
MESOSCOPIC AVERAGING OF THE TWO-DIMENSIONAL KPZ
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RAN TAO

Abstract. We study the limit of a local average of the KPZ equation in dimension d = 2
with general initial data in the subcritical regime. Our result shows that a proper spatial
averaging of the KPZ equation converges in distribution to the sum of the solution to a
deterministic KPZ equation and a Gaussian random variable that depends solely on the scale
of averaging. This shows a unique mesoscopic averaging phenomenon that is only present in
dimension two. Our work is inspired by the recent findings by Chatterjee [13].
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1. Introduction and Main result

1.1. Main Result. We are interested in the two dimensional KPZ equation driven by a
mollified space-time white noise

∂th
ε(t, x) = 1

2∆hε(t, x) + 1
2 ∣∇hε(t, x)∣2 + β√

log ε−1
ξε(t, x) −Cε, (1.1)

with initial condition hε(0, x) = h0(x) and Cε = β2

2ε2 log ε−1 ∥ϕ∥2L2(R2)
. Here β > 0 is a constant.

We define ξε(t, x) = ϕε ∗ ξ(t, x), where ξ is the space-time white noise, and ϕ ∈ C∞c (R2) is a
non-negative, smooth, symmetric mollifier with ∫ ϕdx = 1 and ϕε(x) = 1

ε2 ϕ(ε−1x). We use
∗ to denote convolution in space. The noise ξε is white in time and colored in space, with
spatial correlation length in the scale of ε.

Inspired by Chatterjee’s recent work [13], we will investigate the limit of a local average
of the mollified KPZ equation (1.1) when β ∈ (0,

√
2π). We will show that when hε(t, x) is

averaged in space in a proper scale, its limit would equal in distribution to the sum of the
solution to a deterministic KPZ equation and a Gaussian random variable. The deterministic
part only depends on the initial condition h0. The Gaussian random variable only depends on
the scale of averaging. Our result shows a “mesoscopic” averaging phenomenon that appears
exclusively in dimension two.

The following theorem is the main result of the paper.

Theorem 1.1. Let hε(t, x) be the solution to the mollified 2-dimensional KPZ equation
(1.1) with the initial condition h0 ∶ R2 → R being bounded and Lipschitz continuous. Let
0 < β <

√
2π and rε = ε1−γ for some 0 ≤ γ ≤ 1. We use B(x, rε) to denote a ball with center x

and radius rε.
1

ar
X

iv
:2

30
2.

06
68

9v
3 

 [m
at

h.
PR

]  
29

 D
ec

 2
02

3



2 RAN TAO

For any fixed t > 0, x ∈ R2, the local average of hε over B(x, rε) converges as follows
1

∣B(x, rε)∣ ∫∣y−x∣≤rε

hε(t, y)dy

dÐ→N(0, σ2
γ) −

1
2 log ( 2π

2π − β2) +
⎧⎪⎪⎨⎪⎪⎩

h̄(t, x), if 0 ≤ γ < 1,
1

∣B(x,1)∣ ∫∣y−x∣≤1 h̄(t, y)dy, if γ = 1,

(1.2)

as ε→ 0, where h̄(t, x) is the solution to the 2-dimensional deterministic KPZ equation

∂th̄(t, x) =
1
2∆h̄(t, x) + 1

2 ∣∇h̄(t, x)∣2, h̄(0, x) = h0(x), (1.3)

and N(0, σ2
γ) is a normal distribution with mean 0 and variance σ2

γ = log (2π−β2γ
2π−β2 ). When

0 ≤ γ < 1, we have σ2
γ > 0. We treat N(0, 0) as constant zero, when γ = 1 and σ2

γ = 0.

We first make the following remarks.
If γ = 0, the averaging was performed over a ball with radius rε = ε. The limit in distribution

is
h̄(t, x) +N(0, log 2π

2π − β2 ) −
1
2 log ( 2π

2π − β2) .

If we take h0 = 0, then h̄(t, x) = 0 and the limit coincides with the point-wise limit of hε(t, x)
as ε→ 0 obtained in [6] (see Theorem 1.5 below). In fact, our result generalizes the point-wise
limit of KPZ equation with flat initial data to KPZ equation with more general (bounded
and Lipschitz continuous) initial conditions. The case γ = 0 can be viewed as a “microscopic”
averaging result.

If γ = 1, the averaging was performed over a ball with radius rε = 1. As shown in (1.2),
the Gaussian term equals zero as σ2

γ = 0. The limit would be deterministic. It equals to a
spatial average of the deterministic KPZ equation over the ball of radius 1, plus a height shift
−1

2 log ( 2π
2π−β2).

The randomness has disappeared due to the independence in the limit of hε for distinct
points. As we will see in Theorem 1.5 below, a result of Caravenna-Sun-Zygouras, for any finite
set of distinct points (xi)1≤i≤n, the random variables (hε(t, xi))1≤i≤n converge to independent
Gaussians as ε → 0. Thus taking a local average over a fixed-radius ball eliminates the
randomness as a result of the law of large numbers. The height shift −1

2 log ( 2π
2π−β2) is the

mean of the Gaussians. The case γ = 1 can be viewed as a “macroscopic” averaging result.
When γ = 1, to study the next order random fluctuations, one should look at the error

hε(t, x)−Ehε(t, x) with amplification. [14] started such studies. [9] (as well as [23] for a smaller
regime of β) proved that, after proper rescaling, the error converges to an Edwards-Wilkinson
limit. [31] later enhanced this result for more general initial conditions and multi-dimensional
parameters. Although we both derive Gaussian limits, our work here differs from previous
studies. Our study focuses on the first order term ∫B(0,rε)

hε(t, x)dx, whereas the previous
works all studied the second order fluctuations

√
log ε−1 ∫B(0,1) h

ε(t, x) −Ehε(t, x)dx.
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If 0 < γ < 1, the averaging was performed over a ball with radius rε = ε1−γ , where ε≪ rε ≪ 1.
The limit in distribution is the deterministic KPZ equation with the same height shift, plus a
Gaussian random variable. The variance of the Gaussian, σ2

γ , is dependent solely on γ. This
is an interpolation between the limiting case γ = 0 and γ = 1 and is a “mesoscopic” averaging
result.

The choice of radius rε = ε1−γ is motivated by the work of Chatterjee [13] in dimensions three
and higher and also by the multi-dimensional limit of hε(t, x) in Theorem 1.5 below. For a finite
collection of space-time points (t, x(i)ε )1≤i≤n, (hε(t, x(i)ε ))1≤i≤n converges in joint distribution to a
multi-dimensional normal distribution with a covariance matrix depending on the power scales
of {∣x(i)ε − x

(j)
ε ∣ ∶ 1 ≤ i < j ≤ n}. When ∣x(i)ε − x

(j)
ε ∣ = ε1−γ+o(1), Cov(hε(t, x(i)ε ), hε(t, x(j)ε )) → σ2

γ

as ε→ 0. Since an average of Gaussians would remain a Gaussian, the limit of hε averaged
over a ball of radius ε1−γ would be a Gaussian with variance σ2

γ.

The “height shift” term −1
2 log ( 2π

2π−β2) equals to limε→0 Ehε(t, x) with initial condition
h0 = 0 for any t > 0 and x ∈ R2. This term appears because we take logarithm in solving the
KPZ equation and it is also derived in the point-wise limit in Theorem 1.5.

Remark 1.2. Another interpretation of Theorem 1.1 is to view the convergence from the
perspective of generalized random fields (also known as random distribution in the literature)
in microscopic variables. For any (t, x) ∈ [0,+∞) ×R2, we consider the following microscopic
equation

∂th̃
ε(t, x) = 1

2∆h̃ε(t, x) + 1
2 ∣∇h̃ε(t, x)∣2 + β√

log ε−1
ξ1(t, x) −

β2

2 log ε−1 ∥ϕ∥
2
L2(R2),

with initial condition h̃ε(0, x) = h0(εx). The above ξ1 is defined as in (1.1) with ε = 1. By
the scaling property of the space-time white noise,

hε(⋅, ⋅) = h̃ε( ⋅
ε2 ,
⋅
ε
) jointly in law.

