
Optimal Parameters Design for Manufacturability under Unknown
Feasibility Constraints

Guoyan Li1, Xiaoning Jin1, Yujia Wang2 and Swastik Kar3

Abstract— This paper proposes a novel approach for opti-
mizing the manufacturing process under unknown feasibility
constraints. Due to the complex interdependencies among the
numerous design of experiment parameters, a trial-and-error
approach is impractical. Our approach combines a predictive
modeling block that uses two machine learning models and an
experimental design component employing multiple sampling
strategies. We applied this method to the synthesis of 2D
material via thermal chemical vapor deposition and achieved
optimal material quality within only 7 batches of experiments,
amounting to 61 samples. Additionally, we successfully identi-
fied the feasible region of synthesis parameters necessary for
producing the desired material. These results not only highlight
the effectiveness of our method but also its potential to guide
engineers towards the most desirable outcome in manufacturing
process optimization.

I. INTRODUCTION

Exploring the manufacturability of materials through a
process often involves conducting numerous experiments
with varying process parameters. However, this approach
can be both costly and inefficient as it requires significant
efforts to collect large amounts of data from experiments.
The traditional design of experiments (DoE) methods such
as factorial and Latin Hypercube design (LHD) [1] are
commonly used for manufacturability analysis and optimal
parameters design. For manufacturing processes with par-
tially or completely unknown physics, the connection be-
tween process parameters and quality is frequently nonlinear
and nonstationary. This complexity poses a challenge for
DoE methods that rely on statistical principles to function
effectively.

There has been a growing interest in the use of ma-
chine learning (ML) methods for optimizing manufacturing
processes, including mechanical design [2] and material
discovery [3]. Specifically, recent studies in manufacturing
process analysis have focused on developing ML-based sur-
rogate models that use historical datasets to establish data-
driven processing-property linkages. Recent work [4] applied
the Support Vector Regression model in the selective laser
melting (SLM) process to analyze the relationship between
the process parameters and the three responses. Support
Vector Machine (SVM) classification and regression models
were utilized in [5] to find the region of the design space that
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yields quantum-confined nanoplatelets and predict the thick-
ness of quantum-confined CsPbBr3 nanoplatelets. Previous
ML-assisted methods in manufacturing require a substantial
amount of experimental data as training data. This passive
approach lack of control over the process and may result
in prediction error due to limitations in the size and quality
of the training data. To overcome this significant challenge,
recent research efforts have shifted towards utilizing active
learning (AL) or optimal experimental design. This enables
an iterative procedure to obtain a surrogate model with
minimal manual effort. Research work [6] proposed an active
learning method to support In-situ process monitoring in
additive manufacturing.

Under the active learning framework, Bayesian optimiza-
tion (BO) frameworks have also been applied for experimen-
tal design. The BO framework also involves a closed loop
where predictions from the current machine learning model
guide the subsequent experimental design to refine the ML
model iteratively as new experiments are implemented. The
difference between the AL and the BO is that the objective
of the BO is to identify the global optimum with the fewest
possible number of experiments. A sequence of samples was
determined by the acquisition function via balancing the
trade-off between exploitation (promising samples with the
property close to the desired value) and exploration (regions
of the experimental parameter space with high predictive
uncertainty). BO algorithm has been successfully applied in
nanotube synthesis [7], polymer fiber materials synthesis [8],
and control of laser wakefield accelerators [9].

However, in real industrial applications, the optimization
process always encounters physical constraints that restrict
the experimental design and process optimization. There are
two types of physical constraints: 1) parameter constraints
and 2) quality constraints. However, owing to the complex
relations in nonlinear multivariate design space, physical
constraints of quality are usually unknown that can only
be known once the experiments are evaluated. For example,
the overall design space in simulation-based mechanical
design [11], the overall design space can be divided into
two regions: the feasible region and the unfeasible region
where the objective function values do not exist because the
simulation has failed to converge. Incorporating constraints
of feasibility is significant to the success and accuracy of
surrogate ML models.

In this work, we proposed a novel optimal parameter
design approach under an unknown feasibility constraint of
process parameters. The designed approach utilizes a closed-
loop framework consisting of two components: 1) a predic-20
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Fig. 1. The overview of proposed approach

tive modeling part that captures the relationships between
process parameters and a target quality of interest, taking
into account of feasibility constraints. 2) an experimental
design part to recommend the next round of experiments via
multiple sampling strategies. The overview of the proposed
approach illustrated in Fig.1

The proposed predictive modeling block includes two
parts: 1) a constraint model aims to capture the relationship
between process parameters and the feasibility of samples.
2) a surrogate model aims to quantify how much information
each unlabeled sample carries on for target process opti-
mization. Different from traditional methods adopting a con-
strained Bayesian optimization framework where recommend
next-round experiments via constrained expected improve-
ment acquisition function [12], our approach successfully
optimizes the target process and explores the boundary that
distinguishes feasible experiments and infeasible experiments
simultaneously. The main contributions of this paper are
summarized as follows:

1) We proposed a novel optimal parameter design
paradigm that not only optimizes the target quality of
interest but also learns a boundary to distinguish feasible
design space and unfeasible design space.

