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ARTICLE INFO ABSTRACT

Keywords: The lens proteome undergoes dramatic composition changes during development and maturation. A defective
Cataracts developmental process leads to congenital cataracts that account for about 30% of cases of childhood blindness.
Ubiquitin Gene mutations are associated with approximately 50% of early-onset forms of lens opacity, with the remainder
Redox status . . . . . o1 .

Glutath being of unknown etiology. To gain a better understanding of cataractogenesis, we utilized a transgenic mouse

a one . . ops P .

Taurine model expressing a mutant ubiquitin protein in the lens (K6W-Ub) that recapitulates most of the early patho-
Proteomics logical changes seen in human congenital cataracts. We performed mass spectrometry-based tandem-mass-tag

quantitative proteomics in E15, P1, and P30 control or K6W-Ub lenses. Our analysis identified targets that are
required for early normal differentiation steps and altered in cataractous lenses, particularly metabolic pathways
involving glutathione and amino acids. Computational molecular phenotyping revealed that glutathione and
taurine were spatially altered in the K6W-Ub cataractous lens. High-performance liquid chromatography
revealed that both taurine and the ratio of reduced glutathione to oxidized glutathione, two indicators of redox
status, were differentially compromised in lens biology. In sum, our research documents that dynamic proteome
changes in a mouse model of congenital cataracts impact redox biology in lens. Our findings shed light on the
molecular mechanisms associated with congenital cataracts and point out that unbalanced redox status due to
reduced levels of taurine and glutathione, metabolites already linked to age-related cataract, could be a major
underlying mechanism behind lens opacities that appear early in life.

1. Introduction children [1]. Although some genetic variants and gene mutations are

associated with congenital cataracts and progress has been made with

The lens is a transparent and avascular structure inside the eye that
focuses light onto the retina for visual processing. Defective lens
development and maturation results in lens opacification or cataracts.
Lens clouding is a leading cause of blindness worldwide and cataracts
that appear early in life account for one-third of the cases of blindness in

regard to disease etiology, a complete understanding of molecular
pathogenic events behind congenital cataracts remains aspirational.
Congenital cataracts need to be removed surgically early in life and,
unfortunately, there is a higher risk of post-operative complications in
infants and children than in adults [2]. A comprehensive understanding
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of the molecular mechanisms behind lens opacity is crucial to better
designed strategies to diminish the prevalence of early-onset forms of
cataracts.

Lens differentiation is a complex biological developmental process in
which lens fiber cells undergo massive changes including organelle
removal and high expression of lens-specific proteins (e.g. crystallins).
Terminal lens fiber cell differentiation begins around embryonic day
fifteen (E15) in mice, and fiber cell differentiation continues throughout
the life of the organism. All these changes require proteome remodeling
and a fine-tuned expression of proteins in different developmental stages
for proper completion of the lens maturation. Although failures in the
lens fiber cell differentiation are associated with many forms of
congenital cataracts, to date a systematic comparative proteomics
analysis in congenital cataracts has not been reported.

Oxidative stress occurs during the course of lens differentiation and
oxidative metabolism is vital to preserve lens transparency. Multiple
evidence supports a major role for a balanced redox status network in
lens homeostasis. In age-related cataracts, oxidative stress is believed to
be an initiating event and a reduction of antioxidant capacity leads to
age-related lens opacification [3-6]. y-Glutamyl-cysteinyl-glycine
(glutathione) is a key antioxidant in our body and high concentrations of
reduced glutathione (GSH) are found in transparent lenses, although
lower amounts of the oxidized form (GSSG) can be also detected [4,5,7].
The GSH/GSSG ratio is an indicator of redox status and a decrease in the
ratio is linked to age-related cataracts [4,5,8,9]. In addition to gluta-
thione, a significant antioxidant capacity is bestowed on free amino
acids that are found more concentrated in the lens than in other tissues
[10-12] and deficit in the enzymes involved in amino acid metabolism
are linked to infantile cataract [13,14]. Interestingly, the most abundant
amino acid in the lens is taurine, a sulfur f-amino acid with high anti-
oxidant properties whose dietary intake protects against glutathione
depletion-derived opacity [15]. Taurine levels are highly reduced in the
aging lens, where its deficiency has been connected to age-related cat-
aracts [16]. More recently, taurine deficiency has been broadly linked to
age-related disease and shortened lifespan [17].