The proof of Theorem 1.1 can be modified to generalize the following result:
Fix t > 0 and x ∈ R2. Let 0 ≤ γ < 1 and 0 < β <

√
2π. For any smooth and compactly

supported test function g ∈ C∞c (R2),

∫
R2

h̃ε( t

ε2 ,
x

ε
+ y

εγ
)g(y)dy

dÐ→ [N(0, σ2
γ) −

1
2 log ( 2π

2π − β2) + h̄(t, x)]∫
R2

g(y)dy,

as ε→ 0.
By [4, Corollary 2.4], as a generalized random field, h̃ε( t

ε2 , x
ε +

⋅

εγ ) converges in law to
the constant Gaussian random field [N(0, σ2

γ) − 1
2 log ( 2π

2π−β2) + h̄(t, x)]1R2(⋅). This constant
Gaussian field on R2 has a fixed spatial covariance σ2

γ independent of the spatial variable.
This limit is distinct from other Gaussian random field limits found in the literature on KPZ
equation.
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One can also consider the locally averaged KPZ equation as a generalized random field on
R2. Let 0 ≤ γ < 1. Define

hε,γ(t, x) ∶= 1
∣B(x, rε)∣ ∫∣y−x∣≤rε

hε(t, y)dy, with rε = ε1−γ.

The following corollary shows that, as a generalized random field, hε,γ(t, ⋅) converges to the
2-dimensional deterministic KPZ limit h̄(t, ⋅) − 1

2 log ( 2π
2π−β2) as ε→ 0.

Corollary 1.3. Take any smooth and compactly supported test function g ∈ C∞c (R2). For any
t > 0 and 0 ≤ γ < 1, as ε→ 0, the random variable ∫R2 hε,γ(t, x)g(x)dx converges in probability
to ∫R2 [h̄(t, x) − 1

2 log ( 2π
2π−β2)] g(x)dx.

Remark 1.4. A natural question to ask next is to investigate the second order fluctuations of
hε,γ(t, ⋅) after proper rescaling. Inspired by the results in [9, 23] and [31], one may expect that√

log ε−1 ∫R2[h(t, x) − Eh(t, x)]g(x)dx has a non-degenerate Gaussian limiting distribution
as ε → 0. We do not pursue further in this direction, as proving such results may require
techniques that are beyond the scope of this paper.

We now conclude the section with a note on the significance of this study. In Theorem 1.1, we
proved that the local average of the KPZ equation in dimension two shows a specific mesoscopic
averaging phenomenon. In Remark 1.2, when the local average is understood in a microscopic
scale, we obtained a generalized random field converge in law to a constant Gaussian random
field, which is novel to the literature. Additionally, we showed in Corollary 1.3 that the
locally averaged KPZ equation, as a generalized random field, converges to a deterministic
KPZ limit in dimension two. Our work studies the two-dimensional KPZ equation from a
new perspective and it improves the understanding on this subject.

1.2. Context. On (t, x) ∈ [0,+∞) ×Rd, the KPZ equation is an SPDE formally given by

∂th(t, x) =
1
2∆h(t, x) + 1

2 ∣∇h(t, x)∣2 + ξ(t, x). (1.4)

Here ξ denotes the space-time white noise which is the distribution valued Gaussian field in
spatial dimension d with the covariance function

E [ξ(t, x)ξ(t′, x′)] = δ0(t − t′)δ0(x − x′).
Here δ0 is the Dirac mass.

The KPZ equation was first introduced in 1986 by Kardar, Parisi and Zhang [27] and
has since become the standard random interface growth model in physics. However, mathe-
matically, the KPZ equation is ill-posed due to the non-linear term ∇h being a generalized
function, which makes the interpretation of ∣∇h∣2 unclear.

In 1990’s, Bertini and Giacomin [3] formulated the Hopf-Cole solution of (1.4) in d = 1 by
a transformation h(t, x) = log u(t, x). In fact, let u(t, x) be the solution to the d-dimensional
stochastic heat equation (SHE) on (t, x) ∈ [0,+∞) ×Rd

∂tu(t, x) =
1
2∆u(t, x) + u(t, x)ξ(t, x). (1.5)
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Then at least formally, if ignoring the Itô correction, log u(t, x) satisfies (1.4).
However, the stochastic heat equation (1.5) is only well-posed for d = 1. For dimension

d ≥ 2, (1.5) does not have function or distribution valued solutions. This makes the problem
of stochastic heat equation and KPZ equation in higher dimensions more challenging to solve.

In [6], Caravenna, Sun and Zygouras introduced a space-regularized equation with a scaling
on the disorder strength to address the well-posedness issue in dimension d = 2. The equation
is given by

∂tu
ε(t, x) = 1

2∆uε(t, x) + β√
log ε−1

uε(t, x)ξε(t, x), uε(0, x) = u0(x). (1.6)

Through the Hopf-Cole transformation hε(t, x) = log uε(t, x), hε solves the mollified KPZ
equation (1.1) with h0 = log u0.

In [6], the following multi-scale point-wise asymptotic limit of hε(t, x) with initial condition
h0(x) = 0 was derived.

Theorem 1.5 ([6], Theorem 2.15, Remark 2.16). Let h0(x) = 0. Fix t > 0. Consider a
finite collection of space-time points (tε, x

(i)
ε )1≤i≤n, where tε > 0, x

(i)
ε ∈ R2, such that as ε→ 0,

tε = εo(1)t and
∀i, j ∈ {1, . . . , n} ∶ ∣x(i)ε − x

(j)
ε ∣ ≤ ε(1−ζi,j)+o(1) for some ζi,j ∈ [0, 1].

Then if β ∈ (0,
√

2π), (hε(tε, x
(i)
ε ))1≤i≤n converges in joint distribution to the multi-dimensional

normal distribution (Yi− 1
2Var[Yi])1≤i≤n as ε→ 0, where (Yi)1≤i≤n are jointly Gaussian random

variables with
E[Yi] = 0, Cov[Yi, Yj] = log(2π − β2ζi,j

2π − β2 ) .

If β ≥
√

2π, hε(tε, x
(i)
ε ) converges to −∞ in probability for all 1 ≤ i ≤ n, as ε→ 0.

If β ∈ (0,
√

2π), Var[Yi] = log ( 2π
2π−β2) as ζi,i = 0 for any 1 ≤ i ≤ n. For any finite set of distinct

points (xi)1≤i≤n, the random variables (hε(tε, xi))1≤i≤n converge to independent Gaussians as
ε → 0. This is because ζi,j = 1 for all 1 ≤ i, j ≤ n with i ≠ j, implying independence in the
limit.

Remark 1.6. The value βc =
√

2π is critical here as there is a phase transition in Theorem 1.5.
The interval (0,

√
2π) is known as the subcritical regime for 2-dimensional KPZ equation. In

our paper, we will only focus on this regime. The research on the 2-dimensional SHE (1.5) in
a critical window around βc initiated with [2], and notable recent advancements have been
made in [7, 11, 10, 5, 25, 8].

The directed polymer model in the random environment in 2 + 1 dimension is related to
the two-dimensional KPZ equation. The solution to the KPZ equation equals in law to the
logarithm of the partition function of a continuum directed polymer. (See (1.10) below.)

In a prior work, Chatterjee [13] proved that a growing random surface generated by discrete
directed polymers in d ≥ 3 converges to a deterministic KPZ equation. It is an analogue of
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our Theorem 1.1 for directed polymers in dimensions d + 1 with d ≥ 3. The same result as
in [13] is expected to hold in the continuum setting, i.e. for the analogue KPZ equation in
dimension d ≥ 3 defined as

∂tĥε(t, x) =
1
2∆ĥε(t, x) +

1
2 ∣∇ĥε(t, x)∣2 + βε

d−2
2 ξ̂ε(t, x) −

β2

2ε2 ∥ϕ̂∥
2
L2(Rd)

, ĥε(0, x) = ĥ0(x),

where ξ̂ε = ξ(t, x) ∗ ϕ̂ε is the space-time white noise in dimension d + 1 spatially smoothened
at scale ε, ϕ̂ ∈ C∞c (Rd) is a non-negative, smooth, symmetric mollifier with ∫ ϕ̂dx = 1 and
ϕ̂ε(x) = 1

εd ϕ̂(ε−1x), ĥ0 is bounded and Lipschitz continuous, and β is sufficiently small.
We note that there is a significant difference between the d = 2 KPZ equation and the d ≥ 3

KPZ equation. In dimension d ≥ 3, there is no “mesoscopic” averaging phenomenon. In fact,
in d ≥ 3, by [13, Theorem 2.2], we expect that, by taking the average of ĥε(t, x) over a ball
B(x, rε) with radius ε ≪ rε ≪ 1, the limit would be the corresponding deterministic KPZ
equation with a height shift. The “mesoscopic” averaging result (when ε ≪ rε ≪ 1 in our
Theorem 1.1) is exclusive to dimension d = 2.