2) We developed an experimental design method via three
sampling strategies to identify a batch of the most
informative samples for the next-round experiment.

3) Our proposed framework has the potential to be applied
to various manufacturing process that have feasibility
constraints.

The remainder of the paper is organized as follows:
Section II discusses the proposed optimal parameter design
approach. A case study of a 2D material synthesis process
is implemented and validated in Section III. Finally, a brief
summary is provided in Section IV.

II. PROPOSED APPROACH
This section presents the proposed optimal parameter

design approach to optimize manufacturing processes that

have unknown feasibility constraints. Two machine learning
models adopted in the predictive modeling part are listed in
II-B and II-C. The details regarding the parallel sampling
strategy employed in the experimental design are presented
in II-D

A. Problem Definition

Consider a manufacturing process defined over a prede-
fined parameter space X ⊆ RD, where X is a space of
process parameters. The process includes a target function
f : X → R, which we want to optimize, and a constraint
function h : X → C = {0,1}, related to the feasibility of
parameter settings, which is assumed to be independent of
f . For any experimental point x = [x1, · · · ,xD]

⊤ ∈ X , the
process will be feasible when

h(x) = 0 (1)

and infeasible otherwise. For example, f can be a surface
roughness of mechanical structure given on design parameter
vector x, and h can be the boundary to classify the success
and failure of the experiments given on the same design
parameter vector x. To find the optimal parameter x∗ within
feasible space, which can be regarded as a constrained
optimization problem in turn

min
x∈X

f (x)

s.t. h(x) = 0
(2)

Here we assume both functions can only be observed or
evaluated with costly real experiments or relevant physics-
based models. The feasible region Xs, the subset of parame-
ter space with successful settings, is unknown and difficult to
obtain owing to the high cost, such as experimental time and
cost. We refer to the complementary of the feasible region
as the infeasible region such that X f = X \Xs. Suppose
we have n observed samples from the design space denoted
by Xn = {xi}n

i=1. C = [c1,c2, · · · ,cn] represent the feasibility
label and a set of observed feasible samples denoted by Xm =
{xm}m

i=1. Y = {y1,y2, · · · ,ym} represent the corresponding
quality outputs of feasible samples Xm. We refer to the
complementary of feasible experiments as the infeasible
experiments set such that X f = Xn\Xm. Xu = [x1, . . . ,xu]
represents all unlabeled data. In this work, we assume that
the surrogate model f for estimating the target function value
follows a Gaussian Process (GP) prior.

f ∼ G P(µ f (·)),k f (·)) (3)

where µ f (·) is a mean function and k f (·) is a covariance
kernel function [13].

B. Constraint Model for Feasibility Estimation

In this optimal parameter design approach, we begin by
utilizing a constraint model, which is a binary classification
model trained through a graph-based semi-supervised clas-
sification method on a dataset containing a small number
of labeled data points and a large number of unlabeled
data points. This constraint model is utilized to explore the
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feasibility of data. With the help of this constraint model, the
parameter space can be naturally divided into two distinct
regions: 1) the feasible region, where experiments yield
successful outcomes, and 2) the infeasible region, where
data indicate undesirable manufacturing outcomes. We opt
graph-based semi-supervised learning (GSSL) model in this
study is that GSSL models are effective when the size of
the training dataset is small[14]. Especially in the material
science domain, data scarcity is the most prevalent issue in
ML-assistant material science research.

