

Science

AAAS

Title: Trees have overlapping potential niches that extend beyond their realized niches

Authors: Daniel C. Laughlin^{1,2*} and Brian J. McGill^{2,3}

Affiliations:

¹ University of Wyoming, Department of Botany, Laramie, WY, 82071 USA

² University of Maine, School of Biology and Ecology, Orono, ME, 04469 USA

³ University of Maine, Mitchell Center for Sustainability Solutions, Orono, ME, 04469 USA

*Corresponding author. Email: daniel.laughlin@uwyo.edu

Both authors contributed equally to the paper

Abstract:

Tree species appear to prefer distinct climatic conditions, but the true nature of these preferences is obscured by species interactions and dispersal, which limit species' ranges. We quantified realized and potential thermal niches of 188 North American tree species to conduct a continental-scale test of the architecture of niches. We found strong and consistent evidence that species occurring at thermal extremes occupy less than three-quarters of their potential niches and species' potential niches overlap at a mean annual temperature of approximately 12 °C. These results clarify the breadth of thermal tolerances of temperate tree species and support the centrifugal organization of thermal niches. Accounting for the non-realized components of ecological niches will advance theory and prediction in global change ecology.

One-Sentence Summary:

Tree species can grow and survive at one common mean annual temperature despite their distinct distributions in nature.

28

Main Text:

Predicting species' responses to rising global temperatures requires knowledge of their thermal tolerance niches, yet our current understanding is informed primarily by the more limited realized niches. Realized niches are observed distributions of species along environmental gradients that reflect all the forces acting on the distribution including abiotic constraints such as climate, biotic interactions, and dispersal limitation (1-3). The realized niche differs from the fundamental niche, which is the complete set of conditions in which a species can sustain itself in the absence of biotic interactions (2, 4). Difficulties in measuring the fundamental niche have rendered it one of the most well-known yet least quantified concepts in ecology. Potential niches, on the other hand, are the complete set of conditions that allow species to survive and grow, but where recruitment rate is unknown (5-7). Potential niches are measurable and informative for organisms with a slow pace of life because adult survival is a more influential fitness component than fecundity (8, 9). If a species' potential niche is larger than its realized niche, then it can tolerate a greater range of environments. Predictions of how species respond to climate change will be biased if based solely on the realized niche.

Competitive interactions are known to contract realized niches into less favorable environments at local spatial scales (10, 11), but whether interspecific competition contracts realized distributions at macroecological scales remains an open question. The Eltonian Noise Hypothesis assumes that the importance of competition decreases at broader spatial scales (12) and therefore predicts that realized niches are roughly equivalent to potential niches. If true, this would justify current methods in species distribution modeling that use present day realized niches to predict future responses to climate change (13). But this assumption of near equivalence is virtually untested and is increasingly contradicted by available evidence: the study of invasions (14, 15), experimental transplants of species outside their geographic range (16), and cultivation in botanical gardens (5-7) all show that many species can grow and survive outside of their current realized niches.

It is increasingly clear that we should reject the simple, convenient assumption of niche equivalence, but we still do not know the most basic architectural relationships between potential and realized niches. Hypotheses about these relationships (17-21) have gained new urgency in light of efforts to predict species range shifts in response to climate change (22, 23). Such efforts have problematically treated the realized niche of today as if it was the fundamental niche and only possible future realized niche (24-26). In this paper we leverage global inventories of arboreta to empirically estimate present day potential niches of 188 tree species to conduct a continental-scale test of the architectures of ecological niches.

62 Architectures of ecological niches

Potential niches could exhibit three distinct architectures in relation to their corresponding realized niches, each driven by different mechanisms (Fig. 1). Following established terminology, potential niches could exhibit 1) distinct preferences, 2) shared preferences, or 3) centrifugal organization (1, 18-20). First, if the potential niche of each species covers distinct environmental conditions, then potential niches would be centered over their realized niches and would likewise inhabit distinct portions of an environmental gradient (Fig. 1A). Second, a trade-off between competitive ability and abiotic tolerance of more stressful conditions could generate distinct realized niches despite all species sharing a preference for one end of the environmental gradient (Fig. 1B). Under these conditions competitive species would dominate the preferred environment at one end and more tolerant species would be relegated to

73 suboptimal environments at the other end (7, 11, 18, 19, 27, 28). Third, trade-offs generated by
74 distinct physiological tolerances of two opposing abiotic extremes could also generate distinct
75 realized niches along a gradient. Under these conditions, potential niches would overlap in the
76 central core, yet their realized niches would be pushed toward the peripheries to avoid
77 competition (Fig. 1C). Centrifugal organization was originally proposed for two or more
78 orthogonal gradients that define the same core habitat (20, 29), but this third model is a special
79 case of centrifugal organization where trade-offs in tolerating lethal conditions at opposite ends
80 of the same gradient (e.g., cold-tolerant species are not heat-tolerant) can also contract realized
81 niches toward the climate extremes. The idea that differences between potential and realized
82 niches is driven by competition has been the primary hypothesis to date (18, 20, 21, 29),
83 although other mechanisms are conceivable. Here we only test for the differences but do not
84 directly test the mechanisms.

85 These three conceptual models generate testable relationships between temperature and
86 three niche metrics (Fig. 1): i) potential niche width, ii) the ratio of the realized-to-potential niche
87 widths ('R:P ratio'), and iii) 'niche contraction'. The R:P ratio ranges from 0 to 1 because the
88 realized niche is contained within the potential niche. Niche contraction measures the directional
89 contraction of the realized niche into different regions of the potential niche and ranges from -1
90 to 1, where, in this study, positive values indicate contraction of the realized niche from cooler
91 climates into warmer climates, and negative values indicate contraction from warmer climates
92 into cooler climates (Fig. 1). Evidence for each of the three models can be distinguished by
93 unique geometric signatures encoded in the architectures of the potential niches (Fig. 1D-F).
94 First, the distinct preference model would be supported if none of these metrics vary
95 significantly with realized niche positions, *i.e.*, the location of each species along the gradient
96 calculated as the median temperature of the realized niche (Fig. 1G). Second, shared preference
97 of warm temperatures would be supported if potential niche widths decrease with rising
98 temperature, causing the R:P ratio to increase, and causing niche contraction to increase from
99 more negative values to less negative values if realized niches contract from warmer into cooler
100 climates (Fig. 1H). Note that the directions of these relationships and signs of the metrics would
101 differ for other environmental contexts. Third, centrifugal organization would be supported if
102 potential niche width is lowest at an intermediate temperature, causing the R:P ratio to peak at
103 this intermediate temperature, and causing niche contraction to switch sign from negative to
104 positive with increasing temperature (Fig. 1I). A worked example of these niche metrics is
105 illustrated in Fig. 1J-L.

106 We quantified the empirical support for each of the three hypotheses by estimating
107 realized and potential thermal niches for 188 North American tree species. Realized niches were
108 quantified using natural occurrence records in the Botanical Information and Ecology Network
109 (BIEN 4.1) (30) and Little's species range maps (31) (Fig. S1). We quantified potential niches by
110 supplementing native occurrence records with 17,180 occurrence records from 447 arboreta
111 around the world provided to us by Botanic Gardens Conservation International (BGCI) (32),
112 including dozens to hundreds of occurrence records for each species (Fig. S2). Arboreta can be
113 used to quantify potential niches because they eliminate dispersal limitation and minimize effects
114 of competition (5-7). We used CHELSA V.2 (33) to determine minimum, mean, and maximum
115 temperatures (1980-2010) for all occurrence records to estimate thermal niches. Both the natural
116 and arboreta occurrence data show broad coverage of a range of current climates for estimating
117 present day potential niches (Fig. S1).

118 Thermal niches of North American tree species

We found strong and consistent support for centrifugal organization of thermal niches of North American tree species (Fig. 2, Table S1). The R:P ratio for mean annual temperature exhibited large variation among species, ranging from 0.42 to 1.0, with a median value of 0.91 (Fig. 2B). This in itself is a novel finding – that several species occupy less than three-quarters of their potential niche while others occupy nearly 100%. In fact, the R:P ratios were not randomly distributed across the temperature gradient, but rather exhibited a significant hump-shaped relationship with mean annual temperature ($R^2_{adj} = 0.45, F_{2,185} = 76.9, P < 0.0001$), reaching a maximum at 10.0 °C (Fig. 2B). Species with realized niches near this maximum exhibited similar realized and potential niche widths (i.e., R:P ratio ~ 1). These central species approximately conform with the predictions of the Eltonian Noise Hypothesis, but species at both temperature extremes contradict the predictions.

The directional niche contraction metric exhibited a strong positive relationship with mean annual temperature ($R^2_{adj} = 0.71, F_{2,185} = 225; P < 0.0001$). The switch from niche contraction into cooler sites (blue colors in Fig. 2) to contraction into warmer sites (gold colors in Fig. 2) occurred at 12.0 °C (Fig. 2C). Potential niche width exhibited a significant *u*-shaped relationship with mean annual temperature ($R^2_{adj} = 0.29, F_{2,185} = 37.6; P < 0.0001$), where potential niche width reached a minimum at 15.9 °C (Fig. 2D). We estimated the centrifugal center value as the mean of three critical values: the maximum, *x*-intercept, and minimum of the fitted regression models in Figs. 2B, C, and D, respectively. The estimated centrifugal center was 12.6 °C (denoted by the vertical line in Fig. 2A, Table S1). Remarkably, 176 of 188 species (94%) were observed to be growing and surviving in arboreta at 12.6 °C even though only 64% of these species occurred at this temperature in their native ranges (Fig. 2A, Table S1).

Similar results were obtained for maximum temperature of the warmest month and minimum temperature of the coldest month. Centrifugal organization was supported in all three statistical tests of maximum temperature with a center at 25.5 °C (Fig. 3, Fig. S3, Table S1) and 100% of species could tolerate this central maximum temperature (Fig. S3). Centrifugal organization was also supported in two of three statistical tests for minimum temperature (Fig. 3, Fig. S4, Table S1). In the one exception, potential niche width of minimum temperature declined nonlinearly with increasing realized niche position, supporting a shared preference for a higher temperature above freezing. The propensity of evidence indicates that a low temperature center exists at -3.2 °C and 97% of species could tolerate this central minimum temperature.