The difference arises as follows. For d ≥ 3, if x
(1)
ε , x

(2)
ε ∈ Rd and ε≪ ∣x(1)ε −x

(2)
ε ∣ ≪ 1, then as

ε→ 0, ĥε(t, x(1)ε ) and ĥε(t, x(2)ε ) always become asymptotically independent, regardless of the
scale of ∣x(1)ε − x

(2)
ε ∣. Taking a spatial average over a ball with radius ε≪ rε ≪ 1 eliminates

the “randomness” due to the law of large numbers. However, in dimension d = 2, as noted
in Theorem 1.5, when ζi,j ≠ 0, there is a nontrivial multi-scale correlation in the limit of
(hε(t, xi))1≤i≤n.

We shall finish this section by mentioning some other relevant recent works. The second order
fluctuations of KPZ equation in dimension d = 2, i.e. the limit of

√
log ε−1[hε(t, ⋅)−Ehε(t, ⋅)] as

ε→ 0, was studied in the aforementioned works [14, 9, 23, 31]. The second order fluctuations
of SHE and nonlinear SHE in d = 2 were studied in [6, 31] and [33] respectively. [22] studied
the macroscopic-level limit of the polymer paths in dimension 2 + 1. In d ≥ 3, the point-wise
limit of SHE and KPZ equation were studied in [30, 17]. The second order fluctuations
of SHE and KPZ equation were studied in [16, 19, 18, 21, 26, 28, 29]. The second order
fluctuations of nonlinear SHE was studied in [24].

Studies of the deterministic KPZ equation and deterministically growing surfaces were
recently conducted in [15, 12]. By dropping the random noise from the environment, the
deterministic KPZ equation is a much simpler object and is well-defined in all dimensions.
The hope of such studies was that it could lead to an understanding of the universal nature
of KPZ growth with noise in the dimensions greater than one.

1.3. Sketch of proof. Before beginning the proof of Theorem 1.1, let us first outline its
central idea.

To study hε, we analyze uε = ehε . To do so, we employ the Feynman-Kac formula from [1],
which can be easily adapted to any dimension.

Let 0 < infx∈R2 u0(x) ≤ supx∈R2 u0(x) < ∞, which is equivalent to the requirement that
h0(x) is bounded. The Feynman-Kac formula states that the solution to the 2-dimensional
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stochastic heat equation (1.6) is given by:

uε(t, x) = Ex [u0(Bt) exp{βε∫
t

0
ξε(t − r, Br)dr − β2

ε

2 E [(∫
t

0
ξε(t − r, Br)dr)

2
]}] , (1.7)

where βε ∶= β
√

log ε−1 , Ex is the expectation w.r.t. (Br)r≥0, (Br)r≥0 is a standard Brownian
motion in R2 starting from B0 = x and E denotes the expectation with respect to the space-
time white noise in the environment. Later, we will also make use of the Brownian bridge
from (0, x) to (s, y) with s > 0 and x, y ∈ R2. We denote the expectation w.r.t. such Brownian
bridge by Es,y

0,x.
By a time reversal in ξε, a scaling property of the space-time white noise in dimension d = 2,

and the scaling invariance of Brownian motion (εBε−2r
law= Br), we find that {uε(t, x)}x∈R2 in

(1.7) has the same joint distribution as {ũε(t, x)}x∈R2 , where

ũε(t, x) = Ex[u0(Bt) exp{βε∫
t

0
ξε(r, Br)dr − β2

ε

2 E(∫
t

0
ξε(r, Br)dr)2}]

= Ex[u0(Bt) exp{βε∫
t

0
∫
R2

ϕε(Br − y)ξ(r, y)dydr − β2
ε

2 t∥ϕε∥2L2(R2)}]

= Eε−1x[u0(εBε−2t) exp{βε∫
ε−2t

0
∫
R2

ϕ(Br̃ − ỹ)ξ̃(r̃, ỹ)dỹdr̃ − β2
ε

2 ε−2t∥ϕ∥2L2(R2)}].

In the last step, we made the change of variable (εỹ, ε2r̃) ∶= (y, r). The scaling property of
the space-time white noise implies that

ξ̃(r̃, ỹ)dỹdr̃ ∶= ε−2ξ(ε2r̃, εỹ)d(εỹ)d(ε2r̃)
is another space-time white noise in R2.

Now since hε = log uε and h0 = log u0, we have

hε(t, x) law= log Eε−1x[ exp{h0(εBε−2t) + βε∫
ε−2t

0
∫
R2

ϕ(Br − y)ξ(r, y)dydr − 1
2β2

ε ε−2t∥ϕ∥2L2(R2)}].
(1.8)

For any s ≥ 0 and f ∈ C(R2) being bounded and Lipschitz continuous, define

Ψβε,f
s = Ψβε,f

s (B, ξ) = exp [f(εBs) + βε∫
s

0
∫
R2

ϕ(y −Br)ξ(r, y)dydr − 1
2β2

ε∥ϕ∥2L2s] . (1.9)

Then (1.8) can be rewritten as

hε(t, x) law= log Eε−1x[Ψβε,h0
ε−2t
]. (1.10)

In the following sections, in order to prove Theorem 1.1 for hε(t, x), we analyze the limit
of log Eε−1x[Ψβε,h0

ε−2t
] as ε→ 0.

The main idea behind the proof for Theorem 1.1 is the following decomposition:

log Eε−1x[Ψβε,h0
ε−2t
] = log

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
ε−2(1−aε)t]

+ log Eε−1x[Ψβε,0
ε−2(1−aε)t] (1.11)

for some aε = o(1) satisfying ε2aε = o(1) that we will define later.
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This decomposition is based on the following observation: the random part in the limit
of hε(t, x) depends only on the white noise ξ in an infinitesimal time window [t − o(1), t]
as ε → 0, and it is independent of the initial condition h0. Thus, we can split hε(t, x) into
two components: a “random” quantity which is the solution to the KPZ equation on time
window [t − o(1), t] with zero initial condition, and an “almost deterministic” quantity that
concentrates to a deterministic value when ε→ 0. The right-hand-side of (1.11) demonstrates
this decomposition, with the first term being the “almost deterministic” quantity and the
second term being the “random” quantity.

The remaining proof consists of two parts. In the first part, we show that the “almost
deterministic” quantity converges to the solution of the deterministic KPZ equation with
original initial data h0. This is proved in Proposition 3.2 below, with the assistance of
Proposition 3.1. In the second part, we prove that the local average of the “random” quantity
converges in law to the Gaussian random variable N(0, σ2

γ) − 1
2 log ( 2π

2π−β2). This is shown in
Proposition 3.3.

We should note that the idea of this decomposition was previously mentioned in [6] Remark
2.18 for 2-dimensional SHE with general initial conditions. It has since been utilized in
various recent works, including [9, 20, 28], with a particular emphasis in [13].
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suggestion on adding Corollary 1.3. The author would also like to thank two anonymous
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2. Moment bounds

In this section, we will discuss some properties of the random variables Eε−1x[Ψβε,0
s ],

Es,ε−1y
0,ε−1x

[Ψβε,0
s ] and log Eε−1x[Ψβε,0

s ], where Ψβε,0
s is defined as in (1.9) with f being a zero

function. These properties will be used in the proof of Theorem 1.1 later.
Hereafter, for any p > 0, we use the notation ∥ ⋅ ∥Lp(Ω) to denote the Lp(Ω) norm of the

probability space (Ω,F ,P) where the space-time white noise ξ is built on.

