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Abstract:  13 

Tree species appear to prefer distinct climatic conditions, but the true nature of these preferences 14 
is obscured by species interactions and dispersal, which limit species’ ranges. We quantified 15 
realized and potential thermal niches of 188 North American tree species to conduct a 16 
continental-scale test of the architecture of niches. We found strong and consistent evidence that 17 
species occurring at thermal extremes occupy less than three-quarters of their potential niches 18 
and species’ potential niches overlap at a mean annual temperature of approximately 12 °C. 19 
These results clarify the breadth of thermal tolerances of temperate tree species and support the 20 
centrifugal organization of thermal niches. Accounting for the non-realized components of 21 
ecological niches will advance theory and prediction in global change ecology. 22 

 23 

One-Sentence Summary:  24 

Tree species can grow and survive at one common mean annual temperature despite their distinct 25 
distributions in nature. 26 
  27 
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Main Text: 28 

Predicting species’ responses to rising global temperatures requires knowledge of their thermal 29 
tolerance niches, yet our current understanding is informed primarily by the more limited 30 
realized niches. Realized niches are observed distributions of species along environmental 31 
gradients that reflect all the forces acting on the distribution including abiotic constraints such as 32 
climate, biotic interactions, and dispersal limitation (1-3). The realized niche differs from the 33 
fundamental niche, which is the complete set of conditions in which a species can sustain itself 34 
in the absence of biotic interactions (2, 4). Difficulties in measuring the fundamental niche have 35 
rendered it one of the most well-known yet least quantified concepts in ecology. Potential niches, 36 
on the other hand, are the complete set of conditions that allow species to survive and grow, but 37 
where recruitment rate is unknown (5-7). Potential niches are measurable and informative for 38 
organisms with a slow pace of life because adult survival is a more influential fitness component 39 
than fecundity (8, 9). If a species’ potential niche is larger than its realized niche, then it can 40 
tolerate a greater range of environments. Predictions of how species respond to climate change 41 
will be biased if based solely on the realized niche. 42 

 Competitive interactions are known to contract realized niches into less favorable 43 
environments at local spatial scales (10, 11), but whether interspecific competition contracts 44 
realized distributions at macroecological scales remains an open question. The Eltonian Noise 45 
Hypothesis assumes that the importance of competition decreases at broader spatial scales (12) 46 
and therefore predicts that realized niches are roughly equivalent to potential niches. If true, this 47 
would justify current methods in species distribution modeling that use present day realized 48 
niches to predict future responses to climate change (13). But this assumption of near 49 
equivalence is virtually untested and is increasingly contradicted by available evidence: the study 50 
of invasions (14, 15), experimental transplants of species outside their geographic range (16), 51 
and cultivation in botanical gardens (5-7) all show that many species can grow and survive 52 
outside of their current realized niches. 53 

It is increasingly clear that we should reject the simple, convenient assumption of niche 54 
equivalence, but we still do not know the most basic architectural relationships between potential 55 
and realized niches. Hypotheses about these relationships (17-21) have gained new urgency in 56 
light of efforts to predict species range shifts in response to climate change (22, 23). Such efforts 57 
have problematically treated the realized niche of today as if it was the fundamental niche and 58 
only possible future realized niche (24-26). In this paper we leverage global inventories of 59 
arboreta to empirically estimate present day potential niches of 188 tree species to conduct a 60 
continental-scale test of the architectures of ecological niches. 61 

Architectures of ecological niches 62 

Potential niches could exhibit three distinct architectures in relation to their 63 
corresponding realized niches, each driven by different mechanisms (Fig. 1). Following 64 
established terminology, potential niches could exhibit 1) distinct preferences, 2) shared 65 
preferences, or 3) centrifugal organization (1, 18-20). First, if the potential niche of each species 66 
covers distinct environmental conditions, then potential niches would be centered over their 67 
realized niches and would likewise inhabit distinct portions of an environmental gradient (Fig. 68 
1A). Second, a trade-off between competitive ability and abiotic tolerance of more stressful 69 
conditions could generate distinct realized niches despite all species sharing a preference for one 70 
end of the environmental gradient (Fig. 1B). Under these conditions competitive species would 71 
dominate the preferred environment at one end and more tolerant species would be relegated to 72 
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suboptimal environments at the other end (7, 11, 18, 19, 27, 28). Third, trade-offs generated by 73 
distinct physiological tolerances of two opposing abiotic extremes could also generate distinct 74 
realized niches along a gradient. Under these conditions, potential niches would overlap in the 75 
central core, yet their realized niches would be pushed toward the peripheries to avoid 76 
competition (Fig. 1C). Centrifugal organization was originally proposed for two or more 77 
orthogonal gradients that define the same core habitat (20, 29), but this third model is a special 78 
case of centrifugal organization where trade-offs in tolerating lethal conditions at opposite ends 79 
of the same gradient (e.g., cold-tolerant species are not heat-tolerant) can also contract realized 80 
niches toward the climate extremes. The idea that differences between potential and realized 81 
niches is driven by competition has been the primary hypothesis to date (18, 20, 21, 29), 82 
although other mechanisms are conceivable. Here we only test for the differences but do not 83 
directly test the mechanisms. 84 

