EFFECTIVE DIFFUSIVITIES IN PERIODIC KPZ
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ABSTRACT. For the KPZ equation on a torus with a 1 + 1 spacetime white noise, it was
shown in [34, 28] that the height function satisfies a central limit theorem, and the vari-
ance can be written as the expectation of an exponential functional of Brownian bridges.
In this paper, we consider another physically relevant quantity, the winding number of the
directed polymer on a cylinder, or equivalently, the displacement of the directed polymer
endpoint in a spatially periodic random environment. It was shown in [33] that the poly-
mer endpoint satisfies a central limit theorem on diffusive scales. The main result of this
paper is an explicit expression of the effective diffusivity, in terms of the expectation of
another exponential functional of Brownian bridges. Our argument is based on a combina-
tion of tools from Malliavin calculus, homogenization, and diffusion in distribution-valued
random environments.

KEYWORDS: KPZ equation, directed polymer, diffusion in random environment, homog-
enization.

1. INTRODUCTION

1.1. Main result. We are interested in the stochastic heat equation (SHE) with a spatially
periodic space-time white noise

. 07 =LANZ + BZE, t>0,2z¢R,
(- Z(0,z) =6(x).

Here ¢ is a generalized Gaussian random field over R x R with the covariance function

E[5(t,2)8(s,y)] =d(t - 5) 3 d(z -y +n).

nez

We assume that ¢ is built on a probability space (€2, F, P) and view it as a spacetime white
noise on R x T that is periodically extended to R x R. Here T is the unit torus, defined as
the interval [0, 1] with identified endpoints. The product between Z and ¢ is interpreted in
the It6-Walsh sense.

The random function Z is associated with the model of a directed polymer in a random
environment and the parameter 3 > 0 plays the role of the inverse temperature. There are
two important physical quantities: the free energy and the endpoint displacement of the
polymer. Define Z; = [z Z(t,x)dx as the point-to-line partition function. It was known
that log Z; satisfies a central limit theorem, with the drift and the variance described explic-
itly in terms of some auxiliary Brownian bridges, see [34, Theorem 1.1], [15, Proposition
4.1] and [28, Eq. (2.10), (4.2)]:

log Z; +~v(B)t
Vit

= N(0,%%(8)), ast— oo,
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where v(3), £2() > 0 are constants given by
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Here W5, W5 are independent Brownian bridges connecting (0, 0) and (1,0), and through-
out the paper, we use Eyy, as the expectation on W;.

Define

1.2)

Z(t
(13) p(tﬁv):(%m)a LUGR,
Zy
which is the quenched endpoint density of the associated directed polymer. It was shown
in [33] that there exists some o2(/3) > 0 such that for any f belonging to Cj,(R) - the space
of bounded continuous functions on R - we have
2

T L d
(1.4) E‘/ﬂ;f(\/l—f)P(tax)dx"fRf(l")\/meXp(_Qoz(ﬁ)

as t — oo. In other words, the annealed endpoint distribution converges under the diffusive
scaling to a centered Gaussian with variance o%(3).

)da,

The main result of the paper is to derive an explicit expression of o%(3):

Theorem 1.1. Suppose that {W,};-1 2 3 are three independent Brownian bridges connect-
ing (0,0) and (1,0). Then, the effective diffusivity o (3) admits the following expression:

(1.5) o*(B) =1+ B°Ew, Ew, [A(B, W1, W3)?],

where
_ e,@W1(z)+5W3(z)
A(67 W17 WS) = Az ‘:(B?ya Wl) (_[T 65W1(z’)+ﬁw3(zl)dzl - 1) 1[0,,7;] (z)dydz,

with

_ eBW2(y)-BWi(y)
=2(8,y,W1) = Ew,

( _[’]I‘ eBW2(y') g-BW1 (y’)dy’)Q

1.2. Motivation. There is an intriguing relation between the two diffusion constants ¥2(3)
and o2(3), predicted by Eric Brunet through the replica method, see [12, Eq. (20)]. We
translate it in our notations':

2 1 d B2 d 23(B)
1.6 2(B)= =2%(B) - —=—X*(B) = - —
10 *B) =550 - 5 5O =5 5550
In order to apply the replica method to study the fluctuations of the free energy log Z;,
it reduces to computing the ground state energy of the n—particle Delta Bose gas

B >0.

n

H, = 5 Vii +,32 Z 5(£Ei—£€j)
i=1 1<i<j<n
on the torus (with periodic boundary condition), for all n > 1. This was done in [13, 14]
by solving the Bethe Ansatz equation. The quenched limiting free energy () in (1.2)
matches the prediction given by the replica method, see [12, Eq. (13)]. There is also a

IThe ~ parameter in [12, Eq. (20)] is (2 in our notation.
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predicted integral form for ¥2(3), see [12, Eq. (14)], but we do not know how to compute
the expectation in the expression of ¥2(3) in (1.2).

Meanwhile, it is more complicated to compute the effective diffusivity of the polymer
endpoint using the replica method, and it turns out that one needs to find the ground state
energy of the same Hamiltonian but with a different boundary condition, see [12, Section
3.1]. Through solving a new Bethe Ansatz equation, Brunet found a relation between the
ground state energies of the two Hamiltonians with different boundary conditions, through
which he derived (1.6).

It was our goal to justify (1.6) rigorously, and to understand why there exists such a
relation between the two (non-universal) diffusion constants. With Theorem 1.1, it seems
that we are halfway there, since both o?(3) and ¥?(/3) are now written as the expectations
of exponential functionals of independent Brownian bridges. Nevertheless, to prove (1.6)
using the expressions in (1.2) and (1.5) seems to be a highly nontrivial problem on Brown-
ian bridges, which we choose not to pursue here. Using (1.2) and (1.5), one can perform a
small 3 expansion, which indeed matches the predictions in [12], and suggests the validity
of (1.6):

Corollary 1.2. For 8 < 1, we have

o%(8) =1+ 2=+ 0(8%),
$2(8) = B2+ 5 - £ 1 0(8%).

12 360

(1.7)

Another reason why one may be interested in explicit expressions of the diffusion con-
stants comes from the attempt to understand the 1 : 2 : 3 scaling in the 1+1 KPZ universality
class. In this paper, the length of the torus was fixed to be L = 1. If we denote the diffusion
constants by ¥2(, L) and o?(3, L) for general L > 0, it is straightforward to derive the
following relations through a rescaling:

B
2 _12y2
E (ﬁ?l)_L E (\/va)a

s
2 _0_2 )
g (/Bal)_ (\/ZvL)

Therefore, the asymptotic behaviors of ¥2(3,1) and 0?(3,1) as 3 — oo translate into the
behaviors of ¥?(1, L) and 0?(1,L) as L — co. For L = oo with the problem posed on
the whole line, it is known that the free energy and the polymer endpoint behave sub- and
super-diffusively with the 1/3 and 2/3 exponents, so one expects that ¥2(1,00) = 0 and
02(1,00) = oo. As a matter of fact, the decaying rate of ¥?(1, L) | 0 and the growing rate
of 0%(1,L) 1 0o as L — oo is related to the 1: 2 : 3 scaling:

(1) For the height function (free energy), the critical scale comes from the balance of the
one-point variance t¥.2(1, L) and the transversal roughness L. The transversal roughness
here refers to the fluctuations of h(t,z) — h(t,0) at stationarity, where h solves the KPZ
equation on the torus. It was shown in [28, Theorem 4.1] that, as L — oo, the variance
¥2(1, L) decays like L~72, which suggests the 1 : 2 : 3 scaling and also leads to the
optimal variance of the height function in certain regimes with ¢, L — oo together, see [28,
Theorem 1.1]. The heuristic is that, suppose tEQ(l, L)x tL Y2 L, then the transversal
roughness is much smaller than the one-point fluctuation, and if we write h(t,x) = h(¢,0)+
(h(t,z) = h(t,0)), then the second term on the r.h.s. has a much smaller fluctuation than
the first term, so that A(¢,x) and h(t,0) are almost perfectly correlated for ¢ > 1. Only
when tL /2 is of order O(L), we have the nontrivial correlation kicks in, and this gives
L= t?3.
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(i) For the polymer endpoint, the critical scale comes from the balance of the diffusive
standard deviation \/to2(1, L) and the length of the cell L. It is expected and also pre-
dicted by the replica method that o2(1, L) = L'/?, which suggests the 1 : 2 : 3 scaling.
Roughly speaking, in the region of \/to2(1, L) x VtLY/2 > L, the polymer path visits
many cells and one still expects to see the homogenization phenomenon and the central
limit theorem, thus, it is natural to guess the critical length scale comes from the relation
VtLY? < L, which leads to L x t%/3. Starting from the expression (1.5), one may try to
show the equivalent statement of 02(3,1) x 3 as 3 — oo, although we do not pursue it
here.

In the end, let us point out that, in order to prove the asymptotic behaviors of the dif-
fusion constants, it simplifies greatly if one could derive some explicit formulas first. For
general homogenization type problems, the effective diffusivity is typically written in an
abstract form, in some cases through the solution to a cell problem, the so-called corrector,
in some other cases in terms of the Green-Kubo formula or the solution to a certain varia-
tional problem. Therefore, it was actually a surprise to us that the o?(3) (and ¥?(3)) may
be expressed explicitly in terms of the underlying invariant measure for the KPZ equation
on the unit torus, which is the Brownian bridge. In a sense, the corrector is explicit in our
problem, which we will discuss in more detail later. As mentioned previously, the central
limit theorem was already derived in [33], with o2(/3) written as the integral of an abstract
covariance function, but it seems hopeless to us to do any quantitative analysis from that
expression.

1.3. Context. The study of the KPZ equation and the 1 + 1 KPZ universality class has
witnessed remarkable progress during the past years. We will not attempt to survey the
huge literature here, and refer the readers to the reviews [21, 46, 47] and the references
therein. For a nice introduction to the SHE, we refer to the monograph [40]. Our problem
is more related to those in a bounded region since the compactness makes a huge difference
concerning the large scale random fluctuations. For (totally) asymmetric simple exclusion
processes on a finite line segment with periodic or open boundaries, exact diffusion con-
stants for the particle current were derived in [25, 26, 27]. More recently, there is a series
of work [3, 4, 5, 6, 7, 44] on the regimes where the size of the torus and the time go to in-
finity simultaneously, and the fluctuations of the height function were derived in different
cases. For the open KPZ equation, the one on an interval with Neumann boundary condi-
tions, a lot of recent progress has been on the construction of explicit invariant measures
[9, 10, 16, 22, 23].

The problem we consider here can also be considered as the homogenization of a diffu-
sion in a random environment. Although the directed polymer is almost always formulated
in the form of Gibbs measures of paths in a random environment, it can also be viewed
as a passive scalar problem, with the drift given by the solution to a stochastic Burgers
equation. This perspective plays a very important role in our analysis: for the polymer
endpoint, one can decompose its total variance into two parts, the variance of the quenched
mean and the mean of the quenched variance, which, roughly speaking, correspond to the
disorder variance and the thermal variance respectively. It turns out that the main diffi-
culty comes from analyzing the quenched mean, which is actually the corrector if we put
it in the context of homogenization, see Section 1.4 for more discussion. For our case of
a spacetime white noise, the solution to the stochastic Burgers equation is not function-
valued, so one needs to deal with the so-called singular diffusion. Luckily for us, there has
been a lot of recent progress on the study of diffusion with (very singular) distributional
drifts [17, 24, 36, 38, 42], which was inspired by the breakthrough in the study of singular
SPDEs, using tools such as rough paths [36], regularity structures [37] and paracontrolled
calculus [35], and we will borrow tools from there.
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Another important ingredient we rely on to derive the explicit expressions of the diffu-
sion constants is the so-called Clark-Ocone formula from Malliavin calculus. It involves
computing the Malliavin derivative of the free energy or the quenched mean of the polymer
endpoint with respect to the underlying white noise, and rewriting their fluctuations in the
form of Itd integrals. The key here is the [#6 integral, which can be viewed as the sum of
martingale differences, so that the second moment can be computed in a rather straightfor-
ward way. To compare with the homogenization argument, one should note that, from a
probabilistic perspective, the whole point of constructing the corrector through solving a
certain Poisson equation is to extract the martingale part from the drift, which contributes
to the effective diffusivity. In a certain sense, the Clark-Ocone formula provides a different
way of performing the semi-martingale decomposition, and in some cases it leads to “new”
formulas like (1.2) and (1.5). For the directed polymer, there is a simple yet crucial prop-
erty that the derivative of the free energy with respect to the noise is given by the quenched
density of the polymer path. Compared to other homogenization problems, it is this special
property that makes the Clark-Ocone formula useful in this case.

In order to study the super-diffusive behaviors in turbulent transport, it is natural to an-
alyze how the effective diffusivity diverges as the domain in consideration becomes larger
and larger. In [30], the so-called box diffusivity was defined, and its asymptotics was an-
alyzed to derive the relevant scaling exponents of several models. More recently, for the
model of a Brownian particle in the curl of a two-dimensional Gaussian free field, the same
approach was adopted in [19, 2], and through a “progressive’” homogenization, the precise
order of the mean square displacement and a quenched central limit theorem were derived.
Similar results were obtained in [18, 32], taking inspirations from [43, 49].

