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Bright traveling breathers in media with long-range nonconvex dispersion
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The existence and properties of envelope solitary waves on a periodic traveling-wave background, called
traveling breathers, are investigated numerically in representative nonlocal dispersive media. Using a fixed-
point computational scheme, a space-time boundary-value problem for bright traveling breather solutions is
solved for the weakly nonlinear Benjamin-Bona-Mahony equation, a nonlocal, regularized shallow water wave
model, and the strongly nonlinear conduit equation, a nonlocal model of viscous core-annular flows. Curves
of unit-mean traveling breather solutions within a three-dimensional parameter space are obtained. Resonance
due to nonconvex, rational linear dispersion leads to a nonzero oscillatory background upon which traveling
breathers propagate. These solutions exhibit a topological phase jump and so act as defects within the periodic
background. For small amplitudes, traveling breathers are well approximated by bright soliton solutions of the
nonlinear Schrödinger equation with a negligibly small periodic background. These solutions are numerically
continued into the large-amplitude regime as elevation defects on cnoidal or cnoidal-like periodic traveling-wave
backgrounds. This study of bright traveling breathers provides insight into systems with nonconvex, nonlocal
dispersion that occur in a variety of media such as internal oceanic waves subject to rotation and short, intense
optical pulses.
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I. INTRODUCTION

Coherently propagating disturbances such as solitary
waves and envelope solitary waves, ubiquitous in nonlin-
ear dispersive media, are formed due to a balance between
nonlinearity and dispersion. Envelope solitary waves are
generically described by solutions of the cubic nonlinear
Schrödinger (NLS) equation subject to two disparate spatial
scales: the fast spatial scale corresponding to the wavelength
of periodic carrier wave oscillations and the slow-amplitude–
phase-modulation scale. For an attractive focusing nonlinear
medium, the NLS equation admits bright soliton solutions
corresponding to a localized sech envelope modulation of a
rapidly varying carrier wave. When the carrier phase speed
and envelope group speed differ, NLS bright solitons approx-
imate unsteady nonlinear wave packets. Such nonlinear wave
packets are also referred to as breathers due to the pulsation
or breathing of their internal oscillations. However, the mere
existence of approximate NLS bright soliton solutions does
not guarantee the existence of breather solutions to a nonlinear
dispersive evolution equation.

The canonical evolution equations admitting breather solu-
tions are the sine-Gordon (SG) [1] and modified Korteweg–de
Vries (mKdV) [2] equations. These equations are completely
integrable by the inverse scattering transform where soliton
and breather solutions correspond to discrete eigenvalues of a
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corresponding linear spectral problem [1]. A breather solution
of SG or mKdV equations corresponds to a pair or quartet of
eigenvalues, respectively, which can be interpreted as a bound
state of two solitons that decay to zero [2]. Breather solutions
to the focusing NLS equation have also been identified as im-
portant for modeling rogue wave phenomena [3] and exhibit a
nonzero plane-wave background.

The concept of breathers as interacting soliton pairs has
been generalized to solutions in which a soliton interacts with
a periodic traveling wave, e.g., a cnoidal wave, using a variety
of exact solution methods that are available for integrable
systems [4–11]. Such solutions have been interpreted as
dislocations of a cnoidal background [4]. We refer to these
solutions as traveling breathers, which is consistent with
their interpretation in lattice systems [12,13]. Traveling
breathers are spatially localized on a periodic traveling-wave
background and they exhibit two distinct velocities, the phase
velocity of the cnoidal background and the envelope velocity
of the traveling breather. Other terminology that has been used
to describe these coherent structures includes quasibreather
[1], localized oscillatory state [14], and nonlocal solitary
wave [15].

In the context of interfacial waves that arise in a vis-
cous core-annular flow, coherent bright breather trains were
observed to form in computational runs of perturbed, mod-
ulationally unstable periodic waves [16]. The nonlinear
Schrödinger equation was utilized as an approximate frame-
work to study these wave packets in the weakly nonlinear
regime. A follow-up work, involving extensive experiments,
generated bright and dark traveling breathers at the interface
of such viscous core-annular flows by interacting solitons and
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cnoidal-like waves [17]. These traveling breathers were seen
to robustly persist within the experimental test section for
15–25 oscillatory periods and long distances.

Such breathers and traveling breathers are also prevalent,
for example, in fluid dynamics [16,18–21], nonlinear and
matter-wave optics [22–29], and magnetic materials [30–32].
However, due to their inherently unsteady character, breather
and traveling breather solutions are challenging to obtain.
As noted earlier, the exact breather waveforms for integrable
systems are constructed through a nonlinear superposition
principle based on an application of the Darboux transforma-
tion. On the other hand, a common approach to circumvent the
reduced analytical tractability associated with nonintegrable
systems involves long-time numerical evolution of suitably
chosen initial conditions that appear to lead to breather so-
lutions [16,18–21,33,34]. However, due to the existence of
small-amplitude radiation accompanying the time evolution,
it is difficult to discern whether breather solutions actually
exist and, if so, what their properties are. The existence of
radiation in these and other computational studies [14,35,36]
suggests that a more likely scenario for nonintegrable systems
is that breathers are accompanied by an oscillatory back-
ground [15,37,38], recent numerical evidence of localized
breathers in a nonintegrable equation notwithstanding [39].
In other words, just as solitary-wave solutions in noninte-
grable equations generalize the soliton solutions of integrable
equations, traveling breather solutions of nonintegrable equa-
tions are the natural generalization of breather solutions of
integrable equations.

