z) € Cip) (K). By defini-
tion of Cl(,(l,?zo, this means that

F(xaym'z) = F(fE,y,Zo) = 07 and thus (33790,2)7 (%%ZO) € W(K>
Hence

(,y0,2) € W(2)(K)0W(1)(K) and (z,9,20) € WZ(?’)(K)HWS)(K),

which by definition of Eyo 2o shows that z € EZ%)ZO( K). This completes
the proof that the projection map

m :CW_(K) — £

Y0,20

K) (8)

Y0,20 (
is well-defined.
To prove surjectivity, we start with some x € Eéﬁze (K). By definition

of L;Bzw this means that we can find points
(x,y0,21) € Wy(g)(K)ﬂWi,l)(K) and (x,y1,20) € Wz(g’)(K)ﬂngl)(K).
Then the definition of C?%?ZO tells us that

(x7y17"7’1) Ecyo Z0< )

We have thus constructed a point in Cyo,z0 (K') whose image in Eyo 2 (K)
is x, which completes the proof that the projection map (8) is surjective.
(b) We use (a) with K =TF,. Again by symmetry, it suffices to prove
the first assertion. And from the surjectivity of the map in (a), it
suffices to prove that CyMO (F,) is not empty.

Lemma 5.6(a) tells us that the algebraic set Cgs(l)?ZO has dimension 1.

We let C (O)ZO be a non-singular model of an irreducible component
of C@Sé)z() (Although generically Cg(,0 2o Will be a smooth irreducible curve,
there are cases in which it is singular and /or reducible; see Remark 5.7. )
There is then a well-defined map

—_~—

Choeo(Fy) — CY, (F,).
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Since our goal is simply to show that C'y0 = (F,) is non-empty, it suf-

N

fices to prove that Cywo (F,) is non-empty. Weil’s estimate gives the
inequality

#Chueo(Fy) = g +1 -2+ (genusCinsy) - /7. (9)
In particular, we see that

g+1>2- (genusCin)) - v@ = Ciho(F) #0.  (10)

—~—

Lemma 5.6(b) says that the genus of Cl(,(l]?ZO is at most 5. Hence (9)

and (10) imply that Cy0 ZO( ¢) is non-empty provided ¢+ 1 > 10,/g,
which is true for all ¢ > 100. U

We now prove the dimension and genus estimates used in the proof
of Theorem 5.5.

Lemma 5.6. Let W be a non-degenerate TIKS3 surface defined over a
field whose characteristic is not equal to 2 or 3, and let C be one of the

algebraic sets Céé?zo, CJ(C%),ZO, or ngzyo described in Definition 5.4.
(a) The algebraic sets C?S(l)?zo, Ca(f)?zo, Cg({z),yo described in Definition 5.4
have dimension 1.
@ o6

(b) Each irreducible component of each of the algebraic sets Cl(/(l)?z(,, Czo.20> Caowo
described in Definition 5.4 has geometric genus at most 5.

Proof. Since this lemma is purely geometric, we assume that we are
working over an algebraically closed field. By symmetry, it suffices to

fix 9o, 20 € P! and to consider the algebraic set CyD,ZO.
(a) We need to rule out the possibility that Cy0 - is the empty set
or has dimension 0 or 2 or 3. The algebraic set CyWO is equal to the
intersection of the following two algebraic sets:

‘/1 = {(x,y,Z) € (Pl)g : F .CE » Yo, © O}

Vo = {(xayWZ) S (Pl)?) : F(xaywzo = 0}

We first note that if V; = (P!)3, then F(x,v,2) is identically 0,
so for any value of xg, the fiber 7, (29,%0) is a copy of P'. This
contradicts the assumed non-degeneracy of W. Hence V| # (P')3 and
similarly V5 # (P')3. Thus

dim(Vy) =2 and dim(V3) =2
and hence
dim(CtV, ) = dim(V; N V3) < 2.

Y0,%0
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Suppose that Céé?zo has dimension 2. This means that the algebraic
sets V1 and V5 have a 2-dimensional component in common. Writing
(P')? =P, x P, x P}
so that we can keep track of the three factors, we see from their defi-

nition that V7 and V5 are products,

Vi ={curve in P, x P1} x P, and V= {curve in P} x P;} x PL.

The assumption that V; and V5 have a 2-dimensional component in
common implies that they have one or more common components of

the form {zo} x P, x P.. There is thus a (1,0, 0)-form A(z) vanishing
at zop and a (1,0,2)-form B(z,z) and a (1,2,0)-form C(z,y) so that
the polynomial F' defining W factors as both
F(,y0,2) = Alx)B(x, 2) and  F(x,y,2) = A(x)C(z,y).

But then W is degenerate, since it contains the lines {xo} x {yo} x P!
and {zo} x P, x {2}, which means that the projection maps 5 and 73
have positive-dimensional fibers.

We now know that dim(Cls(l)?zo) < 1. This implies in particular that V;
and V5 intersect properly (or not at all). We let

H, ={pt} xP' xP', H,=P' x {pt} xP', H;=P xP'x {pt},

be generic hypersurfaces (divisors on (P')?) of the indicated form. Then
usually V7 and V5, will be linearly equivalent to, respectively, 2H; +
2H3 and 2H; + 2Hs, but there are potentially cases where F'(x,yo, 2)
and/or F(z,y, z9) depends on only one of the variables x,y, z. In any
case, we have

Vi~aH; +bHs and V, ~cH;+ dH,
with a,b,c,d € {0,2}, (a,b) # (0,0), (¢,d) # (0,0).
Using HiNHyNHy =1 and H;NH;NH, = 0if 4, j, k are not distinct,
we compute intersections
Vi-Vo-Hi=bd, Vy-Vo-Hy=0bc, Vi-Vo-Hz=ad. (11)
Suppose now that the algebraic set
CH =Vinv,

Y0,%20
is a finite set of points or the empty set. This implies that the inter-
sections in (11) all vanish, since they are intersections of points (or the
empty set) with hypersurfaces. We consider three cases:
b#0 =— c¢=d=0 -contradiction.

d#0 = a=b=0 -contradiction.
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b=d=0 = a=c=2 — Vi~Vo~2H,.

This last case implies that F(x, 1o, z) does not depend on z and that
F(z,y, z) does not depend on y. But then W is degenerate, since
the fiber of 75 over any point of the form (z,y,) has dimension 1,
and similarly the fiber of w3 over any point of the form (z,zy) has

dimension 1. This concludes the proof that the algebraic set Clgé?z() has
dimension 1.
(b) We let F' be the (2,2, 2)-form that defines the non-degenerate TTK3
surface W. We define a projection map

m:CV Pl r(x,y,2) =

Y0,20

This map has degree 4. Keeping in mind that y, and 2, are fixed,
for x; € P! we have

7T_1($1) = {($1,?/a z) € (Pl)g P F(11,90,2) = F(21,Y, 20) = 0}-

The equations for y and z are independent, so we find that

#73(or) = #H{z € P Flar,go.2) = 0} #{y € P2 Flan,pi0) =0},

The non-degeneracy assumption tells us that F'(z1, yo, 2) and F(x1,y, z0)
are not identically 0, so they are non-trivial quadratic forms in, respec-
tively, z and y. As such, they have either 1 or 2 roots, and we can
determine which is the case by computing an appropriate discriminant:

1 if Disc, F(x1,90,2) =0,

- P F ) =0
#{z (21,50, 2) =0} = {2 if Disc, F(w1,yo,2) # 0.
1 if Disc, F(z1,y,20) =0
€P': F(w1,y,2) =0} = Bl |
#{y (21,9,20) = 0} {2 if Disc, F(x1,y, 20) # 0.

Combining these estimates yields the following formulas

’ Hr T \ Disc, F'(x1,y, 20) \ Disc, F(x1,yo, 2) ‘
4 £ 0 %0
2 =0 #0
2 Z0 —0
1 =0 =0

We next observe that Disc, F((x,y, 2) is a degree 4 form in z, and
thus has at most 4 roots in P! when considered as a polynomial in z;
and similarly for Disc, F/(z,yo, z). So there are at most 8 points z; € P!
with #71(z;) = 2. Further, each time we get an z; with #71(z;) =
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1, we see that 2 of those 8 potential values of x; coalesce into 1 value.

So if we let
A=#{z, e P : 7N (z)) =2},

12
B=#{x; eP 77 (1) = 1}, (12)
then we see that
B 0 1 2 3 4
Al <8 <6] <4| <2| =0 (13)

We assume for the moment that Céé?zg is irreducible,'’ and we let

—_~—

Y0,20

be a desingularization of CZ%?ZO, so the geometric genus of Cg(,é?z() is simply

the genus of Céé?zO. We use the Riemann-Hurwitz genus formula

—~—

2genus(Cl(,(l)3zo) —2 = —2deg(mo\)+ Z <deg(7r0)\) —#(WO)\)_l(xl)).

Tl E]Pl

(Our assumption that the characteristic is not 2 or 3 ensures that the
degree 4 map 7 o A is tamely ramified.) Substituting

deg(mo \) = deg(m) - deg(A) =4-1=4,

we get
. 1
genus(Cg(,é?zO) =—-3+ 3 Z (4 — #(mo )\)’1(901)>
Ileﬂﬂ
#(moX) "1 (z1)<4

< -3+ % Z (4 - #W_l(xl))

1 cp!
#r 1 (z1)<4

= -3+ #{xl eP:#r i (z) = 2}
3
+ 5#{561 eP': #r(2y) =1}
3
=-3+A+ §B using the notation in (12),
<5 from (13), since the max is at (A, B) = (8,0).

Finally, we note that if ng(l)?zo is reducible, then the above argument

works mutatis mutandis if we replace Céé?ze with any of its irreducible
components and note that now the map 7 has degree 1 or 2. This
completes the proof of Lemma 5.6. O

HGSee Remark 5.7 for examples where C.,%?ZO is reducible.
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Remark 5.7. Lemma 5.6(a) says that that the algebraic sets described
in Definition 5.4 have dimension 1, but we note that they need not be
irreducible. For example, let W be a TIK3 surface whose equation F' is
symmetric in y and z, i.e., F'(z,y,2) = F(z, z,y). Then for any £ € K
there is a factorization

F(l’,f,Z) - F(Iayag) = F(ZL‘7Z7€) - F(xvyvg) = (Z - y)L<xay7 2)7
where L(x,y, z) has degree 1 in y and z. It follows that the algebraic

set 65(15) is reducible, and indeed it is the union of two genus 1 curves,
each of which is isomorphic to the fibral curve

W = {(z,y) € A*: F(x,y,€) = 0}

6. TRI-INVOLUTIVE MARKOFF-TYPE K3 (MK3) SURFACES

The Markoff equation (1) and many of its variants admit not only
the involutions coming from the projections M — A2, they also ad-
mit sign-change involutions and coordinate permutations coming from
the symmetry of the Markoff equation. We give a name to the TIK3
surfaces that have these extra automorphisms.

Definition 6.1. We let &3, the symmetric group on 3 letters, act
on (P!)3 by permuting the coordinates, and we let the group

(3)1 = {(a, 8,7) s @, 8,7 € pp and afy = 1} (14)
act on (P')3 via sign changes,
€a (Y, 2) = (o, By, 72). (15)
In this way we obtain an embedding!?
G® = (u3)1 x &3 — Aut(P' x P* x P').
Definition 6.2. A Markoff-type K3 (MK3) surface W is a TIK3 sur-

face whose (2,2,2)-form (6) is invariant under the action of G°, i.e.,
the (2,2,2)-form F' describing W satisfies

F(%Z%Z) = F(_wa_ya Z) = F<_x7y7_z) = F(:Ev _y7_2)7
F(z,y,2) = F(z,2,y) = F(y,2,2) = F(v,2,y) = F(y,v,2) = F(z,y, 7).