Ubiquitination is an essential process in proteostasis that determines
the protein stability at different levels. Ubiquitination is able to modu-
late protein-protein interactions, activate/inactivate protein function,
and direct proteins substrate to degradative compartments [18]. Ubiq-
uitin biology is also essential for lens maturation and mutations in the
ubiquitin system have been associated with human cataracts [19-21].
The lens-specific overexpression of a dominant negative mutant of
ubiquitin (K6W, lysine is replaced to tryptophan at position 6) results in
defective lens development and congenital cataract formation [22]. The
K6W-Ub cataractogenic mouse recapitulates multiple pathogenic char-
acteristics found in human cataracts including accumulation of intra-
cellular aggregates and retained organelles [23-25]. The K6W-Ub
mouse thus provides a genetic model to elucidate molecular processes
involved in the onset of lens opacification.

Here, we performed a multi-disciplinary approach in order to reveal
early pathogenic cataractogenic events using the K6W-Ub mouse as
congenital cataract model. MS-based tandem-mass-tag quantitative
proteomics (TMT) was carried out in lenses collected in different
developmental stages in control and K6W-Ub overexpressing mice.
Computational molecular phenotyping (CMP) and high-performance
liquid chromatography (HPLC) showed that altered amino acid and
glutathione metabolism lead to unbalanced redox status in cataractous
lenses. Reduced levels of the antioxidant taurine and glutathione were
the most prominent metabolites contributing to the pathological
phenotype. In sum, our research documents the dynamic proteome
changes in a mouse model of congenital cataracts pointing to the un-
balanced redox status network as an early pathological event.
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2. Material and methods
2.1. Animal husbandry

All animal experiments were approved by the Institutional Animal
Care and Use Committee at Tufts University and were performed ac-
cording to NIH guidelines for using experimental animals. The trans-
genic mouse was generated as previously reported [22]. The expression
of MRGS(His)6-K6W-Ub is under the control of the aA-crystallin pro-
moter with DCR1 enhancer and expression of the transgene was deter-
mined by Western blotting using an antibody specific to the transgene
product (MRGS-His4) from Qiagen. All experiments were performed
using mice that were homozygous for the K6W-Ub transgene in a
C57BL/6J genetic background. Wild-type (WT) mice were C57BL/6J
mice purchased from Jackson laboratories.

2.2. Mass spectrometry-based tandem-mass-tag (TMT) quantitative
proteomics

Thirty-six pooled lenses from E15 and twelve pooled lenses from
newborn (P1) mice and P30 of WT and K6W-Ub mice were used to
generate three biological replicates for proteomic analysis. Samples
were sonicated in hypotonic buffer and 100 pg from each pooled sample
and dried by vacuum centrifugation. The experimental proteomics
design utilized 7-plex TMT (Thermo Scientific) [26] to directly compare
samples of mouse lens tissue: three-time points (E15, P1, P30) of two
mouse lines (WT and K6W-Ub) and a common control sample (mixture
of both types). The latter was used in all experiments to normalize be-
tween assays of all time points and genotypes. Prior to the analytical run,
20 pg of isotopically labeled peptides from each sample were checked for
labeling efficiency, combined, freed of remaining TMT, and analyzed by
a multidimensional LC-MS/MS, MudPIT [27], using Dionex pumps
coupled to a nanoESI Q Exactive Plus Orbitrap mass spectrometer. HCD
fragmentation yields ions that represent the relative amount of peptide
present in each sample. Protein identification, assembly, and reporter
ion quantitation were performed using Proteome Discoverer (Thermo
Scientific). HCD fragmentation spectra was searched against a mouse
subset of the Uniprot KB protein database (uniprot.org). For rigor, the
TMT experiment was run in triplicate with each 7-plex analysis repre-
senting a separate cohort of animals. For statistical analysis of TMT
protein ratios, log2 protein ratios were fit to a normal distribution using
non-linear (least squares) regression. The mean and standard deviation
values from the Gaussian fit were used to calculate p-values, using
Z-score statistics. A given log2 TMT protein ratio, with the calculated
mean and standard deviation of the fitted data, was transformed to a
standard normal variable (z = (x-j1)/0). Calculated p-values were cor-
rected for multiple comparisons using the Benjamini-Hochberg method
[28]. A p-value of 0.01 and FDR of 0.1 was used as the cutoff for iden-
tifying differentially expressed proteins in this assay [25]. One-way
ANOVA analysis was performed for each protein’s abundance. Ana-
lyses of differential protein expression between WT and K6W-UDb lenses
at each time point was performed using R and the edgeR package [29].
Annotation and function, gene ontology and pathway enrichment of
proteins levels of which are statistically different between K6W-Ub and
WT lenses, were determined using DAVID and Enrichr [30,31]. The full
proteomic data analysis is shown in Supplemental Data 1. The mass
spectrometry proteomics data have been deposited to the Proteo-
meXchange Consortium via the PRIDE partner repository with the
dataset identifier PXD045040.