In the present study, we numerically investigate the
existence of bright (elevation) traveling breathers to the
Benjamin-Bona-Mahony (BBM) and conduit equations, both
nonintegrable, nonevolutionary equations [40], by solving a
space-time boundary-value problem (BVP) in the comoving
reference frame where the envelope speed is zero. The bound-
ary conditions are periodicity in time and space. Multiple
one-dimensional families of traveling breather solutions are
obtained by numerically continuing the BVP solutions from
the weakly nonlinear Schrödinger bright soliton approxima-
tion with a given carrier wave number and amplitude. The
unit-mean carrier frequency, phase shift, and amplitude are
implicitly determined by fixing the breather velocity, the car-
rier frequency in the comoving frame, and the spatial domain
size. Solution branches are obtained by performing continua-
tion in the traveling breather velocity, which is negative for all
solution branches computed.

Solutions along a given continuation branch are found to
strongly depend upon the initial carrier wave number. When
the wave number is sufficiently far from the inflection point
of the linear dispersion relation, the carrier background am-
plitude grows with decreasing velocity while the traveling
breather width narrows relative to the carrier wavelength.
For initial carrier wave numbers close to the inflection point,
the traveling breather envelope width remains large relative
to the carrier wavelength. The traveling breather solutions
obtained here are found to be dynamically stable under long-
time numerical evolution subject to small-amplitude initial
noise. Since nonlinear short-pulse optics [22,41] and inter-
nal oceanic waves influenced by the earth’s rotation [20,33]
exhibit similar nonconvex rational dispersion, the traveling

breathers obtained in our study may have implications for
these and other applications.

We adapt the Newton-conjugate gradient (NCG) method
[42,43] to compute traveling breather solutions. Our para-
metric continuation scheme is detailed in Sec. III B. It is
essential to seed the iterative continuation scheme with good
initial guesses. We initialize the NCG iterations with weakly
nonlinear NLS approximations described in Sec. III.

II. MODEL EQUATION PROPERTIES

The BBM equation in normalized form [44,45]

ut + uux − uxxt = 0 (1)

is a long-wavelength model of weakly nonlinear waves. Equa-
tion (1) is not integrable, possessing exactly two other linearly
independent conservation laws [46]. Besides the usual space
and time translational-invariance properties, the BBM pos-
sesses the scaling symmetry

u → u0u, x → x, t → u0t, (2)

where u0 is a nonzero real constant. The BBM equation’s
linear dispersion relation for trigonometric traveling waves on
the constant background u0 is bounded

ω0(k, u0) = u0k

1 + k2
(3)

and exhibits zero dispersion when u0 = 0 or k = √
3 since

∂kkω0(k, u0) = 2u0k(k2 − 3)

(k2 + 1)3
. (4)

The bounded nonconvex dispersion (3) distinguishes the
short-wave behavior of BBM solutions from those of the
Korteweg–de Vries (KdV) equation ut + uux + uxxx = 0 with
unbounded dispersion and no inflection points for nonzero k.

The BBM equation (1) admits a three-parameter family of
periodic traveling-wave solutions in the form of cnoidal waves

u(x, t ) = β̃ + (γ̃ − β̃ )cn2(z,m),

z =
(

γ̃ − α̃

12s̃

)1/2

(x − s̃t ), m = γ̃ − β̃

γ̃ − α̃
, (5)

where α̃ < β̃ < γ̃ , s̃ = 1
3 (α̃ + β̃ + γ̃ ) is the phase velocity,

and cn(z,m) is the Jacobi elliptic cosine function. The cnoidal
wave’s amplitude a and wave number k are

a = γ̃ − β̃, k = 2π

L
, L = 4K (m)

√
3s̃

γ̃ − α̃
, (6)

while its mean is

u = α̃ + (γ̃ − α̃)
E (m)

K (m)
, (7)

where K (m) and E (m) are the complete elliptic integrals of
the first and second kinds, respectively. The cnoidal wave
(5) limits to a solitary wave when β̃ → α̃ and a constant
when β̃ → γ̃ .

By use of the scaling symmetry (2), we impose the unit-
mean constraint u = 1 on the cnoidal wave solutions without
loss of generality and therefore constrain α̃, β̃, and γ̃ via
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u = 1 in Eq. (7). We parametrize the set of unit-mean periodic
traveling-wave solutions to the BBM equation in terms of two
parameters such as (a, k). Then its frequency is determined to
be ω = ks̃.

A strongly nonlinear generalization of the BBM equation is
the conduit equation [47]

At + 2AAz − AAtzz + AtAzz = 0, (8)

modeling large-amplitude long waves along the circular free
interface between two viscous fluids with high-viscosity con-
trast and small Reynolds number [48]. Its linear dispersion
relation on the constant background A0 > 0 is similar to the
BBM equation (3),

ω0(k;A0) = 2A0k

1 + A0k2
. (9)

It is bounded and has an inflection point when k = √
3/A0. We

mention that, like the BBM equation, the conduit equation is
not integrable and possesses at least two independent con-
servation laws [49]. Finally, the equation satisfies the scaling
symmetry

A → A0A, z → A−1/2
0 z, t → A1/2

0 t . (10)

The conduit equation (8) also admits a three-parameter
family of periodic traveling-wave solutions [16,50] but an
analytical expression for it is not known. Utilizing the scal-
ing symmetry (10), we impose the unit-mean constraint so
that the cnoidal-like periodic traveling-wave solutions are
parametrized by, e.g., their wave number k and amplitude a.

III. COMPUTATIONAL METHODOLOGY

We begin by introducing the common approach to comput-
ing approximate bright breather solutions by assuming weak
nonlinearity and scale separation. The NLS equation models
the slowly varying envelope B(ζ , τ̃ ) of nearly monochromatic
nonlinear wave packets [51,52]. In this regard, the focusing
NLS reduction obtained by employing a standard multiple-
scale calculation and rescaling takes the form

iBτ̃ + 1
2Bζ ζ + |B|2B = 0. (11)

The coordinate system associated with Eq. (11) is

ζ = ε√
∂k̃k̃ω0

(x − ∂k̃ω0t ), τ̃ = ε2t, (12)

where ∂k̃ω0 is the group velocity, ∂k̃k̃ω0 represents the dis-
persion curvature, and ε is an amplitude scale. The benefit
of the NLS approximation is that a simple ordinary differen-
tial equation (ODE) can be sought for describing the spatial
variation of the envelope b(ζ ), where B = b(ζ ) exp(iμτ̃ ) and
μ is an amplitude-dependent frequency shift. The well-known
sech solution of this ODE, b ≡ sech(ζ ) and μ = 1

2 , will be
used to seed the continuation algorithm that we describe
shortly.