Definition 6.3. Let VW be an MK3 surface. We define a set of gener-
ators

Gen(g) = {0'1, 09, 0'3} U ([,lg)l U 63, (16)

12\We remark that (u3), x G3 is isomorphic to &y, but for our applications the
group G° appears more naturally as the semi-direct product.
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and we let
G7 = (01,02, 03) C Aut(W),
G={p:peGen(G)) =(G°,G°) C Aut(W).

We remind the reader that the choice of Gen(G) affects the description
of fibral automorphism groups and of G-connected fibers; see Defini-
tion 3.5.

We suspect that the full automorphism group of a generic MK3-
surface is G; but as we shall see in Remark 8.7, some MK3-surfaces
admit additional automorphisms. We start by describing some ele-
mentary properties of the group G.

Proposition 6.4. Let W be an MK3-surface, and let G°, G7, and G
be the subgroups of Aut(W) described in Definitions 6.1 and 6.3.

(a) G7 is a normal subgroup of G.

(b) G = G°G.

Proof. (a) Since G is defined to be the group generated by G° and G,
it suffices to show that G° is contained in the normalizer of G7. We
let {i,j,k} = {1,2,3}, and for the purposes of this proof, we define
transpositions and sign changes

7;; = swap the 7 and j coordinates,

€;; = multiply the ¢ and j coordinates by —1.

Since &3 is generated by transpositions and (u3); is generated by the
sign changes, it suffices to check that G? is normalized by the 7;
and the €;;. This can be checked by an explicit computation, or al-
ternatively we can use the defining property m;; o o, = m;; of oy,
where ;; is the projection map; see Definition 3.4. Thus momen-
tarily letting 7 : (P')?> — (P')? be the map that swaps the coordinates
and ¢ : (PY)? — (P')? be the map that changes the sign of the ith
coordinate, we compute

WijO(Ti; OO'kOTij):TO’]TZ‘jOO'kOTij:TOTFZ‘J‘OTZ']':’N'Z‘j,
-1

Tk © (T, © Ok O Tig) =T OTy; 0 0p O Tijg =T OTj O Typy = Tjg
-1 _ — .. . o 2 o

Tij © (eij 00} O€;j) = € OT;j OO0 O €j=€;OT;jO€; = €;; © Tij = Tijy

2

-1
T3 © (Eik OO0 O Eikz) = €; 0 T;; OO0 O € = €; O T;; O €, = €; O T3 = Tyj.

It follows from the definitions of the o; that

-1 o -1 —

Tij @0k ©CTij = Ok, €jj ©0k©€j = O,
-1 . -1 —

Ti, © Ok © Tig = Oy, €ir COkO€jp = Ok.
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Hence G° normalizes G, and indeed, (u3); is in the centralizer of G°.
(b) By definition the group G is generated by G° and G?, and from (a),
we know that G7? is a normal subgroup of G. It follows that every
element of G can be written as yo with v € G° and ¢ € G?. Hence G =
Gege. O
Proposition 6.5. Let W/ K be a (possibly degenerate) MKS3-surface.

(a) There exist a,b,c,d,e € K so that the (2,2,2)-form F that de-
fines W has the form

Fopede(,y,2) = ar’y?2* + b(a?y? + 2°2° + y?2?)
+eryz +d@® +y* +2%) +e=0. (17
(b) Let F be as in (a). Then W is non-degenerate, i.e., the projec-
tions m; : W — (PY)? are quasi-finite, if and only if
c#0 and be#d* and ad# b

(c) For generic values of (a,b,c,d,e) € A5, a minimal regular model
for the MK3-surface defined by (17) is a K3 surface.

Remark 6.6. We can recover the classical (translated) Markoff equa-
tion for the surface M, in Definition 1 as a special case of an Fj, 4 ¢ q.c-
Thus M, is given by the affine equation

Foo—ar—k(x,y,2) = 224+ yP+ 22 —azyz — k=0.

We note, however, that the Markoff equation is degenerate, despite
the involutions being well-defined on the affine Markoft surface M, .
This occurs because the involutions are not well-defined at some of the
points at infinity in the closure of M, in (P')?. Further, the Markoff
surface is a rational surface, not a K3 surface.

Proof of 6.5. (a) The space of Gs-invariant quadratic polynomials in
Z[z,y, 2] is spanned by the following 10 polynomals:

(1) a2 () oy + oz + 2y
(3) wyz (4) 2°y’z +a%y2” +ay’s
(5) 2 +y*+2° (6) 2%y + 2%2% + y?2?

(7) 2%y + 2?2+ oy + 222 +y22 + P2

(8) xy+az+yz 9) z+y+=z (10) 1

Of these, the polynomials that are also invariant for the double-sign
changes in (u3); are (1), (3), (5), (6), and (10). Hence all ((p3)1 % S3)-
invariant (2,2, 2)-polynomials have the form indicated in (a).
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(b) By symmetry, it suffices to consider w5 and o3. The map w5 is
quasi-finite if and only if the fibers of the map m, are 0-dimensional.
Let F be the homogenization of the polynomial in (a). Then 7y is
quasi-finite over the point

([Oé, ﬁ]? [77 5]) € ]P)l X ]P)l
if and only if the polynomial F(«, f3;7, d; X3, Y3) is not identically 0.
Suppose first that ¢ # 0. Since
(the X3Y3 term of F(a, 857, 6; X3, Y3)) = cafv0X3Ys,

we see that 7o is quasi-finite unless a8y = 0. By the symmetry of F
it suffices to consider the cases that a = 0 and 5 = 0.
If a =0, then

F(0,157,6; X3,Y3) = (by? + d6*) X3 + (dy* + ed?) Y.
Hence 75 is quasi-finite at ([0, 1], [y, 0], [os, 73]) unless
by? + dé? = dy* + ed? = 0.
Since (7,d) # (0,0), this is possible if and only if be = d>.
Similarly, if 8 = 0, we look at
F(1,0;7,0; X3,Y3) = (a7® + b0*) X3 + (b7* + d6*) V5.
Thus o3 is well-defined at ([1,0], [y, ], [as, 73]) unless
ay? 4+ b6* = by* + dé* = 0.
Since (7,4) # (0,0), this is possible if and only if ad = b°.
We next consider the case that ¢ = 0. Then
F(a, B;7,0; X3,Y3) = (aa®y? 4+ ba?6® + bB*y* + dB*6%) X3
+ (ba®y? 4 da6® + dB** + eB25?)Yy. (18)
We claim that there is always a point ([, 8],[v,0]) € (P')* such

that (18) is identically 0. This follows from the fact that the (1,1)-
forms

bU1‘/1 +dU1‘/2+d‘/1U2+6U2‘/2 = 0, (20)

define a non-empty subvariety of (P')?, since taking ([u1,v1], [us, vo))
to be a solution to (19) and (20), we see that ([ui/Q, v}m], [u%ﬂ, v;m]) is
a point at which (18) is identically 0. (If one or both of (19) and (20) is
identically 0, that makes it even easier to find a point on the subvariety
that they define.)
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This completes the proof that 75 is quasi-finite if and only if ¢ # 0
and be # d? and ad # b*.
(c) See Proposition B.3(a) for the proof of this assertion. O

7. CONNECTED FIBRAL COMPONENTS AND THE CAGE FOR MK3
SURFACES

For this section we let YW be an MK3-surface, as described in Defi-
nition 6.2, defined over a finite field F,. We note that the &3-symmetry

of W implies that for any ¢ € P'(FF, ), the three fibers w (Fy), we (F,)
and Wt(g) (F,) have the same orbit structure, so in particular'®

Wt(i)(Fq) € ConnFib(W(F,)) for some i € {1,2,3}
= Wt(i)(IFq) € ConnFib(W(F,)) for all i € {1,2,3}.

Thus the G-connected fibers in W(F,) are determined by the projection
to P*(F,) of ConnFib(W(F,)) onto any of its coordinates. We denote
this set by

7 ConnFib(W(F,)) = {t e PY(F,) : WO(F,) e ConnFib(W(Fq))}.

Then we have the useful characterization (for MK3-surfaces):

P € Cage(W(F,)) <= some coordinate of P is in 7 ConnFib(W(F,)).

8. A ONE PARAMETER FAMILY OF MK3 SURFACES

In the next few sections we study an interesting 1-parameter family of
MK3-surfaces. We assume throughout that K is a field with char(K) #
2.

Definition 8.1. For £ € K* we define W, to be the MK3-surface
Wyt 2® + 2 + 22 4 22?2 + kayz = 0.

Remark 8.2. We note that a minimal regular model for W, is a K3
surface; see Proposition B.3(b). Further, in the notation of Proposi-
tion 6.5, the (2,2, 2)-form defining Wy has (a,b,c,d,e) = (1,0, k, 1,0).
Hence

c=k#0 and be=0+#1>=d*> and ad=1+#0?="0%
so Proposition 6.5(b) tells us that W is non-degenerate.

13We note that for MK3-surfaces, we take Gen(G) as described in (16), so I-
connectivity of fibers on MK3-surfaces may employ coordinate permutations and
sign changes, as well as the usual ¢; automorphisms.
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Remark 8.3. Let ( € K be an element satisfying ¢* = 1. Then there
is a K-isomorphism

Wk — W§3ka (I’,y, Z) = (Cxa gy;CZ) (21)

So we always have an identification Wy(K) = W_,(K), and if K
contains ¢ = +/—1, then there are further identifications Wy (K) =
Wein(K).

Remark 8.4. The three involutions (7) on W are given explicitly by

kyz
Ul(x7yvz): T 5., LY,z ),

14222
kxz

02(%%2): %—m—yaz )
kxy

03(%%2): x,ya—m—z .

We recall from Section 6 that G° is the group (u3); x &3 of order 24
sitting in Aut(W}) composed of sign changes and coordinate permuta-
tions, that G7 is the normal subgroup of Aut(W;) generated by o1, 02, 03,
and that G = G°G7 is the subgroup of Aut(W;) generated by G° and G°.

Remark 8.5. Let Wlizé be a fiber of W,. Then each of the involu-
tions 07,072,053 and each of the automorphisms in G° defines an iso-
morphism from W,Sf% to some other (or possibly the same) fiber of W.
It follows that the singular points on a fiber are mapped to singular
points on a fiber. Hence the set

3 .

U U singW)

i=1¢ep?
of fibral singular points is a finite subset of W, that is G-invariant,

so it breaks up into a finite number of finite G-orbits. If £ # 0,00
and £* # 1, then it will be a G-orbit of size 24; cf. Table 3.

Proposition 8.6. Let k € K*. The set of singular points of Wy, always
contains the 4 points

{(0,0, 0), (0,00, 00), (00,0, 00), (oo,oo,O)}. (22)

The point (0,0,0) is fized by G, and the other 3 singular points form
a G-orbit. Ifk ¢ {£4, 443}, then the set (22) is the full set of singular
points of W.

141f we also allow the d-inversion involutions described in Remark 8.7, then the 4
singular points form a single orbit.
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For k = 4 the set of singular points is

Sing(Wy) = {(0,0,0), (0, 00,00), (00,0, 00), (c0,00,0)
(1,1,-1), (1,—-1,1), (—-1,1,1), (-1, -1, —1)}; (23)
and for the other k € {£4, +£4i}, the singular points can be found using

the isomorphisms described in Remark 8.3. The points in (23) with
non-zero coordinates form a single G-orbit of size 4.