2.1. Second moments. We will first show that Eε−1x[Ψβε,0
s ] and Es,ε−1y

0,ε−1x
[Ψβε,0

s ] have bounded
second moments. Let

V (x) = ∫
R2

ϕ(x − y)ϕ(y)dy. (2.1)
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We first remark that for any x, y ∈ R2,

E(Eε−1x[Ψβε,0
s ]Eε−1y[Ψβε,0

s ])

= Eε−1x ⊗Eε−1y ⊗E( exp [βε∫
s

0
∫
R2
[ϕ(y −B1

r) + ϕ(y −B2
r)]ξ(r, y)dydr − β2

ε∥ϕ∥2L2s])

= Eε−1x ⊗Eε−1y( exp [β
2
ε

2 ∫
s

0
∫
R2
[ϕ(y −B1

r) + ϕ(y −B2
r)]2dydr − β2

ε∥ϕ∥2L2s])

= Eε−1x ⊗Eε−1y( exp [β2
ε ∫

s

0
∫
R2

ϕ(y −B1
r)ϕ(y −B2

r)dydr])

= Eε−1x ⊗Eε−1y( exp [β2
ε ∫

s

0
V (B1

r −B2
r)dr])

= Eε−1 x−y√
2
( exp [β2

ε ∫
s

0
V (
√

2Br)dr])

= 1 +
∞

∑
n=1

β2n
ε ∫

0<s1<⋅⋅⋅<sn<s
∫
R2n

n

∏
i=1

V (
√

2xi)ρsi−si−1(xi−1, xi)ds1 . . . dsndx1 . . . dxn

(2.2)

where we set x0 = ε−1 x−y
√

2 , s0 = 0 and let ρt(x) = (2πt)−1e−
∣x∣2
2t be the heat kernel in d = 2

such that ρt(x, y) ∶= ρt(x − y). We use Ex ⊗Ey to denote the expectation in two independent
Brownian motions B1 and B2 starting from x and y respectively.

Since
sup
x∈R2
∫
R2

V (
√

2y)ρr(x, y)dy ≤ 1
4πr
∧ ∥V ∥∞, (2.3)

where ∥V ∥∞ denotes the supremum norm of V on R2, (2.2) is bounded from above by

1 +
∞

∑
n=1

β2n
ε (∫

s

0

1
4πr
∧ ∥V ∥∞dr)

n

= 1 +
∞

∑
n=1

β2n
ε (

log 4π∥V ∥∞s

4π
+ 1

4π
)

n

.

Now for any fixed t > 0, we have that as ε→ 0,

β2
ε(

log 4π∥V ∥∞ε−2t

4π
+ 1

4π
) = β2

log ε−1(
log ε−2

4π
+ 1 + log 4π∥V ∥∞t

4π
) → β2

2π
.

Hence when s ≤ ε−2t and 0 < β <
√

2π , we have

lim sup
ε→0

E(Eε−1x[Ψβε,0
s ]Eε−1y[Ψβε,0

s ]) ≤
∞

∑
n=0
(β2

2π
)

n

≤ 2π

2π − β2 . (2.4)

We also have a second moment bound for the expectation w.r.t. Brownian bridge.

Lemma 2.1. Let 0 < β <
√

2π, t > 0 and x, y ∈ R2. There exists Cβ < ∞ independent of t, x, y,
such that

sup
ε≤1

sup
s≤ε−2t

∥Es,ε−1y
0,ε−1x

[Ψβε,0
s ]∥

L2(Ω)
< Cβ. (2.5)

Proof. By the shear invariance of the environment, for any ε > 0 and x, y ∈ R2,

∥Es,ε−1y
0,ε−1x

[Ψβε,0
s ]∥

L2(Ω)
= ∥Es,0

0,0 [Ψβε,0
s ]∥

L2(Ω) .
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(2.5) is then derived by applying [31, (2.5)]. ◻

2.2. Higher moments. Next we present the boundedness of some higher moments of
Eε−1x[Ψβε,0

s ] and Es,ε−1y
0,ε−1x

[Ψβε,0
s ]. This is proved via hypercontractivity.

Lemma 2.2. Let 0 < β <
√

2π, t > 0 and x, y ∈ R2. There exists some pβ > 2 such that
∀2 ≤ p < pβ, ∃Cβ,p < ∞ independent of t, x, y, such that

sup
ε≤1

sup
s≤ε−2t

∥Eε−1x [Ψβε,0
s ]∥

Lp(Ω) ≤ Cβ,p, (2.6)

and
sup
ε≤1

sup
s≤ε−2t

∥Es,ε−1y
0,ε−1x

[Ψβε,0
s ]∥

Lp(Ω)
≤ Cβ,p. (2.7)

Proof. (2.6) is exactly [9, (5.11)] with pβ = 1 + 2π/β2.

(2.7) can be proved in a similar way, as Es,ε−1y
0,ε−1x

[Ψβε,0
s ] admits a similar Wiener chaos

expansion and is bounded in L2. A discrete version of (2.7) for the partition function of
point-to-point polymer was proved in [22, Corollary 2.8 (i)]. Here we present a proof in the
continuum setting.

Let (Ω,F ,P) be the probability space on which the space-time white noise ξ is built. Let
{Tv, v ≥ 0} be the Ornstein-Uhlenbeck semigroup on L2(Ω) (see e.g. [32] for a reference). Let
ξ̃ be an independent copy of ξ built on the probability space (Ω̃, F̃ , P̃). By Mehler’s formula,

Tv (Es,ε−1y
0,ε−1x

[Ψβε,0
s ]) = Tv (Es,ε−1y

0,ε−1x
[exp [βε∫

s

0
∫
R2

ϕ(y −Br)ξ(r, y)dydr − 1
2β2

ε∥ϕ∥2L2s]])

= ẼEs,ε−1y
0,ε−1x

[exp [βε∫
s

0
∫
R2

ϕ(y −Br) (e−vξ(r, y) +
√

1 − e−2v ξ̃(r, y))dydr − 1
2β2

ε∥ϕ∥2L2s]] ,

where Ẽ is the expectation w.r.t. P̃. Since

Ẽ [exp [βε∫
s

0
∫
R2

ϕ(y −Br) (e−vξ(r, y) +
√

1 − e−2v ξ̃(r, y))dydr − 1
2β2

ε∥ϕ∥2L2s]]

= exp [βε∫
s

0
∫
R2

ϕ(y −Br)e−vξ(r, y)dydr − 1
2e−2vβ2

ε∥ϕ∥2L2s] ,

we have
Tv (Es,ε−1y

0,ε−1x
[Ψβε,0

s ])

= Es,ε−1y
0,ε−1x

[exp [βε∫
s

0
∫
R2

ϕ(y −Br)e−vξ(r, y)dydr − 1
2e−2vβ2

ε∥ϕ∥2L2s]]

= Es,ε−1y
0,ε−1x

[Ψ(e
−vβε),0

s ] .

(2.8)

By the hypercontractivity property of {Tv, v ≥ 0}, for any v > 0, if p(v) = e2v + 1, we have

∥Tv (Es,ε−1y
0,ε−1x

[Ψβε,0
s ])∥

Lp(v)(Ω)
≤ ∥Es,ε−1y

0,ε−1x
[Ψβε,0

s ]∥
L2(Ω)

.
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With 0 < β <
√

2π, we have evβ <
√

2π when v < log
√

2π
β . Thus by (2.8) and Lemma 2.1, if

we restrict p < pβ = 1 + 2π/β2 and let v = 1
2 log(p − 1) accordingly, then

sup
ε≤1

sup
s≤ε−2t

∥Es,ε−1y
0,ε−1x

[Ψβε,0
s ]∥

Lp(Ω)
≤ sup

ε≤1
sup

s≤ε−2t

∥Es,ε−1y
0,ε−1x

[Ψ(e
vβε),0

s ]∥
L2(Ω)

< Cβ,v,

for some constant Cβ,v. ◻

2.3. Negative moments. We next bound the negative moments of Eε−1x[Ψβε,0
s ]. The

following lemma is proved in [9] via concentration inequality.

Lemma 2.3 ([9], (5.13)). Let 0 < β <
√

2π, t > 0 and x ∈ R2. For any p > 0, there exists
Cp,β < ∞ independent of t and x, such that

sup
ε≤1

sup
s≤ε−2t

E [(Eε−1x[Ψβε,0
s ])

−p

] ≤ Cp,β.