In contrast, the direct computation of traveling breathers re-
quires solving a partial differential equation. We now describe
the strategy we adopt to compute BBM and conduit bright
traveling breathers as solutions to a space-time boundary-
value problem.

A. Space-time boundary-value problem

The BBM and conduit equations are examples of nonevo-
lutionary equations in the form

ut = L[u, ut ] + N[u, ut ], (13)

where L is a linear, constant coefficient skew-adjoint differen-
tial operator while N[u, ut ] is in general a nonlinear operator
acting on u and ut . Entering the comoving frame with velocity
c (χ = x − ct, τ = t ), we recast Eq. (13) as

βτ − cβχ − L̃[1 + β, βτ − cβχ ] − Ñ[1 + β, βτ − cβχ ] = 0,

(14)

where u(x, t ) ≡ 1 + β(χ, τ ) and the linear operator L̃ inherits
the skew symmetry. Using the scaling symmetry (2) or (10),
we set the background mean to unity, without loss of gener-
ality. In this reference frame, the solution is assumed to be
time periodic with period T and to rapidly decay to a periodic
background in space. Then β has zero mean in the far field
in χ due to the unit-mean normalization of u. We truncate
the domain (χ, τ ) ∈ [−L,L] × [0,T ] and take a finite Fourier
product basis for the solution field

β(χ, τ ; c,T ) ≈
N∑

m=−N

αm(χ )eim(2πτ/T ),

αm(χ ) ≈
M∑

s=−M

α̂mse
is(2πχ/L). (15)

The spatial domain is chosen to be sufficiently large so that
boundary effects are negligible, leading to a fully periodic
product basis. The actions of the two-dimensional forward and
inverse discrete Fourier transforms are denoted by F2D(·) and
F−1

2D (·), respectively.
We now describe the iterative procedure to recover nu-

merical solutions from their weakly nonlinear approximations
governed by the NLS equation, which in the co-traveling
frame and in terms of fast space and time variables is

β(χ, τ ) ≈ ã

2
sech

(
ε√

∂k̃k̃ω0
χ

)

× cos

[
k̃χ −

(
ω0 − ε2

2
− k̃∂k̃ω0

)
τ

]
, (16)

where ε = ã
√

γ

4 while the parameters γ (k̃) and ω0 depend on
the particular dispersive evolution equation at hand. Having
fixed the time period T to the NLS prediction, the solution
field β and the envelope velocity c need to be determined.
As we will show, the family of unit-mean solutions is three
dimensional. While the ansatz (15) for β can be used in
Eq. (14), to determine the velocity c, we require an additional
condition. Multiplying Eq. (14) by βτ and isolating the terms
containing the velocity c results in H(β ) = cG(β ). Integrating
this expression over the entire spatiotemporal domain, we
obtain the self-consistent integral condition for c,

c =
∫ T

0

∫ L
−L H(β )dχdτ∫ T

0

∫ L
−L G(β )dχdτ

, (17)
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provided the denominator is nonzero. Other integral relations
for c may similarly be derived. Equation (17) is used because
it is found to be robust in the sense that iterations converge, it
is efficient in the associated iterative procedure, and we never
observe the denominator to go to zero.

We implement the Newton-conjugate gradient algorithm
on Eq. (14) subject to the ansatz (15). To recover c and β si-
multaneously, we update the velocity iteratively at every outer
Newton iteration using (17) (see [43] for a similar treatment).
Upon insertion of (15) into (14), Newton operator iterations
are then applied to Eq. (14). The linearization is symmetrized
and inner preconditioned-conjugate gradient iterations are
used to solve this positive-semidefinite self-adjoint system,
which is expected to converge [42]. The complete velocity-
solution profile update algorithm is summarized as

P†
1nP1n�β = −P†

1nP0βn, n = 1, 2, . . .

cn =
∫ T

0

∫ L
−L Hn(β )dχ dτ∫ T

0

∫ L
−L Gn(β )dχ dτ

,

�β = βn+1 − βn, (18)

where P1n is the linearization operator at the nth Newton
iteration, with its adjoint operator represented by P†

1n, and
P0βn is the residual of Eq. (14) at the nth iteration.

We seed the iterations with a sufficiently close initial guess
(β1 and c1). For the BBM and conduit equations, the bright
solitary-wave solutions of the corresponding NLS reductions
give sufficiently close approximations. Iterations are termi-
nated when the residual maxχ,τ |P0β| is less than 10−10. To
reduce the condition number of the linear operator P†

1nP1n, it
is necessary to introduce an acceleration operator. We follow
the guidelines outlined in [42,43]. For Eq. (14), an appropriate
acceleration operator at the nth Newton iteration is chosen
by examining the constant-coefficient part of the symmetrized
operator P†

1nP1n, given by −(Bn)2 = −(∂τ − cn∂χ − L̃)2. No-
tably, this operator is positive semidefinite. An appropriate
acceleration operator is thus given by the positive-definite
operator Mn = r − (Bn)2, where r > 0 is a positive number
whose choice is arrived at via numerical experiments.