The first step of GSSL is to construct a graph from all
labeled and unlabeled samples, where each sample is repre-
sented by a vertex in the weighted graph that measures the
similarity between each sample. In this study, the similarity
of each sample is measured by Wi, j = exp(−|xi−x j |2

σ
), where

σ is a hyperparameter of this Gaussian kernel function. Then
the labels of those unlabeled samples can be propagated by
exploiting the label dependency information extracted from
available label information. Our constraint model is similar
to the Local and Global Consistency (LGC) algorithm, and
details of the LGC model can be found in the [15]. We refer
to P as a vector of the probability of the predicted label of
the constraint model. The predicted feasibility label c∗ of an
unlabeled sample x∗ is defined as follows,

argmax
c∗

P(c∗|x∗,Xn) (4)

C. Surrogate Model for Target Process Optimization

In the second part of the predictive modeling block,
we choose Gaussian Process Regression (GPR) model to
learn our target function f , which captures the relationship
between parameters and target process quality. The objective
of the GPR model here is to learn a specific mapping function
f (x), which maps an input vector to a label value and a
Gaussian prior distribution is placed over f . That is

p( f |Xm)∼ N ( f |µm(x),Km(x,x′)) (5)

where µm(x) is mean function and Km is an m × m is a
covariance matrix and the element of Km is built via a kernel
function k(x,x′). In this work, we consider the automatic
relevance determination using the Matern52 kernel function,
which is parameterized in terms of the kernel parameters in
vector θ = [σ f ,σl ]

k(xi,x j|θ) = σ
2
f (1+

√
5r+

5
3

r2)exp(−
√

5r) (6)

where

r =

√√√√ d

∑
l=1

(xil − x jl)2

σ2
l

In kernel function (6), σ f is a non-negative over scale
hyperparameter and σl is a different non-negative length
hyperparameter for each predictor. The kernel parameter
vector θ is unknown initially, and the optimal θ given on
observed experiments Xn can be estimated by maximizing

the marginal likelihood via L-BFGS-B optimizer [16], which
are

l(ym|Xm,θ) =−1
2

yT K−1
m y− 1

2
log | Km |+1

2
log2π (7)

Given the observed experimental data and optimal parameter
vector θ , the prediction distribution of the latent function f∗
for an unlabeled data x∗ is

p( f∗|x∗,Xm,ym) = N (E( f̂ (x∗)),Var( f̂ (x∗))) (8)

where

E( f̂ (x∗)) = k(x∗,Xm)K−1
m ym (9)

Var( f̂ (x∗)) = k(x∗,x∗)−k(x∗,Xm)K−1
m k(x∗,Xm)

⊺ (10)

D. Parameter Design for Next Round Experiment

In this experimental design block, we designed a query
generator via three different sampling strategies. Our query
generator utilizes the prediction of unlabeled data from the
predictive modeling block to select a group of informative
unlabeled data for the next iteration.

Pure exploration for constraint boundary - To estimate
the feasibility constraint of parameters, we utilized an active
learning procedure that recommends unlabeled data with
the highest uncertainty in the prediction. To measure the
uncertainty of prediction for unlabeled data, we calculate the
difference in prediction probability for binary class labels,
which is defined as follows:

U(xu) = 1− | P(cu = 0|xu)−P(cu = 1|xu) | (11)

where P(cu = 0|xu) is the probability of the predicted feasible
label,P(cu = 1|xu) is the probability of the predicted infeasi-
ble label. The sample with the largest value of uncertainty,
denoted as U(xu), is selected for recommendation in each
iteration of the active learning procedure. The objective of
this pure exploration process is to refine the classification
boundary of the constraint model, providing a more robust
classifier to separate parameter space.

Pure exploration for surrogate model - To improve the
reliability of the surrogate model for the target process, we
recommend another group of samples with high uncertainty
in the prediction for updating the model. Different from the
classification problem, in the regression problem, the uncer-
tainty of prediction is measured by the posterior variance
of the surrogate model. We select unlabeled data where the
posterior variance σ(xu) calculated using Equation (10) is
maximized. By selecting these data, we can further refine
the surrogate model and improve its predictive accuracy

Acquisition function in BO recommendation - In order
to optimize the target process function, another sample
is recommended via the traditional Bayesian optimization
framework where an acquisition function is constructed to
quantify the most informative candidate samples for next
round experiment. Acquisition functions are usually derived
from the µ(xu) calculated by Equation (9) and σ(xu) cal-
culated by Equation (10). This acquisition function allows a
balance between exploitation (the predicted quality is high)
and exploration (the posterior variance is high). Traditionally,
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Fig. 2. Schematic diagram of the chemical vapor deposition apparatus.

the global maximum value of the acquisition function is
selected. In this study, we adopt the Lower Confidence
Bound (LCB) function as an acquisition function because we
want to minimize our objective function, which is defined as
follows:

xt = argmax
xu

−µ(xu)+βσ(xu) (12)

where β is a hyperparameter that controls the trade-off
between exploration and exploitation. The β in this work
is predefined as a constant β = 100 based on the scale of
µ(xu) and σ(xu).