1.4. Sketch of the argument and main challenges. In this section, we will formulate the
problem as a diffusion in a random environment and explain on a formal level the main
steps of the proof. Some proofs will be written in different ways later (as always), but we
are hoping that a bird’s-eye view at this stage will help the readers to understand the ideas
in the argument.

To study the polymer endpoint, through a Girsanov transformation, it is equivalent with
analyzing the following diffusion with a random drift:

(1.8) dX, =u(t—s,X,)ds +dB,, X =0,

where B is a standard Brownian motion and w is the stationary solution to the stochastic
Burgers equation

(1.9) u=L1Au+ 1vu® + pve

Here the driving force £ of the evolving random environment is independent of the thermal
noise B. Then X; can be written as

t
X, - [ u(t - s, X)ds + By,
0

and, as in standard homogenization, the first step is to extract the martingale part from the
drift, see e.g. [41, Chapters 9 and 11]. To do that, we consider the following equation

(1.10) O = %Awuvmm #(0,2) =0,

and call ¢ the corrector, which could be obtained through a formal two-scale expansion of
the backward Kolmogorov equation with drift u. More precisely, consider the equation

atfs = %Afs + éu(s%a %)sta

if we plug in the ansatz f.(t,2) = f(t,z) + ef1 (¢, 2, 5,9) + e2f2(t, 2, 5,y) + ..., with the
fast variables s = E%, Y= f, and identity the terms of the same order in ¢, then we obtain
f1(t,z,8,9) = 0 f(t,2)¢(s,y), where ¢ solves an equation of the form (1.10).
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There are different ways of formulating the corrector equation which may or may not
incorporate the evolution of the underlying environment. For our purpose, it is more con-
venient to consider the above one, where the dynamics of « is not taken into account. One
can show that (with Ep denoting the expectation only on B)

t
(1.11) ¢>(t,0):EBfO u(t - s, X,)ds,
and
t
(1.12) Xt:¢(t,0)+f0 (1+V(t - s,X,))dBs.

In this way, one can view the corrector ¢(t,0) as the quenched mean: ¢(¢,0) = EgX;.
Since u is periodic in space, one can also write ¢(¢,0) = Epg [Ot u(t — s, X, )ds, with
X representing the fractional part of X. It is not hard to imagine that both the solution
to the Burgers equation and the process X, are fast mixing in time, so ¢(t,0) can be
viewed as a sum of weakly dependent random variables with ¢ (¢, 0)/+/# satisfying a central
limit theorem. Therefore, both terms on the r.h.s. of (1.12) contribute to the limiting
effective diffusivity. This is in sharp contrast to the case of a divergence form operator or
a divergence free drift, where the corrector grows sublinearly hence does not contribute to
the limiting diffusivity.

It turns out the martingale part fot(l + Vo(t - s, Xs))dBs is easy to study, because, for
directed polymer in a random environment that is statistically shear-invariant (which is our
case), through the Gibbs measure formulation, one can show that the mean of the quenched
variance equals to ¢:

t
EEg fo (1+Vo(t—s,X,))2ds = t.

This is where the “1” factor in (1.5) comes from.

The main difficulty of the paper then reduces to deriving an explicit variance of &\/’S).
At this point, it is worth emphasizing that X} does nor satisfy a quenched central limit
theorem. More precisely, for the polymer endpoint X}, one can view the ¢(¢,0) on the
r.h.s. of (1.12) as describing the fluctuations resulting from the disorders, and the It
integral with respect to B as the thermal fluctuations. In our periodic setting, we expect a
quenched central limit theorem to hold for the Itd integral term, while the ¢(¢,0) term is
“deterministic” if we quench the random environment, and &/{0) does not vanish as ¢t > 1.
A similar case was discussed in [31], with a non-quenched central limit theorem proved
for a diffusion in a random environment. On a different note, one should view the ¢(t,0)
term as a measurement of how “localized” the polymer endpoint is: suppose we sample
two different polymer paths from the quenched Gibbs measure, they “share” the ¢(t,0)
term. To compare to the non-periodic setting, where X; is expected to be of order t%/3
and to localize around some favorite point, we suspect that, as the size of the torus goes
to infinity, this favorite point comes from the ¢(¢,0) term, which is a functional of the
random environment. Meanwhile, the Itd integral term becomes of order O(1) as ¢t — oo,
so Ay stays O(1) distance away from ¢(¢,0). The second moment of the It integral term
blows up as ¢ — oo, but that is due to the heavy tail [29].

To study the quenched mean, it is more convenient to consider the Gibbs formulation.
We study X; = [ zp(t, x)dz, which has the same law as ¢(¢,0). Applying the Clark-
Ocone formula, we can write X as an It integral, with respect to the underlying white
noise &:

(1.13) X, = fo t fT F(5,9)€(s,y)dyds,

where f(s,y) = E[D; ,X:|Fs] with D, , denoting the Malliavin derivative operator, and
F is the natural filtration generated by £. The calculation of D, , X; is rather technical,
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but in the end we obtain f(s, ) as a functional of (u(s,-), Vé(s, )) (which is a surprise to
us). Thus, to derive the formula for the variance of X}, one needs to understand the joint
distribution of u(s,-) and Vé(s,0).

Define g = 1 + V¢, we know from (1.10) that g satisfies the Fokker-Planck equation
1
(1.14) 09 = 5Ag+v(ug).

In this way, the problem reduces to understanding the joint distribution of u(s,-) and
g(s,-). One should note that, for general drifts, this is not possible. Here is another key
point in the argument: g is the density of another diffusion in random environment:

(1.15) dY, = —u(s,Vs)ds + dB,.

Compare the two SDEs satisfied by & and ), we note that the random drifts are time
reversal of each other, up to the opposite sign. Roughly speaking, since ) follows approx-
imately the characteristics of the Burgers flow, one may suspect that it corresponds to the
so-called second class particle in the context of exclusion processes. For the drift given by
(1.9), there is a time reversal anti-symmetry

(1.16) {u(t -, y)}se[O,t],yeT la:w {—u(s, y)}se[O,t],yeT

that holds for any ¢ > 0. Using the above equality in law, one can re-connect ) to X and
derive the joint distribution of u(s,-) and g(s,-), through the Gibbs formulation of the
directed polymers. This, together with the Clark-Ocone representation (1.13), eventually
helps us to compute the asymptotic variance of X;/+/, which corresponds to the second
term on the r.h.s. of (1.5).

Overall, the fact that o%(3) can be written explicitly in terms of the underlying invariant
measure comes as a surprise to us, and the situation here seems to be more subtle than the
study of the free energy log Z;. For a noise that is white in time but smooth in space, we
have obtained a formula for the variance of log Z;, similar to the one for $2(/3) given in
(1.2), see [28, Eq. (5.6)]. For the variance of the polymer endpoint, our argument relies
crucially on the time reversal anti-symmetry in (1.16), which does not hold for a colored
noise, and this is actually the only place in the paper where the noise is required to be
white. It is also unclear to us whether there exists a similar result for a colored noise.
On a heuristic level, the time reversal anti-symmetry allows us to go back and forth be-
tween the Gibbsian and the Markovian settings, connecting the polymer measure, which
is the diffusion with a non-Markovian drift described by (1.8), to the “second class par-
ticle” diffusion with a Markovian drift, given in (1.15). The zero-temperature version of
the polymer model is the last passage percolation, and one may want to draw the connec-
tion between the two diffusions and the duality between the geodesics and the competing
interfaces [48]. In the end, the Gibbs measure formulation allows us to express the joint

PRl

distribution of the endpoint density “g” and the drift “u” explicitly.

1.5. Organization of the paper. From the above discussion, we immediately identify a
few difficulties in implementing the argument. (i) To study the quenched mean ¢(t,0), it
is actually more convenient to use the Gibbs measure formulation, where one can write the
quenched mean as [, zp(¢,z)dz, with the endpoint density p defined in (1.3). To apply
the Clark-Ocone formula, we need to compute D, , p(t, ), which involves cancellations
and is considerably more complicated than computing the Malliavin derivative of the free
energy. This is the main task of Section 2. (ii) To use the time reversal anti-symmetry,
we need to initiate the Burgers equation (1.9) at stationarity, but this is not the case for
the point-to-line directed polymer. Therefore, in Section 3, we will derive an error es-
timate which will help us to approximate the free boundary condition by the stationary
boundary condition. (iii) The SDEs (1.8) and (1.15) are only symbolic since the drift «
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is distribution-valued, and this is where the recently developed theories for singular diffu-
sions play a role. In Section 4, we will study the two related passive scalar problems and
make use of the time reversal anti-symmetry to derive the joint distribution of u(s,-) and
Vo(s,-). (iv) In Section 5, we compute the variance of ¢(t,0), using the fast mixing of
u(s,-), or equivalently, the polymer endpoint density on the torus, and complete the proof
of Theorem 1.1.

1

22
1.6. Notations. (i) We write ¢:(z) = 7= ¢ » as the standard heat kernel on R, and

Gi(z) = ¥,z q:(x + n) is the heat kernel on T.

(i1) We use W;, with the index i, to represent independent Brownian bridges connecting
(0,0) and (1, 0), periodically extended to R. We will use B to represent standard Brownian
motion on R.

(iii) Since there are different sources of randomness, we use E to denote the expectation
on &, and Eyy,, Ep to denote the expectations on W;, B respectively.

Acknowledgement. We thank Eric Brunet for the discussion and encouragement, and
thank the anonymous referees for very helpful suggestions and comments. Y. G. was par-
tially supported by the NSF through DMS-2203014. T. K. acknowledges the support of
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2. QUENCHED MEAN AND CLARK-OCONE REPRESENTATION

The goal of this section is to present the first key step in the proof of Theorem 1.1.
The total variance of the polymer endpoint is decomposed into two parts: the variance
of the quenched mean and the mean of the quenched variance. It turns out that for our
model with the noise satisfying the shear-invariance property, the mean of the quenched
variance is easy to deal with, see (2.5) below, which is sometimes regarded as a physics
folklore, see e.g. [12, Eq. (42)]. The key difficulty is then to study the fluctuations of the
quenched mean. Our idea is similar to that of [28], where tools from Malliavin calculus
were borrowed, and the quenched mean will be written as an explicit Itd integral through
the Clark-Ocone formula, see (2.18) below.

2.1. Variance decomposition and quenched mean. It was known from [33, Eq. (3.21),
Proposition 5.1] that the effective diffusivity in (1.4) can be obtained through

@ o(9) = Jim 1V,

where

(2.2) Vi = EfRa:Qp(t,x)dx

is the annealed variance. Let

(2.3) X = /Rxp(t,x)d:v, V= /Rpr(t,:E)dx—th

be the quenched mean and the quenched variance of the polymer endpoint, respectively.
Then, we can obviously write

2.4) Vi =EX}? +EV,.

It is folklore, e.g. see a proof in [33, Lemma 5.3], that the average of the quenched variance
ist,i.e.,

(2.5) EV, =t

Thus, to derive an expression for o (3), it suffices to study the first term on the r.h.s. of
(2.4), which is actually the variance of the quenched mean.
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Let us introduce some notations. Let Z; s(x,y) be the propagator of the SHE and
Gi.s(x,y) be its periodic counterpart. Namely, for any fixed (s,y), Z; s(z,y) solves

1
atZt,s($7y) = iAth,s(x7y) + ﬁZt,s(x7y)§(tvx)7 t> S, T € R»

Zs,s(xvy) = 6(3j - y)7

(2.6)

and
gt,s(xay) = z Zt,s(xay + ’I’L) = Z Zt,s(x + n’y)'

nez nez

So we know that the solution to (1.1) is actually Z(¢,z) = Z; o(z,0).

It is worth emphasizing that one should view Z as the propagator of SHE on R, x R
while G as the propagator of the same equation on R, x T. This leads to the fact that, if we
view the polymer path as lying on the half plane R, x R, then the quenched density should
be expressed in terms of Z; while if we view the polymer path as lying on the half cylinder
R, x T, the quenched density should be expressed in terms of G.

Next, we introduce the following notations on the endpoint densities of the “forward”
and “backward” polymer path on a cylinder. Let M (T) be the set of all Borel probability
measures on T. For any v € M (T) and ¢ > s, we let

fT gt,s(xv y)y(dy)

Jp2 Ges (@', y)v(dy)da’”
Jr G5 (2, y)v(dx)
Jr2 Ges (@, y )v(dz)dy'’
Here the subscripts “f, b” represent “forward” and “backward” respectively. When v is a

Dirac measure on T, we write

pe(t,z;s,v) = zeT,
Q.7

eT.

po(t,vis,y) =

pf(t,x;s,y)=pf(t,m;s,5y) and pb(taxasvy) :pb(taafli;say)'
We also need the simplified notation
(28) gt,s(_ay) = /H:gqu(-r,y)dm = \/th,s(xay)d’rv

which can be viewed as the point-to-line partition function with the starting point (s, y).