B. Parametrization and numerical continuation

Having described the computation of a numerically accu-
rate waveform in the weakly nonlinear regime, we now lay
out the continuation procedure to obtain a family of solu-
tions from this known solution. Implicit to the product basis
representation in Eq. (15) for spatially localized unit-mean
breathers, we have a two-parameter characterization (enve-
lope velocity c and time period T ). Given a known solution,
we perform a line search for a fixed time period T , by vary-
ing the velocity c parameter (referred to as c continuation).
We perform several such line searches starting from different
weakly nonlinear solutions. The search algorithm at the jth c-
continuation step is

P†( j)
1n P( j)

1n �β = −P†( j)
1n P( j)

0 βn, n = 1, 2, . . . , (19)

where the iterations are seeded the previous solution (β ( j−1)

and c( j−1)), while a traveling breather with fixed velocity
c( j) = c( j−1) + δc is sought. Note that similar space-time

FIG. 1. (a) Traveling breather in the weakly nonlinear regime
(blue solid line) of family 1 with T ≈ 18.180 and c ≈ −0.031 on a
spatial domain with L = 400. The numerical envelope (black dashed
line) is compared to the NLS bright soliton envelope (red solid line).
(b) Evaluation of the traveling breather at χ = 0 over one period
(blue solid line) compared with the leading-order NLS approxima-
tion (16) (red solid line).

boundary-value computations have been used to compute
breathers and traveling breathers in discrete lattice systems
[13] and modified NLS-type models [53,54].

IV. RESULTS

A. BBM bright traveling breather solutions

We compute five branches of BBM traveling breathers,
bifurcating from the focusing NLS limit. The edge of the
focusing regime [σ > 0 in Eq. (11)] of the NLS reduction is
marked by the inflection point of the unit-mean linear disper-
sion relation (3) k̃ = √

3 ≈ 1.73. It is crucial to initialize the
Newton iterations with an accurate initial guess in the nearly
monochromatic regime for convergence to traveling breathers.
In order to use a NLS bright soliton as the initial seed for the
continuation procedure, it is necessary to initialize the carrier
wave number k̃ >

√
3. The five traveling breather branches

are characterized by the carrier wave numbers

k̃(1) ≈ 5.42 > k̃(2,3) ≈ 3.79 > k̃(4) ≈ 3.01 > k̃(5) ≈ 2.42.

(20)

We refer to each of these branches as families 1, 2, 3, 4,
and 5, respectively. We perform the computations on large
domains for each of the breather families 1–5, with 2L ∈
{400, 200, 500, 500, 500}, respectively. The spatial discretiza-
tion for all the computed families is �x = 2L/2M = 0.08,
while N = 16 (32 Fourier modes) is found to be an appropri-
ate discretization in time. The NLS approximations provide
good initial guesses for computing traveling breathers with
carrier wave numbers k̃ > 2.4.

The initial guess for NCG iterations is the bright soli-
ton solution of the NLS equation (11), where γ (k̃) = (5k̃2 +
3)/(6k̃3 + 18k̃) and ω0 [Eq. (3)], ∂k̃ω0, and ∂k̃k̃ω0 are eval-
uated at k̃ = k̃( j) for some j and u0 = 1. We initialize the
computations with ã ≈ 0.15. The NLS bright soliton envelope
is localized, whereas the computed traveling breathers are
found to exhibit oscillatory tails, albeit very small for small ã.
It is convenient to introduce the traveling breather frequency
in the comoving frame � = 2π/T . In Fig. 1 we compare
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FIG. 2. Traveling breather frequency shift from computation
(black dotted line) and predicted (red solid line) traveling breathers.

the computed and NLS bright soliton profiles for the first
traveling breather of family 1. The profiles agree to within
1%. The numerical envelope profiles are extracted using the
Hilbert transform [21]. Furthermore, the traveling breather
frequency � and velocity c are within 1% of the bright soliton
predictions (16). The first computed solution for all traveling
breather families exhibits similar agreement to the NLS bright
soliton prediction (16).

To recover other traveling breathers, we apply c contin-
uation. The continuation procedure is found to introduce a
shift in the wave mean. At the end of c continuation for
each family, we scale all the obtained traveling breathers to
unit mean by utilizing Eq. (2). Consequently, although we fix
the time period T during continuation, the rescaling to unit
mean implies that the time period of the computed traveling
breathers changes across each family.

Performing c continuation, we observe an increase in
traveling breather amplitude with decreasing c. Define the
traveling breather nonlinear frequency shift

�� = �0 − �, (21)

where �0 = ω0 − k̃∂k̃ω0 is the linear frequency in the co-
moving frame. In Fig. 2(a) the prediction �� = ε2/2 from
Eq. (16) is compared with the computed frequency shift (21)
for family 1 across a range of amplitudes. As expected, there
is good agreement at low amplitudes and deviation at large
amplitudes.

Figure 3 displays six traveling breather solutions from fam-
ily 1 at τ = 0. To the eye, the solution in Fig. 3(a) appears
localized, decaying to 1 as |χ | → ∞. In fact, all computed
traveling breathers exhibit an oscillatory background. This is
consistent with rigorous studies of breathers in Klein-Gordon
equations where it was proven that, in the nonintegrable
case, small-amplitude breather solutions are accompanied by
exponentially small oscillatory tails [37,38]. As the travel-
ing breather amplitude increases in Fig. 3, the oscillatory
background becomes more prominent, eventually reaching an
amplitude that is comparable to the traveling breather itself.
The increase in carrier amplitude is accompanied by a narrow-
ing of the traveling breather’s width such that, in Figs. 3(e) and
3(f), the traveling breather itself is narrower than the carrier
wavelength. We point to some other general trends within the
computed solution families. The upper limit to the traveling

FIG. 3. Family 1 of traveling breather solutions of
the BBM equation with (a) (T, c) ≈ 16.917,−0.036,
(b) (T, c) ≈ 11.969, −0.076, (c) (T, c) ≈ 11.942, −0.079,
(d) (T, c) ≈ 11.906, −0.082, (e) (T, c) ≈ 11.316, −0.099, and
(f) (T, c) ≈ 10.682, −0.129.

breather velocity c is approached in the vanishing amplitude
regime so that it is the linear group velocity for family j : c <

∂k̃ω0(k̃( j), 1), implying that all traveling breather velocities
are negative. On the other hand, the computations do not
apparently indicate a lower bound to the breather velocities:

c < ∂k̃ω0(k̃( j), 1) < 0. (22)

This implies that, when bifurcating from the NLS bright
soliton, traveling breather velocities are always negative, i.e.,
c ∈ (−∞, 0).