A direct corollary is the following moment bounds of the logarithm.
Corollary 2.4. Let 0 < β <

√
2π, t > 0 and x ∈ R2. For any p > 0, there exists Cp,β < ∞

independent of t and x, such that

sup
ε≤1

sup
s≤ε−2t

E( ∣log Eε−1x[Ψβε,0
s ]∣

p

) ≤ Cp,β.

Proof. For any p > 0, there exists Cp > 0 such that ∣x∣p ≤ Cp(ex + e−x) for any x ∈ R. Apply
(2.4) and Lemma 2.3. ◻

If h0 ∶ R2 → R is bounded, (2.4) and Lemma 2.3 remain valid for Ψβε,h0
s after we multiply

some constants to the bounds. As a result, Corollary 2.4 also holds for Ψβε,h0
s .

3. Proof of Theorem 1.1

The proof here is inspired by [13].
We first state the following propositions that we will prove later.

Proposition 3.1. Let 0 < β <
√

2π and h0 ∈ C(R2) be bounded and Lipschitz continuous. Let
aε = o(1). There exist Cβ > 0 and ε0 > 0, such that when 0 < ε < ε0, for any t > 0, x ∈ R2, we
have

E
⎡⎢⎢⎢⎢⎣

RRRRRRRRRRR

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
ε−2(1−aε)t]

− exp[h̄(t − ε2aεt, x)]
RRRRRRRRRRR

2⎤⎥⎥⎥⎥⎦
≤ Cβ(ε2aεt + a

1/3
ε ), (3.1)

where h̄(t, x) is defined as in (1.3).
Proposition 3.2. With the same assumptions as in Proposition 3.1, there exist Cβ > 0 and
ε0 > 0, such that when 0 < ε < ε0, for any t > 0, x ∈ R2, we have

E
⎡⎢⎢⎢⎢⎣

RRRRRRRRRRR
log

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
ε−2(1−aε)t]

− h̄(t − ε2aεt, x)
RRRRRRRRRRR

2⎤⎥⎥⎥⎥⎦
≤ Cβ(ε2aεt + a

1/3
ε )1/8. (3.2)
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Proposition 3.3. Let 0 < β <
√

2π, rε = ε1−γ for some 0 ≤ γ ≤ 1 and aε = (log ε−1)−1/2. For
any t > 0, x ∈ R2, as ε→ 0,

1
∣B(x, rε)∣ ∫∣y−x∣≤rε

log Eε−1y[Ψβε,0
ε−2(1−aε)t]dy

d→N(0, σ2
γ) −

1
2 log ( 2π

2π − β2) , (3.3)

where N(0, σ2
γ) is a normal distribution with mean 0 and variance σ2

γ ∶= log (2π−β2γ
2π−β2 ). When

0 ≤ γ < 1, σ2
γ > 0. When γ = 1, σ2

γ = 0.

We first use Proposition 3.2 and Proposition 3.3 to prove Theorem 1.1.
Let

aε = (log ε−1)−1/2. (3.4)
Then we have aε = o(1) and εaε = o(1). In particular, as ε→ 0,

Cβ(ε2aεt + a
1/3
ε )1/8 → 0. (3.5)

By applying (1.8) and the decomposition in (1.11), we have
1

∣B(x, rε)∣ ∫∣y−x∣≤rε

hε(t, y)dy
law= 1
∣B(x, rε)∣ ∫∣y−x∣≤rε

log Eε−1y[Ψβε,h0
ε−2t
]dy

= 1
∣B(x, rε)∣ ∫∣y−x∣≤rε

log
Eε−1y[Ψβε,h0

ε−2t
]

Eε−1y[Ψβε,0
ε−2(1−aε)t]

+ log Eε−1y[Ψβε,0
ε−2(1−aε)t]dy

= I1 + I2 + I3,

where

I1 ∶=
1

∣B(x, rε)∣ ∫∣y−x∣≤rε

log
Eε−1y[Ψβε,h0

ε−2t
]

Eε−1y[Ψβε,0
ε−2(1−aε)t]

dy − 1
∣B(x, rε)∣ ∫∣y−x∣≤rε

h̄(t − ε2aεt, y)dy,

I2 ∶=
1

∣B(x, rε)∣ ∫∣y−x∣≤rε

log Eε−1y[Ψβε,0
ε−2(1−aε)t]dy,

I3 ∶=
1

∣B(x, rε)∣ ∫∣y−x∣≤rε

h̄(t − ε2aεt, y)dy.

By the Minkowski’s integral inequality, Proposition 3.2 and (3.5), when ε < ε0,

∥I1∥L2(Ω) =
XXXXXXXXXXX

1
∣B(x, rε)∣ ∫∣y−x∣≤rε

log
Eε−1y[Ψβε,h0

ε−2t
]

Eε−1y[Ψβε,0
ε−2(1−aε)t]

dy − 1
∣B(x, rε)∣ ∫∣y−x∣≤rε

h̄(t − ε2aεt, y)dy
XXXXXXXXXXXL2(Ω)

≤ 1
∣B(x, rε)∣ ∫∣y−x∣≤rε

XXXXXXXXXXX
log

Eε−1y[Ψβε,h0
ε−2t
]

Eε−1y[Ψβε,0
ε−2(1−aε)t]

− h̄(t − ε2aεt, y)
XXXXXXXXXXXL2(Ω)

dy

≤ 1
∣B(x, rε)∣ ∫∣y−x∣≤rε

C
1/2
β (ε

2aεt + a
1/3
ε )1/16dy

= C
1/2
β (ε

2aεt + a
1/3
ε )1/16 → 0, as ε→ 0.

In particular, I1 converges to 0 in distribution.
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By Proposition 3.3, I2 converges to N(0, σ2
γ) − 1

2 log ( 2π
2π−β2) in distribution for all 0 ≤ γ ≤ 1.

The last term I3 is deterministic. By Lebesgue’s dominated convergence theorem, if
0 ≤ γ < 1, I3 → h̄(t, x) as ε→ 0. If γ = 1,

I3 →
1

∣B(x, 1)∣ ∫∣y−x∣≤1
h̄(t, y)dy, as ε→ 0.

Therefore, by proving Proposition 3.2 and Proposition 3.3, we would have proved Theo-
rem 1.1. In order to prove Proposition 3.2, we shall first prove Proposition 3.1.

3.1. Proof of Proposition 3.1. Hereafter, we always assume 0 < β <
√

2π. By the Markov
property, for any 0 < s < ε−2t,

Eε−1x[Ψβε,h0
ε−2t
]

= Eε−1x[ exp{h0(εBε−2t) + βε∫
ε−2t

0
∫
R2

ϕ(Br − y)ξ(r, y)dydr − 1
2β2

ε ε−2t∥ϕ∥2L2(R2)}]

= Eε−1x[ exp{h0(εBε−2t) + βε∫
ε−2t

s
∫
R2

ϕ(Br − y)ξ(r, y)dydr

+ βε∫
s

0
∫
R2

ϕ(Br − y)ξ(r, y)dydr − 1
2β2

ε ε−2t∥ϕ∥2L2(R2)}]

= ∫
z∈R2

ρs(ε−1x, z)Es,z
0,ε−1x

[ exp{βε∫
s

0
∫
R2

ϕ(BB
r − y)ξ(r, y)dydr − 1

2β2
ε s∥ϕ∥2L2(R2)}]

Ez[ exp{h0(εB̃ε−2t−s) + βε∫
ε−2t−s

0
∫
R2

ϕ(B̃r − y)ξ(r + s, y)dydr − 1
2β2

ε(ε−2t − s)∥ϕ∥2L2(R2)}]dz

= ∫
z∈R2

ρs(ε−1x, z)Es,z
0,ε−1x

[Ψβε,0
s (BB, ξ)]Ez[Ψβε,h0

ε−2t−s
(B̃, ξ′)]dz.

Here ξ′ is a time shift of ξ by s, i.e. ξ′(r, ⋅) = ξ(s + r, ⋅) , {BB
r ∶ 0 ≤ r ≤ s} is a Brownian

bridge starting from ε−1x at time 0 and ending at z at time s, and {B̃r ∶ 0 ≤ r ≤ ε−2t − s} is a
Brownian motion starting from z, where BB and B̃ are independent.