2.3. Computational molecular phenotyping (CMP)

Lenses used for CMP analysis were fixed in a 2.5% glutaraldehyde,
1% formaldehyde, 0.1 M cacodylate (pH 7.4), 1 mM MgSO4, and 3%
sucrose fixation solution. Following fixation, lenses were dehydrated
through increasing concentrations of methanol to acetone and
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embedded in an epon resin. Embedded lenses were serially sectioned at
100 nm and placed on 12-well plates. CMP used IgG probes to small
molecules in serial sections, visualized with a secondary antibody con-
jugated to a 1.4 nm gold granule, followed by silver intensification to
generate spatially preserved, quantitative, metabolic maps of the lens
[32-36]. Antibodies against amino acids alanine, cysteine, aspartate,
lysine, glutamate, glutamine, glycine, arginine, glutathione, valine,
taurine, and serine were used in this study as previously reported
[37-39]. K-means clustering was used to identify the metabolic signa-
tures present across the WT or K6W lenses. To perform clustering,
immunolabeled, silver-intensified, serial sections were imaged using an
Infinity 3 (Teledyne Luminera) camera under constant gain and offset.
Captured grayscale images were then computationally aligned using
IR-Tweak (SCI-University of Utah) [35]. The resulting image stacks were
then clustered using k-means to identify metabolic classes (PCI-Geo-
matica). Cell classes are then represented as a theme map, in which each
color represents an individual metabolic class. Total levels of each an-
alyte were measured as average intensities using ImageJ 1.52 and are
reported as arbitrary units (a.u.), that is, the sum of the gray values of all
the pixels in the region of interest divided by the number of pixels.
Partial least-square regression analysis was performed using Metab-
oAnalyst [40].

2.4. Immunohistochemistry and western blotting

Lenses dissected from WT and transgenic mice were fixed with 4%
paraformaldehyde for 2 h, embedded in optimal cutting temperature
compound (Sakura Finetek, Torrance, CA, USA) frozen, and subse-
quently sectioned, as reported previously [22,23]. Lens cryosections (12
pm) were permeabilized with 0.05% Triton X-100 for 5 min at room
temperature, blocked with 5% normal donkey or goat serum (Jackson
ImmunoResearch) in PBS for 1 h at room temperature. Primary anti-
bodies against GGCT (Proteintech, Rosemont IL) and GSTP1 (GeneTex,
Irvine CA) were incubated at room temperature for 1 h and secondary
antibodies (Jackson Immunoresearch. West Grove PA) for 45 min at
room temperature. Nuclear DNA was visualized with Prolong Gold
Antifade with DAPI (Thermo Fisher, Waltham MA). Fluorescent images
were obtained with an inverted fluorescence microscope (Axiovert 200
equipped with AxioVision V 4.5 software; Zeiss, Jena, Germany).

For Western blot analysis, lenses were homogenized directly in
loading buffer. Equal quantities of samples were separated by SDS-
PAGE. Proteins were transferred by electroblotting onto nitrocellulose
membranes (0.2 pm; Bio-Rad, Hercules, CA, USA), after which the
membranes were probed with primary antibodies against GGCT, GAMT,
and PGAM2 (Proteintech) and HMOX1, GSTP1 (GeneTex) overnight at
4 °C and HRP-conjugated secondary antibodies for 45 min at room
temperature. Signals were detected by chemiluminescence (SuperSignal
West Pico Chemiluminescent Substrate; Thermo Scientific).

2.5. High performance liquid chromatography (HPLC)

Lens samples were homogenized in prechilled medium containing
phosphate buffer (Fluka, Buchs, Switzerland) (pH 7.0) and perchloric
acid (PCA) (Pancreac, Barcelona, Spain). Suspensions were centrifuged
at 14,000xg and the resulting supernatants were collected, stored at
—80 °C and used for both HPLC determinations. GSH and GSSG content
of lens homogenates were quantified by the method of Reed et al., as
previously reported in lens samples [41,42]. The samples were mixed
with a solution of iodoacetic acid (Sigma, St. Louis, MO) and Sanger
reagent (1-fluor-2,4-dinitrobencene) (Sigma, St. Louis, MO). These
products are quickly separated by HPLC (Gilson, detector UV/VIS 156),
which allows the quantification of nanomolar levels.