The traveling breather envelope amplitude is defined as

ã = max
τ∈[0,T ]

β(0, τ ) − min
τ∈[0,T ]

β(0, τ ). (23)

In Fig. 3, we observe that the traveling breather width narrows
relative to the carrier wavelength as ã increases.

Let us count the number of parameters characterizing the
traveling breather solutions. In addition to the velocity c and
time period T , the existence of the periodic background intro-
duces two additional parameters, the carrier amplitude

a = lim sup
χ→∞

β(χ, 0) − lim inf
χ→∞ β(χ, 0) (24)

and the carrier wave number k [cf. Eq. (6)], with the carrier
frequency ω = ω(k, a) uniquely determined by the unit-mean
(u = 1) constraint (7). Since the traveling breather frequency
in the comoving frame is known � = 2π/T , we have the
additional compatibility relation

ω(k, a) − ck = �. (25)

Traveling breathers impart a phase shift to the periodic back-
ground, which we normalize to σ ∈ [−π, π ]. The phase shift
quantifies the amount by which the periodic background has
advanced or receded across the traveling breather core. In
our computations, the phase shift is implicitly determined by
the spatial domain [−L,L] and the imposition of spatially
periodic boundary conditions. The number of carrier wave-
lengths that fit in the domain is N = �Lk/π	, so the difference
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FIG. 4. Variation of the (a) periodic background amplitude (23),
(b) breather amplitude (24), (c) periodic background wave number,
(d) phase shift σ (26), and (e) time period T with breather velocity c
for family 1 of BBM breathers.

�χ = 2L − 2πN/k � 0 represents the spatial mismatch. The
normalized phase shift is determined according to

σ =
{
k�χ, k�χ < π

k�χ − 2π, k�χ > π.
(26)

For our traveling breather computations, we input the four
parameters c,T,L, u = 1. The two relations (25) and (26)
can be used to determine a and σ . Thus, unit-mean traveling
breathers constitute a three-parameter family of solutions. In
Fig. 4 we show how the parameters a, ã, k, σ , and T vary
with the breather velocity c for family 1. As c is decreased, the
parameters a, ã, and k increase, with k and a rapidly approach-
ing an asymptotic value in the strongly nonlinear regime.
The phase shift σ also limits to an asymptotic value for
large-amplitude (more negative c) traveling breathers, while
displaying both positive and negative phase shifts across the
range of velocities. By continuity, there is a traveling breather
exhibiting a zero phase shift. Finally, we remark that, since
we initialized the computations of family 1 with the NLS
bright soliton (16) where ã ≈ 0.15, the largest value of c,
cmax ≈ −0.031, is less than the theoretical upper bound (22)
∂k̃ω0(k̃(1), 1) ≈ −0.0308, which applies in the limit ã → 0.
We did not attempt to compute smaller-amplitude solutions.
The smallest velocity for which we compute a traveling
breather solution is c ≈ −0.129, which is shown in Fig. 3(f).
At this point, the existence of a lower bound for breather
velocities is unknown but remains interesting for future inves-
tigations. The fifth branch of computed traveling breathers
crossing the linear inflection point shown in Figs. 5(a)–
5(c) merits special mention. Given their proximity to the
zero-dispersion line (�0 = 3

√
3/8) in the weakly nonlinear

regime, they display a prominent periodic background even
for small amplitudes. For amplitudes 0.16 � ã � 0.62, the
carrier wave number of the breather core is found to lie in
the interval k̃ ∈ [1.67, 2.42], which is below the linear disper-
sion inflection point k̃ = √

3 ≈ 1.73. When k̃ <
√

3, the NLS
equation (11) is repulsive or defocusing. This persistence of
bright traveling breathers across the zero-dispersion line into

FIG. 5. Family 5 of BBM traveling breathers with (a) (ã, c, T ) ≈
0.162, −0.110, 10.142, (b) (ã, c, T ) ≈ 0.306, −0.124, 9.708, and
(c) (ã, c, T ) ≈ 0.623, −0.133, 9.486.

the defocusing regime is an intriguing feature, suggesting the
need for a higher-order NLS model to describe them [24,55].

In order to assess how close to the NLS regime computed
traveling breathers are, we plot the relationship between the
traveling breather frequency in the comoving frame with fre-
quency � and velocity c for each solution family in Fig. 6(a).
To compare with the NLS bright soliton (16), we obtain a
relationship between the linear frequency in the comoving
frame �0 = 2k̃3/(1 + k̃2)2 and the linear group velocity c0 =
∂k̃ω0 = (1 − k̃2)/(1 + k̃2)2 by eliminating k̃ to obtain

�0(c0) = 2
√

−2c0
[(2c0 + 1) + √

8c0 + 1]3/2

(1 + √
8c0 + 1)2

, (27)

where − 1
8 < c0 < 0 in the focusing regime. The computed

traveling breathers lie close to the �0(c0) curve in Fig. 6(a)
for small amplitudes and depart from the curve for larger am-
plitudes or fewer carrier wave oscillations in the breather core.
We conclude this section with a concise representation of all
the computed traveling breather families in Fig. 6(b). To this
end, a convenient set of defining parameters is the traveling
breather amplitude ã, the velocity c, and the time period in
the comoving frame T (or the associated angular frequency
� = 2π/T ). From Eqs. (16) and (21) with �� = ε2/2, the
time period T in the NLS approximation is