Overall, these results falsify the model of distinct thermal preferences and support the centrifugal organization of potential thermal niches. They also clarify the true breadth of thermal tolerances of North American temperate tree species, showing that many species occupy only a fraction of their potential niche and confirm that trees can tolerate surprisingly large ranges in temperature (14, 34).

155 Centrifugal organization of thermal niches

156 Tree species inhabit distinct environments in nature, but two results seem counterintuitive to this
157 observation. First, many species have potential temperature tolerances much greater than where
158 they are observed to occur. Second, North American temperate trees share a single environment
159 with a mean annual temperature around 12 °C where they can grow and survive, even though we
160 can clearly identify tree species that occur in nature only in colder or warmer temperatures.

161 Why do species have realized niches that span less than three-quarters of their potential
162 niches? Our measurement of potential niches necessarily used data that could involve sampling
163 biases, but these biases are all in the direction of not covering a large enough range of

temperatures. Better sampling of potential niches could only expand them, so this cannot explain why species inhabit a small slice of their potential niches. A second possible explanation is that the definition of the potential niche only considers survival and growth of mature trees, not recruitment. Our results cannot prove that populations could indefinitely persist at the central temperatures because the fundamental niche additionally requires an ability to reproduce to maintain positive population growth rates (4, 35, 36). This seems unlikely to explain most of the unoccupied parts of the potential niche for two reasons. First, in tree populations that are not growing exponentially but have been in rough equilibrium, such as the trees of North America in recent millennia (37), elasticity analyses of population growth rates show that it is the survival of adults that are most important to fitness (8). Second, trees only need one or a short sequence of a few years in which successful reproduction and seedling establishment can occur, and this may occur at any point in the temporally variable, multidecadal reproductive phase of a tree (36, 38). A third explanation for the failure to fully occupy the potential thermal niche is dispersal limitation. While trees are certainly dispersal limited over even centennial timescales (39), and dispersal limitation has been invoked to explain occurrence ‘holes’ found in present-day ranges (40), temperatures have been approximately stable for almost 10,000 years in North America. Fat-tailed dispersal kernels suggest that trees have the ability to move rapidly enough that it is unlikely trees are still several °C short of tracking their realized climate niche (39). Moreover, trees that now occupy the cold end of their potential thermal niche have clearly already dispersed to reach those colder locations since glaciation, abandoning the warmer locations that now compose the unoccupied portions of their potential thermal niche.

This leaves biotic interactions as the most likely explanation for why species do not fill their potential temperature niches. Although biotic interactions likely play out differently at large scales than they do in the small-scale competition studies that are most commonly used to study them, there is good evidence from closely related species that do not co-occur across part or all of their range that biotic interactions can indeed limit species distributions at regional to continental scales (41, 42). The centrifugal niche pattern observed has a clear explanation based in a competition-tolerance trade-off (7, 18-20). In such a trade-off, some species allocate resources to being competitively dominant to occupy the central core habitat. Other species allocate resources to being tolerant of lethal environmental conditions, such as frost and drought. But it is likely that all forms of biotic interaction (i.e., competition, herbivory, disease, etc.) play a role.

The second result that requires explanation is the shared tolerance for intermediate temperatures around 12 °C MAT. One explanation could be physiological. Thermal gradients are well-known in biology for generating hump-shaped reaction rates (43, 44). For example, C₃ photosynthesis is the dominant pathway in trees, and global average temperature response of photosynthesis peaks at 18 °C (45). Moreover, radial growth rates of trees in the northeastern US reach an optimum around 11.5 °C (Fig. S5). The full explanation likely involves temperature interacting with precipitation and CO₂ (46).

Evolutionary explanations, at first glance, would seem challenging: selection should quickly evolve potential niches to match realized niches as there is no selection in non-realized regions of the potential niche. A deeper time explanation involving extinction filters and niche conservatism (47) is possible. The 12 °C is close to the warmest mean annual temperature found in North America at the last glacial maximum (LGM, Fig. S6) and probably approximately similar to previous glacial maxima over the last 2 Ma. The 12 °C is also close to the coolest temperatures found in the same space 56 Mya in the Paleocene-Eocene Thermal Maximum

(PETM) (48), although uncertainties around these estimates are high. One could posit that cold-adapted trees unable to survive temperatures ≥ 12 °C went extinct in the PETM and warm-adapted trees unable to survive temperatures ≤ 12 °C went extinct in one of the glacial maxima. Furthermore, if the warm temperature tolerances of cold-adapted trees were conserved for 56 Ma while the cold temperature tolerances of warm-adapted trees were retained for merely 2 Ma, which follows the documented asymmetry in niche conservatism of warm and cold limits (49), then this could explain the present centrifugal organization. But one would have to explain why trees with refugia in Mexico maintained tolerance of 12 °C. Overall, more work would be needed to make this theory rigorous. Our results do provide a plausible explanation for the occurrence of no-analog communities. For example, *Picea* spp. and *Fraxinus* spp. have narrow co-occurrence today, but co-occurred 12,000-17,000 years ago (37), which was possible because their potential niches overlap.

We rejected the shared preference model for temperature (Fig. 1B), but this does not preclude the possibility that there could be other non-temperature gradients along which distinct (Fig. 1A) or shared preferences (Fig. 1B) exist (Fig. 1B). In small scale studies, shared preferences are common in co-existing plant species along consumable resource gradients (19), and animals have shown a strong propensity for distinct niche preferences along diet gradients (19). We note that centrifugal organization is often found when there are multiple dimensions of lethality (21, 29), and that temperature effectively achieves this with cold adaptation being very different from heat stress adaptation.

Implications for species responses to a warming world

Centrifugal organization of potential thermal niches has substantial implications for efforts to predict and understand species responses to climate change (22, 23, 50, 51). If the potential niche is a representative analog of the fundamental niche, then the fact that many species occupy only a limited subset of their potential niche raises the possibility that their realized niche could change and occupy a different subset of their potential niche when abiotic conditions not present today become available. This breaks a core assumption of species distribution models.

Niche modeling must get serious about the distinction between realized niches and their potential and fundamental counterparts. On the one hand, niche modeling of tree species whose realized niches are centered on 12 °C could be accurate because their realized and potential niches are so similar (i.e., R:P ratio ~ 1 ; Fig. 2A). On the other hand, the fact that potential niches of cold-adapted species extend to warmer temperatures while potential niches of warm-adapted species extend to cooler temperatures implies differential fates in a warming world. Cold-adapted species may not need to migrate to stay within their potential thermal niche, provided they can survive changing disturbance and competitive regimes, while warm-adapted species will need to migrate to stay within their potential niche under warming temperatures. Trees that are actively shifting their ranges and experiencing exponential growth may flip to conditions where fitness will be most sensitive to the regeneration niche (36) because dispersal and recruitment rates drive the advancing range. We should not assume, however, that regeneration niches are identical to realized recruitment patterns based on these results.

The longstanding recognition of the importance of fundamental niches has not been adequately addressed empirically. Our results show that realized niches are not trivial contractions of potential niches. Rather, they differ substantially in a systematic fashion where realized niches contract away from an intermediate temperature into both the hot and cold ends of the thermal spectrum. Our findings challenge existing predictions of how ranges will shift

255 under climate change and suggest a need for deeper exploration of the relationship between
256 potential and realized niches, including the mechanisms driving these differences.
257

258 **References and Notes**

- 259 1. B. J. McGill, B. J. Enquist, E. Weiher, M. Westoby, Rebuilding community ecology from
260 functional traits. *Trends Ecol. Evol.* **21**, 178-185 (2006).
- 261 2. J. Soberón, Grinnellian and Eltonian niches and geographic distributions of species. *Ecol.*
262 *Lett.* **10**, 1115-1123 (2007).
- 263 3. J. M. Chase, M. A. Leibold, *Ecological niches: linking classical and contemporary*
264 *approaches*. (University of Chicago Press, Chicago, 2003).
- 265 4. G. E. Hutchinson, in *Cold Spring Harbor Symp. Quant. Biol.* (Cold Spring Harbor
266 Laboratory Press, 1957), vol. 22, pp. 415-427.
- 267 5. D. F. Sax, R. Early, J. Bellemare, Niche syndromes, species extinction risks, and
268 management under climate change. *Trends Ecol. Evol.* **28**, 517-523 (2013).
- 269 6. A. Bush *et al.*, Truncation of thermal tolerance niches among Australian plants. *Global*
270 *Ecol. Biogeogr.* **27**, 22-31 (2018).
- 271 7. O. R. Vetaas, Realized and potential climate niches: a comparison of four Rhododendron
272 tree species. *J. Biogeogr.* **29**, 545-554 (2002).
- 273 8. M. Franco, J. Silvertown, A comparative demography of plants based upon elasticities of
274 vital rates. *Ecology* **85**, 531-538 (2004).
- 275 9. D. Doak, P. Kareiva, B. Klepetka, Modeling Population Viability for the Desert Tortoise
276 in the Western Mojave Desert. *Ecol. Appl.* **4**, 446-460 (1994).
- 277 10. J. Soberón, B. Arroyo-Peña, Are fundamental niches larger than the realized? Testing a
278 50-year-old prediction by Hutchinson. *PLOS ONE* **12**, e0175138 (2017).
- 279 11. J. H. Connell, The influence of interspecific competition and other factors on the
280 distribution of the barnacle *Chthamalus stellatus*. *Ecology* **42**, 710-723 (1961).
- 281 12. J. Soberón, M. Nakamura, Niches and distributional areas: Concepts, methods, and
282 assumptions. *Proceedings of the National Academy of Sciences* **106**, 19644-19650
283 (2009).
- 284 13. A. T. Peterson *et al.*, *Ecological niches and geographic distributions*. (Princeton
285 University Press, 2011).
- 286 14. T. Bocsi *et al.*, Plants' native distributions do not reflect climatic tolerance. *Divers.*
287 *Distrib.* **22**, 615-624 (2016).
- 288 15. R. Early, D. F. Sax, Climatic niche shifts between species' native and naturalized ranges
289 raise concern for ecological forecasts during invasions and climate change. *Global Ecol.*
290 *Biogeogr.* **23**, 1356-1365 (2014).
- 291 16. A. L. Hargreaves, K. E. Samis, C. G. Eckert, Are species' range limits simply niche
292 limits writ large? A review of transplant experiments beyond the range. *The American*
293 *Naturalist* **183**, 157-173 (2014).
- 294 17. M. P. Austin, in *Perspectives on plant competition*, J. B. Grace, D. Tilman, Eds.
295 (Academic Press, Inc., 1990), vol. 2, pp. 215-239.
- 296 18. R. K. Colwell, E. R. Fuentes, Experimental studies of the niche. *Annu. Rev. Ecol. Syst.* **6**,
297 281-310 (1975).
- 298 19. I. C. Wisheu, How organisms partition habitats: different types of community
299 organization can produce identical patterns. *Oikos* **83**, 246-258 (1998).
- 300 20. M. L. Rosenzweig, Z. Abramsky, Centrifugal Community Organization. *Oikos* **46**, 339-
301 348 (1986).
- 302 21. P. A. Keddy, P. MacLellan, Centrifugal organization in forests. *Oikos* **59**, 75-84 (1990).