Remark 8.7 (MK3-Surfaces with Extra Involutions). The family of
MK3-surfaces W, admit additional involutions in which two of x,y, z
are replaced by their multiplicative inverses.'® Thus analogously to (14)
and (15), we can define another action of (u3); on (P')? via the formula

504,5,"/(xay7z> = (Ia7y,87z'y>’ where (avﬁaV) € (ll’g)l (24)

We observe that the ¢ and € actions commute (since (—1)~! = —1), so
we obtain an embedding

Ge = ((p2)1 > (2)1) % &3 — Aut(Wj),

Vv
We view this as a subgroup of Aut((P1)3).

where G° has order 96. Since the classical Markoff equation (5) and
general MK3-surfaces (17) do not admit these extra automorphisms, we
will not include them when constructing orbits in Wj. So for example,
the finite orbits and G°-generators in Wy (C) that we list in Table 3
are G-orbits, as are the finite field orbits in W;(F,) in Appendix C.
There would be some collapsing of generators and merging of orbits
if we also used the d-automorphisms. However, the existence of these
extra automorphisms can aid in studying the geometry of W, as will
be illustrated in the proof of Propositions 8.6 and 8.8.

More generally, Proposition 6.5 says that MK3-surfaces Wy p ¢ 4. are
described by (2,2, 2)-forms F,pcac(x,y, z) that depend on 5 homoge-
neous parameters [a, b, ¢, d, e]. Then the formula

Fa,b,c,d,e(xu Y, Z) - Fa,b,c,d,e(x_lv y_la Z)x2y2

= ((a —d)22+(b— e)) (2%y* — 1),
combined with the z,y, z symmetry of Fj,; 4., imply that
dapry € AutWypecae) <= a=dandb=e.

Thus Wy, = Wi o.1,0 corresponds toa =d =1 and b = e = 0.

5Note that we're really working in P', so we formally set 0~! = 0o and co™! = 0.
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Proof of Proposition 8.6:
We let

F(z,y,2z) = 2° +y° + 2° + 2°y°2° + kxyz (25)

be the polynomial defining W, and we use subscripts to denote partial
derivatives. The singular points on this affine piece of W, are the
solutions to

F=F,=F,=F.=0. (26)

The ideal of Q[z,y, z, k| generated by the four polynomials in (26)
contains the following polynomials:!®

2?2 —y? [ z(a® = 1) [ x(2%2% — k%) [ o (k* — 28)

k
a? =22 Lyl — 1) |y — &%) | y(k* — 2°) (27)
P =22 22T =1) | 2(2%22 — k%) | 2(K* — 29)

The point (0,0,0) is always singular. Since (27) says that singular
points satisfy 22 = y? = 22, any other singular point (x,y, z) necessarily
has xyz # 0, and then (27) forces

k= 287 24?2 = 24y2 =242 = k2, and z*= y4 =z =1

From k* = 28, we see that k € {£4, +4i}; and from z* = y* = 24 =1,
we see that x,y, z € {1, £i}. For each of these 4 possible values of £,
it can be directly checked that the points satisfying F' = F, = F,, = F,,
are those given in the table in the statement of the proposition.

It remains to check the points on the complement in (P!)3 of the affine
piece. To do that, we use the fact that (0,0, 0) is the only singular point
of the affine piece of W, that has a coordinate mapped to oo under
the 04,5 inversion maps described in Remark 8.7. By symmetry, it
suffices to check points P of the following forms, where y and z are
non-zero:

’ P \ Singular? \ Why? ‘
(oo,y7z) NO 571,71,1(]3) - (an_1>z)
(00, 00, 2) No d_1-11(P) =(0,0,2)
(OO,y,O) No 5—1,—1,1(P) — (0’97170)
(00, 00,0) Yes d_1-11(P) =(0,0,0)
(007 07 O) — ¢ Wk
(007 0, OO) — ¢ Wk

16Indeed, this is true in the ring Z[271, z, v, z, k].
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Proposition 8.8. Let K be a field with char(K) # 2, let k € K*, and
let ¢ € PY(K). Then the fiber W,glg is singular if and only if
=0 or £€=o00 or k=206,
The singular points on the singular fibers are as follows:
Sing(Wy) = {(0,0,0), (0,00,0)),
Sing(W,Sgo) = {(oo,oo,O), (oo,O,oo)),
and for all £ ¢ {0,00} and for all u € {£1} and all v € {£1, £i},

Sing(wiz_i_vffl)’ﬁ) = {(57 v, _UU3)7 (57 -, uvg)}‘

By symmetry, analogous statements are true for W,EZE) and W,§3g

Proof. As in the proof of Proposition 8.6, we let F' be the polyno-
mial (25) defining W, and we use subscripts to denote partial deriva-

tives. The fiber W,glg is singular if and only if the simultaneous equa-
tions

F(gay7z):Fy(gayvz):Fz(gayaz) =0 (28)
have a solution. We compute

Res, (Resz(F, F.),Res.(F,, Fz)> =22 k% 2% (227 — ka — 2)?
(22 — kx +2)% - (22° + kx — 2)? - (22° + kx + 2)*.

We first consider the case that & = 0. Then (28) forces y = z =
0, so the only affine singular point is (0,0,0). Using the inversion
automorphism fixing the x-coordinate that is described in Remark 8.7,
there is an additional singular point (0, 0o, 00), so we find that

Sing(W,Sg) = {(O? 0,0), (0, 00, OO)}

And similarly, using the inversion automorphisms in Remark 8.7 that
replace the z-coordinate with 7!, we see that

Sing(W,gl) )= {(oo,oo,O), (oo,O,oo)).

We now assume that £ # 0, co. Then our assumptions that char(K) #

2 and W,glgo is singular imply that £ is a root of one of the polynomials
222 & kx 4+ 2. We will consider the case that

262+ kE+2=0,

and leave the similar computation for the other three cases to the
reader. Thus we assume that

k=-2¢+¢") and W,glg is singular.
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Substituting the expression for k into (28), we find that (yo, 29) is a
singular point on the fiber W,glg if and only if (yo, z9) satisfy

(2" — 29z + 1) —2yz + y* + 2* = 0,
(y2* = 2)€ =2 +y =0,
(2 —y)& —y+2=0.
Eliminating x or y or z from these three equations, we find that (v, z0)
satisfy
Po1=22—1=(y—2)(yz—1) =0,

and these equations have two solutions,

(Yo, 20) = (1,1) and (o, 20) = (—1,—1).

Finally, we substitute ¥ = —2(¢ + ¢71) and (z,9,2) = (£, +1,41)
into (28) and verify that F', F,, and F, vanish. This proves that

Sing W en.¢) = {6 1,1), (6,1, ~1)} forall £ # 0,00,
which completes the proof of Proposition 8.8. O

Remark 8.9. For a general TIK3-surface, the three projection maps
W — P! give W three different structures as a surface fibered by
genus 1 curves, and the corresponding Jacobian variety has a section
of infinite order whose translation action on W is the o; associated to
the projection. For MK3-surfaces, the G3-symmetry implies that the
three structures are the same. Using the explicit description of the
singular points on W, in Proposition 8.6 and the singular fibers of W,
in Proposition 8.8, one could compute a Néron model for W, — P! and
compute the canonical height of the point on its Jacobian, but we will
not do this computation in the present article.

Proposition 8.10. Let W be the MK3-surface given in Definition 8.1,
let F' be the associated polynomial, let yo, 29 € P, and let CZ,(,;?ZO be the

curve associated to F' as given in Definition 5.4. If C@%?ZO 18 singular,
then one of the following is true:

o 2 2 2.2 _
Yo orzp =0o0roo, ys=2y Yozo =1, Yo orzy=

+k £+ Vk%2+ 16
1 .

By symmetry, analogous statements are true for Cg(g?,zo and Cg(;;),yo.

Corollary 8.11. Let k € F,. Then

(1)
one or more of Cyylz s
# (107?/0a20) € Wk(IFq) : (2) (3) f 'yo, 0 S 144(].
Cag 205 Cavlyo 18 Singular
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Proof of Proposition 8.10. To ease notation, we let b = y and ¢ = z;.
An affine piece of the curve C,Elc) is given by the equations

F(z,b,2) = F(x,y,c) = 0.
Hence a point (z,y, z) € Célc) is a singular point if and only if

F.(z,b,2) 0 F.(x,b,z2)

Fy(z,y,¢) Fzy¢ 0 |t

rank

The rank condition and a bit of algebra yields three cases, which we
consider in turn.

Case 1: F,(z,b,z) = Fy(x,y,c) = 0. In this case we are looking
for values of b, ¢, k such that the equations

F(x,b,z) = F(z,y,c) = F,(z,b,2) = Fy(x,y,¢) =0

have a solution (x,y, z) € A3. Eliminating z,y, z from these four equa-
tions gives the equation

(b — ) (b* —1) = 0.

Hence if there is a singular point, then ¢ = +b**.

Case 2: F,(x,b,z) = F,(x,b,z) = 0. In this case, which is a ver-
sion of Proposition 8.8, we are looking for values of b, ¢, k such that the
equations

F(z,b,2) = F(x,y,c) = Fy(x,b,2) = F,(x,b,z) =0

have a solution (z,v,2) € A%. Eliminating z,y, z from these four equa-
tions gives the equation

b?(20* — bk — 2)(26* — bk + 2)(2b* + bk — 2)(2b* + bk + 2) = 0.
Hence if there is a singular point, then

+E+VEk24+16
b=0 or b= 1 .

Case 3: Fy(z,y,c) = Fy(x,y,c) = 0. By symmetry, this is the
same as Case 2 with y <» z and b < c. O

Proof of Corollary 8.11. It suffices to bound the number of (yo, z0) €
P!(F,) such that CZS(I)?ZO is singular, and then multiply by 3 for the xyz-
symmetry and also multiply by 2 because each (yo,29) may yield 2
points on Wj. (This includes some duplicates, so some improvement is
possible.)
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According to Proposition 8.10, the singular cases are included in the
following table, where again we do not worry that some points appear
more than once:

’ (Yo, 20) ‘ # with CZ(,(I)?ZO singular ‘
Yo or 2o =0 or oo < 4q
ys = 25 # 0 or 0o <2(qg-1)
Yoo =1 <2(q—1)
Yo OF 2y = :tk:t\/4k2:|:16 S 16q

Hence there are at most 24q pairs (yo, 29), and as noted earlier, this
must be multiplied by 6 to account for the other cases. U

9. FINITE ORBITS IN W;(C)

Table 3 describes finite G-orbits in W, (C). We do not claim that this
is the complete list of possibilities. However, we note that the varied
nature of the finite orbits in the 1-parameter family W, suggests that
any description of finite orbits over C on general TIK3-surfaces, or even
on MK3-surfaces, is likely to be quite complicated.

Most of the orbits in Table 3 were unearthed by examining small
orbits in W;(F,) that appear in Appendix C and looking at specific
properties of the points in the orbits. We explain the process for a
number of examples.

Question 9.1 (Uniform Boundedness Question). For each k& € C,
we know from [13] that there are only finitely many finite G-orbits
in Wi (C). Is there a bound that is independent of k for the largest
such orbit? More generally, is there such a bound for finite orbits
in W(C) as W runs over all MK3-surfaces? And even more generally,
how about for all TIK3-surfaces, although in this case we look at orbits
for the group generated by the three involutions oy, 09, 037

Remark 9.2. We mention that if we consider (o1, 09, 03)-orbits, then
the orbit of size 144 in Remark 9.6 consist of 12 orbits of size 12, the
orbit of size 160 in Remark 9.7 consist of 4 orbits of size 40, and the
orbit of size 288 described in Remark 9.8 consist of 12 orbits of size 24.
These provide lower bounds for the putative uniform bounds discussed
in Questions 1.3 and 9.1.