These three conceptual models generate testable relationships between temperature and 85 
three niche metrics (Fig. 1): i) potential niche width, ii) the ratio of the realized-to-potential niche 86 
widths (‘R:P ratio’), and iii) ‘niche contraction’. The R:P ratio ranges from 0 to 1 because the 87 
realized niche is contained within the potential niche. Niche contraction measures the directional 88 
contraction of the realized niche into different regions of the potential niche and ranges from -1 89 
to 1, where, in this study, positive values indicate contraction of the realized niche from cooler 90 
climates into warmer climates, and negative values indicate contraction from warmer climates 91 
into cooler climates (Fig. 1). Evidence for each of the three models can be distinguished by 92 
unique geometric signatures encoded in the architectures of the potential niches (Fig. 1D-F). 93 
First, the distinct preference model would be supported if none of these metrics vary 94 
significantly with realized niche positions, i.e., the location of each species along the gradient 95 
calculated as the median temperature of the realized niche (Fig. 1G). Second, shared preference 96 
of warm temperatures would be supported if potential niche widths decrease with rising 97 
temperature, causing the R:P ratio to increase, and causing niche contraction to increase from 98 
more negative values to less negative values if realized niches contract from warmer into cooler 99 
climates (Fig. 1H). Note that the directions of these relationships and signs of the metrics would 100 
differ for other environmental contexts. Third, centrifugal organization would be supported if 101 
potential niche width is lowest at an intermediate temperature, causing the R:P ratio to peak at 102 
this intermediate temperature, and causing niche contraction to switch sign from negative to 103 
positive with increasing temperature (Fig. 1I). A worked example of these niche metrics is 104 
illustrated in Fig. 1J-L. 105 

We quantified the empirical support for each of the three hypotheses by estimating 106 
realized and potential thermal niches for 188 North American tree species. Realized niches were 107 
quantified using natural occurrence records in the Botanical Information and Ecology Network 108 
(BIEN 4.1) (30) and Little’s species range maps (31) (Fig. S1). We quantified potential niches by 109 
supplementing native occurrence records with 17,180 occurrence records from 447 arboreta 110 
around the world provided to us by Botanic Gardens Conservation International (BGCI) (32), 111 
including dozens to hundreds of occurrence records for each species (Fig. S2). Arboreta can be 112 
used to quantify potential niches because they eliminate dispersal limitation and minimize effects 113 
of competition (5-7). We used CHELSA V.2 (33) to determine minimum, mean, and maximum 114 
temperatures (1980-2010) for all occurrence records to estimate thermal niches. Both the natural 115 
and arboreta occurrence data show broad coverage of a range of current climates for estimating 116 
present day potential niches (Fig. S1). 117 

Thermal niches of North American tree species 118 
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We found strong and consistent support for centrifugal organization of thermal niches of North 119 
American tree species (Fig. 2, Table S1). The R:P ratio for mean annual temperature exhibited 120 
large variation among species, ranging from 0.42 to 1.0, with a median value of 0.91 (Fig. 2B). 121 
This in itself is a novel finding – that several species occupy less than three-quarters of their 122 
potential niche while others occupy nearly 100%. In fact, the R:P ratios were not randomly 123 
distributed across the temperature gradient, but rather exhibited a significant hump-shaped 124 
relationship with mean annual temperature (R2adj = 0.45, F2,185 = 76.9, P < 0.0001), reaching a 125 
maximum at 10.0 °C (Fig. 2B). Species with realized niches near this maximum exhibited 126 
similar realized and potential niche widths (i.e., R:P ratio ~ 1). These central species 127 
approximately conform with the predictions of the Eltonian Noise Hypothesis, but species at 128 
both temperature extremes contradict the predictions. 129 

The directional niche contraction metric exhibited a strong positive relationship with 130 
mean annual temperature (R2adj = 0.71, F2,185 = 225; P < 0.0001). The switch from niche 131 
contraction into cooler sites (blue colors in Fig. 2) to contraction into warmer sites (gold colors 132 
in Fig. 2) occurred at 12.0 °C (Fig. 2C). Potential niche width exhibited a significant u-shaped 133 
relationship with mean annual temperature (R2adj = 0.29, F2,185 = 37.6; P < 0.0001), where 134 
potential niche width reached a minimum at 15.9 °C (Fig. 2D). We estimated the centrifugal 135 
center value as the mean of three critical values: the maximum, x-intercept, and minimum of the 136 
fitted regression models in Figs. 2B, C, and D, respectively. The estimated centrifugal center was 137 
12.6 °C (denoted by the vertical line in Fig. 2A, Table S1). Remarkably, 176 of 188 species 138 
(94%) were observed to be growing and surviving in arboreta at 12.6 °C even though only 64% 139 
of these species occurred at this temperature in their native ranges (Fig. 2A, Table S1). 140 