303 22. A. Guisan *et al.*, Predicting species distributions for conservation decisions. *Ecol. Lett.*
304 **16**, 1424-1435 (2013).

305 23. L. R. Iverson, A. M. Prasad, Predicting abundance of 80 tree species following climate
306 change in the eastern United States. *Ecol. Monogr.* **68**, 465-485 (1998).

307 24. A. J. Davis, L. S. Jenkinson, J. H. Lawton, B. Shorrocks, S. Wood, Making mistakes
308 when predicting shifts in species range in response to global warming. *Nature* **391**, 783-
309 786 (1998).

310 25. K. Suttle, M. A. Thomsen, M. E. Power, Species interactions reverse grassland responses
311 to changing climate. *science* **315**, 640-642 (2007).

312 26. S. T. Jackson, J. T. Overpeck, Responses of plant populations and communities to
313 environmental changes of the late Quaternary. *Paleobiology* **26**, 194-220 (2000).

314 27. M. P. Austin, T. M. Smith, A new model for the continuum concept. *Vegetatio* **83**, 35-47
315 (1989).

316 28. L. Birch, Experimental background to the study of the distribution and abundance of
317 insects: I. The influence of temperature, moisture and food on the innate capacity for
318 increase of three grain beetles. *Ecology* **34**, 698-711 (1953).

319 29. I. C. Wisheu, P. A. Keddy, Competition and centrifugal organization of plant
320 communities: theory and tests. *Journal of Vegetation Science* **3**, 147-156 (1992).

321 30. B. S. Maitner *et al.*, The BIEN R package: A tool to access the Botanical Information and
322 Ecology Network (BIEN) database. *Methods in Ecology and Evolution* **9**, 373-379
323 (2018).

324 31. E. L. Little, *Atlas of United States Trees, volume 1, conifers and important hardwoods*.
325 (US Department of Agriculture Miscellaneous Publication 1146, 1971).

326 32. BGCI. (Richmond, U.K. Available at <https://plantsearch.bgci.org>. Accessed on
327 06/03/2014, 2014).

328 33. D. N. Karger *et al.*, Climatologies at high resolution for the earth's land surface areas.
329 *Scientific Data* **4**, 170122 (2017).

330 34. C. Loehle, Height growth rate tradeoffs determine northern and southern range limits for
331 trees. *J. Biogeogr.* **25**, 735-742 (1998).

332 35. P. J. Grubb, The maintenance of species-richness in plant communities: the importance of
333 the regeneration niche. *Biological Reviews* **52**, 107-145 (1977).

334 36. S. T. Jackson, J. L. Betancourt, R. K. Booth, S. T. Gray, Ecology and the ratchet of
335 events: Climate variability, niche dimensions, and species distributions. *Proceedings of
336 the National Academy of Sciences* **106**, 19685-19692 (2009).

337 37. J. W. Williams, S. T. Jackson, Novel climates, no-analog communities, and ecological
338 surprises. *Front. Ecol. Environ.* **5**, 475-482 (2007).

339 38. R. M. Turner, Long-Term Vegetation Change at a Fully Protected Sonoran Desert Site.
340 *Ecology* **71**, 464-477 (1990).

341 39. J. S. Clark *et al.*, Reid's paradox of rapid plant migration: Dispersal theory and
342 interpretation of paleoecological records. *Bioscience* **48**, 13-24 (1998).

343 40. J. C. Svenning, F. Skov, Could the tree diversity pattern in Europe be generated by
344 postglacial dispersal limitation? *Ecol. Lett.* **10**, 453-460 (2007).

345 41. N. J. Gotelli, G. R. Graves, C. Rahbek, Macroecological signals of species interactions in
346 the Danish avifauna. *Proceedings of the National Academy of Sciences* **107**, 5030-5035
347 (2010).

348 42. A. Paquette, A. L. Hargreaves, Biotic interactions are more often important at species'
349 warm versus cool range edges. *Ecol. Lett.* **24**, 2427-2438 (2021).

350 43. J. I. Arroyo, B. Díez, C. P. Kempes, G. B. West, P. A. Marquet, A general theory for
351 temperature dependence in biology. *Proceedings of the National Academy of Sciences*
352 **119**, e2119872119 (2022).

353 44. V. L. Arcus, A. J. Mulholland, Temperature, dynamics, and enzyme-catalyzed reaction
354 rates. *Annual Review of Biophysics* **49**, 163-180 (2020).

355 45. K. A. Duffy *et al.*, How close are we to the temperature tipping point of the terrestrial
356 biosphere? *Science Advances* **7**, eaay1052 (2021).

357 46. R. F. Sage, D. A. Way, D. S. Kubien, Rubisco, Rubisco activase, and global climate
358 change. *J. Exp. Bot.* **59**, 1581-1595 (2008).

359 47. J. C. Svenning, Deterministic Plio-Pleistocene extinctions in the European cool-temperate
360 tree flora. *Ecol. Lett.* **6**, 646-653 (2003).

361 48. J. E. Tierney *et al.*, Spatial patterns of climate change across the Paleocene–Eocene
362 Thermal Maximum. *Proceedings of the National Academy of Sciences* **119**, e2205326119
363 (2022).

364 49. M. B. Araújo *et al.*, Heat freezes niche evolution. *Ecol. Lett.* **16**, 1206-1219 (2013).

365 50. J. Elith, J. R. Leathwick, Species distribution models: ecological explanation and
366 prediction across space and time. *Annual Review of Ecology, Evolution, and Systematics*
367 **40**, 677-697 (2009).

368 51. W. Thuiller *et al.*, Predicting global change impacts on plant species' distributions:
369 Future challenges. *Perspect. Plant Ecol. Evol. Syst.* **9**, 137-152 (2008).

370 52. D. C. Laughlin, B. J. McGill. (Dryad <https://doi.org/10.5061/dryad.0cfxp9f>, 2024).

371 53. K. J. Feeley, M. R. Silman, Modelling the responses of Andean and Amazonian plant
372 species to climate change: the effects of georeferencing errors and the importance of data
373 filtering. *J. Biogeogr.* **37**, 733-740 (2010).

374 54. C. Körner, J. Paulsen, A World-Wide Study of High Altitude Treeline Temperatures. *J.*
375 *Biogeogr.* **31**, 713-732 (2004).

376 55. S. McLaughlin, T. Boden. (Oak Ridge National Laboratory, Oak Ridge, TN, 1986).

377 56. B. J. McGill, Trees are rarely most abundant where they grow best. *Journal of Plant*
378 *Ecology* **5**, 46-51 (2012).

379 57. R. J. Hijmans, S. E. Cameron, J. L. Parra, P. G. Jones, A. Jarvis, Very high resolution
380 interpolated climate surfaces for global land areas. *International Journal of Climatology*
381 **25**, 1965-1978 (2005).

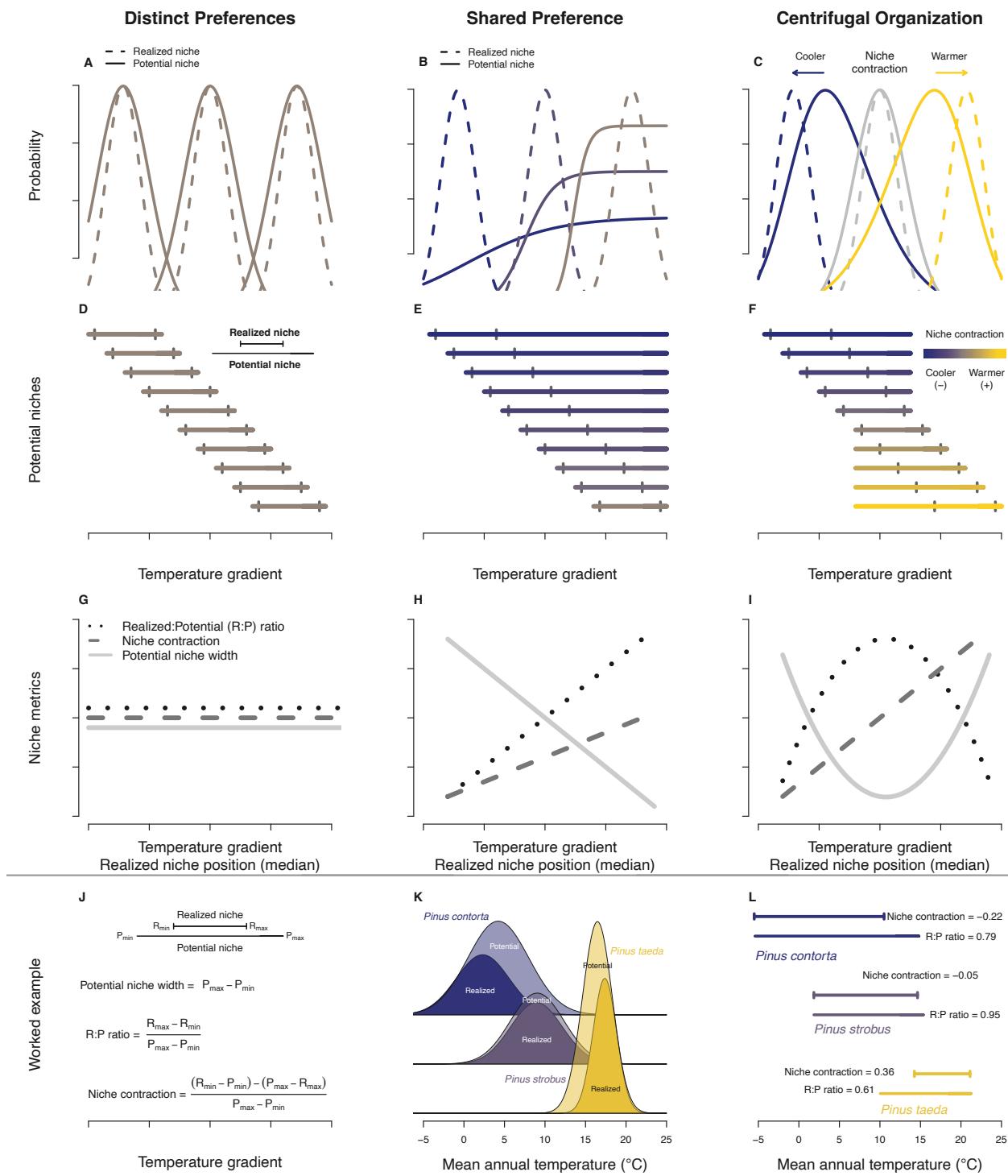
382 58. A. S. Dalton *et al.*, An updated radiocarbon-based ice margin chronology for the last
383 deglaciation of the North American Ice Sheet Complex. *Quaternary Science Reviews*
384 **234**, 106223 (2020).