For any 6 € R, define
2.9) Eo(t) = fR ¢?7 2, o (x,0)dz,

SO one can write

(2.10) X, = 0plog £ ()

0=0

It is clear that X, is a square integrable random variable that is measurable with respect
to F; - the natural filtration corresponding to the noise {£(s,¥)}(s,y)erxr. The idea is to
apply the Clark-Ocone formula to write X; as an It integral with respect to &, through
which we compute the second moment.

2.2. Clark-Ocone representation. We will first write log Eg(t) — Elog&y(t) as an 1td
integral, then take derivative on 6 to obtain the representation for X;.

Recall that we view § as the spacetime white noise on R x T. Let D ,, denote the Malli-
avin derivative [45, Chapter 1]. Namely, for “smooth” random variables X, (D, X ) (s )erxT
is an L2(R x T)-valued random variable.

By the Clark-Ocone formula, see e.g. [20, Proposition 6.3], we have

t
@.11) log €(t) - Elog &(t) = fo fT E[D, , log & ()| F, 1€ (s, y)dyds.
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First, let us consider the mean. Fix ¢t > 0. Since

(2.12) {Z10(2,0) Y aer 2 {Z1.0(0,2) }er,

we have

Elogé&y(t) = Elog (fR ee‘”Zt,o(a?,O)dac) =Elog (/ﬂ% Z,0(0, ac)eexdm)
“Elo (fz 0 x)dm)+02t
- g R t,0\Y, 9 .
For the last “=", see the proof of Lemma 5.3 in [33]. Thus, we conclude that
1
(2.13) Elog&y(t) = Elog &(t) + 59%.
Here is the lemma on the Malliavin derivative:

Lemma 2.1. For any s <t and y € T, we have

(2.14) D, Eo(t) =B Z Zs0(y+n,0) [R eethys(x, y+n)dx.
nez
The proof of the lemma is standard and follows from an approximation argument and
application of the Feynman-Kac formula (see [11]), so we only sketch it here. To consider
some approximation, let us introduce a few notations that will be used throughout the
paper. For a given € > 0, let £° be a spatial mollification of &:

Eta)= [n@-petady,  taek

where 7)° is a symmetric approximation of the Dirac function, as € — 0, that is supported
in [-1/4,1/4]. Let R® be the spatial covariance function of £°, which is the periodic
extension of n° x n°:

R (z) =), 0" = (v +n),

nez

and let Z° be the propagator of the SHE with the mollified noise £°, defined in the same
way as (2.6). Finally, let £5(t) = [ " Z5 o (2,0)d.

Proof of Lemma 2.1. By the Feynman-Kac formula, see [11, Theorem 2.2], we can write
& (t)=Ep [eB Jo 52(6,32)%—%621%2(0):&69&]

)

where B is a standard Brownian motion starting from the origin and the expectation E is
taken only with respect to B. Since £ (t) — E(t) in L?(Q2), it suffices to show that the
convergence of 371D ,&5(t) to the rh.s. of (2.14) holds in L2(Q, L2([0,¢] x T)).

By the definition of £%, we have
t t
[ e Bde= [ [ 0 (Be-y - m)E(e y)dyd.
0 o JT /7,
so for each fixed realization B, it holds that

Do ([ € BOd) = S B -y -n),

nez

This leads to
5_17)34,55(75) _ Z Eg [eﬂfot ge(Z,BZ)dZ—%BQRE(O)tne(BS —y- n)egB"]

nez

= Z / qs(w)na(w -y - n)]EB[e'B f()t gs(f,B[)dE*%ﬁzRE(O)teeBt |Bs — w]dw
R

nez

= Z[Rns(w—y—n) (/H%ee””Zf’S(x,w)dm)Z;O(w,O)dw.

nez

Sending € — 0, we complete the proof. O
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Now we can state the following proposition:
Proposition 2.2. Forany 0 < s<tandy €T, we have
E[D; y log & (t)|Fs]
Gr,s (=:Y) Bnez ™ Z50(y +1,0) | ]
Jo G5 (= 9)e Zoo(y', 0)dy’ ||
Proof. We proceed by approximation. Following the proof of Lemma 2.1, we have

93,,]

ZBE[

t e 12 pe
1 D&ygg(t) ZneZ Ep [65f0 € (6Be)dl-35"R (O)tUE(BS -y - n)e

B E(t) Ep [eﬁfJ 55(&3«)#—%521%5(0)%9&]

The main challenge is hence to compute the conditional expectation given F;. To continue,
first, for both the numerator and the denominator, we write

0B, 935&92(#5) .GG(Bt—BS)—%Oz(t—s)7

e =e

and view the last exponential factor on the right as a change of measure. Applying the
Girsanov theorem to the Brownian motion in [s, ], we have

t e 534 _ 122 pe
1D, €5(1)  EneEp [P CEEDUFTROtye (B —y )l ]
B &) Ep [eﬁfotEE(Z,BQ?)M—%WRE(OM@OBE]

(2.15)

)

where {BY}, is obtained from { B}, by adding the drift  in the interval [s, ¢]:
B] = Belyefo,« + [Be + 0(¢ = ) 1pe(s.1)-

In this way, we can rewrite

t - s t—s
(2.16) f £ (0, BY)de = f € (0, By)dl + f € (s+ 1, Byug + 00)de.
0 0 0
Here is the key of the argument: to compute E[Dgysiftg)(f”]—'s] we need to average out the
6

noise in the domain [s, ¢] x R, but by (2.15) and (2.16), we see that the dependence on the
noise beyond s is only through the factor fot_s £°(s+ £, Bgyy + 00)de. Since £° is white in
time and stationary in space, we have, for fixed s,

{56(3 + évx + 96)}220@6]1{ lazw {56(5 + f, l')}ézo,xe]R-

In other words, when computing the conditional expectation, one can replace fot &8 (e, Bg)dﬁ
by

s t—s t
fo gs(E,Bg)d€+fO gg(sw,BM)dz:fo £ (¢, By)dt.

As a result
L [Ptit0] ]
B &)
(2.17) S En [eﬁ Ji € (0B8R O)tpe (B _ g — n)eeBs]

s |-

Eg [66 Iy 55(Z»Bz)df—%f32Rs(0)teeBs]

Now we can pass to the limit, as € - 0, and arguing as in the proof of Lemma 2.1, we
conclude that the right hand side of (2.17) tends to
Al

E [ ZnGZ gt75(_7 y+ TL) : 69(y+n)zs70(y +n, O)
Jr Ge,s(= ")€Y Z, o(y', 0)dy’

where we recall that Gy (-, y) = [ Z¢.s(z,y)dz. Itis easy to see that y — G, (-, y) is

1-periodic in y, so the proof is complete. O
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By (2.10), computing derivative on 6 on both sides of (2.11) and using (2.13), we obtain

d d ¢
X, =2 log&y(t) = = f/EDSI DIF.)E(s, y)dyds.
¢ og & (1) B0 Jo I [Ds,y log & (t)| )€ (s, y)dyds

dfe-o
Applying Proposition 2.2, we further derive
t
2.18) Xi=5 [ [ Bi(s.0) - Lo (s, 6 ) dyds,
with
s\ + Zs + ,O

(2.19) [1,t(5,y) _ Gi.s(=y) nez(y +n) 7O(y n ),

Gio(-,0)
and

Gi,s (=Y )Y Zs0(y',0)dy’
(2.20) Loa(s,y) :pm(t7_|8’y)fu@ Ly 2 (0. 00y’

Gio(-,0)

where

s\ s ,0
(2.21) pm(t,—\s,y):gt’( Y¥)Gs,0(y,0)

Gt0(=,0) ’

is the midpoint density of the polymer, i.e. it is the quenched density at time s of the point-
to-line polymer, starting at (0, 0). To simplify the notation, we omitted the dependence on
the starting point in the expression of py,. In particular, we have [} pm (¢, —|s,y)dy = 1.
Here the subscript “m” represents “middle”.

For any s > 0,y € T, define

Ynez(y+1)Zs0(y+1,0)  Yner(n-y)Zs0(y,n)
gs,O(yao) gs,O(yao)

Here in the second “=", we changed n — —n and used the fact that Z, o(y — n,0) =

Z5.0(y,n). One can interpret ¢(s,y) as the “winding number” of the point-to-point poly-

mer path on the cylinder, starting at (s,y) and ending at (0,0), see more discussion in

Section 3. The last equality follows from the fact that in the case of a 1-periodic noise, we

have

(2.22) ¥(s,y) =-

Z50(y-n,0)=Z50(y,n), nel

We have the following lemma, which expresses I ; — I ; in terms of p,,, and ¢ and will
serve as the starting point of the rest of the analysis.

Lemma 2.3. We have
(2.23) Il,t(s,y)—fz,t(s,y)=pm(t7—ls,y)fT[w(s,y')—lb(s,y)]pm(t,—lsyy')dy’-

Proof. First, using the definition (2.21), we can rewrite (2.19) in the form
Li4(s,y) = —pm(t, =[5, 9)¥(5,9).

Then, we rewrite the numerator of the second factor on the right hand side of (2.20) as
fRQt,s(ﬂy')y’Zs,o(y',O)dy'

)y eZ(y,+n)ZS O(y,+n’0)
= g s\ ! gs ,,0 = -
JoGuo ()Gl 0 ZREE S
where we used the fact that G, s(—,y) is 1-periodic in y. Thus, invoking the definitions
(2.21) and (2.22), we can rewrite (2.20) in the form

Ynez(¥ +n)Zs0(y' +n,0)
Iz,t(S,y) = Pm(t,—|87y) ,/-ﬂ‘pm(tv_|3ay,) = g o(yj 0)

:_pm(ta_|svy)'[]rpm(t7_‘Say,)¢(say,)dy,'

dy’,

dy’
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The proof is complete. O

To summarize, the main results of this section are (2.18) and (2.23). They allow to
express the quenched mean X; = [, 2p(t,z)dx as a more or less explicit Itd integral.
The integrand involves the quenched midpoint density pp, (¢, —|s,y) (see (2.23)), which
we understand well, and the difference between “winding numbers” of the polymer paths
starting at (s,y’) and (s,y), i.e. the factor (s, y") — ¥ (s,y), which we do not understand
so well so far and presents itself the main challenge. In a sense, to derive an explicit
variance formula for X}, one needs to understand the joint distribution of py, (¢, —|s,y) and
¥(s,y") — (s, y). This will be the content of the next two sections.

3. WINDING NUMBER AND STABILIZATION

In this section, let us look more closely at the function (s, y) defined in (2.22). Recall
that a key quantity in the Clark-Ocone representation (2.18) is 1(s,y") —1(s,y). The goal
of this section is to reframe the problem so that we are in a stationary setting, and the main
result, Proposition 3.2 below, proves a stationary approximation of 1(s,y’) — ¥ (s, y).

To better understand it, we define an e—approximation of (s, y). Recall that Z* is the
propagator of SHE with noise £°. Let also G° be the e—counterpart of G, and define

Ynez(n— ZU)ZSE,O(Z% n)
g:,o (y7 0)
By the Feynman-Kac formula, we can rewrite ¢° and interpret its integer part (floor, or

ceiling depending on whether it is positive or negative respectively) as the winding number
of a directed polymer on a cylinder:

we(say) =

Lemma 3.1. For any s >0 and y € T, we have
Ep [¢ )5 € CtB0U30O5(B, )| By = y, B, = 0]

1 N = -
(3.1 Ve (s,y) By [F 2 € LBOT SRR O8 | By— g Bu=0]

where B denotes the fractional part of B (in other words, B is a Brownian motion on T).

Proof. To verify the above formula, we rewrite the numerator of the expression on the right
hand side of (3.1):

Ep [eHo € 0tBOU0 RO (B, )| By =y, B, = 0]
ZneZ EB [66 [Os EE(S*&B()(M*%QQRE(O)S(BS _ y)é(Bs _ n)|Bo _ y]
ez ds(n=y)

ZneZ(n - y)Zg,O(ya n)
Gs(y)

The denominator can be rewritten in the same way. O

The above lemma interprets ¢°(s,y) as the winding number, up to a fractional part, of
the polymer path around the cylinder, with the starting point (s,y) and the ending point
(0,0). Due to the fast mixing of the polymer endpoint distribution on the torus, the pre-
scribed distribution of the ending point plays no role in the long time, and it is actually
more convenient to consider the ending point at stationarity. For this purpose, we define
the key object

Jo Zs0(u v ) (' —y)eV W ay’
fR Zs,(](yvyl)eﬁw(y,)dy, ’

(3.2 o(s,y) =
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where W is a Brownian bridge on T, periodically extended to R. One should view ¢ as a
“stationary” approximation of ¢, and the main result of the section is the following esti-
mate, which will help us to eventually replace the v factors in (2.23) by the corresponding
¢ factors.

Proposition 3.2. For any p € [1, 00), there exists C, A > 0 depending on p so that
(33) sup EWEH:QZ}(Sa y,) - w(sa y)] - [¢(87 y,) - ¢(Sa y):H;D < Ce—)\sa s20.

y,y'€eT

Before commenting on the proof of Proposition 3.2, let us introduce some notation: for
two probability measures p, v on T, we periodically extend v to R, and define

e Zeo(w )Y - y)v(dy')) p(dy)
W(S7 My I/) -
fjl‘ ([]R ZS,O(y7 y’)l/(dy’)) ﬂ(dy)
2 (Ja Zao () - y)v(dy")) n(dy)
Jr (Jr Gso(y:yIv(dy")) p(dy)
With some abuse of terminology (W needs not be an integer), we shall refer to W(s; u, v/)

as the winding number of the polymer path with initial distribution y (at time s) and ending
distribution v (at time 0).