Similar results were obtained for maximum temperature of the warmest month and 141 
minimum temperature of the coldest month. Centrifugal organization was supported in all three 142 
statistical tests of maximum temperature with a center at 25.5 °C (Fig. 3, Fig. S3, Table S1) and 143 
100% of species could tolerate this central maximum temperature (Fig. S3). Centrifugal 144 
organization was also supported in two of three statistical tests for minimum temperature (Fig. 3, 145 
Fig. S4, Table S1). In the one exception, potential niche width of minimum temperature declined 146 
nonlinearly with increasing realized niche position, supporting a shared preference for a higher 147 
temperature above freezing. The propensity of evidence indicates that a low temperature center 148 
exists at -3.2 °C and 97% of species could tolerate this central minimum temperature. 149 

Overall, these results falsify the model of distinct thermal preferences and support the 150 
centrifugal organization of potential thermal niches. They also clarify the true breadth of thermal 151 
tolerances of North American temperate tree species, showing that many species occupy only a 152 
fraction of their potential niche and confirm that trees can tolerate surprisingly large ranges in 153 
temperature (14, 34). 154 

Centrifugal organization of thermal niches 155 

Tree species inhabit distinct environments in nature, but two results seem counterintuitive to this 156 
observation. First, many species have potential temperature tolerances much greater than where 157 
they are observed to occur. Second, North American temperate trees share a single environment 158 
with a mean annual temperature around 12 ℃ where they can grow and survive, even though we 159 
can clearly identify tree species that occur in nature only in colder or warmer temperatures.  160 

Why do species have realized niches that span less than three-quarters of their potential 161 
niches? Our measurement of potential niches necessarily used data that could involve sampling 162 
biases, but these biases are all in the direction of not covering a large enough range of 163 
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temperatures. Better sampling of potential niches could only expand them, so this cannot explain 164 
why species inhabit a small slice of their potential niches. A second possible explanation is that 165 
the definition of the potential niche only considers survival and growth of mature trees, not 166 
recruitment. Our results cannot prove that populations could indefinitely persist at the central 167 
temperatures because the fundamental niche additionally requires an ability to reproduce to 168 
maintain positive population growth rates (4, 35, 36). This seems unlikely to explain most of the 169 
unoccupied parts of the potential niche for two reasons. First, in tree populations that are not 170 
growing exponentially but have been in rough equilibrium, such as the trees of North America in 171 
recent millennia (37), elasticity analyses of population growth rates show that it is the survival of 172 
adults that are most important to fitness (8). Second, trees only need one or a short sequence of a 173 
few years in which successful reproduction and seedling establishment can occur, and this may 174 
occur at any point in the temporally variable, multidecadal reproductive phase of a tree (36, 38). 175 
A third explanation for the failure to fully occupy the potential thermal niche is dispersal 176 
limitation. While trees are certainly dispersal limited over even centennial timescales (39), and 177 
dispersal limitation has been invoked to explain occurrence ‘holes’ found in present-day ranges 178 
(40), temperatures have been approximately stable for almost 10,000 years in North America. 179 
Fat-tailed dispersal kernels suggest that trees have the ability to move rapidly enough that it is 180 
unlikely trees are still several ℃ short of tracking their realized climate niche (39). Moreover, 181 
trees that now occupy the cold end of their potential thermal niche have clearly already dispersed 182 
to reach those colder locations since glaciation, abandoning the warmer locations that now 183 
compose the unoccupied portions of their potential thermal niche. 184 

This leaves biotic interactions as the most likely explanation for why species do not fill 185 
their potential temperature niches. Although biotic interactions likely play out differently at large 186 
scales than they do in the small-scale competition studies that are most commonly used to study 187 
them, there is good evidence from closely related species that do not co-occur across part or all 188 
of their range that biotic interactions can indeed limit species distributions at regional to 189 
continental scales (41, 42). The centrifugal niche pattern observed has a clear explanation based 190 
in a competition-tolerance trade-off (7, 18-20). In such a trade-off, some species allocate 191 
resources to being competitively dominant to occupy the central core habitat. Other species 192 
allocate resources to being tolerant of lethal environmental conditions, such as frost and drought. 193 
But it is likely that all forms of biotic interaction (i.e., competition, herbivory, disease, etc.) play 194 
a role. 195 

The second result that requires explanation is the shared tolerance for intermediate 196 
temperatures around 12 ℃ MAT. One explanation could be physiological. Thermal gradients are 197 
well-known in biology for generating hump-shaped reaction rates (43, 44). For example, C3 198 
photosynthesis is the dominant pathway in trees, and global average temperature response of 199 
photosynthesis peaks at 18 ℃ (45). Moreover, radial growth rates of trees in the northeastern US 200 
reach an optimum around 11.5 ℃ (Fig. S5). The full explanation likely involves temperature 201 
interacting with precipitation and CO2 (46). 202 