III. CASE STUDY: 2D MATERIAL SYNTHESIS VIA
CHEMICAL VAPOR DEPOSITION METHOD

Since their modern debut in 2004, 2-dimensional (2D)
materials have continued to exhibit scientific and industrial
promise, providing a broad materials platform for scientific
investigation and development of nano- and atomic-scale
devices. Chemical vapor deposition (CVD) is a scalable
technology that is widely used for the synthesis of high-
quality 2D materials, including graphene and transition metal
dichalcogenides (TMDCs). A schematic diagram of the CVD
apparatus is shown in Fig. 2. However, the synthesis of high-
precision 2D materials via the CVD method requires a larger
number of experiments to investigate how changing various
synthesis parameters like time, pressure, and flow rate impact
the quality and reliability of the synthesized 2D materials.
But with increasing complexity in material synthesis, the
combination possibilities become too large for trial-and-error
approaches to be practical and economic. In this study, we
optimize a material synthesis via the CVD process via the
proposed optimal parameter design method.

A. Experimental Setting

In this study, we focus on adjusting five correlated syn-
thesis parameters to achieve high-quality 2D material. These
five parameters form a 5-dimensional design space with 384
points for experiments and these five parameter range is
shown in Table I. The range of each parameter is predefined
by material scientists according to domain knowledge. Our
2D materials are grown on a 1cm×1cm silicon substrate and
two precursors are separately placed in two alumina boats. In
our synthesis process, two distance parameters are involved:
Da measures the distance between the boat of precursor A
and the right edge of the heating zone, while Db measures the
distance between the boat of precursor B and the temperature

TABLE I
2D MATERIAL SYNTHESIS INPUT PARAMETERS SPACE.

Parameter Kind Range Unit
Da discrete [14,16] with interval 1 cm
Db discrete [12,15] with interval 3 cm
F discrete [0.14, 0.23] with interval 0.03 L/min
R discrete [5,20] with interval 5 ◦c /min
T discrete [10,25] with interval 5 min

sensor. The temperature range for the synthesis process was
set to a fixed range, and the ramp rate denoted by R indicates
the speed of temperature change from the lowest temperature
to the highest temperature. Once the temperature reaches its
highest value, we wait for another T minutes before cooling
down the tube and collecting the sample, which is brought
down to room temperature. The gas flow rate through the
tube is represented by the parameter F .

On the other hand, layer-dependent features extracted from
photoluminescence (PL) spectra or Raman Spectroscopy are
widely used as an indicator to represent the quality of 2D
materials [17], [18]. In this study, we measure the quality of
2D materials using the fitted half-maximum peak (FWHM)
width of the excitonic peak of PL spectra obtained from
successful experiments. A smaller FWHM width indicates
higher material quality. An example of PL spectra is shown
in Figure 3. We usually can collect multiple PL spectra

Fig. 3. An example of normalized PL spectra by the in situ Raman peak
of the 2D material substrate at 521 cm-1 and its A exciton and A-trion
peak fitted by the Lorentzian function from OriginLab software are shown
in Figure 3. The FWHM width of the excitonic peak (represented by the
red line in Figure 3) is used as our optimization objective.

on a single 1cm × 1cm silicon substrate and choose the
smallest FWHM width from each sample to serve as our
target quality vector Y. If we can not collect PL spectra
from a silicon substrate, the corresponding parameter setting
is unfeasible. We treat the conditions that can grow target
material as a constraint in our experimental design. Our
feasibility constraint classifies the overall design space into
two regions: 1) feasible region where 2D material can grow
and 2) infeasible region where 2D material can not grow.
By uncovering the relationship between synthesis parameters
and experimental success, we aim to help material scientists
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establish experimental conditions with a high success rate.
The objective of this study is to identify optimal parameter
settings that result in target 2D material with a minimal
FWHM width and to develop a classification boundary to
distinguish between feasible and infeasible samples.

B. Initial Design and Iterative Selection Process

In this study, we employ a pool-based active learning
process on a finite candidate pool of synthesis parameters,
as defined in Table I. We begin by selecting an initial
training dataset of 26 experiments without replacement from
the candidate pool. Our initial selection strategy consists
of two methods. Firstly, we collected 14 samples based
on material scientists’ domain knowledge. Secondly, we
use Taguchi methods [1] to select the second part of the
initial design, consisting of 12 samples downscaled from
orthogonal arrays generated for the whole parameter design
space. This initial design, which combines the traditional
design of experiments (DoE) methods with chemical domain
knowledge, is intended to provide a more informative starting
point for our approach than an initial design generated from
a single method. It can also be used as a warm-start for our
approach. Our initial training dataset Dl is obtained after
conducting these experiments.