Definition 9.3 (Trivial Orbits). As noted in Proposition 8.6, the four
singular points in W, form two G-orbits, namely the fixed point

{(0,0,0)}
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and the orbit of size 3,
{(O,oo,oo), (00,0, 00), (oo,oo,O)}.

We will call these orbits the trivial orbits in VW, and as such, we have
not included them in the table in Appendix C.

Remark 9.4 (One-dimensional families of finite orbits in W;(C)). Ta-
ble 3 contains several examples of one-dimensional families of finite
orbits in Wy (C), and indeed, these families are defined over Q or Q(7).
Ignoring the trivial orbits described in Definition 9.3, we have the fol-
lowing examples:

Size 24: There is a k € Q(¢) such that W, (Q(t)) has a G-orbit
of size 24.

Size 48: The set W, (Q(i)) has a G-orbit of size 48

Size 192: There is a k € Q(t) such that Wj,(Q(t)) has a G-orbit
of size 192.

Size 288: There is a curve C'/Q of genus 9 and an element k €
Q(C) in the function field of C' so that W, (Q(C)) has a G-orbit
of size 288.

Remark 9.5 (Orbits of Size 64). We describe the derivation of the
orbit of size 64 in Table 3. Experimentally in Appendix C we see
orbits of size 64 in W) (IF,)) for various values of p and k, but the relation
between p and k is not clear. Examining the actual orbits in several
of these cases, we found that there was a single point in Wi (F,) of the
form (8,3, 3), and that the point (5, 3,1) also appeared in Wj(F,).
We next computed

(/87ﬁ75)€Wk — 66+kﬁ3+3ﬁ2:07
B, B, 1) eEW, = B+ (k+2)B*+1=0.

Eliminating & and the trivial solutions 3 € {0, 1} gives the equation'”
BF+p+B-1=0.

This gives k = —(8 + 87')% Tt is then an exercise to compute the G-
orbit of (3,5, 5). It turns out to be the union of the G° orbits of the
following five points:

Point (8,8,8) | (B,
Size of G°-orbit 4

[l
[

D[BAD ]G LB 5D
2 12 12 24

—_

"We note that 8 = 0 gives the contradiction 1 = 0, while 8 =1 yields k = —4
and an orbit with fewer than 64 elements.
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Remark 9.6 (Orbits of Size 144). The orbits of size 144 in Appendix C
tend to feature points of the form (a, 3,1) and («, 8, —/3) that satisfy
Ul<aa6a _ﬂ):(aaﬂa _5) and 03(04757_5>: (Qaﬂvl)'

We assume that a, 8 ¢ {0,00} and that 8 # —1, and then we obtain
four conditions on k, «, f:

(@,8,1) EWy = k=—(a+a )(B+57"),
(a,8,=B) eWr = af’k=0a(8'+1)+28,
o(a, B, =) = (o, ,—B) <= (B +1) =28,
o3(a, B,=B) = (. B,1) = (B° =B+ 1)a’+5=0.

The ideal in Z[«, (3, k| generated by these four relations is also generated
(according to Magma) by the three relations

a'+40® —1=0, k=4da(c®+4), B>+ (a*+3)B+1=0.

(We also note that since a # 0, we can replace the formula for k
by k = 4a71))

Remark 9.7 (Orbits of Size 160). The orbits of size 160 in Appendix C
tend to include a single point of the form (5, 5, 5) having the property
that

oro03(B,8,8) = (1,8,%). (29)

The assumption that (3, 3, 8) € Wj gives k = —(3 + %)/, and then
computing (29) explicitly gives

9 5
aloagw,ﬁ,ﬁ):(ﬁ 26 158 5 25 )

BE+68t+1 7 B+
Setting the first coordinate to 1 and discarding the trivial solution g =
1 yields the condition

B8+ 261 —4p% —4B% — 48 + 1.

Setting v = 28/(B* + 1) for convenience, we find that the union of
the G°-orbits of the following points is an orbit of size 160.

| Point | Size of G°-orbit | | Point | Size of G°-orbit |
(8,8,8) 4 (1,8,7) 24
(8,8,7) 12 (1,8,771) 24
CRNRE) 12 (LB 24
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Remark 9.8 (Orbits of Size 288). There is an orbit of size 288 in Wy, (F47)
whose points have coordinates in the following set of values:

L e [—tfe [t ]
3 44] 16 | 31
6 41| 8 | 39

11136 | 30 | 17
1513222 | 25

SRS R e ge)

In particular, we find that
03(3,6,11) = (3,6,15) in Wi1(Fy7).
If we now treat «a, 3,7 as indeterminates and want to require that
(o, B,7) € Wy, and that o3(a, 8,7) = (o, B, 9),
then we find that k and d are given by the formulas
_a2 B2 42 4 0222

k=
afy

, (30)

a? + 32
0= ———r—. 31
Y(@?6? +1) Y

Let P, = (3,6,11) € Wi1(IF47). Then the G-orbit of P, has size 288,
while the sub-orbit for G = (01, 09, 03) has size 24 and is described
in detail in Table 1. We observe that the subgroup of G° leaving the
orbit G? - P; invariant is

Stabge (G° - P1) = {e, A}, where X:(x,y,2)— (z,—2,—y).
Hence the full G-orbit of P; € Wy;(Fy7) has order
#G° )

# Stabgo (g" . Pl)

Looking at Table 1, we find many relations in Wy;(Fy7), including
for example'®

0= o1(a, B, = —o2(a, 8,7)[2] = o3(a, 8,7) (3], (32)

24
= 24-? = 288.

#g-Plz(#gff—Pl)-(

and
0—2003(05a677) =01 003(_B_1a_77a_1)' (33)
If we now view (32) and (33) as determining conditions on the indeter-

minate quanitites «, 3, y, we find that a, 3, v must satisfy certain equa-
tions, and restricting to those equations that are satisfied by (3,6, 11)

18We use the convenient notation v[j] to denote the jth coordinate of the vec-
tor v.
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in Fy7, we find that «, 8,y must satisfy

o’ —a’B+a— =0, (34)
By = B2+ By =77 =0, (35)
AV o’y o+ =0. (36)

These three relations for «, 3,~ define a reducible subset of A3, and a
computation using Magma shows that this set consists of two pieces.
There is a finite set of points defined by

3a+y =B+7=79"+3=0, (37)

and there is a geometrically irreducible reduced affine curve in A? given
by the equations
a’f — oty +af?y’ —a+ Py =y =0
C=q(apB,7): a’y? —af*y +af+ 7’ =0 (38)
By =B+ By =2 =0
We discard the points (37), since the orbit collapses if § = —y. A
further computation shows that the affine curve C' has a unique singular
point at (0,0,0) and that it has (geometric) genus 9.

We let I denote the ideal in Q[ 3, ] generated by the three polyno-
mials (38) defining the curve C. Then for each of the points P; in Ta-
ble 1, treating «, 3, v as indeterminates and taking k and 0 in Q(«, 3, )
as specified by (30) and (31), we used Magma to check that o;(P;) is as
specified in Table 1 if we work in the fraction field of the quotient ring
Q[a, B,7]/1. Hence the G7-orbit of («, 3,7) has size 24 when we work
over this ring, and then as noted earlier, the full G-orbit has size 288.

In summary, we have shown that there is an irreducible affine curve
C/Q of geometric genus 9 and an element & € Q(C) in the function
field of C' so that W),(Q(C)) contains twelve G7-orbits of size 24 that
combine to form one G-orbit of size 288.

However, we note that there are points on the curve C(C) for which
the orbit collapses. Thus if we set § to be equal to any of o=, —f3, or v,
then the G°-orbits of the 12 points listed in Table 3 collapse pairwise,
and we obtain a total G-orbit of size 144, instead of 288. A short
computation shows that if we don’t allow «, 3,7 to be in {0, +1, £i},
then

S=a'=3a"'=-1, /=—p=20p"=-3, 6=79=1'=-3.
Remark 9.9 (Orbits of Size 288: A Cautionary Tale). We have seen

in Remark 9.8 that there is an entire 1-parameter family of orbits of
size 288 in characteristic 0. However, there are also exceptional orbits
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’ P ‘ P ‘ o1(P) ‘ oo(P) ‘ o3(P) ‘
P (o, B,7) Py Ps P
Py 60, 5,7) Py Py Py

P3 (571, —Ozil,’)/) P4 P2 )\Pll
Py | (-8 —aty)| P Py P
( —(5, ’Y) P6 P1 /\P7
PG (—B 1,—(5,’)/) P5 P4 )\PIO
( ) P AP P,
J) Py Py Py
Py| (v1,—-ald) Py P APy
P10 <— -1 —Oé_l (5) Pg )‘P6 P4
Py (6~ 1,5, _1) Py AP3 P,
Py| (v1.B3,a") Py APy P

TABLE 1. The G7-orbit of («,f,7) = (3,6,11) €
Wi1(Fy7), which we want to lift to a G7-orbit in char-
acteristic 0. The map A € G° is \N(z,y, 2) = (z, —z, —y).

of size 288 in finite characteristic that do not lift. For example, we
consider the orbit of size 288 in Wy (Fs3). This orbit contains many
points of the form (o, —a, 1) and many points of the form (0, 5,i3). Wi
note that an orbit containing points of this form does not fit into the
family described in Remark 9.8, but this does not preclude it coming
from some other characteristic 0 orbit, so we continue analyzing the
present example. In particular, we see that W,;(IF53) contains the
points

(—38,38,1) -2 (15,38, 12) -2 (15,11,12) -2 (0,11,12).
This suggests that we should take a point («, —«, 1) € W, satisfying
0’100200'3(Oé, _0571) = (075725) (39)

The assumption that (o, —«a, 1) € W), forces k = (o + a~!)?, and the
assumption that the first coordinate in (39) is 0 forces

a'® 30 +120M ~ 16046203805 +44a° —8a* +9a?+1 = 0. (40)

We next observe that in Wi;(Fs3), the orbit of (38, —38,1) has a o3
fixed point, specifically

090 03(38,—-38,1) = (15,11,12) is fixed by o3. (41)
So in general we might want to impose the further condition that

0'300'200'3(0[,—()[71) 20'2003(047—()[71) (42)
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to mirror the behavior in Wiy (Fs3). Assuming that o # £1, we find
that (42) forces a to satisfy

a'? + 22! 4+ 150° 4+ 12a° + 15a* +2a* + 1 = 0. (43)

However, the conditions (40) and (43) are incompatible in characteris-
tic 0. Indeed, the resultant of the two polynomials in (40) and (43) is
equal to 280 - 53% so the fact that (41) is true in Wiy (Fs3) comes from
our choice of the specific finite field Fss.

Remark 9.10 (Orbits of size 256: Another Cautionary Tale). There
is an orbit of size 256 in Ws(F53) whose points have coordinates in the
following set of values:

{£1, +a0*, £8% £9F'} with o =16, =21, v = 39.
In particular, there are points
P = (a,a,a) = (16,16, 16) € Wy(Fs3),
= (a,a,v 1) = (16,16, 34) € Wx(Fs3),
(1, a,ﬁ) (1,16,21) € Wi(Fs3),
= (a, 8,7) = (16,21, 39) € Ws(Fs3).