Free tissue levels of amino acids were assessed as previously [43,44].
Supernatants were derivatized with ortho-phthal-dialdehyde (OPA).
The reagent was a mixture of 32 mg OPA in borate buffer 0.4 M pH 9.5
(7140 pl) containing 60 pl of 3-mercaptopropionic acid. The fluorescent
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derivatized amino acids were separated by a “Ultrasphere ODS Beck-
man’’ (150 x 4.6 mm, particle size 5 pm) column using gradient elution.
Gradients were performed with two degassed mixture solvents. Solvent
A was 0.05 M sodium acetate pH 5.88: methanol (90:10), and solvent B
was methanol: H20 (70:30). (Gradient profile: time = 0 min % B 2, time
= 0.1 min % B 15, time = 1% B 47, time = 6% B 100, time = 9% B 2); at
time = 13 the column is ready for a new sample injection. The solvent
flow rate was adjusted to 1 ml/min and the injection volume was 10 pl.
Fluorescence detection was accomplished with Jasco detector (model
FP-2020) at 240 and 450 nm for excitation and emission wavelengths,
respectively. Amino acids were identified by their retention times, and
their concentrations were calculated by comparison to calibrated amino
acid external standard solutions (1.5 pM).

3. Results

3.1. Quantitative proteomics revealed changes in amino acid and
glutathione metabolism in the cataractogenic model

In order to gain molecular insights into the early pathogenic events
underlying lens opacity in congenital cataracts, we analyzed the lenses
dissected from the cataractogenic animal model overexpressing a
dominant negative mutant of ubiquitin (K6W-Ub). Lysine 6 is in the
surface of the ubiquitin molecule and, when it is replaced with trypto-
phan, the formation of K6-kinked ubiquitin chains in protein substrates
is blocked [45]. The overexpression of this mutant ubiquitin protein
results in defective lens development and nuclear cataract formation
[22,24,25] (Fig. 1).

In this study, we compared the lens proteome at different hallmark
stages of lens development: embryonic day fifteen (E15, when the lens is
formed but organelle removal has not yet occurred), postnatal day one
(P1, when organelle removal and remodeling of fibers are in progress)
and postnatal day thirty (P30, the developmental process is advanced,
and the maturation of the lens fibers is completed). As observed in
dissected WT and K6W-UD lenses from these timepoints, nuclear cata-
racts are evident in the K6W-UD lenses (Fig. 1).

TMT-quantitative proteomics detected a total of 3789 proteins. A
total of 91 (53 down- and 38 up-regulated), 97 (43 down- and 54 up-
regulated), and 163 (49 down- and 114 upregulated) were differen-
tially expressed proteins (DEPs) in K6W-Ub lenses at the different stages,
that is, 2.4%, 2.5% and 4.3% of total protein detected at E15, P1 and
P30, respectively (Supplemental Data 1). We also identified DEPs that
were upregulated or downregulated developmentally in WT mice be-
tween E15-P1 (56 down- and 46 up-regulated) and P1-P30 (21 down-
and 62 up-regulated). Comparisons of DEPs between E15-P1 in WT
lenses and that were altered in K6W-Ub P1 lenses revealed that many

E15 P30

K6W-Ub

- t ‘;& t
|

=
Fig. 1. Cataract formation in K6W-UDb lenses. Photographs of dissected WT and

K6W-Ub lenses at E15, P1, and P30 show nuclear cataracts (arrows) in K6W-
Ub lenses.
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proteins that are developmentally upregulated, particularly lens crys-
tallins and other lens structural proteins were downregulated in K6W-Ub
lenses (Fig. 2, Supplemental Data 2). We identified 62 proteins that were
only altered developmentally, 57 proteins that were only altered by
K6W-Ub expression, and 40 proteins that were altered both develop-
mentally and by K6W-Ub expression (Supplemental Data 2). A small
subset of proteins, almost entirely consisting of histones were down-
regulated developmentally and upregulated in K6W-Ub lenses. These
may be connected to the normal process of lens fiber cell denucleation,
which is impaired in K6W-Ub lenses [22]. Hemoglobin proteins were
present exclusively at E15, likely deriving from both residual hyaloid
vasculature and the embryonic lens, which produces hemoglobin, but
not heme [46].