Evolutionary explanations, at first glance, would seem challenging: selection should 203 
quickly evolve potential niches to match realized niches as there is no selection in non-realized 204 
regions of the potential niche. A deeper time explanation involving extinction filters and niche 205 
conservatism (47) is possible. The 12 ℃ is close to the warmest mean annual temperature found 206 
in North America at the last glacial maximum (LGM, Fig. S6) and probably approximately 207 
similar to previous glacial maxima over the last 2 Ma. The 12 ℃ is also close to the coolest 208 
temperatures found in the same space 56 Mya in the Paleocene-Eocene Thermal Maximum 209 
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(PETM) (48), although uncertainties around these estimates are high. One could posit that cold-210 
adapted trees unable to survive temperatures ≥ 12 ℃ went extinct in the PETM and warm-211 
adapted trees unable to survive temperatures ≤ 12 ℃ went extinct in one of the glacial maxima. 212 
Furthermore, if the warm temperature tolerances of cold-adapted trees were conserved for 56 Ma 213 
while the cold temperature tolerances of warm-adapted trees were retained for merely 2 Ma, 214 
which follows the documented asymmetry in niche conservatism of warm and cold limits (49), 215 
then this could explain the present centrifugal organization. But one would have to explain why 216 
trees with refugia in Mexico maintained tolerance of 12 ℃. Overall, more work would be needed 217 
to make this theory rigorous. Our results do provide a plausible explanation for the occurrence of 218 
no-analog communities. For example, Picea spp. and Fraxinus spp. have narrow co-occurrence 219 
today, but co-occurred 12,000-17,000 years ago (37), which was possible because their potential 220 
niches overlap. 221 

We rejected the shared preference model for temperature (Fig. 1B), but this does not 222 
preclude the possibility that there could be other non-temperature gradients along which distinct 223 
(Fig. 1A) or shared preferences (Fig. 1B) exist (Fig. 1B). In small scale studies, shared 224 
preferences are common in co-existing plant species along consumable resource gradients (19), 225 
and animals have shown a strong propensity for distinct niche preferences along diet gradients 226 
(19). We note that centrifugal organization is often found when there are multiple dimensions of 227 
lethality (21, 29), and that temperature effectively achieves this with cold adaptation being very 228 
different from heat stress adaptation.  229 

Implications for species responses to a warming world 230 

Centrifugal organization of potential thermal niches has substantial implications for efforts to 231 
predict and understand species responses to climate change (22, 23, 50, 51). If the potential niche 232 
is a representative analog of the fundamental niche, then the fact that many species occupy only 233 
a limited subset of their potential niche raises the possibility that their realized niche could 234 
change and occupy a different subset of their potential niche when abiotic conditions not present 235 
today become available. This breaks a core assumption of species distribution models. 236 

Niche modeling must get serious about the distinction between realized niches and their 237 
potential and fundamental counterparts. On the one hand, niche modeling of tree species whose 238 
realized niches are centered on 12 ℃ could be accurate because their realized and potential 239 
niches are so similar (i.e., R:P ratio ~ 1; Fig. 2A). On the other hand, the fact that potential 240 
niches of cold-adapted species extend to warmer temperatures while potential niches of warm-241 
adapted species extend to cooler temperatures implies differential fates in a warming world. 242 
Cold-adapted species may not need to migrate to stay within their potential thermal niche, 243 
provided they can survive changing disturbance and competitive regimes, while warm-adapted 244 
species will need to migrate to stay within their potential niche under warming temperatures. 245 
Trees that are actively shifting their ranges and experiencing exponential growth may flip to 246 
conditions where fitness will be most sensitive to the regeneration niche (36) because dispersal 247 
and recruitment rates drive the advancing range. We should not assume, however, that 248 
regeneration niches are identical to realized recruitment patterns based on these results.   249 

The longstanding recognition of the importance of fundamental niches has not been 250 
adequately addressed empirically. Our results show that realized niches are not trivial 251 
contractions of potential niches. Rather, they differ substantially in a systematic fashion where 252 
realized niches contract away from an intermediate temperature into both the hot and cold ends 253 
of the thermal spectrum. Our findings challenge existing predictions of how ranges will shift 254 
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under climate change and suggest a need for deeper exploration of the relationship between 255 
potential and realized niches, including the mechanisms driving these differences. 256 
 257 
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 394 
 395 