We first note that

4
3
P =(v,a,0) €W, — kiz—a; )
P= (o, v Y eW, = a'+1-2ay=0 (assuming P, # P),
(44)
Ps=(L,a,8) €W, = (@+1B*—(a*+3)8+a*+1=0,
(45)
Pi=(a,8,7) EWr = o+ ++a6 —(a* +3)By=0.
(46)

This gives three relations on «, 5,7. We can use the orbit structure
of Wg(Fs3) to generate additional relations such as

01(16,16,16) = (3971, 16,16) € Wx(Fs3)
— oo, a,0) = (v Laa) e W,
— o' —20y+1=0, (47)
01(16,21,39) = (16,21, 39) € Wy(Fs3)
= oi(a,B,7) = (o, B,7) € Wi
=  a*(a*+3)8* - (a* - 1) =0. (48)
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The five relations (44)-(48) are incompatible in characteristic 0, al-
though they do of course have the solution (a,f,v) = (16,21,39)
in Fs3. More precisely, the resultant of the five polynomials (44)-
(48) is 9752 = 23 - 23 - 53, and indeed in Wy(Fy3) we find an orbit
of size 256 corresponding to (a, 3,7) = (6,11,18). So the orbits of
size 256 in Why(Fa3) and Ws(Fs3) do not lift to characteristic 0.

Remark 9.11 (Orbits of Size 384: A Third Cautionary Tale). There
is a point P, = (22,22, —-23) € Wy3(F7). A direct computation shows
that #G- P, = 384. We let (a, 8,7,0) = (22,23,9,44), and we consider
the six points P; ..., Ps € Wi3(F7;) described in Table 2. We also
let G° C Aut(Wg) be the subgroup containing 96 automorphisms that
is described in Remark 8.7. Again by direct computation' we find
that G - P, C Wi3(F7) is invariant for Go, and that it splits up into
six Qo-orbits with orbit representatives P, ..., Py and orbits of size 48
or 96 as indicated in Table 2.

We now try to lift to characteristic 0, so we view «, 3,7, 0 as inde-
terminates. However, it turns out that the six conditions

P,eW, for i=1,...,6

are inconsistent in Q[«, 3,7, 9, k].

#G°P || P P o1(P) o9(P) o3(P)

48 Pl (Oé,Oé, _5) ( 717 ’ 5) (OC?yil?_B) (Oé,Oé, _’Y)

Yy «
48 P2 (Oé, «, _’7) (5_1 «a, _7) (Oé, B_lv _7) (a7 «Q, _B)
48 [P (B,B,7) (—a 1,87 | (B.—a"19) | (B,8,9)

8 [P | (B,B,9) (—1,3,0) (B,-1,9) (8,8,7)

96 P5 (Oé, _viy_l) (_6_17_ﬁa7_1) (Oé, _O‘_lafy_l) (a,—ﬁ,a)

9% | Bs| (8,-0,1) CREY) (B,—6—11) [(8,=0,-5)

TABLE 2. The G-orbit of (o, r, =) = (22,22, -23) €
Wi3(Fr1), with v = 9 and § = 44. We want to lift it to a
G-orbit in characteristic 0. We note that every point in

the last three columns is in the Go—orbit of one of
Py, ... B

99omewhat surprisingly, for this example we find that G7-P, = G- P, = G°ge-p,
in ng(F?l )
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orbit

. k G°-generators
size
1 all £ (0,0,0)
3 all k (0, 00, 00)
4 k=4 (—1,—-1,-1)
k=—-20+&1
48 all k (1,4,0), (1,7,00)
64 63+52+B_1:0 (57 7/87 (/87671
—(B+p71)? (B~ Ly (8,676
(8,671,1)
96 nt=-1 (n,7°,0) (7%, 1°)
= —21? (n,n*,n°)  (n,m%, 00)
144 at+402-1=0 (a, B, 1), (a7 1,8,1),
B4+ (@ +3)8+1=0 (.71 1), (a71, 8711,
54+253_252+2/8+1:0 (O‘aﬁa_/@>7 (ailaﬁila_ﬂ)
k=4a71
160 68+2B4_4B3 (57675) (LB?’}/)
_462_45_‘_1:0 (ﬁ*l,ﬁ*l,ﬁ) (176717’7)
v=28/(6*+1) (8,8,7) (1,8,771)
k=—-B+p"/8 (674675 1LY
8,877
192 ‘58 7& 1 (572570)7 (57 _iéal)a
k=i(&?—¢72) (&™), (&g, 00),
(6717_11571)7 (57177;5700)7
(€hih0), (it
288 | a’f— oy + af?y? (a,8,7) (071, 8,7)
or —a+ B2y —py2 =0 (67t —aty) (-87Y —-a"ly)
144* a?y? — aB?y3 + af + By =0 (e, B,0) (v~ 1, 8,0)
63 3 /82 + 57 ’Y =0 (7717 _04717 5) (_67 9 _04717 5)
§ = o +ﬁ2 (a7 775) <_6_17_77 6)
N 7(042,82 +1 (5_ ,,B,Oé 1) (7_17ﬂ7 a_l)
. a2+ B2 442 + a2B22
T afBy *Orbit size 144 if 3a* = —1
or B =-3ory*=-3

TABLE 3. Examples of finite G-orbits in W (C), where
in each case we list only one of Wy, and W._;; cf. Re-

mark &8.3.
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10. G-ORrBITS IN Wi (F,)

In this section we consider G-orbits in Wg(F,), where we recall
that G is the set of automorphisms of W, generated by the three in-
volutions o1, 09, 03, permutations of the three coordinates, and double
sign changes. Orbits in W;(FF,) are necessarily finite, since Wy (IF,)
is itself a finite set. In Appendix C we list the G-orbit structure for
each 3 < p < 113. We first did these computations with a custom pro-
gram that we wrote in PARI-GP [31]. This program used a straight-
forward algorithm to compute the points in Wy (F,), and then a hash
table to optimize finding and checking off points in orbits. This pro-
gram allowed us to compute the components of Wi (F,) for p < 79.
We then reprogrammed the problem in Magma [8]. This allowed us to
double-check the PARI-GP program, and ultimately to extend the com-
putations to larger primes. Our first Magma implementation used the
permutation group package in Magma and was a bit slower than PARI-
GP. When we replaced the Magma permutation group package with the
Magma graph theory package, the computations were roughly 10 times
faster. This implementation used a Magma function that computes
points on projective subvarieties of (P')3(FF,). When we replaced this
with a Magma function that computes points on affine subvarieties
of A3(F,) and filled in the few extra points on Wj,(F,) lying at infinity,
we picked up roughly another order of magnitude in speed. To give an
idea of the resources used, we note that the program computed the or-
bits in Wy (F113) for 29 values of k in roughly 31 minutes on a MacBook
Pro (2021) using an Apple M1 Pro chip.

In view of the isomorphisms provided by Remark 8.3, for p = 3 (mod 4)
we compute the orbit structure of Wj,(IF,,) for only one of £k € Fy; and
for p =1 (mod 4), we compute the orbit structure of Wi(F,) for only
one of +k, +ik € F;, where i = v/—1 € F,. In the tables in Appen-
dix C, we have also omitted the trivial orbits of size 1 and 3 described
in Definition 9.3.

Reducing the characteristic 0 orbits in Table 3 modulo p yields some
of the small characteristic p orbits in Appendix C. In particular, Table 4
lists the characteristic p orbits of sizes 144, 160 and 288 for p < 79 that
come from characteristic 0.

11. F1BRAL ORBITS IN Wi(F,)

As usual, we let

g - <Ul70-270-3a7—1277—1377-237612a €13, 623) C AUt(Wk‘)
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’p\kHa\BHOrbitsize‘ ’p\kHB\fyHOrbitsize‘
111114415 144 19| 2| 6 |10 160
19| 8 |11 4 144 2315 12019 160
29| 1 || 4 |18 144 311 6 [|22] 8 160
29|11 3 | 2 144 4111 || 25|35 160
31121213 144 411 4 || 31| 34 160
591 9 || 7|21 144 59 | 8 || 36|38 160
71134 21|59 144 67|27 || 11 | 49 160
791 6 || 27|63 144 73118 9 | 16 160
Orbits of size 144: Remark 9.6 Orbits of size 160: Remark 9.7
(5 [F o [ 5] [Orbit sie] |
1991 71213 144 B = -3
2314 |110] 8 |9 288
431 2 |28 |13 |14 144 3ot = —1

A7T|11 ) 3|6 |11 288
09 1231333 8 288
61|15 4 | 7 |18 288
67131 5 (30|12 144 3at = —1
711131 10|44 |16 288
79 135( 36| 8 |59 288
79136 || 12|19 |51 288
Orbits of sizes 144 and 288: Remark 9.8

TABLE 4. W(F,) orbits of sizes 144, 160 and 288 in Ta-
bles 8-11 coming from W(Q) orbits in Table 3.

For xg, Yo, 20 € K, we denote the fibers of W (K) as usual by
W]glr)o = { Zo, Y,z E Wk )}7
Wk,yg—{ T, Y0, 2) € Wi(K)},

Wk,zo = { xvysz) S Wk(K)}

The G-fibral automorphism group of a fiber is the subgroup of G that
maps the fiber to itself, and we use the action of G-fibral automor-
phism group to define the fibral orbit(s) of the points on the fiber. See
Definitions (3.5) and (3.6) for further details.

The G-fibral automorphism group of the fiber W,glgzo is generated by
the two involutions oo and o3 that fix xg, the transposition 753 that
swaps the y and z coordinates, and the map €3 that changes the sign



44 E. FUCHS, M. LITMAN, J.H. SILVERMAN, AND A. TRAN

of y and z; and similarly for the other fibers. Thus*

0

QS) = <O’1, 092, T12, 612> C Aut(Wig’)) .
We recall that since W, is an MK3-surface, there is a set of points
7 ConnFib(Wy(F,)) C P'(F,)

such that

t € w ConnFib(Wy(F,)) <
Wt(i) (F,) C Cage(Wy(F,)) for one (equivalently all) i € {1,2,3}.

Example 11.1. We consider the surface W; over the finite field Fs3.
The set W (Fs3) has six G-orbits of sizes, respectively, 1, 3, 24, 24, 48
and 3456. We are going to show that the cage in the big G-component
of Wi (Fs3) is not cage-connected, and hence from Proposition 4.4, the
big G-component of W (IF53) does not have the fiber jumping property.

We compute the number of components on the various fibers, and
when we do so, we find that

7 ConnFib(Wh (Fss)) = {2, +4, 46,48, 49, £11, +13, 420, +24, +26}.

(49)
Next, for each ¢ in 7 ConnFib(W1 (]F53)), we would like to know which
of the coordinates in 7w ConnFib(W1 (IF53)) appear as the coordinate of

some point in the (connected) fiber Wt(l) (F53). In general, if S is any
set of points in (P')3, we define

Flatten(S) = the set of all coordinates of all points in S.