385

386

387

388

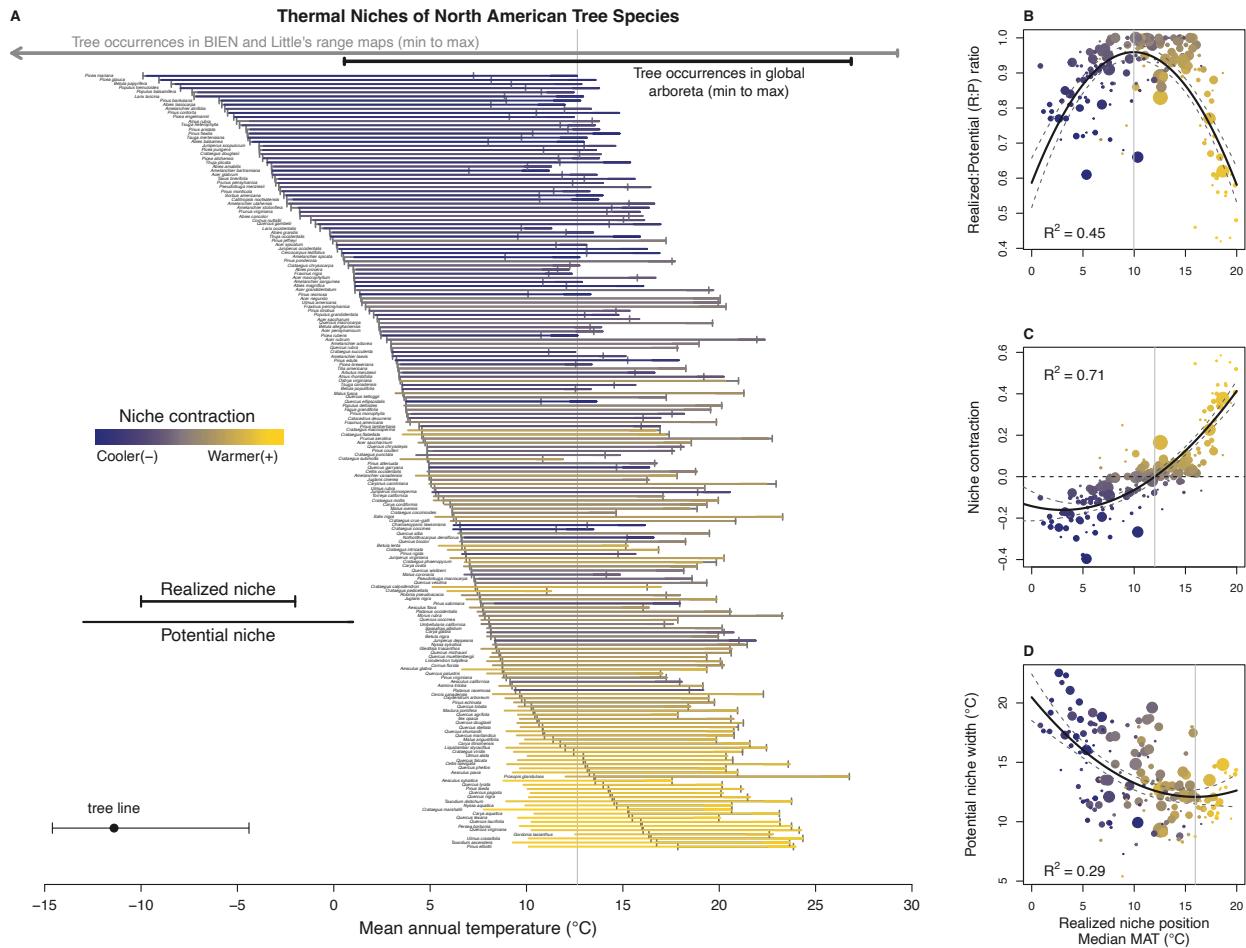

389

390

391

392

393

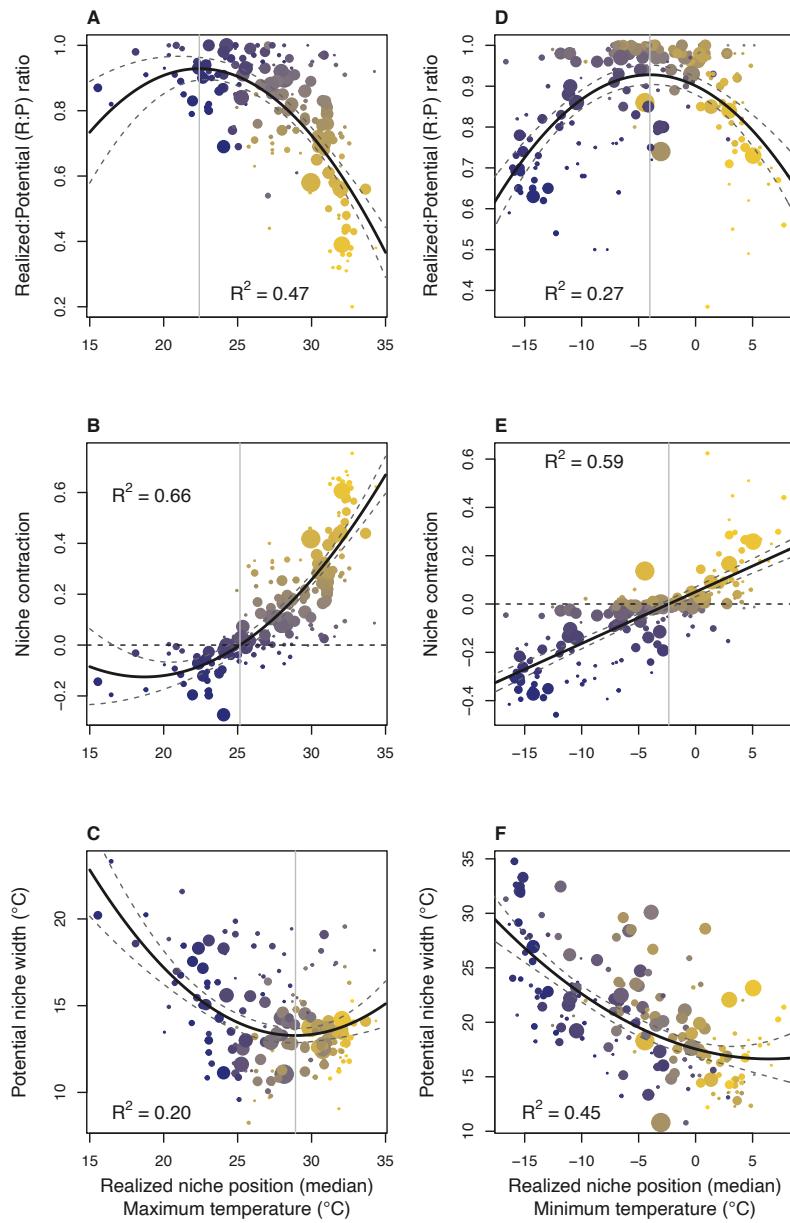

396 **Fig. 1. Three testable models of the architecture of ecological niches.**

397 Realized niches (denoted as dashed lines in A-C) that are distinct and arrayed sequentially along
398 an environmental gradient may differ from potential niches (denoted as solid lines in A-C) even
399 though realized niches are nested inside of potential niches. Potential and realized niches can be
400 organized three different ways. Potential niches will exhibit either (A) distinct preferences
401 among species centered on their realized niches, (B) a shared preference among species where

402 potential niches share the same extreme value, or (C) centrifugal organization where species
403 overlap in the middle despite opposing abiotic tolerances. (D-F) Each model generates distinct
404 geometric signatures in the potential niches while the realized niches remain constant. Consider
405 an idealized set of ten potential niches stacked on top of each other and ordered by increasing
406 realized niche minima: (D) distinct preferences would generate an orderly progression of similar
407 potential width niches along the gradient, (E) shared preferences would generate a set of
408 decreasing potential niche widths along the gradient that all share the same niche maxima, and
409 (F) centrifugal organization would generate a skewed hourglass where potential niche width is
410 lowest at intermediate locations along the gradient. (G-I) These signatures generate unique
411 testable relationships between realized niche position (medians) and three niche metrics:
412 potential niche width (see equations in J), the ratio of the realized-to-potential niche width ('R:P
413 ratio'), and the directional contraction of the realized niche into cooler or warmer regions of the
414 potential niche ('niche contraction'). (J-L) Worked example of how niche metrics were
415 computed for three *Pinus* species where we quantified niche widths as the distance between 0.01
416 and 0.99 quantiles for both realized occurrences (BIEN and Little's range maps) and potential
417 occurrences (a combination of realized occurrences plus arboreta occurrences). (J) The niche
418 contraction metric is a directional index that quantifies how realized niches are contracted
419 subsets of the potential niches. (K) Probability densities of realized and potential niches using
420 occurrence data along a gradient of mean annual temperature for three *Pinus* species. (L) Note
421 how the realized niche of *Pinus contorta* is contracted into cooler climates, *Pinus strobus* is not
422 noticeably contracted in either direction, and *Pinus taeda* is contracted into warmer climates.