Fig. 1. Three testable models of the architecture of ecological niches. 396 

Realized niches (denoted as dashed lines in A-C) that are distinct and arrayed sequentially along 397 
an environmental gradient may differ from potential niches (denoted as solid lines in A-C) even 398 
though realized niches are nested inside of potential niches. Potential and realized niches can be 399 
organized three different ways. Potential niches will exhibit either (A) distinct preferences 400 
among species centered on their realized niches, (B) a shared preference among species where 401 
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potential niches share the same extreme value, or (C) centrifugal organization where species 402 
overlap in the middle despite opposing abiotic tolerances. (D-F) Each model generates distinct 403 
geometric signatures in the potential niches while the realized niches remain constant. Consider 404 
an idealized set of ten potential niches stacked on top of each other and ordered by increasing 405 
realized niche minima: (D) distinct preferences would generate an orderly progression of similar 406 
potential width niches along the gradient, (E) shared preferences would generate a set of 407 
decreasing potential niche widths along the gradient that all share the same niche maxima, and 408 
(F) centrifugal organization would generate a skewed hourglass where potential niche width is 409 
lowest at intermediate locations along the gradient. (G-I) These signatures generate unique 410 
testable relationships between realized niche position (medians) and three niche metrics: 411 
potential niche width (see equations in J), the ratio of the realized-to-potential niche width (‘R:P 412 
ratio’), and the directional contraction of the realized niche into cooler or warmer regions of the 413 
potential niche (‘niche contraction’). (J-L). Worked example of how niche metrics were 414 
computed for three Pinus species where we quantified niche widths as the distance between 0.01 415 
and 0.99 quantiles for both realized occurrences (BIEN and Little’s range maps) and potential 416 
occurrences (a combination of realized occurrences plus arboreta occurrences). (J) The niche 417 
contraction metric is a directional index that quantifies how realized niches are contracted 418 
subsets of the potential niches. (K) Probability densities of realized and potential niches using 419 
occurrence data along a gradient of mean annual temperature for three Pinus species. (L) Note 420 
how the realized niche of Pinus contorta is contracted into cooler climates, Pinus strobus is not 421 
noticeably contracted in either direction, and Pinus taeda is contracted into warmer climates.  422 

 423 

 424 
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 425 

 426 

Fig. 2. Realized and potential thermal niches of North American tree species along a 427 
gradient of mean annual temperature. 428 

(A) Empirical estimates of realized and potential niches of 188 North American tree species 429 
along a mean annual temperature (MAT) gradient. Realized niches (denoted by hash marks) are 430 
subsets of potential niches. Species are ordered by increasing realized niche minima from top to 431 
bottom. Niche minima and maxima are defined as the 0.01 and 0.99 quantiles of their 432 
distributions along MAT to remove effects of extreme outliers. Species with realized niches 433 
contracting to cooler temperatures are shown in blue, while species with realized niches 434 
contracting to warmer temperatures are shown in gold. Almost all species (94%) have a potential 435 
niche that overlaps the central temperature (solid grey vertical line) of 12.6 ℃. The grey 436 
horizontal line denotes the range of temperatures sampled by BIEN and Little’s range maps (note 437 
the cold end is cut off and continues further), and the black horizonal line denotes the range of 438 
temperatures of the arboreta. (B) Relationship between realized niche position (median MAT) 439 
and the realized-to-potential niche width ratio (R:P ratio). (C) Relationship between realized 440 
niche position and niche contraction, which is a directional index of contraction of the realized 441 
niche into warmer (positive) or cooler (negative) climates. (D) Relationship between realized 442 
niche medians and potential niche widths. All three relationships support the centrifugal 443 
organization of thermal niches for North American tree species. Symbols in B, C, and D are 444 
sized in proportion to the number of occurrences in arboreta, but these were not used to weight 445 
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observations in the regression analyses. The vertical line in panel A represents the mean value of 446 
the estimated maximum, x-intercept, and minimum from panels B, C, and D, respectively. 447 

 448 

 449 

 450 

Fig. 3. Relationships between three niche metrics and realized niche position for North 451 
American tree species along gradients of maximum and minimum temperatures. 452 

Relationships between realized niche position (median maximum temperature of the warmest 453 
month) and (A) the realized-to-potential niche width ratio (R:P ratio), (B) niche contraction, and 454 
(C) potential niche width. Niche contraction is a directional index of contraction of the realized 455 
niche into warmer (positive) or cooler (negative) climates. Species with realized niches 456 
contracting to cooler temperatures are shown in blue colors, while species with realized niches 457 
contracting to warmer temperatures are shown in gold colors. Relationships between realized 458 

15 20 25 30 35

0.
2

0.
4

0.
6

0.
8

1.
0

R
ea

liz
ed

:P
ot

en
tia

l (
R

:P
) r

at
io

A

 R2 = 0.47

15 20 25 30 35

−0
.2

0.
0

0.
2

0.
4

0.
6

N
ic

he
 c

on
tra

ct
io

n

B

 R2 = 0.66

15 20 25 30 35

10
15

20

Po
te

nt
ia

l n
ic

he
 w

id
th

 (°
C

)

C

Maximum temperature (°C)
Realized niche position (median)

 R2 = 0.20

−15 −10 −5 0 5

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

R
ea

liz
ed

:P
ot

en
tia

l (
R

:P
) r

at
io

D

 R2 = 0.27

−15 −10 −5 0 5

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

N
ic

he
 c

on
tra

ct
io

n

E

 R2 = 0.59

−15 −10 −5 0 5

10
15

20
25

30
35

Po
te

nt
ia

l n
ic

he
 w

id
th

 (°
C

)