20We have listed more generators than needed. For example, o3 = Ta3 0 09 0 To3,
so Aut (W;}J)) = (02, Tos, €23), and similarly for the other fibers.
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FIGURE 2. The two cage-connected components of the
cage of the big G-connected component of W;(Fs;3),
where the segment labeled (t) denotes the union of the
six connected fibers U;—; 23 Ue—t1 Wl(?zt(Fg)g,)

Then we may compute the connectivity of the cage of W (Fs3) using
the data in the following table.

|t | Flatten(W}Y (Fs3)) N 7 ConnFib(W: (Fss)) ~ {t} |

+2 {£6, £8, £9, £20}
+1 {£11, £247
+6 {£2, £8, £20, £26}
+8 {£2, +6, £9, 20, £26}
+9 {£2, £8, £20, 26}
+11 {£4, £13, £24}
113 {£11, +247
£20 {£2, +6, £8, £9, +26}
+24 {£4, 11, £13}
126 {£6, £8, 19, £20}

Thus the cage in the big component of W, (Fs3) is not cage-connected.
It consists of the following two pieces, which are illustrated in Figure 2:

U U Wi and U L v

te{£2,46,+£8,+9,+£20,+£26} i€{1,2,3} te{44,+11,413,424} i€{1,2,3}
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46

[to\p [[5 [ 71113171923 [29[31[37[41]

12
12

10
11

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40

TABLE 5. # of fibral Aut(W{ft)O)-orbits in Wy(F,) fori=1,2,3
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12. THE CURIOUS CASE OF Wy(F,) wiTH p =1 (mod 8)

We close with the curious case of Wy (IF, ), which seems to consistently
have two large orbits when p = 1 (mod 8). We remark that the classical
affine surface M, 4, which is known as the Cayley surface, also has an
unusual F,-orbit structure due to the fact that it admits a double cover
by (G,,)? in which the involutes o1, 05, 03 become monomial maps; see
for example [19]. There are analogous MK3 surfaces in which (G,,)? is
replaced by E?, but the fibers of such surfaces are all isomorphic curves,
while the j-invariants of the fibers of W, vary, so W, does not appear
to be an MK3 analogue of the Cayley surface. In any case, we list in
Table 6 the sizes of the components of W(F,) for all primes p < 113
satisfying p = 1 (mod 8).

Remark 12.1 (Addendum). After submission of this paper, one of
the authors spoke about the material in this section at a conference.
Evan O’Dorney, who was in the audience, then came up with an expla-
nation [29]. His proof uses an ingenious construction of a G-invariant
map
Wy(F,) — F,/(F}),

which he uses to show that Wy(F,) has G-invariant sets, each of size
roughly £p?.

’ P \ small orbits \ two largest orbits ‘
17 4,16, 24, 482 64, 288
41 |4,24,40,48,72,120,160, 1923, 216 288,576
73 4,24,40, 48,120, 160, 192, 2882 1920, 2976
89 4,24,48,160%, 1922, 2882 3264, 4512
97 4,24,48,192,960 3840, 5408
113 4,24, 48 6656, 7488

TABLE 6. Orbit sizes in Wy(F,) for p =1 (mod 8). We
omit the trivial orbit {(0,0,0)} and that of (oo, 00, 0) of
size 3. The notation N indicates d orbits of size N.
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APPENDIX A. GEOMETRY OF (2,2)-CURVES IN P! x P!

In this section we briefly discuss the well-known geometry of smooth
(2,2)-curves C' C P* x P!. Such a curve C' has genus 1, so its Jacobian

E = Jac(C) = Pic’(O)

is an elliptic curve. There is a natural action of E on C'. If we identify C'
with Pic'(C), then the action is simply

Pic’(C) x Pic'(C) — Pic'(C), (£, 0¢(D)) = L@ Oc(D).

~~
thisis £ x C

The two double-cover projections m; : C — P! have associated in-
volutions s; characterized by m; o s; = m;. The degree 2 line bun-
dles £; = 7 Op1(1) are independent elements of Pic(C), so their dif-
ference £; ® £;' gives a non-trivial element of Pic’(C) = E. The
involutions and line bundles are related as follows. To ease notation,
we write

Sl(Pl,PQ):(Pl,PQ) and SQ(Pl,PQ):(Pl,P2>.
Then
El = Oc(ﬂ'ik(Pl)) = Oc((Pl, Pg) + (Pl,p2>)
= O0c((P1, P) + s1(P1, P»)),
and similarly
;CQ = Oc((Pl,Pg) + SQ(Pl,Pg)).
Hence
Oc(s1(P1, Ps)) = L1 ® Oc (P, P2)>71,

1

Oc(s2(P1, Py)) = Lo ® Oc((P1, P))
so the composition s o s; is given by

00(52 o s1(Pr, Pz)) =Ly ® 00(51(P17P2))_1

— L, ® <L‘1 ® Oc((PbPZ))l)_l
=L@ L ® Oc((Pr, P)).

Thus sy 0 51 : C — C' is translation by the point £, ® £ € E that is
constructed using the two projection maps.

One can use invariant theory to give explicit formulas for £ and its
translation point explicitly in terms of the equation for C'. We thank
Wei Ho for providing us with these formulas, which appear in her joint
paper [0, Section 6.1].
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We write the equation of
C C P' x P! = Proj K[X,, X3] x Proj K[Y1, Ys]

a b c Y2
C: (X} X1Xy X3)(d e f YiYs | =0. (50)
g h i) \Y
N.B. The a,b,c,... we use in (50) and Table 7 are not the same as
the a, b, c, ... used for the coefficients of MK3 surfaces.

Table 7 gives explicit formulas for four invariants Xg, Yy, A, B €
Z[a,b, ..., h,i] of C having respective degrees 2, 3, 4, and 6. Then FE =
Jac(C) and the point £, ® £;! on E are given by

E:Y?=X*+AX+B and (X, Y)) € E.

ApPPENDIX B. GENERIC TIK3 AND MK3 SURFACES ARE K3, AND
ALL W, SURFACES ARE K3

At the suggestion of a referee, we sketch a proof that smooth minimal
models of generic TIK3 and MK3 are K3 surfaces, and that smooth
minimal models of all W, surfaces are K3 surfaces. We start with the
case of TIK3 surfaces.

Proposition B.1. A minimal regular model of a generic TIK3 surface
1s a K3 surface.

Proof. A generic TIK3 surface W is smooth, so we may assume that VW
is a smooth surface of type (2, 2,2) in (P')3. The fact that such surfaces
are K3 is well-known, but for the convenience of the reader, we sketch
a proof. To ease notation, we momentarily write P = (P')3.

We need to show that H'(Oy) = 0 and Kyy = O)y. Taking coho-
mology of the exact sequence

0— Op(—2,-2,-2) — Op — Oyy — 0
gives a long exact sequence containing the fragment
— H'(P,0p) — H'(P,0y) — H*(P,0p(-2,-2,-2)) —

The left-hand group is H* (P!, Op1)3 = 0. For the right-hand group, we
compute

H?(P, Op(—2,-2,-2)) = H(P,Kp ® Op(—2, —2,-2)")’
Serre duality [23, TIL.7.7],
>~ H°(P,Op(—2, -2, -2) ®Op222)
since ICp = Op(—2 —2)

!/
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Xo = 3(e? — 4df + 8cg — 4bh + 8ai),

Yo = 108(ceg — bfg — cdh + afh + bdi — aei),

A= —27(e* — 8de? f 4+ 16d° f* — 8ce’g — 16¢dfg + 24befg — 48af?g
+16¢2¢% + 24cdeh — 8be*h — 16bdf h + 24aefh — 16bcgh
+ 16b%h? — 48ach® — 48cd?i + 24bdei — 8ae*i — 16adfi
— 48b%gi + 224acgi — 16abhi + 16a%2),

B = —54(e8 — 12de* f + 48d%e* f2 — 64d3 2 — 12cetg + 24cde® fg
+ 36be® fg + 96¢d® f2g — 144bde f2g — T2ae® f2g + 288adf3g
+ 48c2€?g? + 96¢%df g? — 144bcefg® + 216b% f2 g — 5T6acf?g?
— 643 g + 36¢de3h — 12be*h — 144cd®e fh + 24bde® fh + 36ae® fh
+ 96bd? f2h — 144ade f?h — 144c2degh + 24bce’gh + 48bedf gh
— 144b%e fgh + T20acefgh — 144abf?gh + 96bc*g*h + 216¢2d%h?
— 144bedeh? + 48b%€*h? — T2ace®h? + 96b%df h? — 144acdf h*
— 144abe fh? + 216a% f2h? + 96b%cgh® — 576ac?gh? — 64b3h3 + 288abch®
— 72¢cd®e?i + 36bde®i — 12aeti + 288cd? fi — 144bd%e fi + 24ade® fi
+ 96ad® f?i — 5762 d% gi + T20bedegi — T2b%€ gi — 480ace®gi — 144b%df gi
— 960acdf gi + 720abefgi — 576a% f2gi — 576b%cg?i + 2112ac?g%i — 144bed?hi
— 144b%dehi + 720acdehi + 24abe®hi + 48abdf hi — 144a%efhi + 288b°ghi
— 960abcghi + 96ab*h?i — 576a%ch?i + 216b°d?i? — 576acd?i®> — 144abdei?
+ 48a2%e%i% + 96a%dfi® — 576ab%gi% + 2112a’%cgi® + 96abhi® — 64a’i3).

TABLE 7. Invariants of the biquadratic form (50)

=~ H°(P,0p)" = 0.

Hence H'(Oy) = 0.
The general formula for the canonical bundle on a smooth subvari-
ety [23, 11.8.20] gives

ICW = /Cp@OP(W) ®OW = Op(—Q, -2, —2)®Op(2, 2, 2)®OW o OW
This completes the proof that W is a K3 surface. O

We next recall the classical geometric classification of elliptic surfaces
over P! via their minimal Weierstrass models.
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Lemma B.2. Let K be a field of characteristic not equal to 2 or 3,
let A(T),B(T) € K[T] be polynomials such that
A(T) := 4A(T)* + 27B(T)* £ 0
and
ged(A(T)?, B(T)?) is 12th-power-free in K[T),
let
r = maX{ H deg(Aﬂ , (% deg(Bﬂ }, (51)

i.e., r is the smallest integer satisfying r > }ldeg(A) and r > %deg(B),
and let
1
5(A, B) = — (deg A(T) + ordr—g TIQ”A(T‘I)).

Let Eq /K (T) be the elliptic curve defined by the Weierstrass equa-

tion
Eap:Y?= X3+ AX + B,

and let E4 5 — P! be the minimal regular elliptic surface with generic
fiber Eap. Then the quantity 6(A, B) is a non-negative integer, and
we have the following classification:

| 0(A,B) | Geometry of Eap |

0 Eap 15 a product

1 Ea p 15 a rational surface
2 Eap 15 a K3 surface
>3 Eap 15 an elliptic surface
- of Kodaira dimension 1

Proof. Let L be the fundamental line bundle attached to E4 p as de-
fined in [28, II §4], so in particular the minimal discriminant A(T)
defines a global section A of L2,

We first compute the order of A at oo by setting 7 = S~ and
changing coordinates of the Weierstrass equation to obtain a minimal
model at (5). Thus

Eap:Y?= X34+ S"A(STHX + 5" B(S™), (52)

where defining r by (51) makes (52) into a minimal Weierstrass equa-
tion at (5). Then

ordo. (&) = ordg—g (4(54’”,4(5-1))3 + 27(56’“3(5—1))2)
= ordg—g S™"A(S™H). (53)

We use this to compute

12deg(LL) = deg(A) since A is a section of L2,
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- (Z ord, (Z)) +orde (A)

vyeAL

- (Z ordT:A,(A(T))) +ordu(A)

~yeAl
= deg(A(T)) + ordr—o T*"A(T")  from (53).

This shows that deg(IL) = §(A, B), and the classification given in the
table is then an immediate consequence of [28, Lemma I11.4.6(a)]. O

We now have the tools required to show that generic MK3 surfaces
are K3 surfaces, and that all W, surfaces (always with the restriction
that k # 0) are K3 surfaces.