T (ã, c) = 2π

�
= 2π

�0(c) − ã2

32γ (c)
, (28)

FIG. 6. (a) Projections in amplitude of the velocity (c)-frequency
(�) relation of the five traveling breather branches. (b) Computed
unit-mean traveling breathers from the five families (closed circles)
and the weakly nonlinear prediction T = T (28) (colored surface).
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where γ (c) =
√−2c

6
√

(2c+1)+√
8c+1

−5−4c−5
√

8c+1
4c−1−√

8c+1
and k̃(c) ≡√

−(2c+1)−√
8c+1

2c is determined by inverting c = ∂k̃ω0(k̃, 1).
All NLS-like envelope solitons that enclose several carrier
wave oscillations within the breather core, lie close to the
two-parameter surface T = T (ã, c). These breather cores
decay rapidly to a very-small-amplitude (a 
 1) periodic
background. This surface is depicted in Fig. 6(b). The
parameters ã, c, and T associated with each computed
traveling breather are also rendered in the figure. In the
weakly nonlinear regime, the traveling breathers of all five
families reside close to T = T (ã, c). Eventually, they depart
from the surface, exhibiting a larger time period than weakly
nonlinear theory predicts. For families 1–4, the strongly
nonlinear breathers limit to enclosing very few carrier
oscillations within the breather cores, with the envelope
widths being comparable to the cnoidal (background) carrier
wavelength. An exception in this regard is family 5, wherein
the breather core possesses a slowly varying envelope despite
a large amplitude ã. As a final remark, we draw attention
to families 2 and 3, computed on domains with L = 100
and 250, respectively, and seeded with an identical NLS
envelope soliton (see Fig. 6). The role of the computational
domain length as an additional parameter (besides c and T )
is clear, as the scatter plots diverge noticeably beyond the
weakly nonlinear regime owing to the different induced phase
shift σ .

B. Conduit equation bright traveling breather solutions

The examination of BBM bright traveling breathers has
primed us for an investigation of their analogs in the conduit
equation, which has an identical unit-mean linear dispersion
relation.

The computations are initialized using the weakly nonlin-
ear NLS approximation (16) with k̃ = 4 and ã ≈ 0.38. As
before, the amplitude scale in Eq. (16) is defined by ε =
ãγ /4, with γ = (8k̃4 + 5k̃2 + 3)/(3k̃5 + 12k̃3 + 9k̃). While
continuing the branch of traveling breathers, we observe the
familiar trends associated with a shifting wave mean and the
emergence of a periodic carrier background. After this family,
referred to as family 1, is computed, we apply the scaling
symmetry (10) to normalize all the breathers to unit mean.
The continuation runs slow down once the number of cycles
of carrier wave oscillations in the breather core limit to three,
in contrast to the continuation runs for BBM breathers, where
the limit was at one cycle. Like in the case of BBM breathers,
the group velocity ∂k̃ω0 = 2(1 − k̃2)/(1 + k̃2)2 in the weakly
nonlinear regime appears to be an upper limit for conduit
breathers. This precludes breathers propagating with positive
velocity because k̃ >

√
3 > 1. Moreover, a lower limit for

breather velocity is not apparent from the computational re-
sults. On the other hand, a point of difference with the BBM
waveforms is a pronounced asymmetry, which tends to bound
the conduit wave profiles away from zero.

To illustrate these trends, we present a few representa-
tive conduit breathers from family 1 in Fig. 7. The relevant
computations are performed on a spatial domain of length
2L = 120 with spatial step �x = 2L

2M ≈ 0.06 while N = 16
(32 Fourier modes) provides the temporal discretization. The

FIG. 7. Family 1 of traveling breathers of the conduit equa-
tion with (a) (T, c) ≈ 7.172, −0.101, (b) (T, c) ≈ 7.093,−0.106,
(c) (T, c) ≈ 7.079, −0.107, (d) (T, c) ≈ 7.073, −0.109, (e) (T, c) ≈
7.072, −0.111, and (f) (T, c) ≈ 7.116, −0.113.

entire branch is contained within a relatively small velocity
interval of width approximately equal to 0.012.

In Fig. 8 we show how the identifying parameters a, ã, k,
σ , and T vary with the breather velocity c for family 1, upon
the emergence of the periodic background. With an increasing
magnitude of the wave-packet velocities, increasing trends in
a and ã are observed, while k displays slight variation. The
phase jump σ is negative for all breathers in this branch. Given
the strongly nonlinear nature of the conduit equation, it is
interesting to check how close the traveling breathers are to
the NLS regime. To this end, as before, the time period T ,
velocity c, and amplitude ã form a set of identifying parame-
ters. Moreover, the time period in the NLS approximation is
given in Eq. (28), where, for the conduit equation, the linear
frequency �0(c) is

�0(c) = 2
√−c(1 + c + √

4c + 1)3/2

2c + 1 + √
4c + 1

, (29)

FIG. 8. Variation of the (a) periodic background amplitude (23),
(b) breather amplitude (24), (c) periodic background wave number,
(d) phase shift σ (26), and (e) time period T with breather velocity c
for family 1 of conduit breathers.
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FIG. 9. Computed unit-mean traveling breathers from the fami-
lies (closed circles) and the weakly nonlinear prediction T = T (28)
(colored surface).

thus necessitating − 1
4 < c0 < 0 for a real frequency. Addi-

tionally, γ (c) is defined to be

γ (c) =
√−c

3
√
c + 1 + √

4c + 1

× 16 + 16
√

4c + 1 + 43c + 11c
√

4c + 1 + 6c2

2 + 2
√

4c + 1 + 2c − 2c
√

4c + 1
.

(30)

The NLS surface for the conduit equation T (ã, c) is shown
in Fig. 9. For appreciably small intervals in velocity, time-
period, and breather amplitudes, the wave packets reside on
the T (ã, c) surface and thereafter lie entirely below it.