F

Minimum temperature (°C)
Realized niche position (median)

 R2 = 0.45



Submitted Manuscript: Confidential 
Template revised November 2022 

14 
 

niche position (median minimum temperature of the warmest month) and (D) the realized-to-459 
potential niche width ratio (R:P ratio), (E) niche contraction, and (F) potential niche width. 460 
Symbols are sized in proportion to the number of occurrences in arboreta, but these were not 461 
used to weight observations in the regression analyses. 462 
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Materials and Methods 525 

We estimated empirical realized and potential niches along global temperature gradients using 526 
occurrence data for 188 North American tree species. We submitted a data request to Botanic 527 
Gardens Conservation International (BGCI) for lists of arboreta in which 298 North American 528 
trees were growing and surviving. We received information from 447 arboreta around the world 529 
(Fig. S1) (32). After taxonomic matching, we analyzed the 188 species that had a minimum of 20 530 
occurrences in arboreta and for which natural occurrence data was available (Fig. S1, S2). 531 

Realized niches for each species were quantified as the range of climate conditions across 532 
their native ranges in North America. We downloaded native occurrence data for these species 533 
from the Botanical Information and Ecology Network (BIEN 4.1) (30). We removed cultivated 534 
records from the BIEN data to ensure these were native occurrence records and limited all 535 
occurrences to within North America. We supplemented occurrence records in BIEN with point 536 
samples from Little’s range maps (31) to ensure full sampling of species ranges into Canada and 537 
Mexico. We used CHELSA V2.1 climate normals (1980-2010) (33) to quantify mean annual 538 
temperature, maximum temperature of the warmest month, and minimum temperature of the 539 
coldest month for each occurrence record (Fig. S1). 540 

Potential niches for each species were quantified as the range of climate conditions across 541 
their native ranges in North America in addition to the range of climate conditions across the 542 
globally-distributed arboretums (i.e., native occurrences plus arboreta occurrences), because 543 
realized niches are subsets of potential niches (5, 10). We use the term ‘potential niche’ to 544 
represent the conditions that permit survival (but with no information about reproduction) (6, 7), 545 
which is equivalent to the ‘tolerance niche’ (5), but differs from the paleoecological concept of a 546 
‘potential niche’ defined as the intersection between the fundamental niche and realized 547 
environmental space at any given time (26). Given that natural occurrences outnumbered the 548 
arboretum occurrences by several orders of magnitude and would overwhelm the estimates of 549 
niche ranges, we randomly sampled occurrences from BIEN and Little’s range maps at 10 times 550 
the number of occurrences in the arboretums for a total of 165,315 occurrences. Random samples 551 
using different starting conditions yielded consistent results (Table S2). 552 

Three niche metrics were computed for each of the 188 species to test the three models of 553 
niche architecture. These metrics focus on the ranges of temperatures (including mean annual 554 
temperature, minimum temperature of the coldest month, and maximum temperature of the 555 
warmest month) in which a species could grow and survive. Quantiles were preferred over 556 
absolute minimum and maximum values to prevent biasing metrics toward extreme outliers (53). 557 
Each metric was calculated using four quantities: the minimum realized niche Rmin (0.01 558 
quantile), the maximum realized niche Rmax (0.99 quantile), the minimum potential niche Pmin 559 
(0.01 quantile), and the maximum potential niche Pmax (0.99 quantile). First, niche widths were 560 
computed as a range of temperatures, where realized niche width = Rmax – Rmin, and potential 561 
niche width = Pmax – Pmin. Second, we computed the ratio of the realized niche width -to- 562 
potential niche width, where R:P ratio = (Rmax – Rmin ) / (Pmax – Pmin) (Fig. 1). Third, we 563 
computed an index of niche contraction (Fig. 1), where niche contraction = [(Rmin – Pmin) – (Pmax 564 
– Rmax )] / (Pmax – Pmin). Positive values of niche contraction indicate contraction of the realized 565 
niche into warmer climates and negative values indicate contraction into cooler climates. We 566 
regressed each of the three metrics on realized niche positions (medians, 0.5 quantile). We tested 567 
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for linear and quadratic polynomial relationships and report the model most supported by data 568 
assessed using likelihood ratio tests and AIC (Table S1). 569 

 The number of occurrences in arboreta for each species ranged from 20 to 268, with a 570 
median of 78 occurrences per species (Fig. S2). We tested whether the number of occurrences in 571 
arboreta for each species could affect the likelihood of detecting a contraction of the potential 572 
niche, by regressing each of the niche metrics on the number of occurrences. The R:P ratio 573 
exhibited a positive yet weak (R2 = 0.05) relationship with number of occurrences, but this 574 
positive relationship would indicate the opposite of a bias because larger samples of arboreta 575 
show potential niches that are most similar to the realized niches, while smaller samples show 576 
potential niches much wider than realized niche widths. Potential niche width was positively yet 577 
weakly (R2 = 0.03) correlated with number of occurrences in arboreta. Niche contraction was 578 
uncorrelated with the number of occurrences in arboreta. Overall, the number of occurrences in 579 
arboreta did not systematically bias niche metrics. 580 