423

424


425

426

427 **Fig. 2. Realized and potential thermal niches of North American tree species along a**
428 **gradient of mean annual temperature.**

429 (A) Empirical estimates of realized and potential niches of 188 North American tree species
430 along a mean annual temperature (MAT) gradient. Realized niches (denoted by hash marks) are
431 subsets of potential niches. Species are ordered by increasing realized niche minima from top to
432 bottom. Niche minima and maxima are defined as the 0.01 and 0.99 quantiles of their
433 distributions along MAT to remove effects of extreme outliers. Species with realized niches
434 contracting to cooler temperatures are shown in blue, while species with realized niches
435 contracting to warmer temperatures are shown in gold. Almost all species (94%) have a potential
436 niche that overlaps the central temperature (solid grey vertical line) of 12.6 °C. The grey
437 horizontal line denotes the range of temperatures sampled by BIEN and Little's range maps (note
438 the cold end is cut off and continues further), and the black horizontal line denotes the range of
439 temperatures of the arboreta. (B) Relationship between realized niche position (median MAT)
440 and the realized-to-potential niche width ratio (R:P ratio). (C) Relationship between realized
441 niche position and niche contraction, which is a directional index of contraction of the realized
442 niche into warmer (positive) or cooler (negative) climates. (D) Relationship between realized
443 niche medians and potential niche widths. All three relationships support the centrifugal
444 organization of thermal niches for North American tree species. Symbols in B, C, and D are
445 sized in proportion to the number of occurrences in arboreta, but these were not used to weight

446 observations in the regression analyses. The vertical line in panel A represents the mean value of
447 the estimated maximum, x -intercept, and minimum from panels B, C, and D, respectively.
448
449

450

451 **Fig. 3. Relationships between three niche metrics and realized niche position for North**
452 **American tree species along gradients of maximum and minimum temperatures.**

453 Relationships between realized niche position (median maximum temperature of the warmest
454 month) and (A) the realized-to-potential niche width ratio (R:P ratio), (B) niche contraction, and
455 (C) potential niche width. Niche contraction is a directional index of contraction of the realized
456 niche into warmer (positive) or cooler (negative) climates. Species with realized niches
457 contracting to cooler temperatures are shown in blue colors, while species with realized niches
458 contracting to warmer temperatures are shown in gold colors. Relationships between realized

459 niche position (median minimum temperature of the warmest month) and (D) the realized-to-
460 potential niche width ratio (R:P ratio), (E) niche contraction, and (F) potential niche width.
461 Symbols are sized in proportion to the number of occurrences in arboreta, but these were not
462 used to weight observations in the regression analyses.

463

464 **Acknowledgments:**

465 We are grateful to the Botanic Gardens Conservation International (BGCI) for sharing their
466 arboretum inventories with us. We dedicate this paper to the memory of Paul A. Keddy (1953-
467 2023).

468 **Funding:**

469 NSF DEB-1906243, NSF EPSCOR Track II grant #2019528, University of Wyoming Flittie
470 Sabbatical Augmentation Grant (DCL)

471 USDA Hatch grant MAFES #1011538, NSF EPSCOR Track II grant #2019470 (BJM)

472 **Author contributions:**

473 Conceptualization: BJM, DCL

474 Analysis: DCL, BJM

475 Writing: DCL, BJM

476 **Competing interests:** Authors declare that they have no competing interests.

477 **Data and materials availability:** All native species distribution data is freely available through
478 the Botanical Information and Ecology Network (BIEN) (30) and Little's range maps (31). We
479 obtained inventories of arboreta by request from the Botanic Gardens Conservation International
480 (BGCI) (32), which is a scientific non-profit, and their data policies prevent us from publishing
481 their location data, but the data may be requested from them at <https://www.bgci.org/>. R scripts
482 and data (scrubbed of arboretum location information) to reproduce results are available at
483 <https://doi.org/10.5061/dryad.0cfxpnnw9f> (52).

484

485 **Supplementary Material**

486 Materials and Methods

487 Fig. S1. Geographic and climatic distributions of arboreta and realized tree occurrences in North
488 America.

489 Fig. S2. Distribution of number of occurrences in botanical gardens for each species.

490 Fig. S3. Empirical estimates of the potential and realized thermal niches of North American trees
491 along a gradient of maximum temperature of the warmest month.

492 Fig. S4. Empirical estimates of the potential and realized thermal niches of North American trees
493 along a gradient of minimum temperature of the coldest month.

494 Fig. S5. Mean radial tree growth rate by species by site.

495 Fig. S6. Mean annual temperature at present and at the last glacial maximum (LGM).

496 Fig. S7. Relationship between summer temperature and mean annual temperature.

497 Table S1. Results of model comparisons for three sets of temperature variables (minimum, mean,
498 maximum) and three sets of niche metrics.
499 Table S2. Comparison of mean annual temperature (MAT) model results using different random
500 samples.
501

502

503

504

505

506

507

508 **Trees have overlapping potential niches that extend beyond their realized 509 niches**

510

511

Daniel C. Laughlin and Brian J. McGill

512

513

Corresponding author: daniel.laughlin@uwyo.edu

514

515

516 **The PDF file includes:**

517

518 Materials and Methods

519 Figs. S1 to S7

520 Tables S1 to S2

521

522

523

524

506 Supplementary Materials for

508 **Trees have overlapping potential niches that extend beyond their realized 509 niches**

511 Daniel C. Laughlin and Brian J. McGill

513 Corresponding author: daniel.laughlin@uwyo.edu

516 **The PDF file includes:**

518 Materials and Methods

519 Figs. S1 to S7

520 Tables S1 to S2

525

Materials and Methods

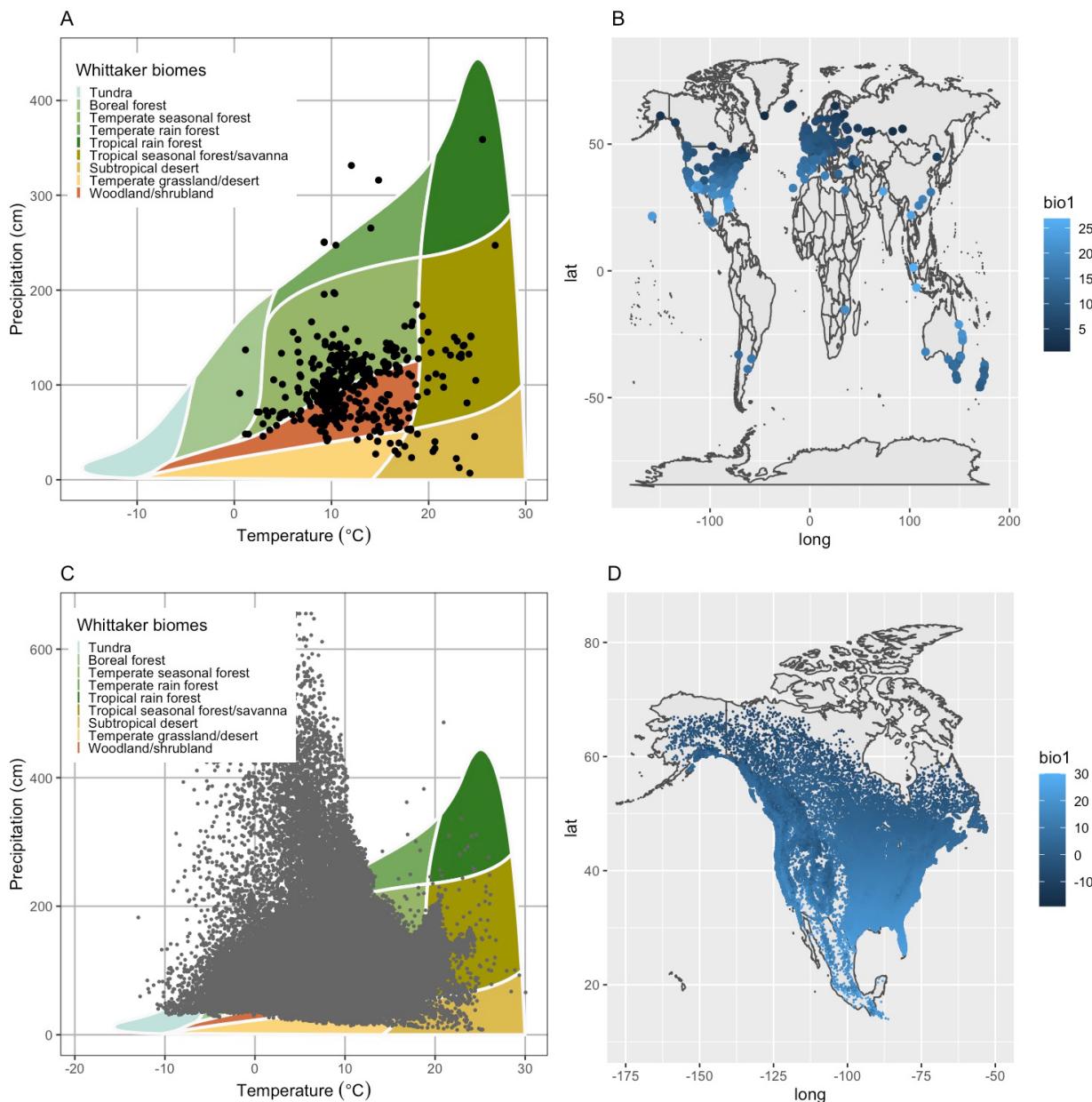
526 We estimated empirical realized and potential niches along global temperature gradients using
527 occurrence data for 188 North American tree species. We submitted a data request to Botanic
528 Gardens Conservation International (BGCI) for lists of arboreta in which 298 North American
529 trees were growing and surviving. We received information from 447 arboreta around the world
530 (Fig. S1) (32). After taxonomic matching, we analyzed the 188 species that had a minimum of 20
531 occurrences in arboreta and for which natural occurrence data was available (Fig. S1, S2).