We also investigate the existence and form of weakly non-
linear conduit breathers near the zero-dispersion line. To this
end, we initiate the computations with an appropriate NLS
initial guess. We recover a delocalized wave packet with a
nearly monochromatic amplitude-modulated core with k̃ = 2
[see Fig. 10(a)]. We seed the c-continuation algorithm with
this wave packet, to obtain the breather in Fig. 10(b). This
wave packet is characterized by core carrier wave oscillations
with wave number k̃ = 1.8. The continuation procedure is

FIG. 10. Family 2 of conduit weakly nonlinear wave packets
near the zero-dispersion line, characterized by (a) carrier wave num-
ber k̃ ≈ 2 and (ã, c, T ) ≈ 0.166, −0.240, 4.907 and (b) k̃ ≈ 1.8 and
(ã, c, T ) ≈ 0.210, −0.243, 4.886.

FIG. 11. Evolution of a perturbed strongly nonlinear conduit
traveling breather from family 1. (a) Contour plot describing the
spatiotemporal structure of the perturbed waveform when evolved
to t = 150T ≈ 1067. (b) Time snapshots of the perturbed (red solid
line) and unperturbed waveforms (blue dashed line) at the end time,
pointing to the coherence of the breather.

seen to slow down significantly thereafter. It is remarkable
that even for such small-amplitude traveling breathers, there
is a relatively large-amplitude periodic background, which
points to the operable higher-order dispersive effects therein.
At this point, the existence of bright wave packets across the
zero-dispersion line is unclear but is interesting for future
investigation.

The strongly nonlinear nature of the conduit equation, cou-
pled with the large conditioning numbers of the symmetrized
system of linear equations at each Newton step, result
in reduced computational tractability of the continuation
algorithm.

C. Dynamic stability of breathers

We numerically investigate the dynamic stability of com-
puted BBM and conduit traveling breathers with direct
numerical simulations. The initial condition consists of a nu-
merically computed traveling breather solution 1 + β(χ, τ )
evaluated at τ = 0 that is multiplicatively perturbed: u(x, 0) =
[1 + β(x, 0)][1 + �(x)] for the BBM equation and similarly
for the conduit equation. A smooth perturbation function
� is constructed from a spatially periodic disturbance with
random Fourier series coefficients that is band limited and
scaled to have a peak amplitude of 0.05. We employ the stan-
dard fourth-order Runge-Kutta explicit time-stepping scheme
along with a Fourier discretization in space similar to [16,56].
We perform long-time numerical integration for more than
100 breather periods T of two perturbed traveling breather so-
lutions, one weakly nonlinear and the other strongly nonlinear,
in each of the seven computed wave families (five BBM and
two conduit families). All exhibit similar dynamical behavior.
A representative example of a numerically evolved, perturbed
strongly nonlinear breather solution from family 1 of the
conduit equation compared with the unperturbed breather is
shown in Figs. 11(a) and 11(b). The traveling breather core is
slightly delayed after an evolution time of 150T . Despite the
5% initial perturbation and long evolution time, the breather
retains its coherence.

V. DISCUSSION

Branches of bright traveling breathers have been com-
puted as solutions to a space-time boundary-value problem
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for the BBM and conduit equations. For both we found
that traveling breathers are approximated by NLS envelope
bright solitons for small amplitudes and carrier wave num-
bers sufficiently deep in the negative dispersion regime. An
emergent feature of traveling breathers in the weakly nonlin-
ear regime was delocalization, signified by the presence of
a propagating periodic background. While the NLS approx-
imation remains accurate in the traveling breather core, it is
necessary to examine the effects of higher-order dispersive
corrections to explain the delocalization, which we briefly
describe now.

A convenient framework to understand delocalization is
the third-order NLS (TNLS) equation

iBτ + Bζ ζ

2
+ |B|2B = iε′Bζ ζ ζ , 0 < ε′ 
 1, (31)

where ε′ = ε(∂k̃k̃k̃ω0)/6(∂k̃k̃ω0)3/2, the slow, traveling spatial
coordinate ζ is defined in Eq. (12), and ε is the amplitude
scale [cf. Eq. (11)]. Without loss of generality, we consider
the usual unit amplitude NLS envelope soliton B(ζ , τ ) =
sech(ζ ) exp(iτ/2). Linearizing (31) about the soliton and
seeking a resonant solution with the same frequency of the
form exp[i(κζ + τ

2 )], we obtain the cubic equation for κ ,

ε′κ3 + 1
2κ2 + 1

2 = 0, (32)

which admits exactly one short-wave solution κ0 ∼ − 1
2ε′ ,

|κ0| 
 1 as ε′ → 0. This resonance with the linear spectrum
has two implications: (a) NLS solitons radiate short waves
when subject to weak third-order dispersion and (b) steady
solutions to Eq. (31), B(ζ , τ ) ≡ A(ζ − ε′c′τ ) exp[i(τ/2)],
are delocalized. Both the unsteady and steady problems are
studied under the framework of exponential asymptotics
(see [57]), which yields estimates for the amplitudes of the
one-sided short-wave radiation emitted by NLS solitons
and the far-field (ζ → ±∞) tails of the steady delocalized
waveforms.

An examination of the steady ODE problem reveals
that A(ξ ) must be exponentially small in ε′ as |ξ | →
∞. The complex-valued profile A(ξ ) exhibits a nonzero
phase jump. The implications of this perturbative analy-
sis for weakly nonlinear traveling breathers are that they
generically admit a parametrization in terms of the car-
rier wave number, traveling breather amplitude, and phase
jump, respectively. Moreover, this exponential asymptotic
result corroborates our computational finding of small-
amplitude traveling breathers with nearly localized spatial
waveforms.

The wave number of the resonant wave in the fast spatial
coordinate x is k̃1 ≡ k̃ + κ0

ε√
∂k̃k̃ω0

∼ k̃ − 3(∂k̃k̃ω0/∂k̃k̃k̃ω0).