In this study, we set the batch size to 5, and we recommend
a total of 5 points in each iteration. We select two points with
the highest value of U(xu) for constraint exploration and two
points with the highest value of σ(xu) for surrogate model
exploration. An additional point is obtained using Equation
(12) to find a sample with lower FWHM width. These five
selected points are then removed from the candidate pool
and incorporated into the training dataset after conducting
experiments for the next iteration. This sequential alternation
between recommendation and experiment is repeated until
we meet our termination criteria. In this study, we terminated
our experiments at the 10th iteration.

1 2 3 4 5 6 7 8 9 10
Interation number

0.040

0.045

0.050

0.055

0.060

FW
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 W
id

th

Selection via acqusition function
Minimum value in each batch

Fig. 4. Red line is the distribution of FHWM width measurements from
each sample proposed by the design acquisition function. Blue dash line
is the distribution of minimum FHWM width measurements in each batch
samples proposed by three sampling strategies in total

C. Results and Discussion

In each iteration group, the system suggests one point
to optimize synthesis and the other four via active learning
strategies to enhance the robustness of the constraint model
and surrogate model. To demonstrate the progress of the
framework during each iteration, The red in Fig. 4 shows
the FWHM width of each sample recommended based on the
designed acquisition function, which indicates the decrease
in FWHM width as the iteration number of experiments
increases before the 7th iteration. In order to prove that we
obtained the optimal parameter setting in the 7th iteration,
three more iterations were conducted.

Meanwhile, our optimal parameter approach can also be
treated as a batch-mode Bayesian optimization framework.
The blue dash line in Fig. 4 shows the minimum FWHM
width of five recommendations in each iteration, which also
indicates the same trend as red line shown in Fig. 4. Overall,
our approach successfully optimizes the synthesis process.

In this proposed framework, the second objective is to
estimate the feasibility boundary that disseminates the feasi-
ble points and infeasible points. After iteration 10th, we will
obtain a constraint model trained with all labeled points. This
constraint model will also guide synthesis parameter control.
Fig. 5 shows the contours of the predicted growth probability
of design space.

Fig. 5. Prediction from constraint model in terms of growth probability
is shown as a contour plot. The synthesis parameter Da and Db were held
constant at 16cm and 15cm, which are the optimal setting as the optimal
sample obtained in the 7th iteration

D. Algorithm Validation

Before the optimization process starts, we train our con-
straint model via our 26 initial selection samples, which
include 9 success samples and 17 failure samples, and
all unlabeled synthesis parameters. Owing to the limited
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labeled data, to test the performance of our initial constraint
model, the leave-one-out cross-validation method was used
to validate our constraint predictor. The predicted accuracy
of the initial constraint model is 91.05%.

To validate the performance of our constraint model after
the 10th iteration, we selected 10 points from the remaining
unlabeled data, where five of them were randomly selected
and another five points with the least predicted FWHM
width obtained from the surrogate model. We use these
ten samples’ experimental results as the validation study
to confirm that our constraint model is able to capture the
feasible region accurately. Within these ten iterations, no
unfeasible points were misclassified as feasible points. The
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Fig. 6. Performance of constraint model and surrogatem model in each
iteration

red line in Fig.6 depicts the accuracy of the prediction from
the constraint model in each iteration. Meanwhile, we also
evaluate the performance of our surrogate model. The mean
absolute error (MAE) is used to measure the performance
of the surrogate model for these ten points. Our surrogate
model achieves an MAE of 0.0039 in the 10th iteration. The
MAE under different iterations is shown in the blue line in
Fig.6. Here we can only evaluate the predicted FHWM width
when this point is classified as a feasible point.

IV. CONCLUSIONS

In this work, we proposed an optimal parameter design
approach under an unknown feasibility constraint. Our pro-
posed method comprises a predictive modeling block that
employs two machine learning models. A constraint model
is utilized to estimate the feasibility constraint, while a
surrogate model is employed to establish the relationship
between process parameters and product quality. Further-
more, a parallel sampling strategy based on three selec-
tion criteria is proposed to guide iterative experimentation.
Through a case study on 2D material synthesis via the CVD
process, our proposed approach has been validated and has
demonstrated the effectiveness of process optimization and
the robustness of feasibility estimation. By conducting 61 out
of 384 possible trials, our method has obtained the optimal

parameter setting, which constitutes 16% of the overall
parameter space. In this work, we focus on the discovery
of optimal parameters and we don’t have a fully labeled
dataset supporting comparison of benchmark models. For
future work, we will investigate the robustness of the method
by using a different number of intial trials and compare the
performance of optimization with other ML-based parameter
design methods in manufacturing.
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