532 Realized niches for each species were quantified as the range of climate conditions across
533 their native ranges in North America. We downloaded native occurrence data for these species
534 from the Botanical Information and Ecology Network (BIEN 4.1) (30). We removed cultivated
535 records from the BIEN data to ensure these were native occurrence records and limited all
536 occurrences to within North America. We supplemented occurrence records in BIEN with point
537 samples from Little's range maps (31) to ensure full sampling of species ranges into Canada and
538 Mexico. We used CHELSA V2.1 climate normals (1980-2010) (33) to quantify mean annual
539 temperature, maximum temperature of the warmest month, and minimum temperature of the
540 coldest month for each occurrence record (Fig. S1).

541 Potential niches for each species were quantified as the range of climate conditions across
542 their native ranges in North America in addition to the range of climate conditions across the
543 globally-distributed arboretums (i.e., native occurrences plus arboreta occurrences), because
544 realized niches are subsets of potential niches (5, 10). We use the term ‘potential niche’ to
545 represent the conditions that permit survival (but with no information about reproduction) (6, 7),
546 which is equivalent to the ‘tolerance niche’ (5), but differs from the paleoecological concept of a
547 ‘potential niche’ defined as the intersection between the fundamental niche and realized
548 environmental space at any given time (26). Given that natural occurrences outnumbered the
549 arboretum occurrences by several orders of magnitude and would overwhelm the estimates of
550 niche ranges, we randomly sampled occurrences from BIEN and Little's range maps at 10 times
551 the number of occurrences in the arboretums for a total of 165,315 occurrences. Random samples
552 using different starting conditions yielded consistent results (Table S2).

553 Three niche metrics were computed for each of the 188 species to test the three models of
554 niche architecture. These metrics focus on the ranges of temperatures (including mean annual
555 temperature, minimum temperature of the coldest month, and maximum temperature of the
556 warmest month) in which a species could grow and survive. Quantiles were preferred over
557 absolute minimum and maximum values to prevent biasing metrics toward extreme outliers (53).
558 Each metric was calculated using four quantities: the minimum realized niche R_{\min} (0.01
559 quantile), the maximum realized niche R_{\max} (0.99 quantile), the minimum potential niche P_{\min}
560 (0.01 quantile), and the maximum potential niche P_{\max} (0.99 quantile). First, niche widths were
561 computed as a range of temperatures, where realized niche width = $R_{\max} - R_{\min}$, and potential
562 niche width = $P_{\max} - P_{\min}$. Second, we computed the ratio of the realized niche width -to-
563 potential niche width, where R:P ratio = $(R_{\max} - R_{\min}) / (P_{\max} - P_{\min})$ (Fig. 1). Third, we
564 computed an index of niche contraction (Fig. 1), where niche contraction = $[(R_{\min} - P_{\min}) - (P_{\max} - R_{\max})] / (P_{\max} - P_{\min})$. Positive values of niche contraction indicate contraction of the realized
565 niche into warmer climates and negative values indicate contraction into cooler climates. We
566 regressed each of the three metrics on realized niche positions (medians, 0.5 quantile). We tested
567

568 for linear and quadratic polynomial relationships and report the model most supported by data
569 assessed using likelihood ratio tests and AIC (Table S1).


570 The number of occurrences in arboreta for each species ranged from 20 to 268, with a
571 median of 78 occurrences per species (Fig. S2). We tested whether the number of occurrences in
572 arboreta for each species could affect the likelihood of detecting a contraction of the potential
573 niche, by regressing each of the niche metrics on the number of occurrences. The R:P ratio
574 exhibited a positive yet weak ($R^2 = 0.05$) relationship with number of occurrences, but this
575 positive relationship would indicate the opposite of a bias because larger samples of arboreta
576 show potential niches that are most similar to the realized niches, while smaller samples show
577 potential niches much wider than realized niche widths. Potential niche width was positively yet
578 weakly ($R^2 = 0.03$) correlated with number of occurrences in arboreta. Niche contraction was
579 uncorrelated with the number of occurrences in arboreta. Overall, the number of occurrences in
580 arboreta did not systematically bias niche metrics.

581 The occurrence records of trees in arboreta provide valuable information about whether
582 mature individuals of a species can grow and survive in the conditions of the arboretum.
583 Arboreta occurrences are valuable because they eliminate dispersal limitation and minimize
584 competition. However, these records do not directly measure fundamental niches because no
585 information was available on reproductive rates, failed cultivations, pest and disease control, soil
586 properties, or the demographic data that is needed to quantify the population growth rate of the
587 species (4, 5, 7). Analyses of population growth rates would constitute a stronger test of niche
588 theory because they could be used to generate estimates of fitness optima (2), but the necessary
589 experiments to generate this data cannot be conducted at continental scales with current
590 resources. Our focus on occurrence data allows us to quantify both realized and potential thermal
591 niches using the same ecological currency: growth and survival, and survival is the most
592 influential fitness component for trees with stable age distributions (8). While aspects of the
593 precipitation regime are of great interest, we focused on temperature exclusively because the
594 arboreta could have initially supplemented water, which means that these estimates of thermal
595 niches are best perceived as maximum temperatures in a possibly above-average precipitation
596 regime (6).

597 No arborets occur below a mean annual temperature of 0 °C (Fig. S1), which could be
598 a potential bias of our estimates of potential niches at the cold end of the gradient. However, it is
599 unlikely that trees will survive at colder temperatures beyond the observed cold limits for
600 physiological reasons. Alpine ecologists have demonstrated that ~ 6 °C average temperature of
601 the growing season is the temperature limit at tree line (54). Moreover, a 6 °C average
602 temperature of the growing season corresponds to a MAT of -11.4 °C (confidence interval range:
603 -14.6, -4.4) (Fig. S7), and we observed the coldest realized niche minimum at -10 °C MAT,
604 which closely agrees with the tree line temperature limit (Fig. 2A). Given that neither
605 competition nor dispersal limitation can be invoked to explain tree lines, this lower limit likely
606 represents the cold limit of both realized and potential niches of cold-tolerant species.

612

613

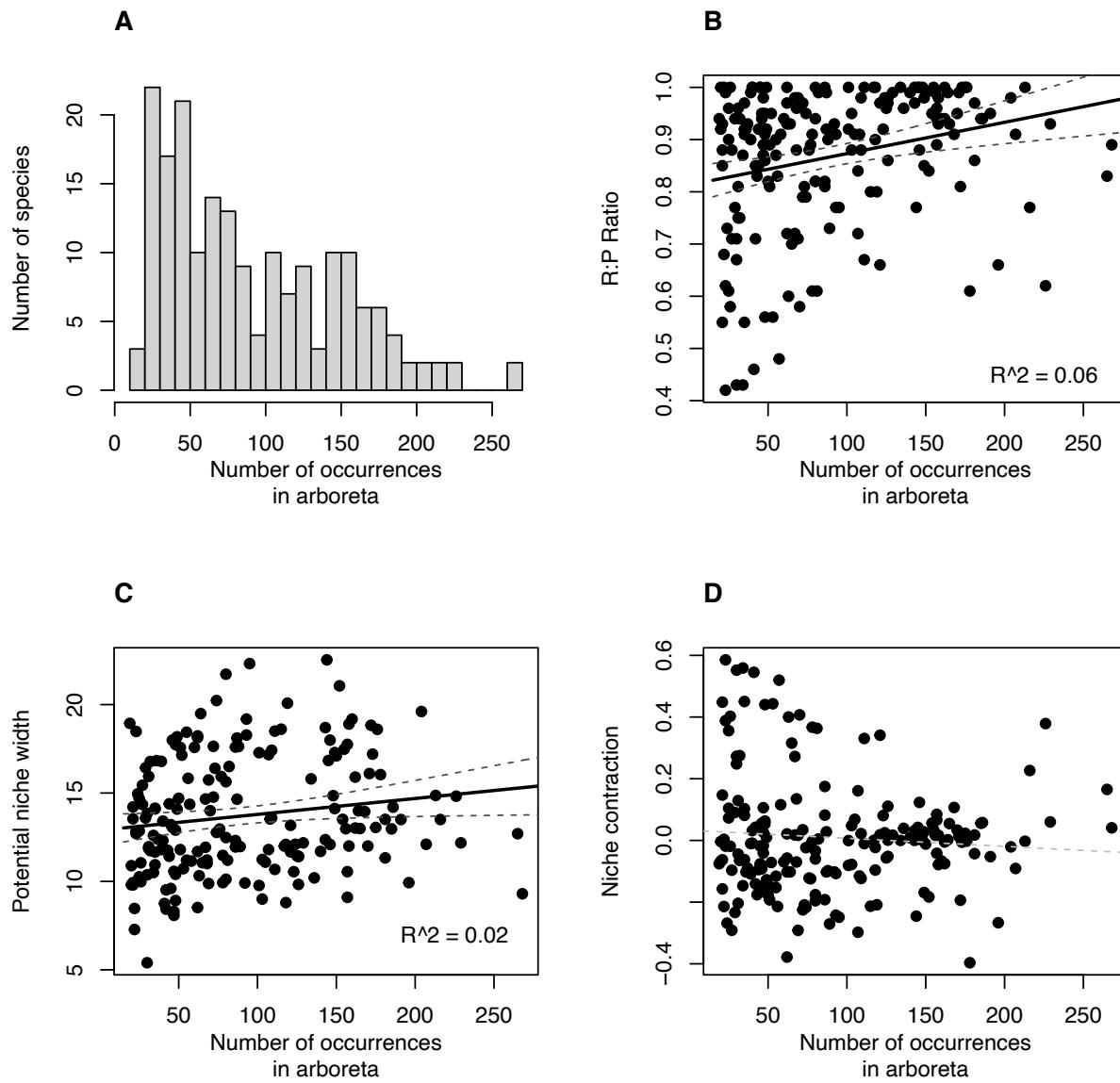
614

Fig. S1. Geographic and climatic distributions of arboreta and realized occurrences in North America.