34

Using this notation we can write

(35) ,(/)(Say) = W(876ya60)a ¢(Svy) = W(876UapW)a

where (with some abuse of notation) we have used py to denote the (random) probability
measure on T with density
eBW ()
pw (z) = W-

To see on a heuristic level why Proposition 3.2 holds, we note that, for the same ending
point distribution v but different initial distributions g1, uo, the quantity W(s, u1,v) —
W(s, pa,v) is of order O(1) for s > 1, see Corollary 3.9 below, and it mostly depends
on the random environment £(¢,-) with s — £ ~ O(1), by the fast mixing of the polymer
endpoint density on the torus, which will become more clear later. Therefore, for s > 1,
its dependence on v is exponentially small in s, which explains (3.3).

In light of (3.5), Proposition 3.2 is a conclusion of the following more general result:
for any p € [1, 00), there exists C, A > 0 depending on p so that

sup  E|[W(s; p1,v1) = W(s, iz, 11)] = [W(s; pa, v2) — W(s; pa,v2)][”
(36) Hi,vi,i=1,2
<Ce™, s3>0,

where the supremum is taken with respect to all iy, pa, 11,2 € My (T).

The proof of (3.6) is given in Section 3.3 below. Roughly speaking, we will write the
winding number W(s; u, ) as the running sum of a Markov chain, with the chain repre-
senting the winding number accumulated by the polymer path during each time interval of
length 1. The fast mixing of the chain drives the exponential decay in (3.6). Before pre-
senting the argument, we need some auxiliary results contained in the following sections.

3.1. Rewriting the winding number in terms of a Markov chain. Recall that W(s; i, v/)
was defined in (3.4). For notational convenience in this section, it is more convenient to
view u as the ending distribution and v as the starting distribution. We extend v periodi-
cally to R. The following lemma holds:



EFFECTIVE DIFFUSIVITIES IN PERIODIC KPZ 15
Lemma 3.3. We have

Jo (Jr Zso(y v )y -y )v(dy')) u(dy)

3.7) W(sip,v) =~ Jo (fr Zo0(y, v ) (dy')) u(dy)

Proof. To see why (3.7) holds, consider the numerator of W(s; u, v) in (3.4) first. By the
periodicity of v and Z, we can write

fT (fR Zs0(y,y )Y - y)l/(dy’)) p(dy)

=2 fw Z0(y,y' +n)(y' +n-y)v(dy')u(dy)

nez
-5 [ 2ol 00+ 0=l )
== n% fm Zs0(y+n,y")(y+n-y)v(dy)u(dy)

—= [ [ 20l - wtay) ) ntay).

since p is also periodically extended. The denominator is treated in the same way, which
completes the proof of (3.7). O

For given p, v € M7 (T) and each realization of the noise, we introduce a Markov chain
so that the winding number of the polymer path is written as the running sum of the chain.
This has also been used in [33] to prove the central limit theorem of the winding number,
and we repeat it here for the convenience of readers.

Fix any s > 0 and denote N = |s|. Fix y € R,y € T. We first write itas ¢ = jn,1 +Tn+1
for some jy41 € Z and z 41 € [0,1). Since Z is the propagator of SHE, we have

Zoo(y,y') = /RZS,N(jNJrl +xn+1,2) 2N (2, y")d

=) fTZs,N(jNH + N1, N +an) Eno(n + 2N,y )day.
INEL

Iterating the above relation, we obtain

Zo0(y,y') = 4 > fqu Zon(iNs1 + TN, IN +ZN)

J1,--JNEL

N
< [T Zk-10k + Tk it + Too1)dxa, N,
k=1

where we used the simplified notation dx; y = dz; ... dzy and the convention jo = 0,9 =
y'. In other words, in the above integration, we have decomposed R = Ujez[4, 7 + 1), then
integrate in each interval and sum them up. One should think of the variable ji + ) as
representing the location of the polymer path at time k, with j; the integer part and xj, the
fractional part.

Now we make use of the periodicity:
3 Zre1 Uk + Ty kot + Th1) = . 21 (G = Jr-1 + Thy Tho1)
JreZ JreL

= > Zip-10k + T, 1) = Gioo1 (Ths Ti—1 ),
Jk€Z

(3.8)
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where G is the periodic propagator of SHE. Then we can write
(3.9)

Zoolyy)= |, (

. . N . .
5 Zi NN+ N1, N +2N) o1 2 k-1 Uk + Tk, Jro-1 + Ti-1)
N
J1rdneT Gs N (@n+1,2N) [Ti=1 Gr—1 (@, Tim1)
N
% G N(@N+1,2N) [ [ Grop-1 (ks Tho1 )da N
k=1
Fix the realization of the random noise and the vector
N+2
(310) XZ:($0,...,$N+1)€T * .
We construct an integer-valued, time inhomogeneous Markov chain {Yj}é\’:1 with
) Z10(j1+x1,20)
Pyu[Yy = j1] = =T
Gi1.0(z1,0)

. 1 Z21(J2+ a2, 51 +21)
Pul¥2 = Jal¥1 =] = Go.1(w2, 1)

)

@3.11)

Po[Vi = jw[Ynos = jna] = ZnN-1(JN + 2N, JN-1 +TN-1) 7
Gn.N-1(ZN,TN-1)

ZoN(N+1 + TN41, N +TN)
Gs.N(TNt1,ZN)

By (3.8) and (3.11), it is clear that Y, is a sum of independent random variables, for

each fixed realization of the noise and x. We rewrite it as

N+1
(3.12) Yne1 = ) with Yy =0, g =Yy - Yi,
k=1

Px[Yn+1 = jn+1|Yn =jn] =

and one can interpret 7, as the winding number accumulated during the time interval [k —
1,k] fork=1,...,N,and ny,1 corresponds to the winding number in [N, s]. We have

Pl = 7] = Zi -1 (T + J, Tr-1)
G k-1 (Ths Tr-1)

Zon(Tne1 +7,2N)
Gsn(TN+1,TN)

. jeZ, k=1,...,N,
(3.13)

Pulnner =] = jeZ.

With the Markov chain, one can write the summation in (3.9) as
. . N . .
D Zs N(IN+1 + TN+, I8 +2N) et Zek—1(Jr + Tk, Jr-1 + Th-1)
N
J1y-sJN gs,N($N+17$N) Hk:l gk,k—l(kafkfl)

= PX[YN+1 = jN+1]7

where, to emphasize the dependence of the Markov chain on xy, ...,z N.1, We have de-
noted the probability by Px.

Therefore, (3.9) is rewritten as
(3.14)

N
Zoo(y,y') = fTN Pe[Yni1 = jne11Gs, v (@ne1,2n) [ ] Groemt1 (h, @1 )dxa v
k=1

Now we introduce an additional notation: suppose that f,g € D.(T) - the set of contin-
uous densities on the torus T. Define

F@ne1)Gs N (@ni1,28) TIiet Grkor (2k, 21-1)9(20)
Cno(f,9) ’

(315 Yn(x;f,9) =



EFFECTIVE DIFFUSIVITIES IN PERIODIC KPZ 17

with x = (xq, . ..,2N+1) and the normalization factor
(3.16)
N
Cno(f,9) = f1rN+2 f@ne1)Gs,n(@ne1,2n) [ Gre1 (2, -1) (20 ) dXo, N +1
k=1

= [T? F(@n+1)Gs0(xN+1,20)9(20)drodr Nt

For each realization of the random environment, one should view ¥y (x; f, g) as the joint
density of the polymer on the cylinder, evaluated at

(0,20), (L, z1),..., (N, zn), (S, ZN+1),

with zg and 2 v, 1 sampled from the densities g, f respectively. For any u,v € M;(T) and
(21,...,7n5) € TV, we abuse the notation and write 9 (x; 11, /) as a measure

1(dzne1)Gs N (@ns1, o) TThey Gkt (T, 21 )v(do)

@17 Yn(xsp,v) = Cno(p,v)

In this case, C'n o(u, ) equals to

N
Gsn(@ne1,2n) [ Grp1 (2, oo )v(dao)dxy, v p(dzn ).

CN,O(,“7 V) =
T k=1

N+2

Recall that the winding number % (s; i, ) has the representation given by (3.7). With
the Markov chain {Y; }]Jil and the above notation, one can express Z; o(y,y’) in terms of
Yn .1 and ¥ . This leads to

Lemma 3.4. We have
(3.18) W(s;p,v) = - fTM (zn+1 +ExYni1 — 20)9n (x; 1, v)dx v,
where Ey is the expectation w.r.t. Py.

Remark 3.5. On the r.h.s. of (3.18), the domain of integration is TN+2 and this is because
we have defined ¥ (x; 11, V) as in (3.17) which includes p(dz 1) and v(dxzg).

Proof. Recall the expression for W(s; i, ) obtained in (3.7):

Jo (U Zs0(y, ") (y -y )v(dy')) p(dy)
Jo (Jr Zs.0(y, y")v(dy")) p(dy)

For the numerator, using (3.14) and (3.17), we rewrite it as (with y = jy1 +Tn11, Y = T0)
fR (fT Zs0(y,y")(y - y')l/(dy')) 1(dy)

=Cno(p,v) Y, /1r2 Px[Yni1 = jne1](Gner + @ne1 — 2o)9n (x5 p,v)dar N

JN+1€Z

W(s;p,v) = -

= Crvo(s) [ (Exl¥ivar]+ o = 0) (i v)dar .

Similarly, it is easy to check that the denominator equals to Cn o(x, ). The proof is
complete. O

3.2. Exponential mixing. In this section, we start from the expression in (3.18) and make
use of the exponential mixing of the endpoint distribution of directed polymer on the cylin-
der to prove (3.6).

First, we need the following moment estimate
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Lemma 3.6. For any p € [1, ), we have

. Zs O(x +jay)
(3.19) sup sup E ) |jf——""<C,.
s€(0,2] z,yeT jé gs,O(xay) P
As a result, we conclude that
(3.20) supsup max EEx|nk|p < Cp.
N>l x k=1,...,N+

Similar estimates can be found in [33, Lemma 3.2, Lemma 4.1]. The proof here covers
more general cases.

Proof. First we state the following estimate, which can be proved using rather standard
techniques (e.g. see [39, Theorem 2.6], the proof in case of spatially periodic noise can be
repeated verbatim): there exists C' > 0, only depending on p > 1, such that for s € (0, 2],
xz,y € T and j € Z, we have

(3.21) EZ o(z+J,y)" <Cgs(z+37-y)".
From (3.21) and the triangle inequality, we have (with | - |, denoting the LP(£2) norm)
(3.22) Hgs,O(JZ y)”p = H Z 2870(33 +7, y)”p <C Z gs(x+j-y) =CGs(x~y)

JEL jeZ
We also have the negative moment estimate by [39, Corollary 4.8]*: for any p € [1, o)
there exists C' > 0 such that

(3.23) EG.o(z,y) P <CGs(x-y)P?, z,yeT,se(0,2].

Applying the Cauchy-Schwarz inequality and the estimate (3.21) together with (3.23),
we derive ) ( )
5,0(T+ 7,y gs(x+j-y
EY|j |p07 cY Lt
2wy OB Gy
Now we write ( ) ( )
SpErtit coy y pait i)
jez s(@-y) |71>100 gs(z - y)
and note that the r.h.s. is bounded, uniformly in s € (0,2] and x,y € T. This completes
the proof of (3.19). To see why (3.20) holds, we only need to recall the definition of 7y in
(3.13) and apply (3.19). O

Next, we need the following lemma, which, roughly speaking, states that the depen-
dence on 7 on the two distributions p and v is exponentially small if £ > 1 and N -k > 1
(recall that N = | s]).

Lemma 3.7. For any p € [1,00), there exist C, A > 0 such that

p
E Exni[9n (%5 11, v1) = DN (x5 V2)]diE1,N‘ <Ce M,

’]IN+2

(3.24)
2y

TN+2
forall p;,v; e M1(T), withi=1,2, andk=1,...,N + 1.

p
Exni[9n (x5 p1,v1) = 9In (X5 p2, Vl)]dxl,N‘ < Ce MNR)

Proof. We will only consider the first inequality as the second one is proved in the same
way. By Lemma 3.6, we only need to consider the case of N > 1 and k > 1.