Next, we performed gene ontology analysis and functional annota-
tion clustering to extract biological information. We found that the
“glycine, serine, and threonine metabolism” pathway was consistently
enriched in the downregulated DEPs in the K6W-Ub background in all
the developmental stages (Fig. 3A-C). In addition, we observed that
downregulated DEPs in cataractous lenses are enriched in different
amino acid-related pathways: glutathione metabolism at E15, arginine
and proline metabolism at P1, and cysteine and methionine metabolism
at P1 and P30 (Fig. 3A-C). Interestingly, proteins that change during the
development of normal lenses are also enriched in these pathways,
including glutathione metabolism, glycine, serine and threonine meta-
bolism, cysteine and methionine metabolism, arginine biosynthesis,
phenylalanine metabolism and histidine metabolism (Suppl. Fig. 1). Of
note, downregulated DEPs in K6W-Ub background at all developmental
stages are associated with different abnormalities in lens development
including abnormal lens fiber morphology, cataracts, vacuolated lens,
small lens (Suppl. Fig. 2) and were involved in different gene ontology
processes related to vision at E15 and P1 that include visual perception
and sensory perception of light stimulus (Suppl. Fig. 3). By contrast, we
did not find biological processes linked to vision-related processes in the
upregulated DEPs in K6W-Ub background and the targets were not
associated to lens abnormalities or gene ontology processes related to
vision (Fi.g 3 D-F, Suppl. Figs. 1-3).
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3.2. Computational molecular phenotyping revealed spatiotemporal
expression patterns for free amino acids in lenses and altered distribution
in congenital cataracts

Given that the overexpression of K6W-Ub altered targets that
modulate amino acid metabolism, we performed computational mo-
lecular phenotyping (CMP), a technique that allow us to visualize free
amino acid fingerprinting at cellular resolution and to preserve the
morphological context. Lenses from WT and transgenic animals were
harvested at E15, P1, and P30, and the levels of the following metabo-
lites were evaluated: alanine, cysteine, aspartate, lysine, glutamate,
glutamine, glycine, arginine, glutathione, valine, taurine, and serine
(Fig. 4A). CMP revealed that amino acid distributions were highly
altered in K6W-Ub lenses at all developmental times, with altered spatial
patterns and different abundances. In order to understand the hetero-
geneities spatially and by abundance, we turned to multiparametric
methods. We first utilized a K-means clustering approach to map spatial
patterns of amino acid signatures in the P1 WT or KEW-UD lens (Fig. 4B).
In P1 WT lenses, we identified clusters of amino acids that defined
cohesive cortical patterns (blue and green pseudocolors) or nuclear
patterns (red and yellow pseudocolors) (Fig. 4B, top). In K6W-Ub lenses,
these patterns degraded and hypervariability in metabolic state was
observed (Fig. 4B, bottom). We next applied a chemometric method,
partial least-square regression discrimination analysis, to identify dif-
ferences in amino acid composition between WT and K6W-Ub lenses.
This analysis revealed that the amino acid metabolomes of WT and K6W-
Ub lenses were significantly different at all timepoints (Fig. 4C). We
found that taurine and glutathione contributed the most variance based
on significant variable-in-project (VIP) scores greater than 1 (Fig. 4D).

Levels of taurine in KEW-UDb cataractous lenses decreased by 69.8%,
54.0%, and 53.9% at E15, P1 and P30, respectively (Fig. 5A-C), while
levels of glutathione decreased by 77.0%, 58.0%, and 33.6% at E15, P1
and P30, respectively (Fig. 5D-F). Taurine and glutathione spatial dis-
tributions in K6W-Ub lenses were also highly altered. Glutathione levels
were mislocalized equatorially at E15.5 and P30 and were mosaic at P1,
with both abnormally high- and low-containing cells in K6W-Ub lenses
(Fig. 5D-F). The anterio-central nuclear cataracts contained very low
amounts of glutathione and taurine (Fig. 5B and E). No significant
changes in total amino acid levels were found in early developmental
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Fig. 3. Quantitative proteomics reveals changes in amino acid and glutathione metabolism in congenital cataracts. (A-C) Grid visualization of downregulated DEPs
identified in K6W-Ub lenses at (A) E15, (B) P1, and (C) P30 and. (D-F) Grid visualization of upregulated DEPs identified in KEW-UDb lenses at (D) E15, (E) P1, and (F)
P30. Shown in columns are the top 10 associated KEGG pathways, which are ordered by p-values. KEGG pathways involved in glutathione and amino acid meta-
bolism (highlighted in red). Rows indicate DEPs, based on comparisons of K6W-UD relative to WT. In A-C, blue shades indicate the degree of downregulation in K6W-
Ub lenses, with darker shades corresponding to more downregulation, according to the key next to each grid. In D-F, red shades indicate the degree of upregulation in
K6W-Ub lenses, with darker shades corresponding to more upregulation, according to the key next to each grid. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)
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Fig. 5. Changes in abundance and spatial distributions of taurine and glutathione in the WT and K6W-Ub lenses. (A-C) Representative CMP pictures for taurine
staining in WT and K6W-UD lenses collected at (A) E15, (B) P1, and (C) P30. (D-F) Representative CMP pictures for glutathione staining in WT and K6W-Ub lenses
collected at (D) E15, (E) P1, and (F) P30. Quantification of average intensities is shown as arbitrary units (a.u.). All values are mean + SEM. and differences with WT
were significant for (*) p < 0.05; (**) p < 0.01; and (***) p < 0.001.
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stages of lens maturation for any other metabolites (Suppl. Fig. 4).