For any s > 0,

Eε−1x[Ψβε,0
s ] = ∫

z∈R2
ρs(ε−1x, z)Es,z

0,ε−1x
[Ψβε,0

s (BB, ξ)]dz. (3.6)

In the rest of the paper, we will always set

s = ε−2(1−aε)t,

where aε is defined as in (3.4) and ε2s = ε2aε = o(1). By (3.6), the ratio expression in (3.1)
satisfies that

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
ε−2(1−aε)t]

=
∫z∈R2 ρs(ε−1x, z)Es,z

0,ε−1x
[Ψβε,0

s (BB, ξ)]Ez[Ψβε,h0
ε−2t−s

(B̃, ξ′)]dz

∫z∈R2 ρs(ε−1x, z)Es,z
0,ε−1x

[Ψβε,0
s (BB, ξ)]dz

. (3.7)
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We could thus interprete the ratio
Eε−1x
[Ψβε,h0

ε−2t
]

Eε−1x
[Ψβε,0

ε−2(1−aε)t
]

as a (randomly) weighted average of

Ez[Ψβε,h0
ε−2t−s

(B̃, ξ′)] over z ∈ R2.

Let Fs be the σ-algebra generated by the environment {ξ(r, ⋅) ∶ 0 ≤ r < s}. Let EFs ,
PFs , VarFs , CovFs denote the conditional expectation, conditional probability, conditional
variance and conditional covariance given Fs, respectively. In particular, the noise (with a
time shift by s) ξ′ is independent of the filtration Fs.

We first show that the conditional expectation of the ratio
Eε−1x
[Ψβε,h0

ε−2t
]

Eε−1x
[Ψβε,0

ε−2(1−aε)t
]

in (3.7) w.r.t.

Fs is approximately deterministic as ε→ 0.

Lemma 3.4. Let h̄(t, x) be as in (1.3) and aε < 1. There exists some Cβ > 0 such that for
any t > 0, x ∈ R2,

XXXXXXXXXXX
EFs

⎧⎪⎪⎨⎪⎪⎩

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
ε−2(1−aε)t]

⎫⎪⎪⎬⎪⎪⎭
− exp [h̄(t − ε2aεt, x)]

XXXXXXXXXXXL2(Ω)

≤ Cβεaε
√

t. (3.8)

We leave the proof of Lemma 3.4 to Appendix A.
We next show that the expectation of the conditional variance

E
⎡⎢⎢⎢⎢⎣
VarFs

⎧⎪⎪⎨⎪⎪⎩

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
ε−2(1−aε)t]

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦
converges to 0 as ε→ 0. This result is basically saying that the randomness from the shifted

white noise ξ′ is not contributing to the randomness in the ratio
Eε−1x
[Ψβε,h0

ε−2t
]

Eε−1x
[Ψβε,0

ε−2(1−aε)t
]

as ε→ 0. In

fact, we have the following bound and we leave its proof to Appendix B.

Lemma 3.5. Let aε = o(1). There exists some Cβ > 0 and ε0 > 0 such that for any x ∈ R2

and t > 0, when 0 < ε < ε0,

E
⎡⎢⎢⎢⎢⎣
VarFs

⎧⎪⎪⎨⎪⎪⎩

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
ε−2(1−aε)t]

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦
≤ Cβa

1/3
ε .

Now by the law of total expectation, we have

E
⎡⎢⎢⎢⎢⎣

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
ε−2(1−aε)t]

− exp [h̄(t − ε2aεt, x)]
⎤⎥⎥⎥⎥⎦

2

= E
⎡⎢⎢⎢⎢⎣

⎛
⎝

EFs

⎧⎪⎪⎨⎪⎪⎩

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
ε−2(1−aε)t]

⎫⎪⎪⎬⎪⎪⎭
− exp [h̄(t − ε2aεt, x)]

⎞
⎠

2⎤⎥⎥⎥⎥⎦
+E
⎡⎢⎢⎢⎢⎣
VarFs

⎧⎪⎪⎨⎪⎪⎩

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
ε−2(1−aε)t]

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦
,

which makes (3.1) a direct result of Lemma 3.4 and Lemma 3.5.
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3.2. Proof of Proposition 3.2. We then use Proposition 3.1 to prove Proposition 3.2. We
first start with the L1/2(Ω) norm.
Lemma 3.6. Under the same assumptions as in Proposition 3.2, there exist some Cβ > 0
and ε0 > 0, such that when 0 < ε < ε0, we have

E
⎡⎢⎢⎢⎢⎣
∣ log

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
ε−2(1−aε)t]

− h̄(t − ε2aεt, x)∣
1/2⎤⎥⎥⎥⎥⎦
≤ Cβ(ε2aεt + a

1/3
ε )1/4.

Proof. For any a, b > 0, we have ∣ log a − log b∣1/2 ≤
√
∣1 − a

b ∣ +
√
∣1 − b

a ∣ =
√
∣a − b∣(a−1/2 + b−1/2).

Thus

E
⎡⎢⎢⎢⎢⎢⎣

RRRRRRRRRRR
log

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
s ]

− h̄(t − ε2aεt, x)
RRRRRRRRRRR

1
2⎤⎥⎥⎥⎥⎥⎦

≤ E
⎧⎪⎪⎪⎨⎪⎪⎪⎩

RRRRRRRRRRR

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
s ]

− exp[h̄(t − ε2aεt, x)]
RRRRRRRRRRR

1
2 ⎡⎢⎢⎢⎢⎢⎣

⎛
⎝

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
s ]

⎞
⎠

− 1
2

+ exp[−1
2 h̄(t − ε2aεt, x)]

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

≤
√

2
⎡⎢⎢⎢⎢⎣
E
RRRRRRRRRRR

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
s ]

− exp[h̄(t − ε2aεt, x)]
RRRRRRRRRRR

⎤⎥⎥⎥⎥⎦

1
2 ⎡⎢⎢⎢⎢⎣

E
⎛
⎝

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x [Ψβε,0
s ]
⎞
⎠

−1

+ exp[−h̄(t − ε2aεt, x)]
⎤⎥⎥⎥⎥⎦

1
2

.

Note that

E
⎛
⎝

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
s ]

⎞
⎠

−1

≤ ∥Eε−1x[Ψβε,0
s ]∥2

XXXXXXXXXXX

1
Eε−1x[Ψβε,h0

ε−2t
]

XXXXXXXXXXX2

. (3.9)

By (2.4) and Lemma 2.3, together with the assumption that h0 is bounded, (3.9) is bounded
by some constant Cβ. Lemma 3.6 is then the consequence of the Cauchy-Schwarz inequality
and Proposition 3.1. ◻

Now to prove Proposition 3.2, we apply the Cauchy-Schwarz inequality to the following
expression:

E
⎡⎢⎢⎢⎢⎣
∣ log

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
s ]

− h̄(t − ε2aεt, x)∣
2⎤⎥⎥⎥⎥⎦

= E
⎡⎢⎢⎢⎢⎢⎣

RRRRRRRRRRR
log

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
s ]

− h̄(t − ε2aεt, x)
RRRRRRRRRRR

1/4 RRRRRRRRRRR
log

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
s ]

− h̄(t − ε2aεt, x)
RRRRRRRRRRR

7/4⎤⎥⎥⎥⎥⎥⎦
,

and bound the L7/2(Ω) term by using Corollary 2.4 and the discussion after it. Then there
exists some constant Cβ such that the above is bounded by

Cβ

XXXXXXXXXXX
log

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
ε−2(1−aε)t]

− h̄(t − ε2aεt, x)
XXXXXXXXXXX

1/4

L1/2(Ω)

.