615

616

617

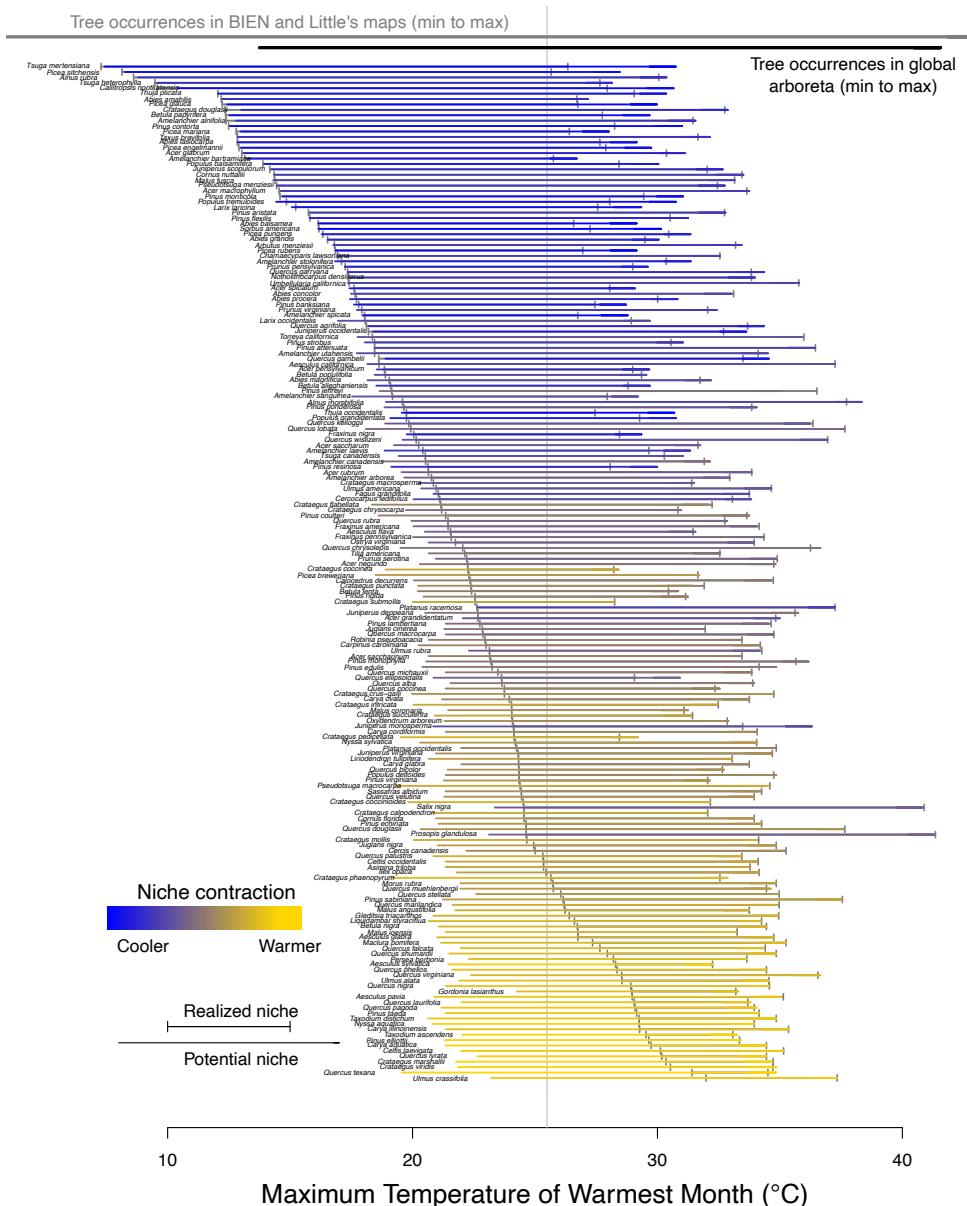

618

619

620

621

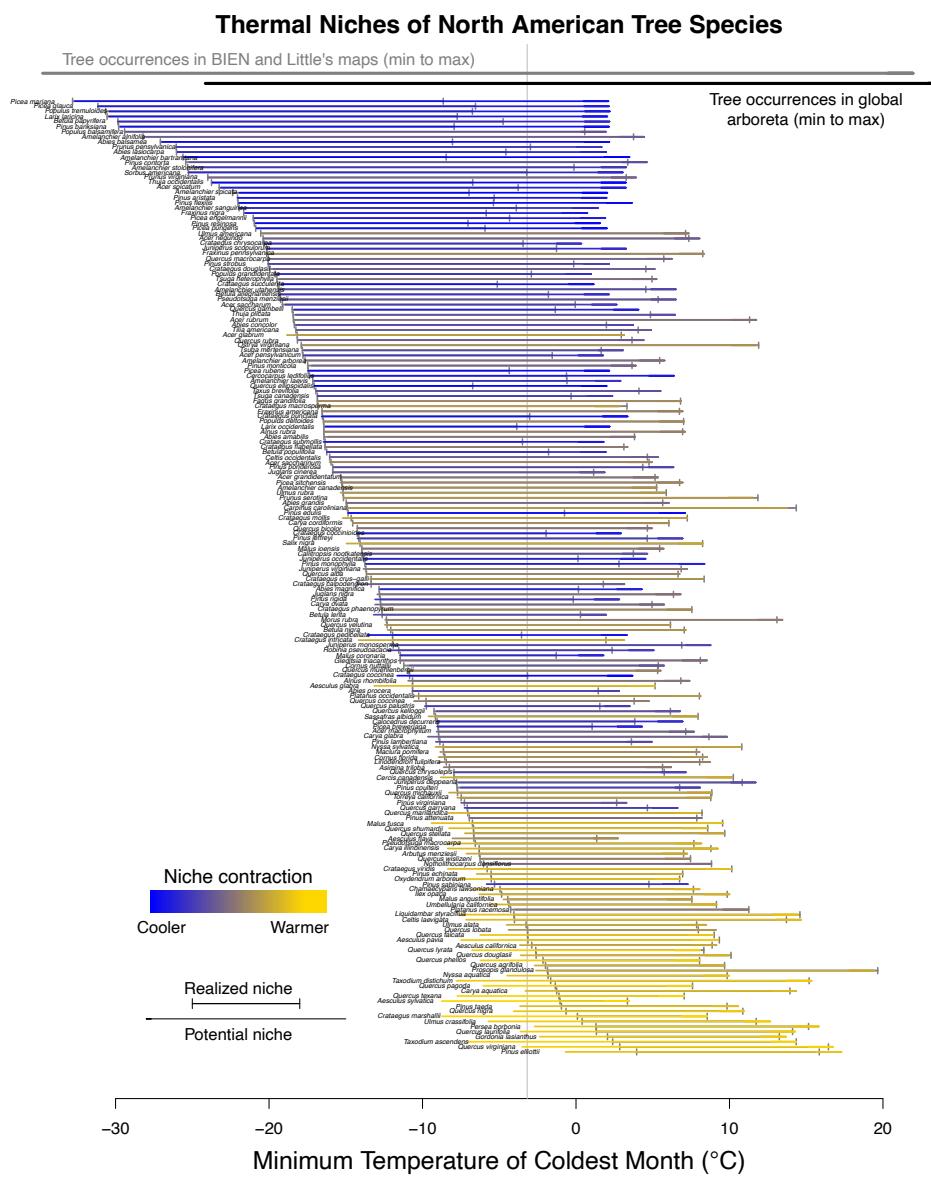
622


623

624 **Fig. S2. Distribution of number of occurrences in botanical gardens for each species and**
625 **their lack of systematic bias on the calculation of niche metrics for mean annual**
626 **temperature.**