3.3. High-performance liquid chromatography reveals differential
changes in taurine and glutathione levels and unbalanced redox in
cataractous lenses

In order to corroborate and expand on our CMP findings, we used
high-performance liquid chromatography (HPLC) to quantify the total
levels of free amino acids in WT and K6W-Ub cataractous lenses, as well
as total levels of reduced and oxidized glutathione (GSH, GSSG). Firstly,
we found that overexpression of K6W-Ub did not impact all amino acids
but only a few sets of amino acids were compromised in K6W-Ub lenses
(Fig. 6 and Suppl. Fig.5). Taurine significantly decreased 57.8% and
58.5% at P1 and P30, respectively in K6W-Ub lenses (Fig. 6A). The GSH/
GSSG ratio significantly decreased 55.7% and 55.4% in K6W-Ub lenses
at P1 and P30, respectively (Fig. 4B), which was driven by decreases in
GSH and increases in GSSG, even though not all changes were statisti-
cally significant (Suppl. Figs. 5A-B). Cysteine, a precursor of GSH, was
augmented 63.8% along with leucine, isoleucine and tryptophan
(Fig. 6C-F) in K6W-UD lenses at P1. The latter amino acids did not show
statistically significant changes in P30 lenses, except tryptophan which
decreased 51.3% in K6W-Ub lenses. Together with our CMP data, these

A

*kk *kk
600 1000
~— § . (] § o
T 5"
ciE - 2g [T
=S ||~ £s .
I‘—“ g 200 i ] & g o _i._
=~ e Tan
1 .
0 : . 0 T T
WT Ke6W-Ub WT  K6W-Ub
C 100 30
= -
E g_c % 1 8 g. '
[0} 2 [OREe)] ]
$8i o pam SEC
® ok T ' ® 9 :
6 s > E 10
SHE L RA cs .
1} O
0 . : 0 . :
WT Ke6W-Ub WT KeW-Ub
E : *
— 4007 Qo ¥
a’s 29
% s 300 ! c @ s
So S
£ N
S8 . miErE
EE o ZE
100 v 5
= y
0 r r ¢ g —
WT KeW-Ub WT KeW-Ub

Redox Biology 66 (2023) 102869

data support a model by which proteomic changes caused by over-
expression of K6W-Ub lead to the imbalance of only a specific set of
amino acids involved in the maintenance of redox status could
contribute to lens opacity in congenital cataracts.

3.4. Reduced levels of proteins related to glutathione and amino acid
metabolism in K6W-UDb lenses

In order to mechanistically connect proteomic changes with the
altered amino acid distribution we observed using CMP and HPLC, we
utilized Western blotting and immunohistochemistry to query select
DEPs identified above. We found that y-glutamylcyclotransferase
(GGCT), related to glutathione metabolism, was decreased in E15 and P1
K6W-UDb lenses (Fig. 7A and B). Also in the glutathione pathway, the
glutathione s-transferase pi 1 (GSTP1), an enzyme with antioxidant
capacity, was decreased in E15 and P1 K6W-UD lenses (Fig. 7C and D).
Proteins related to the glycine, serine and threonine metabolism
pathway and cysteine and methionine metabolism pathway, such as
phosphoglycerate mutase 2 (PGAM2), heme oxygenase 1 (HMOX1), and
guanidinoacetate N-methyltransferase (GAMT) were reduced in P30
K6W-Ub lenses (Fig. 7E and F).

Altogether, micromolecular profiling technology revealed that the
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Fig. 6. HPLC revealed altered levels of amino acids in K6W-UD lenses. (A-F) Lens content of (A) taurine, (B) GSH/GSSG, (C) cysteine, (D) leucine, (E) tryptophan
and (F) isoleucine in wild types and K6W-Ub lenses collected at P1 (left) and P30 (right) are shown. All values are mean + SEM. and differences with WT were
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Fig. 7. Downregulated proteins in K6W-Ub lenses
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overexpression of K6W-Ub disrupts the spatial organization of free
amino acids in the lens, with the highest impact in taurine and gluta-
thione, and western blotting and immunohistochemistry revealed that
proteins that modulate these free amino acid levels were highly
compromised in our model of congenital cataracts.

4. Discussion

Our research analyzed dynamic changes of the lens proteome during
different steps of development and maturation in the K6W-Ub cataract
mouse model that recapitulates most of the abnormalities seen in human
congenital cataracts. Our multi-pronged approach (quantitative prote-
omics, morphological techniques, and biochemical analysis) identified a
limited number of proteins related to taurine and glutathione biology
and revealed unbalanced redox status network as early pathological
event in congenital cataract.