We now apply Lemma 3.6.
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3.3. Proof of Proposition 3.3. We shall prove that

1
∣B(x, rε)∣ ∫∣y−x∣≤rε

log Eε−1y[Ψβε,0
ε−2(1−aε)t]dy

converges to the Gaussian random variable N(0, σ2
γ) − 1

2 log ( 2π
2π−β2) as ε → 0. To do so, we

prove the convergence of all its moments.
By the shear invariance of the space-time white noise, we can set x = 0 without loss of

generality.
We first show the convergence of the mean.
By Corollary 2.4, for any t > 0, y ∈ R2, log Eε−1y [Ψβε,0

s ] is uniformly integrable. With
aε = o(1), by Theorem 1.5, its expectation converges to −1

2 log ( 2π
2π−β2) as ε→ 0. By a change

of variable y
rε
→ ỹ,

E( 1
∣B(0, rε)∣ ∫∣y∣≤rε

log Eε−1y[Ψβε,0
s ]dy) = E( 1

∣B(0, 1)∣ ∫∣ỹ∣≤1
log Eε−1ỹrε

[Ψβε,0
s ]dỹ) .

By Lebesgue’s dominated convergence theorem,

E( 1
∣B(0, 1)∣ ∫∣ỹ∣≤1

log Eε−1ỹrε
[Ψβε,0

s ]dỹ) → −1
2 log ( 2π

2π − β2) , as ε→ 0.

For the second moment, with y
rε
→ ỹ and y′

rε
→ ỹ′,

Var( 1
∣B(0, rε)∣ ∫∣y∣≤rε

log Eε−1y[Ψβε,0
s ]dy)

= 1
∣B(0, rε)∣2 ∫∣y∣≤rε

∫
∣y′∣≤rε

Cov (log Eε−1y[Ψβε,0
s ], log Eε−1y′[Ψβε,0

s ])dydy′

= 1
∣B(0, 1)∣2 ∫∣ỹ∣≤1∫∣ỹ′∣≤1

Cov (log Eε−1ỹrε
[Ψβε,0

s ], log Eε−1ỹ′rε
[Ψβε,0

s ])dỹdỹ′.

Again, Corollary 2.4 gives the uniform integrability. By Theorem 1.5 and the continuous
mapping theorem, for any ỹ, ỹ′ ∈ R2, as ε→ 0,

Cov (log Eε−1ỹrε
[Ψβε,0

s ], log Eε−1ỹ′rε
[Ψβε,0

s ]) → Cov[Y1, Y2],

where (Y1, Y2) are the jointly Gaussian random variables defined in Theorem 1.5 with ζ1,2 = γ.
In particular, since Cov[Y1, Y2] = log (2π−β2γ

2π−β2 ) =∶ σ2
γ, we have

Var( 1
∣B(0, rε)∣ ∫∣y∣≤rε

log Eε−1y[Ψβε,0
s ]dy) → σ2

γ, as ε→ 0.
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The convergence of any higher moments can be proved following a same procedure. In fact,
for any p ≥ 1, with yi

rε
→ ỹi for all 1 ≤ i ≤ p,

E([ 1
∣B(0, rε)∣ ∫∣y∣≤rε

log Eε−1y [Ψβε,0
s ]dy −E( 1

∣B(0, rε)∣ ∫∣y∣≤rε

log Eε−1y [Ψβε,0
s ]dy)]

p

)

= 1
∣B(0, rε)∣p ∫∣y1∣≤rε

⋯∫
∣yp∣≤rε

E [
p

∏
i=1
(log Eε−1yi

[Ψβε,0
s ] −E log Eε−1yi

[Ψβε,0
s ])]dy1 . . . dyp

= 1
∣B(0, 1)∣p ∫∣ỹ1∣≤1

⋯∫
∣ỹp∣≤1

E [
p

∏
i=1
(log Eε−1ỹirε

[Ψβε,0
s ] −E log Eε−1ỹirε

[Ψβε,0
s ])]dỹ1 . . . dỹp.

(3.10)
Again the uniform integrability is guaranteed by Corollary 2.4. Using Theorem 1.5, the

continuous mapping theorem and the uniform integrability, for any (ỹi)1≤i≤p,

E [
p

∏
i=1
(log Eε−1ỹirε

[Ψβε,0
s ] −E log Eε−1ỹirε

[Ψβε,0
s ])] → E [

p

∏
i=1

Yi] , as ε→ 0,

where (Yi)1≤i≤p are again the jointly Gaussian random variables defined in Theorem 1.5 with
ζi,j = γ for any i ≠ j.

Let P 2
p be the set of all the pairings of {1, . . . , p}. By Wick’s probability theorem,

E [
p

∏
i=1

Yi] = ∑
s∈P 2

p

∏
{i,j}∈s

Cov[Yi, Yj].

In particular,

E [
p

∏
i=1

Yi] = {
0, if p is odd,
σp

γ(p − 1)!!, if p is even.
Here we use n!! to denote the double factorial.

By Lebesgue’s dominated convergence theorem, (3.10) converges to E [∏p
i=1 Yi] as ε → 0.

Thus for any p ≥ 1, the p-th moment of
1

∣B(0, rε)∣ ∫∣y∣≤rε

log Eε−1y[Ψβε,0
s ]dy

converges to the p-th moment of the Gaussian distribution N(0, σ2
γ) − 1

2 log ( 2π
2π−β2) as ε→ 0.

This implies (3.3).

4. Proof of Corollary 1.3

By the equality in law (1.10), we can prove Corollary 1.3 by showing that as ε→ 0,

E [∫
R2
( 1
∣B(x, rε)∣ ∫∣y−x∣≤rε

log Eε−1y[Ψβε,h0
ε−2t
]dy − [h̄(t, x) − 1

2 log ( 2π

2π − β2)]) g(x)dx]
2

→ 0.

(4.1)
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In order to prove (4.1), we prove that as ε→ 0,

∥∫
R2
( 1
∣B(x, rε)∣ ∫∣y−x∣≤rε

log Eε−1y[Ψβε,h0
ε−2t
]dy −E [ 1

∣B(x, rε)∣ ∫∣y−x∣≤rε

log Eε−1y[Ψβε,h0
ε−2t
]dy]) g(x)dx∥

L2(Ω)

→ 0,
(4.2)

and

∫
R2
(E [ 1
∣B(x, rε)∣ ∫∣y−x∣≤rε

log Eε−1y[Ψβε,h0
ε−2t
]dy] − [h̄(t, x) − 1

2 log ( 2π

2π − β2)]) g(x)dx→ 0.

(4.3)

Let h̃ε,γ(t, x) ∶= 1
∣B(x,rε)∣ ∫∣y−x∣≤rε

log Eε−1y[Ψβε,h0
ε−2t
]dy. By using again the decomposition (1.11),

we can prove that for any x1 ≠ x2, x1, x2 ∈ R2, as ε→ 0,

Cov [h̃ε,γ(t, x1), h̃ε,γ(t, x2)]

= E(∏
i=1,2
[ 1
∣B(xi, rε)∣ ∫∣yi−xi∣≤rε

(log Eε−1yi
[Ψβε,h0

ε−2t
] −E log Eε−1yi

[Ψβε,h0
ε−2t
])dyi])

= E(∏
i=1,2
[ 1
∣B(xi, 1)∣ ∫∣ỹi∣≤1

(log Eε−1(ỹirε+xi)[Ψ
βε,h0
ε−2t
] −E log Eε−1(ỹirε+xi)[Ψ

βε,h0
ε−2t
])dỹi])

→ 0.

More precisely, we can apply (1.11) to split h̃ε,γ(t, xi) into an “almost deterministic” part
on [0, t − o(1)) and a “random” part on [t − o(1), t] again. We can then use the Lebesgue’s
dominated convergence theorem to prove that the covariance of the “random” part converges
to zero as ε→ 0, where we appeal to Corollary 2.4 with p = 1 for the uniform integrability. If
h0 = 0, the above convergence is a direct consequence of Theorem 1.5 and Corollary 2.4.

We can now prove (4.2). In fact,

E [∫
R2
( 1
∣B(x, rε)∣ ∫∣y−x∣≤rε

log Eε−1y[Ψβε,h0
ε−2t
] −E log Eε−1y[Ψβε,h0

ε−2t
]dy) g(x)dx]

2

= ∫
R2 ∫R2

Cov [h̃ε,γ(t, x1), h̃ε,γ(t, x2)] g(x1)g(x2)dx1dx2.

(4.4)

Again by using Corollary 2.4, we can apply Lebesgue’s dominated convergence theorem to
show that (4.4) converges to zero as ε→ 0.