The occurrence records of trees in arboreta provide valuable information about whether 581 
mature individuals of a species can grow and survive in the conditions of the arboretum. 582 
Arboreta occurrences are valuable because they eliminate dispersal limitation and minimize 583 
competition. However, these records do not directly measure fundamental niches because no 584 
information was available on reproductive rates, failed cultivations, pest and disease control, soil 585 
properties, or the demographic data that is needed to quantify the population growth rate of the 586 
species (4, 5, 7). Analyses of population growth rates would constitute a stronger test of niche 587 
theory because they could be used to generate estimates of fitness optima (2), but the necessary 588 
experiments to generate this data cannot be conducted at continental scales with current 589 
resources. Our focus on occurrence data allows us to quantify both realized and potential thermal 590 
niches using the same ecological currency: growth and survival, and survival is the most 591 
influential fitness component for trees with stable age distributions (8). While aspects of the 592 
precipitation regime are of great interest, we focused on temperature exclusively because the 593 
arboreta could have initially supplemented water, which means that these estimates of thermal 594 
niches are best perceived as maximum temperatures in a possibly above-average precipitation 595 
regime (6). 596 

No arboretums occur below a mean annual temperature of 0 °C (Fig. S1), which could be 597 
a potential bias of our estimates of potential niches at the cold end of the gradient. However, it is 598 
unlikely that trees will survive at colder temperatures beyond the observed cold limits for 599 
physiological reasons. Alpine ecologists have demonstrated that ~ 6 °C average temperature of 600 
the growing season is the temperature limit at tree line (54). Moreover, a 6 °C average 601 
temperature of the growing season corresponds to a MAT of -11.4 °C (confidence interval range: 602 
-14.6, -4.4) (Fig. S7), and we observed the coldest realized niche minimum at -10 °C MAT, 603 
which closely agrees with the tree line temperature limit (Fig. 2A). Given that neither 604 
competition nor dispersal limitation can be invoked to explain tree lines, this lower limit likely 605 
represents the cold limit of both realized and potential niches of cold-tolerant species. 606 

 607 
 608 
 609 
 610 
 611 
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 612 

 613 

 614 

Fig. S1. Geographic and climatic distributions of arboreta and realized occurrences in 615 
North America. 616 

Distributions of arboreta around the world in (A) Whittaker biome climate space and (B) 617 
geographical space. Distributions of occurrence data using BIEN and Little’s range maps in (C) 618 
Whittaker biome climate space and (D) geographical space (bio1 = mean annual temperature).  619 

 620 

 621 

 622 
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 623 

Fig. S2. Distribution of number of occurrences in botanical gardens for each species and 624 
their lack of systematic bias on the calculation of niche metrics for mean annual 625 
temperature. 626 
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 629 

Fig. S3. Empirical estimates of the potential and realized thermal niches of North 630 
American trees along a gradient of maximum temperature of the warmest month. 631 

Empirical estimates of realized and potential niches of 188 North American tree species along a 632 
gradient of maximum temperature of the warmest month. Realized niches (denoted by hash 633 
marks) are subsets of potential niches. Species are ordered by increasing realized niche minima. 634 
Niche minima and maxima are defined as the 0.01 and 0.99 quantiles of their distributions to 635 
remove effects of extreme outliers. All species have a potential niche that overlaps the central 636 
temperature (solid vertical line) of 25.5 ℃. The grey horizontal line denotes the range of 637 
temperatures sampled by BIEN and Little’s range maps, and the black horizonal line denotes the 638 
range of temperatures of the arboreta. The vertical line represents the mean value of the 639 
estimated maximum, x-intercept, and minimum from fitted regression models in Fig. 3 in the 640 
main text. 641 
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 642 

 643 

Fig. S4. Empirical estimates of the potential and realized thermal niches of North 644 
American trees along a gradient of minimum temperature of the coldest month. 645 

Empirical estimates of realized and potential niches of 188 North American tree species along a 646 
gradient of minimum temperature of the coldest month. Realized niches (denoted by hash marks) 647 
are subsets of potential niches. Species are ordered by increasing realized niche minima. Niche 648 
minima and maxima are defined as the 0.01 and 0.99 quantiles of their distributions to remove 649 
effects of extreme outliers. Most species have a potential niche that overlaps the central 650 
temperature (solid vertical line) of -3.2 ℃. The grey horizontal line denotes the range of 651 
temperatures sampled by BIEN and Little’s range maps, and the black horizonal line denotes the 652 
range of temperatures of the arboreta. The vertical line represents the mean value of the 653 
estimated maximum and x-intercept from the fitted regression models in Fig. 3 in the main text. 654 
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 656 

 657 

 658 

Fig. S5. Mean radial tree growth rate by species by site in the FORAST tree ring dataset 659 
from the northeastern United States. 660 