Molecular genetic studies of congenital cataract have revealed roles
for diverse lens fiber cell proteins like crystallins, connexins, HSF4,
aquaporins, transcription factors, and cytoskeletal proteins in at least
50% of congenital cataracts [1]. Protein aggregation is a common
finding, but it is not clear in cases outside of crystallin mutants, whether
it is a cause or effect of other tissue dysfunction. Our research provides
evidence pointing out the imbalance in taurine and glutathione levels as
a pathological contributor to a metabolic deficit that, ultimately, leads
to aberrant redox status regulation and precipitation of lenticular
proteins.

In the past, the proteome in different tissues has been explored uti-
lizing techniques that fail to identify less abundant proteins. This is
especially relevant in the mature lens where crystallins make up over
90% of the total wet weight proteins and non-crystallins proteins are
challenging to characterize. However, new mass spectrometry—based
proteome methodologies have recently made possible the analysis of a
more complete lens proteome [47,48]. Here, we used TMT quantitative

proteomics to identify proteomic changes in the lens of a congenital
cataract mouse. In agreement with previous reports in our lab that relied
on less sensitive methods [24,25], the number of DEPs in the K6W-Ub
background was extremely low. The lens-specific overexpression of
the dominant mutant of ubiquitin did not cause a pleiotropic distur-
bance in the whole lens proteome but has a highly specific impact on
molecular pathways. In this study we focused on proteins significantly
down-regulated in K6W-UDb lenses because mutations of those proteins
are associated to lens abnormalities and these DEPs and associated
pathways are also enriched in the course of normal lens development.
We have previously described developmental delay in the K6W-Ub lens,
which is a characteristic of several other congenital cataract models and
may be a critical component of cataract formation in K6W-Ub lenses [22,
24]. No literature was found linking the targets significantly upregu-
lated in cataractous lenses and further analysis will be required to
evaluate the biological ramifications of these upregulated DEPs in the
context of opacity. It is intriguing that some upregulated DEPs have been
linked to proteostatic pathways, such as chaperones HSPA2 and HSPA1B
(HSP70), and the autophagy receptor p62/SQSTM1.

Only a few down-regulated proteins and biological processes asso-
ciated with these targets were altered at all stages of development in the
cataractogenic models. Those were prominently linked to glutathione
and amino acids metabolism. This smaller collection of DEPs allowed us
to carefully query specific proteins in the context of K6W-Ub cataracts
and their potential role in a broader number of congenital and age-
related cataracts. GGCT has been linked to glutathione homeostasis in
the context of cancer cells, but not in cataracts [49]. Reduced expression
of GSTP1, an antioxidant protein, has been observed in age-related
cataracts, possibly connected to promoter hypermethylation [50] or
more recently to proteolytic degradation via the Parkin E3 ligase [51].
HMOX1 is a well-characterized downstream target of the NRF2 antiox-
idant transcription factor and has been extensively studied in lens
epithelial cells, particularly because of its roles in regulation of
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ferroptosis [52,53]. GAMT and PGAM2 have not been directly con-
nected to cataracts, but PGAM2 has been connected through its devel-
opmental upregulation in the lens as a key lens signature gene [54].

Surprisingly, we did not identify DEPs linked to taurine biosynthesis
in our proteomic analyses, although we did identify DEPs connected to
cysteine metabolism, an amino acid precursor needed for de novo
biosynthesis of taurine. Since lens taurine is both of dietary source and
from biosynthesis in the liver, future studies will be required to carefully
measure taurine synthesis, transport, and catabolism in WT and cata-
ractous lenses. Taurine deficiency created by knockout of the Slc6a6
taurine transporter led to age-related diseases, including retinal degen-
eration, and shortened lifespan [17,55]. Cataracts or other lens abnor-
malities were not reported in these studies. Although we did not detect
Slc6a6 protein in the lens using TMT proteomics, gene expression data in
the iSyTE database (integrated Systems Tool for Eye gene discovery)
indicate that Slc6a6 levels in the lens increase throughout development,
mirroring increases in lens taurine that we observed via CMP analysis
[54]1.