The case of 1 < k < N. By definition (3.13), we know that

Exctli = Y 7Px[ 11k
J

_ ]] _ Z .Zk,k—l(xk: +ja xk—l)
7 Gr k-1 (T, Thm1)

2The result in [39] is for the equation on the whole space, but the proof applies verbatim to the torus case.
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which only depends on -1, and the noise in the time interval [k — 1, k]. Using the
forward and backward polymer endpoint densities, defined in (2.7), we can integrate out
all x—variables except x_1, x; and obtain

s Exnr In (x; p1,v)dey N

(3.25)
=a;* fw Exnik pu (S, 15k, 1) G k1 (s Tom1 ) pe(k = 1, 21-1; 0, v ) dw g1 day,

with
a; = fw po(8, 13k, ) Gr k-1 (g, 1) pe (b = 1, 242130, v )da gy dag, 0= 1,2.
Then one can write the difference as
fTN+2 Exn [9n (x5 11, v1) = 9n (X5 1, v2) Jdxy v = By + By
with
Ey =ai' [TZExnk oo (8, 115k, k)G o1 (T, Tp—1)
x [pe(k—1,25-1;0,11) — pe(k — 1, 252150, v5) |dx g1 dag,
and
E, = /w Exctik oo (s, 15 ks 2 )G o1 (2, 2o-1) pe (K = 1, 215 0, 12 )dzg_r dizy,
x (ar' —a3").
It suffices to show that
(3.26) E|E, + EyP < Ce™™,
for some C, A > 0 depending only on p.
We collect three facts which will be used in the proof:
(i) there exists C', depending only on p € [1, 00) such that

E sup gk,k—l(x7y)p +E sup gk,k—l(xvy)ip < C)
z,yeT z,yeT

see [34, Lemma 4.1].
(ii) by Proposition A.1, there exists C, depending only on p € [1, 00 ), such that

ESUp|pf(k’,J);O,V1) _pf(kax;OaVQ)‘p < Ce—kka k >10.

xeT
(iii) there exists C, depending only on p € [1, 00), such that

E  sup  pe(k,z;0,0)P < C, k> 10.
zeT,ve M4 (T)

Using (i) and Jensen’s inequality, we conclude that for any p > 1,
E[dl +a;?]<C, i=1,2.
Now applying the Holder inequality and (ii), we have

E[E [P </ EQIQP\/E fw pu(s, pas kb, xp) | BsPdag i day,

Es3 = Exni Gro -1 (xk, xp-1) [pe(k — 1, 21150, 1) — pe(k = 1, 25-1;0,12) ).
Note that py, (s, pi1; k, -) is independent of E3 and we have the bound

E/p po (8, 1 ky k)| B3| *Pdzy-1dy,

= f2 pr(saul; k‘,xk)E|E3|2pd$k_1d$k < Ce—Ak7
T

with
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thanks to (i), (ii) and Lemma 3.6. This implies that E|E; [P < Ce™**. The analysis of E
is similar, so we do not repeat it here. Combine them together, we conclude the proof of
(3.26).

The case of k = N + 1. In this case we know that
ZsN(ZNs1+7,7N)

E -
N+ %:] Gsn(ZN+1,2N)

)

and for 7 = 1, 2, we have

f Exnne1 9n (X5 11, v3)dzo, N1
(3.27) e

=a;* AQ Exnne1 Gs, N (@1, 28)pe (N, 2 n; 0, v3)dey p (de 1),
with
a; = /T2 Gs,Nn(@n+1,2n)pe (N, 2N 0,03 )do v pin (Ao v ).

Compared to (3.25), the difference is we do not have the factor py, in (3.27). The rest of the
proof is the same once we use (iii) and the following estimate (see e.g. [34, Lemma B.2])

-p
J<c

p
sup {E‘AQS,N(OCNH,JJN)CZCUN +E‘ngs,N($N+1;$N)d$N

TN4+1€T

The proof is complete. O

A similar proof of the previous lemma leads to

Lemma 3.8. There exist C, A > 0 such that

(3.28) E

p
/1rN+2 TN [Dn (x5 p1,01) = Dn (x5, V2)]dX1,N‘ <Ce WV,

p
(3.29) E ’A‘N+2 xo[9N (X5 p1, 1) — D (X; o, v1)]dxy n| < Ce MV

Sorany p;, v e M1(T),i=1,2.

)

Using (3.12), (3.18) and Lemma 3.7, we obtain
Corollary 3.9. For any p € [1, 00), there exists C' > 0 such that for all s > 0,

(3.30) sup E|W(s, w1, v1) = W(s, uz, V2)|p <C.
H1sp2,v1,v26M (T)

Remark 3.10. Recall that 1(s,y) = W(s;0,,00) and ¢(s,y) = W(s;dy, pw). Itis
straightforward to check that another consequence of Lemmas 3.7 and 3.8 is the con-
vergence in distribution of ¥(s,y") — ¥ (s,y) and ¢(s,y’') — ¢(s,y) as s > oo, for any
y',y € T. As a matter of fact, there is a one-force-one-solution principle: suppose we
abuse the notation and let ¢ (s, y) (or ¢(s,y)) be the winding number of the polymer path
in the time interval [-K, s], then ¢ (s,y") — ¥ (s,y) (or ¢(s,y’) — ¢(s,y)) converges in
LP(Q) as K — oo.

3.3. Proof of Proposition 3.2. With Lemmas 3.7 and 3.8, we can complete the proof of
(3.6) and conclude the proof of Proposition 3.2.

Proof of (3.6). By Lemma 3.6, it suffices to consider those N > 1. By (3.18) and (3.12),
we can first bound the difference as

[V (s; i, v1) = W(s, g, v1)] = [W(s; pa, v2) = W(s; pia, 12)]|

< Fy+ Es + Es,
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with

&
I
[

<
Il
=

/1rN+2 TN+ DN (X5 piy 1) — I (x5 i, VQ)]dxl,N’ ,

S
Il
.Mw

<
Il
=

/1rN+2 xo[Yn (x5 1, Vi) — Dn (X o, Vi)]dxl,N‘ )

&
Il
,Mw

<
I
—_

)

mez Exnii[9n (x5 1, 1) — 9N (X5 1, v2) Jdar N

N+12k>N/2

2
+ Z; > B [9n (X5 p1,vi) = 9N (X5 2, vi) [day N

TN+2

Then it suffices to apply the estimates in Lemmas 3.7 and 3.8 to complete the proof. O

4. PASSIVE SCALAR IN BURGERS FLOW AND TIME REVERSAL

Recall that in Section 2, we have used the Clark-Ocone formula to write the quantity of
interest, the quenched mean X}, as an It6 integral

@) Xz [apadde=5 [ [BlR(0) - Toa(o,0) FIEC v duds,
with
(4.2) Il,t(syy)—fz,t(s,y):pm(t,—lsvy)fT[w(s,y’)—¢(87y)]pm(t,—ls,y')dy'-

In Section 3, we have derived the estimate in Proposition 3.2 which will eventually enable
us to replace 1 (s,y") — ¥ (s,y) by its “stationary” version ¢(s,y’) — ¢(s,y). Therefore,
to have an explicit expression for the variance of X, it remains yet to understand the joint
distribution of py,(t,—|s,) and V(s,). It turns out to be the major challenge and is the
goal of this section.

The rest of this section is divided into three parts. In Section 4.1, we use the Gir-
sanov transformation to reduce the study of the directed polymer to a diffusion in a non-
Markovian drift. By a standard homogenization argument, the quenched mean of the
polymer endpoint turns out to be the corrector from a formal two-scale expansion. In
Section 4.2, we further study the gradient of the corrector and draw the connection to an-
other diffusion with a Markovian drift. Using the time-reversal anti-symmetry between
the aforementioned two drifts, we form a link between the Gibbsian and the Markovian
settings, which eventually enable us to derive the joint law of the gradient of the corrector
and the drift, see Proposition 4.8 below. This may be compared to the study of geodesics
and competing interfaces in the context of last passage percolation [48]. On the technical
side, all these will be done on the level of approximations, since the drifts are distribution
valued. In Section 4.3 we borrow the tools from singular diffusion to pass to the limit.

4.1. Winding number, diffusion in random environment, corrector. The goal of this
section is to utilize the well-known connection between the directed polymer and the pas-
sive scalar in a random drift, which solves the stochastic Burgers equation, and to rewrite
the difference ¢(s,y’) — ¢(s,y) in terms of the solution of a Fokker-Planck equation with
another, different but related, drift. One technical difficulty is that, since the random en-
vironment for the directed polymer is the spacetime white noise, the random drift for the
passive scalar is distribution valued. For this reason we start with an approximation.
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Recall that ¢ was defined in (3.2). For any ¢ > 0,z € T, we define the e—approximation
of ¢ as

Je Zio(z, ") (2" - x)eBW(w')dx/
] Jr 25 (2" )ePW @) da!
Ep[ef Jo & (B a5 B2R(0)t AW (B (B, — 2)| By = x]
Ep[ef o € (t-t.Bdl=352R(0tepW(B)|By = ]

¢°(t,x)
4.3)

For any s < t,z,y € T, define the midpoint density of the “stationary” polymer at (s,y) by
Ep[ef o € (t-t:B)dl=3 52ROt BW (B §(B,_ — )| By = 2]
EB[eﬁ 15 fs(t—E,Bz)dZ—%ﬁQRa(O)teﬂW(Bt)|BO - x]

“44)  pn(tals,y) =

9

where we recall that B, denotes the fractional part of Bg. It is clear that

fpfn(t,xlsyy)dy =1
T

If we view the polymer path as lying on the cylinder, starting from (¢, x) and going back-
ward in time with the terminal potential given by SW, then pS (¢,x|s,-) is precisely the
quenched density at time s. Using the propagator of SHE (with mollified noise £°), we can
rewrite pg, as

Yonez Zi (@, +n) g Z5o(y +n, 2" )PV @) gyt
fR Zio(x, x’)eﬁw(f’)dx'

G5 (2,y) 2 Gy 2P D!
T G o(@ )PV da

Remark 4.1. At this point, it is worth pointing out the difference between the two midpoint
densities, pm (¢, —|s,y) and p%, (¢, z|s,y), defined in (2.21) and (4.4) respectively — one
should not confuse them with each other. Apart from the different noise £ and £°, the
prescribed distribution of two endpoints are different: for p,, (¢, —|s,y), the endpoint at ¢
is distributed according to Lebesgue measure on T and the endpoint at 0 is fixed at 0; for
05, (t,z|s,y), the endpoint at ¢ is fixed at 2 and the endpoint at 0 is distributed according
to the density pw () = e®V @)/ [ W dy!,

P (t,zls,y) =
(4.5)

Define Z§, (t,2) := [ Z{o(2,y)e’™ ¥ dy, which solves

1
(4.6) Ty = 5AZﬁV +BZeE,  Zg(0,2) = V@),
and define
4.7 he =log Zy,, u® = VhE.

Here one should keep in mind that both ~° and u* depend on W, and we only have kept it
implicit to make the notation less burdensome.

From now on, we fix some ¢ > 0 and x € T. Consider the SDE
(4.8) dXs =ut(t—s,X:)ds + dBs, XS =
We emphasize that the above is a simplified notation where the dependence on (¢, x) is
omitted.
Lemma 4.2. The quenched law of {X¢ }o<s<t coincides with that of the path { Bs }o<s<t of
the random polymer under the measure
1 t 2
S exp A [ € (t-5,B,)ds - B R0yt + W (By) L W, (dB),
Zg, (t,x) 0 2

where W, is the Wiener measure on C[0,t] with By = x.
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Proof. The result is well-known, and the proof is rather standard, so we only present it here
for the convenience of readers. Recall that h® = log Zj,. Consider Y; = h®(t - s, B, ), with
B a standard Brownian motion starting at . Applying Ito formula, we have

dYs = (-0:h° + %Ahs)ds +Vh*dB,
= (wf(t - 5,B,)dB, - %th(t -, BS)|2ds) — BE(t - 5, By)ds + %ﬂ2R5(0)ds,
which implies that (recall that h®(0,z) = SW (x))
BW (By) =h® (t,z) + /Ot (Vhs(t - s,B,)dB, - %th(t s, Bs)|2ds)

—ﬂfotga(t—s,Bs)ds+ %ﬁzRE(O)t.

So one can write

sexp {6 [(€0-sBoas- 5RO+ 5w (B

Zy (Lo
t 1 rt )
- exp {[ VI (t =5, B)dB, - f IVhE(t - 5, B,)| ds} .
0 0
It remains to apply the Girsanov theorem to complete the proof. U

Using the previous lemma, we can express the winding number ¢° in terms of the
diffusion X:

Lemma 4.3. Foranyt >0,z €T, we have
t
¢ (t,2) = Ep[XF] -z = f Epus(t - 5, X5)ds
0
t
= f fTuE(t—svy)pil(twlt—s,y)dyd&
0

Proof. First, from (4.3) and Lemma 4.2, we know that ¢°(¢,z) = EgX; — x. Then, from
the SDE (4.8), we have

(4.9)

t
XS =x+ f us(t—s,X5)ds + By.
0
Taking expectation on B yields the second equality in (4.9).

Thanks to Lemma 4.2, the quenched density of X' on the torus is pZ, (¢, x|t - s,-), so
the third equality in (4.9) follows, which completes the proof. O

Define
(4.10) g (t,z) =V(x+¢°(t,z)) =1+ Ve~ (t, ),

which will play a crucial role later. Next we show that g° solve a Fokker-Planck equation
with the random drift given by u°:

Lemma 4.4. We have: ¢° solves

4.11) Q¢ = 107 + UV + U, #°(0,7) =0,
and g° solves
(4.12) 89 = 3007+ V(ug®), ¢ (0,2) =1.