Proposition B.3. Let W/ K be an MK3 surface defined over a field
of characteristic not equal to 2 or 3, so from Proposition 6.5 there
exist a,b,c,d,e € K so that W = W pcae s defined by a (2,2,2)-form
of the following shape:
Fa,b,c,d,e(xa Y, Z) = ax2y2z2 + b([lf2y2 + 1'2212 + y222)
+cryz +d(@* +y* +2°)+e=0.  (54)

Let Wa,b,c,d,e be a minimal reqular model for Wapc.de-
(a) For generic (a,b,c,d,e) € A®, the surface W\a,b,c,d,e is a K3 surface.
(b) The surface Wy, := Wi k1,0 is a K3 surface for all values of k # 0.

Proof. Viewing W, p.ca.. as being fibered via m3 : W, pecae — P, we
can write the affine equation (54) for W, p .4 as a matrix product

az?+b 0 b22+d\ [v?
(2 = 1) 0 cz 0 y | =0
b224+d 0 d22+e 1

The material in Section A, and in particular the formulas in Table 7,
say that the Jacobian of W, 4. has Weierstrass equation

Eapede =JACWapeae) : Y2 = X>+ AX + B,
where A B, and A have the form
A(z) = A(a,b,c,d, e; 2)
= —2". 3% (a®d® + 14ab?d + v*)2® + (Lo.t.),
B(z) = B(a,b,c,d,e; 2)
=27.3%. (ad + V?) - (a*d® — 34ab*d + b*) 2" + (Lo.t.),
A= A(a,b,c,d,e;2)
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:28'312'f1'f2‘f§'ff'f§a (55)
with fi,..., f5 given by the formulas
fi =az’ +b, fo=d2* +e, fs =b2* +d, (56)

f1=4(ad — b*) 2" — 4bcz® + (4ae — 4bd — ¢*)2*

— 4edz + 4(be — d?), (57)
f5 = 4(ad — b*)2* + 4bcz® + (4ae — 4bd — c*)2*

+dedz + 4(be — d*).  (58)

(a) Since we are interested in generic values of a,b, ¢, d, e, we may as-
sume that

d?a® + 14db*a + b* # 0,
(ad + %) - (a*d® — 34ab®d + b*) # 0,
abd(ad — b*) # 0.
These conditions ensure that
deg(A) =8, deg(B) =12, deg(A) =24,
so in the notation of Lemma B.2, we have

r=2 and §(A B)= %(24+ (24 —24)) = 2.

It follows from Lemma B.2 that me,c,dﬁ is a K3 surface provided that
we check the minimal Weierstrass equation condition that generically,
the quantity ged(A(z)%, B(2)?) is 12th-power-free. The definition A =
4A3 + 27B? implies that

A is 12th-power-free == gcd(A®, B?) is 12th-power-free.

so it suffices to show that A is generically 12th-power-free. Using the
factorization (55) of A, it suffices to restrict to values of (a,b,c,d,e)
such that the polynomials fi, ..., f5 described by (56)—(58) are square-
free and pairwise relatively prime as polynomials in z. It thus suffices
to take (a, b, ¢, d, e) satisfying

(Zli DiSCz(fz‘)) : ( ﬁ Resz(f@'afj)) # 0. (59)

ij=1
1#]
The non-equality (59) is a Zariski open condition in A®. This completes
the proof that there is a non-empty Zariski open subset U of A% such
that Wap.cae is a K3 surface for all (a,b,¢,d,e) € U.
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(b) For the W, surfaces, the formulas are much simplified, and we find
that
A= —4322% + 216k%2% 4 - - - |
B = —34562' 4+ 2592k%210 + ... |
A=28.32.24(22% —kz—2)% (222 — kz +2)°
(222 4+ k2 —2)%- (222 + k2 +2)2. (60)

As in the proof of (a), it suffices to show that A is 12th-power-free.
The explicit factorization (60) of A tells us that

at least two of the
A is not 12th-power-free — polynomials 222 4+ kz 4 2
have a common root

There are six pairs of polynomials, and their pairwise resultants can be
computed from

Res(222 + ekz + 2€, 222 + Skz — 2€) = 64€* + 4k%e(0% — €%),
Res(222 + ekz + €2,222 — ekz + €2) = 16k%€3,
by taking 0,e € {£1}. In particular, we see that
kE#0 = Ais 12th-power-free,

and indeed k # 0 implies that A is Sth-power-free.
This allows us to compute, using the notation from Lemma B.2,

r = max{[1dea(4)] , [+ dea(B)]} = max{[3],[2]} =2,
5(A,B) = % <deg A(2) + ord,—g leTA(z_1)>

1
5 (20 + orducg 22(210512:720 4 )

1
= 2.
It follows from Lemma B.2 that Wk is a K3 surface for all £ #0. O

APPENDIX C. ORBITS OF W, OVER FINITE FIELDS

This appendix contains tables listing the orbit sizes for Wy (F,).
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k \ orbit sizes ‘ ] P \ k \ orbit sizes ‘

1] 4 \ 29 | 1 |40,48,120,144,192, 352

T 4,48 | 29| 2 24,438,352, 672

1 64 29| 3 247,48,1152

5 o1 29| 4 4,48,192%, 288"

3 1 29[ 6 24%,48,1184

: o 29 | 8 | 24,4864, 96,288,576

5 ol 20 [ 11 48,144,1922, 384

3 51 31 1 24, 800

1 1128 31 2 24,144, 544

5 9164 313 896

1 24, 48,192 2} ‘51 24426888

i 24’45’4488’16942’120 31 6 24,160, 256, 384
— 31| 7 24, 864

1 [ 4,16,24, 487 64, 288 R o651

2 48,96,192 211 o S6d

3 24,48, 384 YRIT 094

6 24, 48,160, 192 TR 1056

1 24,160 3112 24, 624

2 24,160 3113 1120

3 320 3114 24,300

4 4,320 3115 1024

5 24,288 371 1 | 36% 48, 722 160,192,

6 24,288 216,288, 384

7 432 37| 2 | 24,48,72, 216,576,672

S - 62581442 37 3 9247.48,768, 1056
0%, 37 4 4, 48,192,334, 960

1 24, 448 375 247 48,1792

2 256, 352 378 24, 48,480, 1152

3 24, 336 371 9 | 24,48,160,192,1312

4 4,96, 288 37110 24, 48,1664

5 24,112,160 37|15 | 48,160, 192% 288, 624

6 448

7 576

8 24, 448

9 608

10 448

11 24, 384

TABLE 8. Non-trivial orbits in W(F,); cf. Defini-
tion 9.3. The notation N¢ indicates d orbits of size N.
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] P \ k \ orbit sizes ‘ ] P \ k \ orbit sizes
411 1 48,64, 160, 1632 4711 24,1712
411 2 [ 24,40,48,96,120,192,1536 | | 47| 2 2304
411 3 24,48,192, 1824 471 3 2112
411 4 | 4,24,40,48,72,120, 160, 471 4 4,1920
1923, 216, 288, 576 471 5 24,2080
411 6 16,24, 482,192, 1632 471 6 2336
411 7 24,48,192,1792 471 7 64,2016
41 ] 8 24,48,192,1792 471 8 24,2080
41|11 24,48, 384, 1600 4719 24,1776
41112 242 48,2160 47 | 10 24,2080
41 ] 16 48,96, 192, 1440 47111 | 64,96,160,288,1728
437 1 1728 47 1 12 24, 64,2016
43| 2 24,48, 144, 1536 47 | 13 24,2080
431 3 24,1536 47114 1984
431 4 4,1856 47 | 15 24,1776
431 5 24,1408 47 | 16 864,1216
431 6 1632 47 1 17 2304
431 7 1936 47 | 18 2336
431 8 1968 47119 24,1712
431 9 1760 47 1 20 24,2016
43| 10 24,64, 1600 47 1 21 24,1776
43 111 1936 47 | 22 2400
4312 256, 1504 47123 1984
43113 24,1408 53] 1 242 48,3456
43114 1728 53] 2 48,192, 2736
43115 2032 53] 3 242 48,192, 3360
43116 24,1408 53] 4 4, 48,3072
43 | 17 24,384,1024 531 5 24,48, 64, 3168
43| 18 1968 53| 6 24,48,192, 3040
43119 24,1664 53 | 8 |48,64,192,256,336,2016
43120 24,256, 1408 53|10 24,48,192,3072
43 1 21 24,1728 53 | 11 ] 24,48, 64,192,288, 2688
53 | 13| 24,48,192,288,2752
53|15 24,48,192, 2944
53 | 17 24,48,192, 3040
53 | 22 24,48,192%, 2752

TABLE 9. Non-trivial orbits in W(F,); cf. Defini-
tion 9.3. The notation N¢ indicates d orbits of size N.
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] P \ k \ orbit sizes ] P \ k \ orbit sizes
59 | 1 3232 61|13 48,64, 544, 3248
59 | 2 3328 61 | 14 24,48, 352, 3904
59 | 3 3360 61 | 15 | 24,48, 96, 2883, 3264
59 | 4 4,3392 61 [ 19| 48,1922,288,3184
59 | 5 24,2880 61 | 20 48,288, 3568
59| 6 24,3264 61 | 25 24, 48,192, 3936
59 | 7 3696 67| 1 4320
59 | 8 24,160, 2848 671 2 24,4256
5919 144,160, 3328 67 | 3 24, 3808
59 | 10 24,3008 67| 4 4,4544
59 | 11 24,2880 671 5 24, 4256
59 | 12 3792 671 6 4656
59 | 13 24,3328 67 | 7 24,3936
59| 14 24,2880 67 | 8 4624
59 | 15 160, 3072 671 9 24,4320
59 | 16 24, 3008 67 | 10 24,3808
59 | 17 3600 67 | 11 4720
59 | 18 3232 67 | 12 4352
59 | 19 3632 67 [ 13 24,4128
29 | 20 3328 67 | 14 4624
59 | 21 24, 3264 67 |15 4352
09 | 22 3232 67 | 16 24,3936
59 | 23 24,96, 288, 2944 67 |17 4994
09 | 24 24,3328 67 | 18 24,4256
99 | 25 24,2880 67 | 19 24,4256
59 | 26 3632 67 | 20 24,3936
09 | 27 24,3328 67 | 21 24,3808
59 | 28 24,3136 67 | 22 4720
59 | 29 3696 67 | 23 4320
61| 1 24, 48,4224 67 | 24 24,3808
61| 2 242 48,4512 67 | 25 24,4128
61 | 3 | 24,48,192,256,384, 3424 67 | 26 480, 3840
61| 4 4,48,192, 384, 3456 67 | 27 | 96,160,288, 4080
61| 5 24248, 4480 67 | 28 288,4528
61| 7 24,48,192,4032 67 | 29 24,4320
61| 8 242 48,192, 4288 67 | 30 4624
619 247 48,1922, 4192 67 | 31 48, 144,4032
61 | 10 | 362,48, 72,192,288, 3168 67 | 32 4352

67 | 33 24,3808

TABLE 10. Non-trivial orbits in Wjy(F,); cf. Defini-
tion 9.3. The notation N¢ indicates d orbits of size N.