Imbalance of amino acids has been proposed as factor in lens opa-
cification and an early event in the etiology of senile cataracts [56-59].
We found that taurine and glutathione are major determinants in the
imbalance of free amino acids along with leucine, isoleucine, tryptophan
and cysteine, the latter a precursor for the de novo synthesis of gluta-
thione. Our results indicate that major free amino acids changes in the
lens are associated with cataract [10,60], and are also in agreement with
other studies in which deficiency of specific amino acids was sufficient
to cause lens opacity [56,61,62]. Dietary amino acid supplementation
has been shown to prevent cataract development [63-65] and the di-
etary intake of taurine was protective in a glutathione depletion-derived
opacity model [15]. This opens up the possibility that dietary supple-
mentation of taurine could be used as strategy to prevent human
congenital cataract in a similar way that folic acid is used to prevent
brain and spine birth defects. Further experiments in different congen-
ital cataracts animal models will be required to establish an optimal
taurine intake during pregnancy with capacity to prevent opacity.

An important aspect of our study is the spatial distribution of amino
acids along the optical and equatorial axes in normal lenses during
different developmental stages. Using CMP as a tool that provides a
single-cell molecule fingerprint, we did not observe a homogenous dis-
tribution for the majority of free amino acids but a differential spatio-
temporal pattern. In agreement with other reports, we found a
concentric patterns for taurine and glutathione and a nuclear enrich-
ment for other amino acids [66,67]. This could reflect the combination
of biological processes modulating amino acid levels, including
biosynthesis and influx/efflux transport processes [14]. We found sig-
nificant changes in the pattern between normal and cataractous lenses in
K6W-UD lenses. Experiments conducted using imaging mass spectrom-
etry methods like MALDI have considered the nuclear depletion of
glutathione in aging as a potential initiating factor in age-related cata-
ract [68]. Our findings extend the importance of maintenance of suffi-
cient glutathione levels even in a congenital cataract model, a finding
also mirrored in analysis of the Mip-mutant congenital cataract [69].

In addition, our research sheds light on the role of protein ubiquiti-
nation in lens biology, and more specifically on the function of uncon-
ventional K6-derived ubiquitination. The cellular function of K6-derived
ubiquitination is not well understood, and recent papers highlight
emerging roles of the lysine on position 6 of the ubiquitin molecule [70].
An increased of K6 linkages was not found upon proteasomal inhibition
and K6 has been associated to DNA repair [71-74]. Mitophagy is
compromised in a K6R mutant ubiquitin [75] and deubiquitinases that
selectively remove K6-linked ubiquitin chains were associated to mito-
chondrial quality control [76,77]. Our findings here support a critical
role for K6-derived ubiquitination in the modulation of specific enzymes
involved in amino acid metabolism, although the role of K6 linkages in
this context remains to be elucidated. Further experiments are required
to reveal which targets of K6-derived ubiquitination are responsible for
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the differential expression of key enzymes of taurine and glutathione
metabolism.

Previously we observed that cells expressing K6W-Ub were highly
susceptible to oxidative stress [78]. Our analysis here indicates that
redox regulation is impaired, however, the mechanisms for this are
unclear. Several of the proteins we have identified as decreased in the
K6W-Ub lenses are known to be regulated by the ubiquitin proteasome
pathway, including HMOX1 and GSTP1 [51,79]. Additionally, the rate
limiting enzyme for taurine synthesis, cysteine dioxygenase (CDO1) is
also regulated by the ubiquitin proteasome system [80]. The expression
of K6W-Ub could alter not only the turnover of these substrates but also
their function. Impaired mitochondrial function in K6W-Ub lenses may
also be connected to increased redox stress. As discussed above,
K6-linked ubiquitination is critical for mitophagy. K6W-Ub mitochon-
dria are abnormally retained and may be damaged [22]. Upregulated
DEPs in the glycolysis and gluconeogenesis pathways might also indi-
cate abnormal mitochondrial function (Fig. 3D,F).

There are several potential limitations to our study. TMT proteomics
is a sensitive and quantitative method to perform proteomics but is not
able to detect and quantitate all proteins present in the lens. Therefore, it
is likely that important proteins that are impacted by K6W-Ub expres-
sion or the cataractous state are missing from our dataset. Although we
present data that indicate impaired redox status in K6W-UDb lenses, we
have not directly measured increased oxidative damage in these lenses.
Future studies will be required to carefully measure protein and lipid
oxidation and oxidation-related post-translational modifications. K6W-
Ub lenses are significantly smaller than WT lenses and contain a
reduced amount of total proteins. Therefore, we cannot rule out that
alterations in free amino acid levels may be connected to a reduced rate
of protein synthesis, which we do not measure in this study. Taurine,
however, is not incorporated into proteins — thus its decrease is not a
reflection of decreased protein synthesis.

Altogether, the findings of this study reveal that unbalanced redox
status derived from an imbalance in taurine and glutathione could be a
major determinant for lens opacity that appear early in life and our
research identify regulatory protein of amino acids metabolism as po-
tential therapeutical targets in congenital cataracts.
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