Proof. Consider the solution to (4.11), with a bit of an abuse of notation we still denote it
by ¢°. Applying the It6 formula for the process Y = ¢°(¢ — s, XF), we obtain

1
AYs = (0,07 + JAG° +u° V% )ds + Vo dB,
= —uf(t—5,X)ds + V£ (t — 5, X5 )dBs,
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which implies that (recall that A = x)

4.13) 0:¢5(t,x)—fotug(t—s,Xf)ds+/(;thbE(t—s,Xf)st.

Taking expectation with respect to B on both sides shows that

t
¢ (t,2) = Eg f W (t - 5, X5 )ds.
0

Applying Lemma 4.3, we complete the proof of (4.11). Since ¢°(¢,z) is smooth in the
x—variable and by definition g° = 1 + V¢°, we take derivatives in x on both sides of (4.11)
to obtain (4.12). O

The equation (4.11) for ¢* can be viewed as the corrector equation for the diffusion in
random environment X (it is the e—version of (1.10)). Namely, using ¢° (see (4.13)), we
can decompose the drift term in (4.8) as

t t
[ ue(t—s,é\,’ﬁ)ds:¢s(t7x)+f Vo< (t - 5, X5)dB,,
0 0

so the process itself can be written as

t

Xf:x+/ u®(t—s,X5)ds + By

(4.14) 0 .

:x+q55(t,ac)+f g9°(t -8, X5)dBs.
0

In other words, to study the fluctuations of the directed polymer endpoint, by Lemma 4.2, it
suffices to consider the process X¢, and the decomposition in (4.14) is the start of the stan-
dard homogenization argument. Nevertheless, unlike the “static” homogenization where
the corrector (constituting the so called co-boundary term) does not contribute on the dif-
fusive scale, see e.g. the models in [41, Chapter 9] and the references cited there, in our
dynamic setting with a compressible drift, the ¢* term contributes to the limiting Gaussian
distribution. Actually, the main challenge of the paper is to quantify this contribution.

4.2. Fokker-Planck equation and time reversal. Recall that ¢° was defined in (4.3), and
as € — 0 it converges to

~ Jr Ziolx, ") (@ - )PV dg!

- [z Ze0(z, z")ePW () dy!

In addition, we have Zj;,, h®, u® converge to Zyy, h, u respectively, with

Zw () = [ Zolwy)e™ Dy,
R
h =log Zw, u=Vh.

(4.15) o(t,x)

(4.16)

Thus, h, u solve the KPZ, stochastic Burgers equation, respectively, that start from station-
arity. Similarly, the dependence of i, u on W was kept implicit.

Our goal is to derive the joint distribution of (u(s,-), Vé(s,-)) for large s > 1, which
was needed in the Clark-Ocone representation (see (4.1) and (4.2)). Here u(s, -) will appear
in the term p,, (¢, —|s,y), and, once we approximate 1) by ¢, the other term can be written
as o(s,y")—o(s,y) = fyy V (s, z)dz. Itis worth pointing out that V¢ (s, -) and u(s, ) are
distribution-valued processes and what we actually need is the function-valued “increment
processes” ¢(s,y) — ¢(s,0) and h(s,y) - h(s,0) = [ u(s,z)dz.

Since ¢ can be approximated by ¢® and the increments of ¢° is related to g° through

o (5.1 =" s) = [ ' Ve (s, 2)dz = / (g (s,2) - 1),
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it suffices to study the joint distribution of u°(s,-) and ¢g°(s,-). On the other hand, we
know from Lemma 4.4 that g° solves the Fokker-Planck equation with the drift given by

us:

1
(4.17) Oy = 5A95 +V(usg°), g°(0,z) = 1.

Thus, the problem reduces to studying the above equation and the joint distribution of the
coefficient and the solution. For a Fokker-Planck equation driven by a general random
drift, it does not seem likely that one could obtain such explicit descriptions. However,
in our case of the Burgers drift, there is an amazing time reversal anti-symmetry (see [8,
Proposition 1.1]):

Proposition 4.5. Fix any t > 0. Then
(4.18) {u(5,) sego] 2 {=u(t = 5,-) }aco.-

The above relation (4.18) only holds for u, but not for u®. Nevertheless, this inspires us
to define another diffusion driven by a time reversed drift and connect ¢° in (4.17) to its
Fokker-Planck equation.

Before that, we first note that the solution to (4.17) is periodic in space, so we view it
as the Fokker-Planck equation satisfied by the density of the following diffusion in random
environment, with T being the state space:

(4.19) dYy: = —u®(s,Y:)ds + dBs, Y5 ~ mr,

where “)§5 ~ mt” means that ) is sampled from the Lebesgue measure on T, denoted by
m. It is clear that for any s > 0, g°(s, -) is the quenched density of )< on T,

o (59)20 and [ g(s.y)dy= 1.

Inspired by the time reversal anti-symmetry in (4.18), we consider another diffusion in
random environment, which is related to the directed polymer in light of Lemma 4.2: for
fixed t > 0, let V¢ solve

(4.20) dYs =u(t-s,Y%)ds+dBs, Y5 ~mr.

Let g°(¢; s, -) be the quenched density of :)75 (again on T rather than R). Comparing 3785 to
X¢ defined in (4.8), there are two differences: (i) the distribution of the starting point, (ii)
we have chosen R as the state space for X', while the state space for )< is T. Here ¢ > 0
is fixed, and we have used the simplified notations X, Y <, where the dependence on ¢ was
again omitted.

We have the following lemma which relates g° to the midpoint density of a directed
polymer:

Lemma 4.6. For any s € (0,t] and y € T, we have
§(tsy) = [ ph(talt=s.y)d
/ (gf,t—s(xa y) f’]l‘ gf—s,O(yv x,)eBW(w/)dxl ) d
= $7
T

Jr G: o(, x")eBW @) dg!

where p%, was given in (4.5).

Proof. By Lemma 4.2, we know that if )}5 = z, then the quenched density of 5)5 is given
by pS,(t,z|t — s,y) and this actually completes the proof since ) is sampled from the
Lebesgue measure on T. O
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We are particularly interested in §°(¢; ¢, -), which takes the form

Gi o(z,y)eV W)
g (t;t,y) = f . dr, yeT.
T fT

Gi o (z, 2" )ePW (@) da?

Define the random density

~ gt O(xvy)eﬁW(y)
4.21 t,y) = f : - dz, eT.
4.21) 9(t,y) T(fqr e

The following result is rather standard, and the proof follows an approximation argument
similar to that of [11, Theorem 2.2].

Lemma 4.7. For anyt > 0, we have
G (t;t,) > g(t,), as -0
in C(T) in probability.
Define
(4.22) o(t,y) = /Oy[é(u y')-1ldy’,  yeT.
Here is the main result of this section (recall that VA® = u® and V¢ = g° — 1).

Proposition 4.8. Fix any t > 0, as ¢ — 0, we have the following weak convergence on
C(T) x C(T):
(4.23) (P*(t,7) = B*(£,0), 6% (t,7) = 6°(£,0)) = (=AW (), é(t,))-

As a result,
(4.24) (h(t’ ) - h(t’ O)’ ¢(t7 ) - (b(tv 0)) o (_ﬁW()> é(ta ))

The above result comes from the time reversal anti-symmetry (4.18), which only holds
in the limiting case of ¢ = 0. To understand where (4.24) comes from, let us pretend the
anti-symmetry also holds for & > 0: if {u®(s,")}se[0,4] g {~u(t — 5,") }sef0,4]> then by
comparing the two diffusions described by (4.19) and (4.20) respectively, it is straightfor-
ward to conclude that (u®(t,-),¢°(t,+)) faw (—u£(0,-),3°(t;t,-)), which can be seen as an
e—version of (4.24). Although this argument does not apply to € > 0, as the time reversal
anti-symmetry for the Burgers solution holds only in the limiting case of € = 0, it is natural
to expect (4.23) to hold. The proof of Proposition 4.8 uses the well-developed results for
singular diffusions with distribution-valued drifts, which we prove in the next section.

Remark 4.9. The relation (4.24) gives the explicit joint law of (u(t,-), Vé(¢,-)). On the
formal level, g = 1 + V¢ solves the Fokker-Planck equation d;g = %Ag + V(ug), so if we
consider the singular diffusion d)s = —u(s, Vs)ds + dBs, it actually leads to the explicit
invariant measure of the process of “the environment seen from the particle”.

4.3. Singular diffusion and proof of Proposition 4.8. Fix ¢ > 0 in this section. Recall
that |
Jo Zio(x,2") (2" - 2)ePW @ da!

IS Zt‘io(x7 ") eBW () dg’
J& Z{o(x, z’)z'eﬁw(z’)dm'
- Jr Zio(x,x’)eﬁw(x')dx’ .

he(t,x) :logfRZtE’O(x,x')eBW(z')dx',

¢°(t,2) =
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and ¢, h are of the same form as ¢, h®, with Z° replaced by Z. Therefore, ¢, h* are both
written as smooth functionals of functions of the form [, ZF(x,2") f(z")dz" for some
continuous function f, namely, the solution to SHE driven by £° started from f. Thus, by
a standard argument (see e.g. [11, Theorem 2.2]) we know that, for each ¢ > 0,

(hs(tv ')7 ¢E(tv )) = (h(ta ')7 ¢(t7 ))»
weakly in C(T) x C(T).
With the above weak convergence, to prove Proposition 4.8, it suffices to show the

convergence of finite dimensional distributions in (4.23). In other words, take any n > 1
and z1,...,x, € T, we aim at proving the convergence in distribution of

(4.25) (X5, XS YE, . YS) = (Xu,o o, X, Vis.. V)
as ¢ — 0, with
:hs(taxi)_h‘s(tﬁo)a XZ :—,BW(l'i),

= ¢°(t, ;) - ¢°(£,0),  Yi=o(t,z;).

Before going to the proof of (4.25), we first introduce a few more notations. De-
note ¢ = (£,W) which represents the underlying random realization. For each realiza-
tion of ¢ (hence each realization of the drift u%), let Qf, @f be the probability measures
on C([0,t],T) induced by {5 }scf0,4]; {515}86[0,,5] respectively. Namely, Q¢, Q5 are the
quenched probability measures for the diffusions in random environments, and they de-
pend on & > 0 and also on the random realization . Let M (C([0,¢], T)) denote the set
of probability measures on C([0,t], T), equipped with the topology of weak convergence.
One can view Q¢, Q5 as random variables taking values in M (C([0,t],T)). Define

(4.27) Uy = {—U(S, x)}se[o,t],me’]l'v aZZt = {u(t -5, m)}se[O,t],meﬂU

which represent the drift for the two diffusions in random environment (in the limit of
e = 0), and we view them as random variables taking values C([0,¢], C~*(T)) for some
a>1/2.

Next, we state a result which is borrowed from the singular diffusion literature and will
play a crucial role in our analysis.

(4.26)

Proposition 4.10. As ¢ — 0, Qf and (@t converge weakly almost surely. In other words,
there exist Qy,Qq, which are random variables taking values in M1 (C([0, t] T)), such
that for almost every ¢, we have Q; = Q; and Qt = Qase - 0, where “=’ ’ represents
the weak convergence of measures. In addition, we have

(4.28) (%, Q)" (%, Q).

The proof of Proposition 4.10 will be presented in Section B of the Appendix. We will
first use it to complete the proof of (4.25), which is divided into several steps.

Proof of (4.25). Throughout the proof, fix n > 1 and 21,...,2, € T. Let {w; }s[0,¢] be
the canonical process of C([0,¢], T).

Step 1. The goal is to show that under Q;, the random variable w; has the density given
by g(t,-) defined in (4.21): for any a < b € T, we have

(4.29) Qi (ws € [a,b]) = fbg(t,:z:)dx

First, by definition we have Q¢ (w; € [a,b]) = 1.9 b g°(t;t,x)dx. Then, by Lemma 4.7,
g°(t;¢,-) = g(t,-) in C(T) in probability. Thus, upon extractlng a subsequence, we have
g°(t;t,-) — g(¢,-) in C(T) almost surely. By Proposition 4.10, we have Q¢ = Q; almost
surely, which implies that, w; under Qt converges in distribution to w; under Q: (again, for
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almost every realization of (). By the convergence of the density g°(t;t,-) to the density
g(t,-), this further implies that w; under Q; has density given by g(t, -), hence completing
the proof of (4.29).