59
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’ P \ k \ orbit sizes ’ P \ k \ orbit sizes
711 5280 73| 13 48,192,672,4576
71| 2 4768 73| 15 48,192, 544,4704
71 3 24, 4560 73| 17 24, 48,192, 5760
71| 4 4,4608 73 | 18 | 242,48, 160, 192, 6000
71| 5 24,4800 73120 | 16,24,482,192,5728
71] 6 24,4864 73| 23 24,48, 5856
717 5376 73 | 26 242,48, 6256
71] 8 24,4368 73 | 31 24,48,192,5792
119 5184 9] 1 24,5856
71110 4864 79 2 24,5424
7111 5280 9] 3 24, 5488
71112 24,4304 79 4 4, 5760
71113 96, 288, 384, 4096 791 5 24,6048
7114 24,4864 7916 24,144, 5344
71| 15 5216 79| 7 59592
71| 16 24, 4800 79 8 5792
7117 24,4864 791 9 24,5488
71| 18 24,4672 791 10 24,5984
7119 5184 79 [ 11 24,5984
71| 20 24,4864 79 1 12 24,5424
71| 21 5216 79 1 13 6432
71122 4864 79 | 14 24,6048
71| 23 24,4368 79 1 15 24,5488
71| 24 4864 79 | 16 6400
71025 4768 7917 24,5984
71| 26 5216 79 | 18 6592
71|27 24,4672 79 119 6400
71| 28 24,4304 79 | 20 6048
71129 4864 79 | 21 5952
71 | 30 24,4304 79 | 22 24, 5488
71| 31 4864 79 | 23 6496
71| 32 5216 79 | 24 6496
711 33 24,4368 79 | 25 6048
71| 34 24,144, 4224 79 | 26 6432
71| 35 24,4800 79 | 27 24,5984
73| 1 48,192, 5248 79 | 28 6080
73| 2 24, 48,96, 5760 79 | 29 5792
73] 3 24,48, 64,5920 79 | 30 6496
73| 4 4,24, 40, 48,120, 160, 79 | 31 24,6048

192, 2882,1920, 2976 79 | 32 5952
73| 5 242 48,6448 79 | 33 24,5984
73| 6 48,192, 5376 79 | 34 6592
737 24, 48,5952 79 | 35 96, 288,6112
731 9 242, 48,6288 79 | 36 24,96, 288, 5664
73| 10 48,192, 5248 79 | 37 24, 5680
73|12 24, 48,192, 5792 79 | 38 5952

79 | 39 24, 64,5616

TABLE 11. Non-trivial orbits in Wy (F,); cf. Defini-
tion 9.3. The notation N¢ indicates d orbits of size N.
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’ D \ k \ orbit sizes ‘ ’ P \ k orbit sizes
83| 1 | 24,96,288,5664 89| 1 24,48,192%, 8320
83| 2 7248 89| 2 24, 48,96, 192, 8320
831 3 6720 89 | 3 | 24,48,96,192, 2882, 7872
83| 4 4,7040 89| 4 4,24,48,160%,1922,
83| 5 24,6176 2882, 3264, 4512
83 1] 6 7088 89| 5 24, 48,8608
83| 7 24,6048 89| 6 24,48,192,8416
831 8 24,6496 89| 7 48,192, 288, 7584
831 9 24,6496 891 9 24,48,8448
83| 10 24,6176 89 | 10 24,48,8448
83| 11 7248 89| 11 24,48,192,8512
83 | 12 6720 89 | 12 242 48,9264
83 | 13 24,6624 89 | 14 247,48,9072
83| 14 7056 89| 15 16,487 8128
83 | 15 6688 89 | 17 48,8192
83 | 16 6432 89 [ 19| 242,48,144,1922, 8640
83 | 17 7088 89 | 20 48,192, 7872
83 | 18 24,6688 89 | 22 24,48, 8608
83 119 7152 89 | 25 24, 48,8736
83 | 20 6688 89 | 27 24,48, 8704
83| 21 24,6688 89 | 30 40, 48,120, 8032
83 | 22 7088 89 | 33 24,48, 8704
83|23 7088 89 | 38 | 242,48,144,192,8768
83 | 24 6592
83| 25 24,6496
83 | 26 6592
83 | 27 24,6048
83 | 28 | 24,96, 288, 6304
83| 29 24,6048
83 | 30 6688
83 | 31 6688
83 | 32 24,6176
83 | 33 24,6176
83 | 34 24,6176
83 | 35 7056
83 | 36 7088
83 | 37 24,6624
83 | 38 24,6048
83 | 39 24, 64,6624
83 | 40 24,6496
83 | 41 6688

TABLE 12. Non-trivial orbits in Wy(F,); cf. Defini-
tion 9.3. The notation N¢ indicates d orbits of size N.
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’ P \ k \ orbit sizes ’ P \ k \ orbit sizes

97 [ 1 48,192, 9504 101 ] 1 24,48,192,10912

97 | 2 24, 48,96, 672, 9408 101 ] 2 24,48,11104

97| 3 16, 24, 482,160, 10080 101 ] 3 24, 48,192, 10944

97 | 4 | 4,24,48,192,960, 3840, 5408 101 | 4 4,48,1922,2882,9792

97| 5 24, 48,10304 101] 5 24,48,192,10912

97| 6 48,192,9376 101 | 6 247 48,11552

97 | 7 242,48,10672 101 7 242,48, 11712

97| 8 24, 48,10304 101] 8 24, 48,1927 10464

97 | 10 48,192,9376 101 ]9 242 48,192, 11360

97 | 11 24,40, 48,120, 9856 101 | 12 48,602,120, 1922, 9728

97 [ 12 24, 48,10304 101 | 13 247 48,192, 11328

97 | 14 24, 48,192, 10080 101 | 14 24,48, 352,10656

97 [ 15 24, 48,10304 101 | 15 48,10608

97 | 16 48,9696 101 | 16 24, 48,160, 192, 10656

97 [ 19 247 .48,10864 101 | 17 24,48,11104

97 | 20 24, 48,192%,9792 101 | 18 242 48,11552

97 | 21 48,9696 101 | 23 48,10352

97 | 24 24, 48,192, 10080 101 | 24 24, 48,11008

97 | 25 24, 48,192, 10080 101 | 25 | 48, 64,962, 144,192, 2882,9184

97 | 28 242 .48,192,10576 101 | 26 24,48,11104

97 [ 29 247 .48,192,10512 101 | 27 | 24,40, 48,120,192, 480, 10272

97 | 33 24, 48,192, 10080 101 | 34 48,144,192, 10080

97 | 37 24, 48,96, 2882, 9344 101 | 35 48,10416

97 | 42 24, 48,192, 9824 101 [ 36 | 242,40, 48,120,192%, 11296

101 | 45 24,48,192,10816

TABLE 13. Non-trivial orbits in W;(F,); cf. Defini-
tion 9.3. The notation N¢ indicates d orbits of size N.
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’ P \ k \ orbit sizes ‘ ’ P \ k \ orbit sizes
103 | 1 10112 103 | 26 10912
103 | 2 24,10304 103 | 27 11008
103 | 3 10400 103 | 28 10400
103 | 4 4,9984 103 | 29 24,9616
103 | 5 24,9616 103 | 30 24,9616
103 | 6 10368 103 | 31 24,9616
103 | 7 24,10176 103 | 32 | 24,10176
103 | 8 11136 103 | 33 11008
103 | 9 10400 103 | 34 | 24,10176
103 | 10 10272 103 | 35 | 24,64,10240
103 | 11 24,9616 103 | 36 10112
103 | 12 24,9984 103 | 37 24,9616
103 | 13 24,9552 103 | 38 10112
103 | 14 10848 103 | 39 | 24,10304
103 | 15 | 96,288, 10464 103 | 40 | 64,10944
103 | 16 24,9552 103 | 41 24,9808
103 | 17 11008 103 | 42 24,9808
103 | 18 10816 103 | 43 | 24,10368
103 | 19 24,9808 103 | 44 24,9808
103 | 20 64,10048 103 | 45| 24,10304
103 | 21 24,10368 103 | 46 10272
103 | 22 24,10368 103 | 47 | 24,10304
103 | 23 10368 103 | 48 10848
103 | 24 10848 103 | 49 | 24,10304
103 | 25 10400 103 | 50 10816

103 | 51 10912

TABLE 14. Non-trivial orbits in Wy(F,); cf. Defini-
tion 9.3. The notation N¢ indicates d orbits of size N.
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’ P \ k \ orbit sizes ‘ ’ P \ k \ orbit sizes
107 | 1 24,11136 107 | 27 11760
107 | 2 11696 107 | 28 24,10816
107 | 3 24,10752 107 | 29 24,10368
107 | 4 4,11264 107 | 30 11984
107 | 5 24,10368 107 | 31 24,10496
107 | 6 11104 107 | 32 11856
107 | 7 24,11008 107 | 33 24,10496
107 | 8 | 24,96, 288,10624 107 | 34 11200
107 | 9 96,288, 11280 107 | 35 11104
107 | 10 11104 107 | 36 11984
107 | 11 24,10496 107 | 37 24,10368
107 | 12 11232 107 | 38 24,10496
107 | 13 11696 107 | 39 11200
107 | 14 11200 107 | 40 24,10496
107 | 15 24,10368 107 | 41 11200
107 | 16 11696 107 | 42 24,11136
107 | 17 11696 107 | 43 24,11008
107 | 18 10944 107 | 44 24,11008
107 | 19 11104 107 | 45 24,11136
107 | 20 11760 107 | 46 10944
107 | 21 11104 107 | 47 24,10496
107 | 22 24,11136 107 | 48 | 24,288,10912
107 | 23 24,10368 107 | 49 11984
107 | 24 24,64,10432 107 | 50 | 24,96, 288,10816
107 | 25 11664 107 | 51 11200
107 | 26 11664 107 | 52 24,11200

107 | 53 24,11200

TABLE 15. Non-trivial orbits in Wy (F,); cf. Defini-
tion 9.3. The notation N¢ indicates d orbits of size N.
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’ P \ k \ orbit sizes ’ D \ k \ orbit sizes
109 | 1 24,48, 12864 113 | 1 24,48,13792
109 | 2 242 48,13408 113 | 2 48,96,192, 12672
109 | 3 242, 48,13632 113 ] 3 242,48, 14256
109 | 4 4,48,192,12288 113 | 4 4,24, 48,6656, 7488
109 | 5 24, 48,1922 12224 113 | 5 | 242,40, 48,120,192, 480, 13456
109 | 6 24,48,12768 113 | 6 24,48,192,13344
109 | 7 48,12112 113 | 7 48, 13088
109 | 8 247 48,192,13312 1131 9 24,48,192,13504
109 | 9 24,48, 12864 113 | 10 48,288, 12800
109 | 11 242 48,13504 113 | 11 24,48,160,192%, 13152
109 | 12 48,192,288, 11568 113 | 12 24,48,13824
109 | 14 24,48,12768 113 | 13 24,48,192,13344
109 | 15 24,48,192,12576 113 | 14 24,48,192, 256, 13344
109 | 16 24,48,192,12416 113 | 17 48, 12960
109 | 18 48,1927,11920 113 | 18 242 48,14288
109 | 19 48, 12304 113 | 19 48,192,12768
109 | 21 24,48,1923,12032 113 | 20 24,48,192,288,13312
109 | 22 24,48, 160, 12736 113 [ 21| 40,48,120, 1922, 480, 12064
109 | 24 24,48, 12864 113 | 25 16,24, 482, 13728
109 | 25 | 24,48, 64,96, 192, 288, 11968 113 | 26 242 48,192, 14160
109 | 28 24,48,192,12704 113 | 27 48,13088
109 | 31 242 48,192, 480, 12672 113 | 28 24, 48,96, 192, 13408
109 | 32 24,48,192,12416 113 | 33 247 48,14256
109 | 35 48,192,11920 113 | 34 48,1923, 12768
109 | 38 24, 48,192, 12576 113 | 35 24, 48,96, 192, 2882, 12832
109 | 41 48, 12304 113 | 41 24248, 14448
109 | 48 242 48,13408 113 | 42 247 48,14288
113 | 49 24, 48,13824

TABLE 16. Non-trivial orbits in Wjy(F,); cf. Defini-
tion 9.3. The notation N¢ indicates d orbits of size N.
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