627

628


Thermal Niches of North American Tree Species

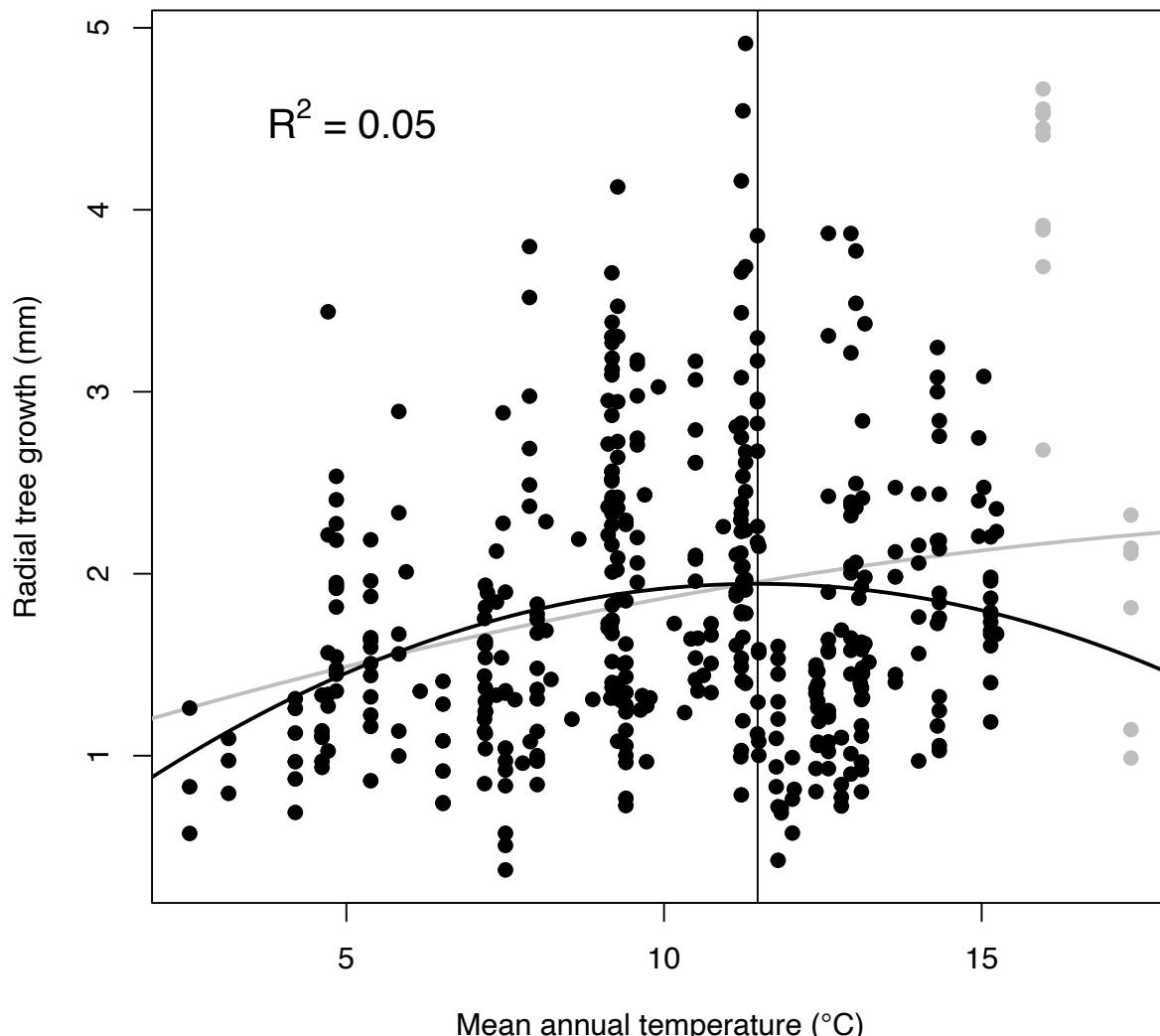
629
630 **Fig. S3. Empirical estimates of the potential and realized thermal niches of North**
631 **American trees along a gradient of maximum temperature of the warmest month.**

632 Empirical estimates of realized and potential niches of 188 North American tree species along a
633 gradient of maximum temperature of the warmest month. Realized niches (denoted by hash
634 marks) are subsets of potential niches. Species are ordered by increasing realized niche minima.
635 Niche minima and maxima are defined as the 0.01 and 0.99 quantiles of their distributions to
636 remove effects of extreme outliers. All species have a potential niche that overlaps the central
637 temperature (solid vertical line) of 25.5 °C. The grey horizontal line denotes the range of
638 temperatures sampled by BIEN and Little's range maps, and the black horizontal line denotes the
639 range of temperatures of the arboreta. The vertical line represents the mean value of the
640 estimated maximum, x -intercept, and minimum from fitted regression models in Fig. 3 in the
641 main text.

642

643

644 **Fig. S4. Empirical estimates of the potential and realized thermal niches of North**
645 **American trees along a gradient of minimum temperature of the coldest month.**


646 Empirical estimates of realized and potential niches of 188 North American tree species along a
647 gradient of minimum temperature of the coldest month. Realized niches (denoted by hash marks)
648 are subsets of potential niches. Species are ordered by increasing realized niche minima. Niche
649 minima and maxima are defined as the 0.01 and 0.99 quantiles of their distributions to remove
650 effects of extreme outliers. Most species have a potential niche that overlaps the central
651 temperature (solid vertical line) of -3.2 °C. The grey horizontal line denotes the range of
652 temperatures sampled by BIEN and Little's range maps, and the black horizontal line denotes the
653 range of temperatures of the arboreta. The vertical line represents the mean value of the
654 estimated maximum and x-intercept from the fitted regression models in Fig. 3 in the main text.

655

656

657

Mean radial tree growth by species by site (FORAST dataset)

658

659
660

Fig. S5. Mean radial tree growth rate by species by site in the FORAST tree ring dataset from the northeastern United States.

661

662

663

664

665


666

667

A model fit to all the data is an increasing function, and the second-order term in the quadratic polynomial is not significant (grey line). However, if the two sites with divergent growth rates at the highest mean annual temperatures are removed (one of these sites has extremely fast growth rates for all species and are potential outliers and the warmest site is removed out of an abundance of caution to avoid few points that are highly leveraged), then the quadratic polynomial is highly significant with an optimum temperature for growth at 11.9 °C. Data reanalyzed from based on the FORAST data (55, 56).

668

669
670
671

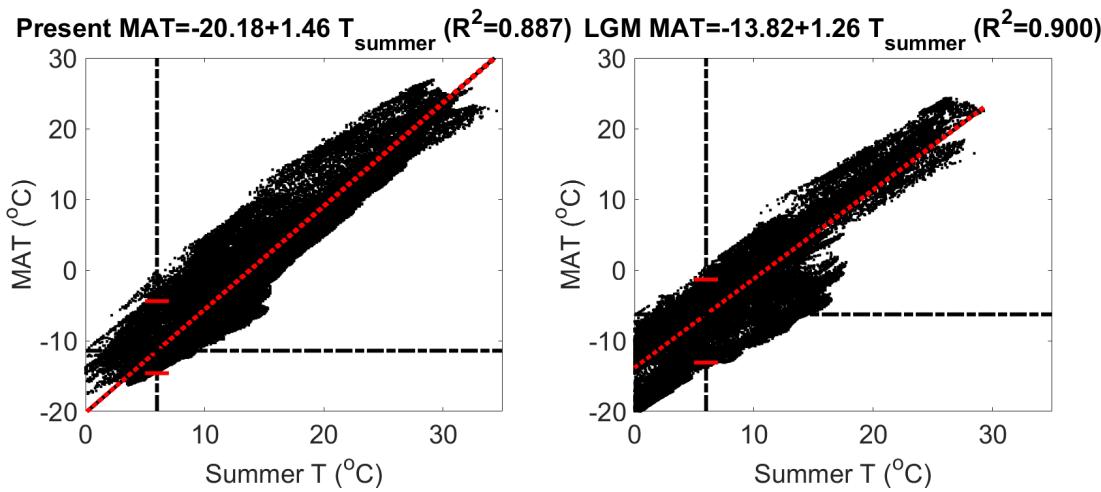

672
673
674
675
676
677
678

Fig. S6. Mean annual temperature at present and at the last glacial maximum (LGM).

Geographic distribution of mean annual temperatures in North America at present (A) and at the LGM (C) and frequency distributions of mean annual temperatures at the two time periods (B, D). Top row represents the present day. Bottom row represents the LGM. Vertical lines denote medians. Climate data based on WorldClim 1.4 (57) and ice sheet data based on Dalton et al. (58).

679
680
681
682
683
684
685
686

687
688
689
690
691
692
693
694
695
696

697

Fig. S7. Relationship between summer temperature (bio10) and mean annual temperature (bio1).

698
699
700 In the present day, a 6 °C summer temperature equates to a -11.4 °C mean annual temperature
701 (MAT) with a 90% confidence interval of (-14.6, -4.4). In the last glacial maximum (LGM) a 6
702 °C summer temperature equates to a -6.34 °C mean annual temperature (MAT) with a 90%
703 confidence interval of (-13.1, -1.3). Data from WorldClim 1.4 (57).

704
705
706
707
708
709
710
711
712

713
714
715
716
717

Table S1. Results of model comparisons for three sets of temperature variables (minimum, mean, maximum) and three sets of niche metrics. These results provide details about the test statistics shown in Fig. 2, S3, and S4. Models in bold were selected as the best model using AIC and likelihood ratio tests (LRT).

Temperature variable	Metric	Model	R^2	AIC	LRT	Model rank
Mean annual temperature	R:P ratio	Linear	0.06	-220	NA	2nd
		Quadratic	0.45	-320	$F=134, P <0.0001$	1st
	Niche contraction	Linear	0.65	-286	NA	2nd
		Quadratic	0.71	-318	$F=38, P <0.0001$	1st
Minimum temperature of coldest month	R:P ratio	Linear	0.24	940	NA	2nd
		Quadratic	0.29	929	$F=13, P=0.0003$	1st
	Niche contraction	Linear	0.03	-220	NA	2nd
		Quadratic	0.27	-273	$F=62, P <0.0001$	1st
Maximum temperature of warmest month	R:P ratio	Linear	0.59	-275	NA	1st
		Quadratic	0.60	-275	$F=2.3, P=0.12$	2nd
	Niche contraction	Linear	0.42	1045	NA	2nd
		Quadratic	0.45	1037	$F=10.2, P=0.0016$	1st
	Niche contraction	Linear	0.36	-171	NA	2nd
		Quadratic	0.47	-203	$F=36, P <0.0001$	1st
	Potential niche width	Linear	0.62	-194	NA	2nd
		Quadratic	0.67	-218	$F=28, P <0.0001$	1st
	Potential niche width	Linear	0.10	886	NA	2nd
		Quadratic	0.20	866	$F=24, P=0.0002$	1st

718
719

720

721

722

723

724

725

726

727

728 **Table S2.** Comparison of mean annual temperature (MAT) model results using different random
729 samples from the BIEN and Little's range map data generated from different starting conditions
730 for the random number generator. The three sets sampled from BIEN and Little's range maps
731 using 10 times the number of botanical garden occurrences. Given their high similarity, we
732 report results based on the first sample in the main text.

733

Sample	Statistic	Sample 1 (reported in paper)	Sample 2	Sample 3	Mean of samples
R:P ratio	Maximum	9.96	9.93	9.88	9.92
	R^2	0.45	0.48	0.46	0.46
Niche contraction	x -intercept	12.01	11.99	11.82	11.94
	R^2	0.71	0.70	0.70	0.70
Potential niche width	Minimum	15.96	16.51	15.80	16.09
	R^2	0.29	0.24	0.31	0.28
Mean					12.65

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752