Step 2. The goal is to show that forany ¢ =1,...,n,
(X157}/z€) = (he(taxl) - he(t70)a ¢E(taxi) - ¢E(t70))
— (h(t,2;) = h(t,0),Q¢(w;s € [0,7;]) — ) = (X;,Y5)

in probability. Since ¢° = 1 + V¢°, we first write

O () -0 (00 = [T g (ty)dy -

Recall that g° solves the Fokker-Planck equation (4.17), with V¢ the underlying diffusion
given by (4.19). By the definition of (O, we can write the integral on the r.h.s. of the above
equation as

(4.30)

T
| (tyy = @5 (wn e [0,2:)).
From (4.29), we know that, for any x € T,
(4.31) Qiwy =) =0,

aw

which implies that Q;(w; = z) = 0, because we have Q; g Q; by Proposition 4.10. Thus,
by the convergence of Q; = Q;, we can pass to the limit and obtain that, almost surely,

¢ (t, i) = ¢°(1,0) = Qf (wy € [0, 2]) —
= Q4 (we €[0,2;]) — ;.
This completes the proof of (4.30).
Step 3. The goal is to show that

(4.32) (X1, X Y, V) 2 (X, X Y, L Y,

which is the last piece we need to complete the proof of (4.25). To show (4.32), we first
rewrite X;,Y; as (by (4.26) and (4.22))

T
X, = =BW(ai) == [~ u(0.p)dy.
(4.33) ) 2700 )
Yi=d(ta)= [ ty)dy - = Qr e [0.2.]) -,

where the last “=” comes from (4.29). Then we recall the definition of X;, Y;:

K= h(t.e) - h(t,0) = [ u(ty)dy,
0
Y = Qu(we € [0,2:]) - 2.
If we compare (4.33) and (4.34), then (4.32) is a direct consequence of (4.28). O

(4.34)

5. A VARIANCE FORMULA

In this section, we combine the results obtained in the previous sections to derive a
formula of o (3). Recall that in Section 2, we have obtained the following expression

t
G0 Xi= [apta)de=p [ [ Bl(sy) - La(s. ) EIECs y)dyds,
with

(5.2) I1,t(s7y)—12,t(8,y):pm(t,—lsvy)fT[w(s,y')—¢(87y)]pm(t,—ls,y’)dy',
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and py, (¢, —|s,y) and ¢ (s,y) given by, cf (2.21) and (2.22),

pu(ta—fs,y) = 22090, 0)  po(tmrs s y)pi(s,4:0.0)
53) Gro(-,0) Jr o (t,mr;s,9")pe(s,950,0)dy’
B(s.y) = Ynez(n =) Zs0(y,n)
Gs,0(y,0)

Here we recall that mt denotes the Lebesgue measure on T. Obviously, the random func-
tion ¥(s,-) is Fs—measurable. The factor py, (¢, —|s,y) depends on both the forward and
backward polymer endpoint densities, and it is clear that p¢(s,y;0,0) is Fs—measurable
and py,(t,mT;s,y) is independent of F. In other words, to compute the conditional ex-
pectation on the r.h.s. of (5.1), we only need to average out the factor py,.

This section contains a series of (rather standard) technical estimates which enable us to
replace py, (¢, —|s,y) and ¥ (s, y) by their “equilibrium” versions. We briefly sketch them
below so that the readers could have a big picture before going to the details. First, for
s> 1andt - s> 1, by the exponential mixing of the polymer endpoint density, one can
replace the pr and py, in (5.3) by their stationary counterparts, and the pr factor will only
depends on h(s,-) — h(s,0), where we recall that h solves the KPZ equation started at
stationarity. Secondly, by Proposition 3.2, one can replace ¥(s,y’) — (s, y) by ¢(s,y") -
@(s,y). After these approximations, what will appear in the Clark-Ocone representation
only involves Vh(s,-) and V¢(s,-), since we will first average out the p}, factor. Now we
make use of the key identity (4.24) to compute the expectation of the resulting functional
of (Vh(s,-),Vé(s,-)), and this leads to an explicit expression of o2 (3).

5.1. Stationary approximation. Recall that » was defined in (4.16), which is the solution
to the KPZ equation started from stationary initial data SWW. As we will have multiple
independent Brownian bridges later, for notational convenience, we let W; = W. Define
the “approximate” midpoint density (as an approximation of py, (¢, —|s,4))

po(t, p2; 5,y)e V)
S oo (t, pas s,y el dy!

papp,m(ta _|S> y) =

(5.4)
__ po(tpais,y)pe(s,50, 1)
Jroo(tp2:s,y")pe (5,970, p1)dy"’
with
eﬁwi(y)
(5.5) i=1,2,

pi(y) = W’
and W5 is a Brownian bridge independent of § and W . Compare the expressions of papp m
and p,,, the difference lies in the prescribed distribution of the starting and ending points.
By the invariance of the law of p1, p2 under the forward/backward polymer endpoint evo-
lution, we actually have that for each ¢ > s > 0,

law PWi(y)+Wa(y))
(56) {papp,111(t7 _‘57 y)}ye']I‘ = {[T eB(Wl(y’)+W2(y’))dy’ }1 . ’

where, by the elementary properties of the Brownian bridge, the r.h.s. is statistically in-
variant under rotation on a torus (see e.g. [28, Lemma 4.2]).

For s > 1 and t — s > 1, by the exponential mixing of the endpoint distribution of
directed polymers, see [34, Theorem 2.3], one may expect that py, (¢, —|s,y), see (5.3), is
close to papp,m (£, —|s, y). This is the contents of the following lemma.

Lemma 5.1. For any p € [1, ), there exist C, A > 0 such that

5.7 suj;r) Ew, Ew,E|pm (t,-[$,Y) = papp,m (£, —|s, )| < C’(e"\(f’_s) + e‘As)
ye
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forallt>100 and s € [1,¢t-1].

The proof is rather standard given the exponential mixing property formulated in Propo-
sition A.1 below. We postpone it till the Appendix A.2.

Define
(5.8 Ji(5,9) := papp,m(t,—|s,y) fT[QS(&y') - ¢(5,y)]papp.m (L, —|s, 4" )dy’,

and

59 Vw5 [ [ B B, ) EJECs ) duds.

The J:(s,y) should be viewed as a “stationary” approximation of I ;(s,y) — I2.+(s,y),
with py, replaced by papp.m and ¥ by ¢. We emphasize that Y; only depends on the noise
& and the Brownian bridge 7. The Itd integral with respect to £ in (5.9) is performed for
a fixed realization of W7.

The main result of the present section is the following lemma, which implies that

X¢=Ys .
- — 00
NG Oast

Lemma 5.2. We have sup,, oo Ew, E|X; - Y;|? < co.

Proof. First, we note that X; does not depend on W;. Fix any ¢ > 100. The proof consists
of several steps.

Step 1, uniform bounds. By (3.5) and Corollary 3.9, we have for any p > 1, there exits a
constant C' > 0 such that

(5.10) sup _{E[w(s,5) = (5.9 + Ew, Elo(s.9') - 6(s. )} < C.

$20,y,y’€

All constants C appearing below may depend on p € [1, +00), but are independent of other
parameters such as ¢, s etc. In addition, by (5.6), we have

(5.11) sup  Ew, Ew, Epapp.m(t,—|s,y)? < C.
s€[0,t],yeT

Combining estimates (5.10) and (5.11), we conclude that

(5.12) sup  Ew, Ew,E|Ji(s,y)|" <C.
s€(0,t],yeT

Next, we derive an estimate on Iy ; — Iz ;. First, for py, (¢, —|s,y), starting from the
expression in (5.3), by the Holder estimate together with (A.4) and (A.1), we conclude that
Epm(t,-|s,y)? < C, forse[l,t-1],yeT.

For other values of s, we will use the following estimates: (i) for s € (¢ — 1,¢], we have

(513) sup E[pb(t7mT;s>y)p+pb(tamT;8ay)_p] SC7
se(t-1,t],yeT

and (ii) for s € (0, 1), we have
(5.14) E[pi(5,4;0,0)’ ] <CGs(y)",  Elpe(s,5:0,0) "] < CGs(y)™".
Here we recall that G is the heat kernel on torus.
Suppose now that s € [0,1). Then we have
pun(t,=15,9) < pe(s,4;0,0) sup pu, (£, mrs s,9") sup pi,* (£, mr; 5, y).
y'eT y/eT
On the other hand, when s € (¢t — 1, ¢], then

P (t, =15, y) < pe(s,;0,0) sup py (t, mr; s,y sup pr ' (5,45 0,0).
y'eT y'eT
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Using again Holder inequality together with (5.13) and (5.14), we derive that
(5.15) Epu(t,—|s,1)" < C(Gs(y) 1sc(o,1) + Lse1,4]); O<s<t,yeT.
Hence, from (5.2), (5.10) and (5.15), we conclude that, for all s € (0,¢],y € T,
(5.16) ElL14(5,y) = It (5, 9)IP < C(Gs(¥)PLse(o.1) + Lse(1,4])-

Step 2, approximation. We claim that there exist C', A > 0 such that

(.17 sup Ew, B, E|11 1 (5,) = I1(s,9) = Ji(s,9)[" < C(e* + 7))
yeT

forall se[1,¢t-1].

Indeed, using (5.2) and (5.8), we can decompose the difference as

3
I 4(s,y) = I2.4(5,y) = Ji(s,9) = Z E;,
i=1

with
By = pun(t~ls,) [ [0(5,5) = 0(s.9) = 0(5,9') + 65 9) ot s, )y
Ey = (pm(t,=|8,y) = papp.m (£, =3 5,9)) fT[qﬁ(S»y') = &(5,9) ] (t,~[s,y")dy’,
Bs = paopan(t~13.9) [ [6(5,5') = 6(5,9))(pun(t.~159') = puppn(t. =159y
Now we apply Proposition 3.2 and (5.15) to conclude that for s € [1,¢ - 1],
Ew, E|E P < Ce™*,
From Lemma 5.1, (5.10) and (5.15), we obtain that
Ew, Ew, E|Boff < (e 4 729,
Finally from Lemma 5.1, (5.10) and (5.11), we get
Ew, Ew, E|Es|P < C(e7 279 4 ¢729),

This completes the proof of (5.17).
Step 3, conclusion. We have (see (5.1) and (5.9))

t
Xi=Yi=8 [ [ Ew.Blhi(s.9) ~ Fa(s,y) = Ji(s. ) IFJE s, p)dyds.
For each realization of W1, applying It isometry, we have
2 _ 2 7 2

E|Xt_Y;5| =/3 A \/]I‘E[(EWQE[Il,t(Say)_IQ,t(Say)_Jt(sayﬂfs]) ]dyds

Taking expectation on W; and using the Jensen inequality, we obtain
t
EW1E|Xt - Y2|2 < 62 A [EEW1EW2E[|Il,t(Sa y) - IQ,t(svy) - Jt(svy)|2]dyds'

Applying (5.12) and (5.16) to the integral in s € (0,1] U [t —1,¢] and (5.17) to the integral
in s €[1,t-1], we complete the proof. O
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5.2. It6 isometry and time reversal. By Lemma 5.2, to derive the limit of t *EX?, it
suffices to do the same for Eyy, EY,?/t. Recall that Y; and J;(s,y) are given by (5.9) and
(5.8) respectively and W1, Wy are two independent Brownian bridges satisfying W;(0) =
W;(1)=0,j=1,2.

Before applying Itd isometry to compute the variance, there is one more simplification
we need to deal with the conditional expectation. Define

BWa(y)+h(s.y) BWa(y)+h(s.y)~h(s.0)
pw(s.y) = Jp PG dy [ eAWa () (s v ) h(s.0) gy

where we recall that h(s,y) = log Zw, (s,y) (cf (4.16)), and define
(5.19) Jw (s,y) = pw (s,y) fT[cﬁ(&y') = o(s,9)lpw (s,y")dy’,
where ¢ is defined by (4.15):

(5.18)

_ /R Zt,o(x, £EI)((E, — x)eﬁwl (:L")dxl

o) Jg Zr0(@,2")ePM1 =) dy!

‘We claim that
(5.20) Ew, E[J:(s,9)|Fs] = Ew, Jw (5,9).

First, since both h(s,-) and ¢(s,-) are Fs—measurable, we note that the right hand side is
also Fs—measurable. Secondly, recall that

po(t, pa; 5, y)e" )
Jr oot p2s s,y ) e ) dy'”

papp,m(t7 _|87 y) =

and we have, for any ¢ > s fixed,

Lo ePW2(y)

{po(t; p2:8,9) }yer = {fT eng(yr)dy,}ydr.
Since py,(t, p2; s,y) depends only on the noise {£(£, )} (¢,2)e[s,c]xr and the bridge W,
we can write that

Ew, E[papp,m (£, =[5, Y) papp,m (£, s, y")|Fs]

=Ew,[pw (s,9)pw (s,9)], w9 €T
Due to Fs;—measurability of both h(s,-) and ¢(s,-), the above yields (5.20), which further
implies

Vo=t [ [ Bl (s, )]€Cs,v)duds.

By It6 isometry (applied for each realization of W), we have

(5.21) Ey, EY;? =ﬁ2fotAEWlE[(EWZ[JW(s,y)])z]dyds.