A model fit to all the data is an increasing function, and the second-order term in the quadratic 661 
polynomial is not significant (grey line). However, if the two sites with divergent growth rates at 662 
the highest mean annual temperatures are removed (one of these sites has extremely fast growth 663 
rates for all species and are potential outliers and the warmest site is removed out of an 664 
abundance of caution to avoid few points that are highly leveraged), then the quadratic 665 
polynomial is highly significant with an optimum temperature for growth at 11.9 ℃. Data 666 
reanalyzed from based on the FORAST data (55, 56). 667 
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 669 

 670 

 671 

 672 

Fig. S6. Mean annual temperature at present and at the last glacial maximum (LGM). 673 

Geographic distribution of mean annual temperatures in North America at present (A) and at the 674 
LGM (C) and frequency distributions of mean annual temperatures at the two time periods (B, 675 
D). Top row represents the present day. Bottom row represents the LGM. Vertical lines denote 676 
medians. Climate data based on WorldClim 1.4 (57) and ice sheet data based on Dalton et al. 677 
(58). 678 
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 696 

 697 

Fig. S7. Relationship between summer temperature (bio10) and mean annual temperature 698 
(bio1). 699 

In the present day, a 6 ℃ summer temperature equates to a -11.4 ℃ mean annual temperature 700 
(MAT) with a 90% confidence interval of (-14.6, -4.4). In the last glacial maximum (LGM) a 6 701 
℃ summer temperature equates to a -6.34 ℃ mean annual temperature (MAT) with a 90% 702 
confidence interval of (-13.1, -1.3). Data from WorldClim 1.4 (57). 703 

 704 

 705 

 706 

 707 

 708 

 709 

 710 

 711 

 712 



Submitted Manuscript: Confidential 
Template revised November 2022 

25 
 

 713 
Table S1. Results of model comparisons for three sets of temperature variables (minimum, 714 
mean, maximum) and three sets of niche metrics. These results provide details about the test 715 
statistics shown in Fig. 2, S3, and S4. Models in bold were selected as the best model using AIC 716 
and likelihood ratio tests (LRT). 717 
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Temperature 
variable 

Metric Model R2 AIC LRT Model 
rank 

Mean 
annual 
temperature 

R:P ratio Linear 0.06 -220 NA 2nd 

  Quadratic 0.45 -320 F=134, P 
<0.0001 

1st 

       
 Niche contraction Linear 0.65 -286 NA 2nd 
  Quadratic 0.71 -318 F=38, P<0.0001 1st 
       
 Potential niche 

width 
Linear 0.24 940 NA 2nd 

  Quadratic 0.29 929 F=13, P=0.0003 1st 
       
       
Minimum 
temperature 
of coldest 
month 

R:P ratio Linear 0.03 -220 NA 2nd 

  Quadratic 0.27 -273 F=62, P<0.0001 1st 
       
 Niche contraction Linear 0.59 -275 NA 1st 
  Quadratic 0.60 -275 F=2.3, P=0.12 2nd 
       
 Potential niche 

width 
Linear 0.42 1045 NA 2nd 

  Quadratic 0.45 1037 F=10.2, 
P=0.0016 

1st 

       
       
Maximum 
temperature 
of warmest 
month 

R:P ratio Linear 0.36 -171 NA 2nd 

  Quadratic 0.47 -203 F=36, P<0.0001 1st 
       
 Niche contraction Linear 0.62 -194 NA 2nd 
  Quadratic 0.67 -218 F=28, P<0.0001 1st 
       
 Potential niche 

width 
Linear 0.10 886 NA 2nd 

  Quadratic 0.20 866 F=24, P=0.0002 1st 
       

 718 
 719 

 720 
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 721 

 722 

 723 

 724 

 725 

 726 

 727 

Table S2. Comparison of mean annual temperature (MAT) model results using different random 728 
samples from the BIEN and Little’s range map data generated from different starting conditions 729 
for the random number generator. The three sets sampled from BIEN and Little’s range maps 730 
using 10 times the number of botanical garden occurrences. Given their high similarity, we 731 
report results based on the first sample in the main text. 732 

 733 

Sample Statistic Sample 1 
(reported 
in paper) 

Sample 2 Sample 3 Mean of 
samples 

R:P ratio Maximum 9.96 9.93 9.88 9.92 

 R2 0.45 0.48 0.46 0.46 

Niche contraction x-intercept 12.01 11.99 11.82 11.94 

 R2 0.71 0.70 0.70 0.70 

Potential niche width Minimum 15.96 16.51 15.80 16.09 

 R2 0.29 0.24 0.31 0.28 

Mean     12.65 

 734 
 735 
 736 
 737 



Submitted Manuscript: Confidential 
Template revised November 2022 

28 
 

 738 

 739 

 740 

 741 

 742 

 743 

 744 

 745 

 746 

 747 

 748 

 749 

 750 

 751 

 752 