This TNLS prediction is viable provided |∂k̃k̃ω0/∂k̃k̃k̃ω0| 

1. We have compared this wave-number prediction for the
BBM and conduit dispersion with the computed traveling
breather solutions and observed a significant discrepancy
in the interval k̃ ∈ [3, 3.5] for nearly monochromatic BBM
(or conduit) breathers. The relative errors here were found
to be as large as 1600%. On the other hand, in the inter-
val k̃ ∈ [1.74, 1.9], the relative errors were contained below
20% and were found to be as low as 6% for k̃ ≈ 1.8. This
discrepancy is attributed to the intricate structure of the

dispersion relations (3) and (9) for which ∂k̃k̃k̃ω0 is zero
when k̃ = √

2 + 1 while ∂k̃k̃ω0 is zero at k̃ = √
3. We sus-

pect that to complete the characterization of the traveling
breather periodic background, a cubic NLS model incorpo-
rating the full dispersion of these nonlocal models may be
required.

Another implication of the BBM–conduit nonconvex dis-
persion relation is the persistence of traveling bright breathers
in the weakly nonlinear defocusing regime (cf. Fig. 5). A
preliminary insight into this persistence can be gained within
a TNLS framework [24,55], where it was shown that traveling
breathers near the zero-dispersion point manifest a bright or
antidark waveform instead.

VI. CONCLUSION

In summary, we have introduced a direct computational
method for traveling bright breathers of nonlinear
dispersive equations. Multiple families of BBM and conduit
equation traveling breathers have been obtained. In the weakly
nonlinear regime, these limit to amplitude-modulated wave
packets that are well approximated by the NLS equation. In
the strongly nonlinear regime, these traveling breathers were
seen to be delocalized, bright modulation defects on cnoidal-
type carrier waves. Large-amplitude BBM breathers were
seen to have more pronounced cnoidal backgrounds than the
conduit counterparts we computed. Our computations indicate
that BBM and conduit bright traveling breathers bifurcating
from NLS bright solitons propagate with negative velocities
only and thus it is required to turn to an alternate setup to
what is currently being employed, for their experimental
generation [17]. Finally, BBM and conduit traveling breather
solutions were found to be dynamically stable over the course
of long-time numerical evolution of their initially perturbed
waveforms. A more detailed study investigating the stability
of these traveling breathers using Floquet theory is possible
future work. Another interesting problem is the experimental
generation of bright breather trains and of even a breather
gas, from an unstable periodic wave [16]. The latter could
also form the basis for future investigations in other relevant
geophysical [20,33] or short-pulse optical scenarios [22,41].

Yet another extension of the present work is the compu-
tation of bright and dark traveling breathers [11] which are
generated in the KdV equation via the interaction of solitons
and cnoidal waves [4]. Such classes of traveling breathers
have been observed experimentally over wide amplitude
ranges in [17] and have been seen to exhibit qualitatively sim-
ilar properties to their asymptotic KdV reductions. An open
question is how these solutions relate to the bright breathers
computed here. Can soliton-cnoidal wave interaction solu-
tions be continued to the bright traveling breather solutions
obtained here that bifurcate from bright soliton solutions of
the focusing NLS equation? Our computational method could
help establish the existence and properties of such dark and
bright traveling breathers in the absence of integrable struc-
ture. A tantalizing problem is the existence of more general
two-phase solutions that could also be explored using a similar
computational framework.
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FIG. 12. Continuation path (black dots) marked in the c-� phase
plane; in the weakly nonlinear regime the path approaches the linear
dispersion curve [magenta curve, �0(c0)] as c → −3. The inset
shows slices at τ = 0 of (a) the computed weakly nonlinear mKdV
breather and (b) a strongly nonlinear breather.
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APPENDIX: VALIDATION OF THE NCG ALGORITHM
ON MKDV BREATHERS

The integrable [58] focusing mKdV equation

ut + 3u2ux + uxxx = 0 (A1)

is known to possess bright breathers with closed-form ex-
pressions. We assess the performance of the NCG algorithm

on recovering the mKdV breathers situated on a zero back-
ground. The expression for the two-parameter family of
zero-mean mKdV breathers in the envelope reference frame
u(x, t ) = β(x − ct, t ) is [58]

β(χ, τ ; κ1, κ2)

= 2
√

2κ1sech(�)
cos(�) − κ1

κ2
sin(�) tanh(�)

1 + (
κ1
κ2

)2
sin2(�)sech2(�)

, (A2)

where, without loss of generality, the two solution parameters
are positive κ1,2 > 0. These parameters are related to the ve-
locity of the envelope c = κ2

1 − 3κ2
2 and the nonlinear angular

frequency of carrier oscillations ω = −�t = −κ2(κ2
2 − 3κ2

1 )
in the stationary reference frame [59]. Additionally, �(χ, τ )
and �(χ ) are

�(χ, τ ) = κ2
[
χ − 2

(
κ2

2 + κ2
1

)
τ
]
,

�(χ ) = κ1χ. (A3)

There are two distinguished limits of breather solutions to
the mKdV equation: (a) the weakly nonlinear NLS regime
(κ1/κ2 
 1) and (b) the strongly nonlinear regime [κ1/κ2 ∼
O(1)] where breathers tend to double-pole solutions [60]. For
T = 2π/� = 3.1105, where � is the angular frequency of
oscillations in the envelope reference frame, we recover both
the distinguished limits using the Newton-conjugate gradi-
ent algorithm, coupled to a c-continuation line search. Our
computational parameters are �x = 0.05, �t ≈ 0.1, and the
computational spatial domain 2L = 400. Along the entire
constant T path on the c-� plane, the space-time infinity norm
of the error in the numerical solution is kept approximately
10−7. The results of numerical continuation are summarized
in Fig. 12.
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