From the expression of Jy (s, y) in (5.19), we see that in order to compute the expectation
on the r.h.s., one needs to understand the distribution of

(h(sv ) - h(87 0)7 ¢(37 ) - ¢(S7 O))
This is where the time reversal anti-symmetry (see (4.18)) and Proposition 4.8 come into
play. Define
(522) Tur(s.) = pw (u) [[8(s.5') = 05 ) o (4 )y
where é was defined in (4.22) and

i PW2(y) o=BW1(v)
pw(y) = fqr 65W2(y')e—,6’w1(y’)dy"

(5.23)
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We have the following key proposition:

Proposition 5.3. For any s > 0,y € T, we have

(5.24) Tw (5,9) "= Jw (s,9).
In consequence,
(5.25) Ew, E[ (Ew,[Jw (s,9)])° | = Ew, E[ (]EWQ[jW(S,y)])Q}

Proof. By (5.18) and (5.19), one can write
eBWa(y)+h(s,y)—-h(s,0)
Jw(s.y) = T €PW2 ) +hGs )1 (5.0) dy

(5.26) eBW2(y)+h(s,y")~h(s,0)

< J8los) = 66 g
By (4.24), we know that
(h(s,-) = h(s,0),6(s,") ~ 6(5,0)) & (=BW1(), b(5,")).

If we replace h(s,y) — h(s,0) by =fWi (") and ¢ by é in (5.26), we have Jyy (s, y) be-
comes Jy (s, y). This completes the proof. O

5.3. Stationary approximation again. In the expression of Jw defined in (5.22), there
is still an s—dependence through the function ¢(s -). The last step is to use a stationary
approximation of gb(s -) for large s > 1. By the definition of ¢ in (4.22), we have

3 =) = [ Li(s,2) - 11
Yy
with (cf (4.21))

. BW1(z)
g(s,2) = f( po(s,2:0,2)e )da:, z€eT.

Jrpo(s,2;0,2")efWi () dz!

For s > 1 and any z € T, we expect the backward polymer endpoint density py (s, x;0,)
to stabilize and reach stationarity.

This inspires us to define

pu(s,p3;0,2)ePW1(2)
pb(sa P33 0, ZI)eBWI(Z,)dZI’

(5.27) Gapp(S,2) = T $20,z€T,
T

where
eBWs (2)

pg(Z) = f'[[‘ eBWs () 5"’
and W3 is another Brownian bridge independent of W7, W5, €.

By the same argument as used in the proof of Lemma 5.1, see Appendix A.2, we have:
for any p € [1, 00), there exist C, A > 0 such that

(5.28) supIEWlEWSE|g(S 2) = Gapp (5, 2)[P < Ce™, s>1.

zeT

Again, by the invariance of the law of p3 under the backward polymer endpoint evolu-
tion, it is clear that for each s > 0, we have

{(gapp(s,z),,51/1/(2’))}(%21)611‘2 £ {(gapp(o z), pw (2 ))}( )eT?
(5.29) . { ( W (2)+BW1(2) eBW2(2) g=BW1(z") )
\J (2, z’)€T2

eBW G BWAG [ el e BWi () 27
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Define
. Yy
5300wl = i) f( [ Gnls2) - 100
By (5.29), we know that

(5.31) {Twapp (5,9} or = {Iwapp(0:0)} s

and from the definitions of py and Gapp, it is clear that <j‘;[/7@m)(07 -) only involves the three
independent Brownian bridges { W, };-1.2 3.

The following lemma is the last piece we need to compute the variance:
Lemma 5.4. There exist C, \ > 0 such that
sup]EWE[|jW(s,y) - jwyapp(s,y)|2] <Ce™, s>1.
yeT

Proof. From the expressions of Jyy(s,7) and Jyy app (s, y) in (5.22) and (5.30), we have
jw(S,y) - jW,app(S7y)

yl
) [ 7 13062~ s, 2000z )
Yy
It suffices to apply (5.28) together with the Holder inequality to complete the proof. O

A corollary of the above lemma is

Corollary 5.5. We have

EX?
(5.32) tlim tt = lim

t—o0

Ew, EY?2 7
o :52fTEleWa[(EWz[JW’aPP(O’y)])Q]dy‘

Proof. Recall that we already know from [33, Section 5] that EX ,52 /t converges as t — oo,
s0, the first equality in (5.32) is a consequence of Lemma 5.2. For the second equality, we
have from (5.21) and (5.25)

B BY? =5 [ [ BBl (B L (500 Jayds

¢ ~ 2
-8 [ [ Ew B[ (Bus [ (5,9)])” Jdyds.
Applying Lemma 5.4 and (5.31), we complete the proof. O

By (2.1), (2.5) and the above corollary, we conclude that for any 5 > 0 we have
~ 2
(5.33) o2(8) =1+ [ Ew,Bw, [(Ewa[Jwano(0.9)])" ] dy.

To write the effective diffusivity more explicitly, we have the following lemma, using
which we complete the proof of Theorem 1.1.
Lemma 5.6. The process {Jw.app(0,Y) }yer is stationary. As a result, we have
~ 2
(5.34) o*(B) = 1+ B°Ew, Ew, [ (Ew, [Jw,app(0,0)])" ],

where
) _ BWA () +6Wa ()
Ew, JW,app(Oa O) = /1‘1_2 :‘(ﬂa Y, Wl) (j’]l‘ BWL(E)FBWs () 5! - 1) l[O,y](z)dyd'Za

with

eBW2(¥)-BWi(y)

E(ﬁayawl) :EW2 2
( o eBWz(y’)e—Bwl(y’)dy')
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Proof. By (5.27), we know that §a,p (s, -) is a continuous density on T, so

y/
y f [Gapp (5, 2) — 1]d2

is a 1-periodic function for each y € T. For any x € T, we can write

Jw.app (0,5 + ) =ﬁw(y+$)/T([y

y+x

’

(0.2~ 1105)
- ﬁW(y " 17) [IF ([yi:-w [gapp(oa Z) - l]dz) ﬁW(y, + x)dy,
=pw(y+x) A (Ly [Gapp (0, 2 + ) - 1]dz) pw (y +x)dy',

and the conclusion of the lemma follows from the joint stationarity of

{(gapp(ovZ)vﬁW(Z’))}(Zyz/)gqrz )
see (5.29). O

APPENDIX A. ENDPOINT DISTRIBUTION OF THE DIRECTED POLYMER ON A
CYLINDER

A.1. Exponential mixing of endpoint distribution. Here we summarize a few results
on the exponential mixing of the endpoint distribution of the directed polymer on a torus,
which will be used throughout the paper. Recall that p¢, p, were defined in (2.7). By the
time reversal invariance of the spacetime white noise, we have

law

(A.1) {oe(t 5 8,0) faer = {pu(t,V;5,7) } et
Here is the main result on p¢. By the above identity, the same conclusion applies to py,.
Proposition A.1. The Markov process {ps(t,-; $,v) }10, taking values in M1(T), has a
unique invariant measure given by the law of the M1 (T)-valued random variable p(y)dy,
where
AW ()

and W is a Brownian bridge satisfying W(0) = W (1) = 0.

Furthermore, for any p > 1, there exist C, \ > 0 such that for all t > 1,

(A3) E sup suplps(t,2;0,v) - pe(t, x;0,0") P < Ce™™,
v,v'e M (T) xeT

(A2)

and

(A4 E sup sup{ps(t,z;0,0)? + pe(t,2;0,0) P} < C.
veMy(T) zeT

Proof. The fact that {p¢(t,; s,v) }>0 is Markovian follows from [34, Lemma 2.2]. Esti-
mate (A.3) is an immediate consequence of [34, Proposition 4.7].

To show (A.4), we note that
f']r gt7t71/2($7 l‘,)pf(t - 1/2a Z‘,; 0, Z/)dx,
Jo2 Grmrp2 (@, 2 pe(t = 1/2,2750, v)da' da”

1 -1 "o
< sup gt,t—1/2(%x) sup gt,t—l/Q(:C ;).
x,x'eT z! x"eT

pe(t,z;0,v) =

Estimate (A.4) then follows from an application of [34, Lemma 4.1] and the Holder in-
equality. O
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A.2. Proof of Lemma 5.1. Recall that the goal was to show that for s € [1,¢ — 1],
(A.5) Suﬂl? Ew, Ew, E|pm (t,~[s,y) - papp,m(ta -[s,y)[" < C(e_)\(t_s) + e—A3)7
ye
with
pb(t7 mr; s, y)pf(sa Y; 0) O)
Jr oo (t,mr; s, 9") pe(s,y7;0,0)dy’”
po(t, 2 s, y)pe(s, 450, p1)
f']r Pb(t» P23 S, y’)Pf(Sa y,; Oa Pl)dy’

pm(ta _|Sa y) =

papp,m(ta -|s,y) =
By (A.1) and (A.3), we have

EW2E |:Sllp |pb(t> mr; s, y) - pb(t7 P25 S, y)|p:|
yeT

+Ew, E [Sup lp¢(5,530,0) = pe (s, 930, pl)I”] <C(e M) 4 o),
yeT

With the above estimate, the rest of the proof is rather standard, with several uses of Holder
inequality together with (A.4). We do not repeat it here.

APPENDIX B. SINGULAR DIFFUSION: PROOF OF PROPOSITION 4.10

Let us first recall the main ideas in Section 4 to see the role played by singular diffusion.
The main argument in Section 4 was done on the level of approximation for each € > 0
and only passed to the limit through Proposition 4.10 — in the following we will sketch
formally the argument for € = 0.

Recall that the goal was to describe the joint distribution of h(¢,-) —h(¢,0) and ¢(t,-) -
¢(t,0), where h solves the KPZ equation at stationarity, and ¢(¢,z), defined in (3.2),
is the displacement of the polymer started at (¢, ), running backward in time, with the
terminal potential e?" (). By the Girsanov theorem and Feynman-Kac representation, one
can interpret ¢(t,x) as the quenched mean displacement of the diffusion in the Burgers
drift:

o(t,x) =EpX; — x,
where { X} ;¢[0,+] solves the following formal SDE
(B.1) dXs = u(t—s,Xs)ds + dBs, Xo = .

Note that (B.1) is only symbolic, since u = Vh is the distributional-valued solution to the
stochastic Burgers equation. In addition, one can show that ¢ solves the following PDE
with distribution-valued coefficients

(B.2) Oy = %A¢+uv¢+u, ¢(0,2) =0,

which is also symbolic. To study the increment process of ¢, it suffices to consider g = 1 +
V¢, which solves the Fokker-Planck equation with a random distribution-valued coefficient

B3 0g(ss) = 3 000050) + Ty (uls g0, 90,0 = 1.

Since Vh = u, to study the joint distribution of h(t,-) — h(¢,0) and ¢(¢,-) — ¢(t,0), the
problem reduces to studying the joint distribution of u(¢,-) and g(t, -). The above Fokker-
Planck equation is related to another diffusion in the Burgers flow:

(B.4) dYs = —u(s,Ys)ds + dBs, Yo ~mr.

Inspired by the time-reversal anti-symmetry of the Burgers flow (4.18), we consider ),
given by

(B.5) dY, = u(t - s,Y,)ds + dB;, Yo ~ mr,
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and its density, denoted by §(¢; s, -), evolves according to

. 1. . . .
(B.6) 8sg(t;s,y)=iAyg(t;s,y)—Vy(U(t—S,y)g(t;s,y)L g(t;0,y) = 1.

Compare the two (formal) Fokker-Planck equations (B.3) and (B.6), since the coefficients
have the same law, it is natural to expect the solutions to have the same law, and, the joint
distributions of the coefficient and the solution are the same as well. This turns out to be
precisely the (4.28) in the statement of Proposition 4.10:

(%, Q)" (%, Qy),

where %, %, are the corresponding coefficient processes, and Q, Q, are the probability
measures corresponding to g and g.

The singular diffusions described by the formal SDE (B.1), (B.4) and (B.5) can all be
made sense pathwisely, that is, for each realization of u, as the solutions to the correspond-
ing martingale problems [17, 24], using the tools of rough path, regularity structures and
paracontrolled calculus. The singular Fokker-Planck equations (B.3) and (B.6) can also
be made sense pathwisely. As these are not the focus of the paper, we refrain from go-
ing to the details and only refer the readers to the aforementioned papers. Our proof of
Proposition 4.10 is based on [24], which was the first one to give a rigorous meaning of the
so-called continuum directed random polymer, introduced in [1], as a singular diffusion.

Proof of Proposition 4.10.  Fix t > 0, recall that Qf,@§ are the quenched probability
measures on C'([0,¢], T) of

dYs = —u(s,Ys)ds + dBs, Y5 ~ mr,
djif =u(t-s, )E)ds +dBg, 5/5 ~mr.

For any z € T, we denote Q; ,, @iw as the corresponding measures when the starting point
is ;5 = :)75 = x. Applying [24, Theorem 31], we know that, for almost every realization
¢, @iw converges weakly3, with the limit denoted by Qm. Furthermore, this can be done
for all z € T with the same (. As a result, for almost every realization (, we have the
convergence of Q§ = [1 Q ;2 d.

To show the convergence of QQ7, one could either follow the proof in [24], which is
essentially a repetition, or follow the paracontrolled approach outlined in [17]. Since the
proofs are almost the same, we do not do it here.

In the end, one needs to show the identity-in-law:

(%, Q)" (%, Q).
This immediately comes from the pathwise construction: Q; and Qy are constructed for
almost every realization of % = {-u(s,2)}se0,4],zer and % = {u(t = 5,2) } se[0,4],zeT
respectively. In other words, they are deterministic functionals of %; and %; respectively.
By the fact that %; law U,, we complete the proof. O
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