To prove (4.3), we note that Corollary 2.4 also guarantees the uniform integrability of
1

∣B(x,rε)∣ ∫∣y−x∣≤rε
log Eε−1y[Ψβε,h0

ε−2t
]dy for any fixed t > 0, x ∈ R2. Thus for any fixed x ∈ R2, as

ε→ 0,

E [ 1
∣B(x, rε)∣ ∫∣y−x∣≤rε

log Eε−1y[Ψβε,h0
ε−2t
]dy] → h̄(t, x) − 1

2 log ( 2π

2π − β2) .

Now by using again Corollary 2.4 with p = 1, we can apply Lebesgue’s dominated convergence
theorem to obtain (4.3).
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Appendix A. Proof of Lemma 3.4

From (3.7), we have

EFs

⎧⎪⎪⎨⎪⎪⎩

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
ε−2(1−aε)t]

⎫⎪⎪⎬⎪⎪⎭
− exp [h̄(t − ε2aεt, x)]

= EFs

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫z∈R2 ρs(ε−1x, z)Es,z
0,ε−1x

[Ψβε,0
s (BB, ξ)]{Ez[Ψβε,h0

ε−2t−s
(B̃, ξ′)] − exp[h̄(t − ε2aεt, x)]}dz

∫z∈R2 ρs(ε−1x, z)Es,z
0,ε−1x

[Ψβε,0
s (BB, ξ)]dz

⎫⎪⎪⎪⎬⎪⎪⎪⎭

= ∫
z∈R2

EFs

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρs(ε−1x, z)Es,z
0,ε−1x

[Ψβε,0
s (BB, ξ)]{Ez[Ψβε,h0

ε−2t−s
(B̃, ξ′)] − exp[h̄(t − ε2aεt, x)]}

∫z∈R2 ρs(ε−1x, z)Es,z
0,ε−1x

[Ψβε,0
s (BB, ξ)]dz

⎫⎪⎪⎪⎬⎪⎪⎪⎭
dz.

(A.1)
By the definition above,

ξ′(r, ⋅) = ξ(s + r, ⋅)
is a time shift of ξ by s. Thus {ξ′(r, ⋅)}r≥0 is independent of the filtration Fs. Since BB and
B̃ are independent, and Es,z

0,ε−1x
[Ψβε,0

s (BB, ξ)] is measurable w.r.t. Fs, the above (A.1) equals
to

∫
z∈R2

ρs(ε−1x, z)EFs

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Es,z
0,ε−1x

[Ψβε,0
s (BB, ξ)]

∫z∈R2 ρs(ε−1x, z)Es,z
0,ε−1x

[Ψβε,0
s (BB, ξ)]dz

⎫⎪⎪⎪⎬⎪⎪⎪⎭

E{Ez[Ψβε,h0
ε−2t−s

(B̃, ξ′)] − exp[h̄(t − ε2aεt, x)]}dz

= ∫
z∈R2

ρs(ε−1x, z)
Es,z

0,ε−1x
[Ψβε,0

s (BB, ξ)]

Eε−1x[Ψβε,0
s ]

E{Ez[Ψβε,h0
ε−2t−s

(B̃, ξ′)] − exp[h̄(t − ε2aεt, x)]}dz,

where we applied (3.6) to the denominator. Since E [Ψβε,0
s (B̃, ξ′)] = 1, through scaling

invariance of the Brownian motion B̃, the above equals to

∫
z∈R2

ρs(ε−1x, z)
Es,z

0,ε−1x
[Ψβε,0

s (BB, ξ)]

Eε−1x[Ψβε,0
s ]

E{Ez [exp [h0(εB̃ε−2t−s)]Ψβε,0
ε−2t−s

(B̃, ξ′)] − exp[h̄(t − ε2aεt, x)]}dz

=∫
z∈R2

ρs(ε−1x, z)
Es,z

0,ε−1x
[Ψβε,0

s (BB, ξ)]

Eε−1x[Ψβε,0
s ]

(Eεz [exp[h0(B̃t−ε2aε t)]] − exp[h̄(t − ε2aεt, x)])dz

=∫
z′∈R2

ρs(ε−1x, ε−1z′)
Es,ε−1z′

0,ε−1x
[Ψβε,0

s (BB, ξ)]

Eε−1x[Ψβε,0
s ]

(Ez′ [exp[h0(B̃t−ε2aε t)]] − exp[h̄(t − ε2aεt, x)]) ε−2dz′.

We applied a change of variable εz → z′ in the last equation.
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Using Minkowski’s integral inequality and the above computation, we have
XXXXXXXXXXX
EFs

⎧⎪⎪⎨⎪⎪⎩

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
s ]

⎫⎪⎪⎬⎪⎪⎭
− exp [h̄(t − ε2aεt, x)]

XXXXXXXXXXXL2(Ω)

≤ ∫
z′∈R2

ρs(ε−1x, ε−1z′) ∣Ez′ [exp[h0(B̃t−ε2aε t)]] − exp[h̄(t − ε2aεt, x)]∣
XXXXXXXXXXXXXXX

Es,ε−1z′
0,ε−1x

[Ψβε,0
s (BB, ξ)]

Eε−1x[Ψβε,0
s ]

XXXXXXXXXXXXXXXL2(Ω)

ε−2dz′.

(A.2)

By Hölder’s inequality, for any p, q > 2 and 1/p + 1/q = 1/2,
XXXXXXXXXXXXXXX

Es,ε−1z′
0,ε−1x

[Ψβε,0
s (BB, ξ)]

Eε−1x[Ψβε,0
s ]

XXXXXXXXXXXXXXXL2(Ω)

≤ ∥Es,ε−1z′
0,ε−1x

[Ψβε,0
s (BB, ξ)]∥

Lp(Ω)

XXXXXXXXXXX

1
Eε−1x[Ψβε,0

s ]

XXXXXXXXXXXLq(Ω)

.

By Lemma 2.2 and Lemma 2.3, if p < pβ, there exists some C̃β > 0 such that for any z′ ∈ R2

and 0 < ε ≤ 1,
XXXXXXXXXXXXXXX

Es,ε−1z′
0,ε−1x

[Ψβε,0
s (BB, ξ)]

Eε−1x[Ψβε,0
s ]

XXXXXXXXXXXXXXXL2(Ω)

≤ C̃β.

Therefore, (A.2) is bounded by

C̃β ∫
z′∈R2

ρs(ε−1x, ε−1z′) ∣Ez′ [exp[h0(B̃t−ε2aε t)]] − exp[h̄(t − ε2aεt, x)]∣ ε−2dz′

= C̃β ∫
z′∈R2

ρε2s(x, z′) ∣Ez′ [exp[h0(B̃t−ε2aε t)]] − exp[h̄(t − ε2aεt, x)]∣dz′.

By Feynman-Kac formula, exp[h̄(t − ε2aεt, x)] = Ex [exp[h0(Bt−ε2aε t)]] for some Brownian
motion B starting at x. Let B0 be another Brownian motion starting at 0. For any a, b ∈ R,
∣ea − eb∣ ≤ (ea + eb)∣a− b∣. Now since h0 is bounded and Lipschitz continuous, there exists some
C > 0, such that

∣Ez′ [exp [h0(B̃t−ε2aε t)]] − exp [h(t − ε2aεt, x)]∣
= ∣Ez′ [exp[h0(B̃t−ε2aε t)]] −Ex [exp[h0(Bt−ε2aε t)]]∣
≤ E0 ∣exp[h0(z′ +B0

t−ε2aε t)] − exp[h0(x +B0
t−ε2aε t)]∣

≤ C ∣z′ − x∣.

Then since

∫
z′∈R2

ρε2s(x, z′)∣z′ − x∣dz′ = 2π∫
+∞

0

r2

2πε2s
e−

r2
2ε2s dr =

√
π

2 ε2s,

and s = ε−2(1−aε)t, we have proved (3.8).
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Appendix B. Proof of Lemma 3.5

Again, we shall use the facts that {ξ′(r, ⋅)}r≥0 is independent of the filtration Fs, BB and
B̃ are independent, and Es,z

0,ε−1x
[Ψβε,0

s ] ∶= Es,z
0,ε−1x

[Ψβε,0
s (BB, ξ)] is measurable w.r.t. Fs. With

the same approach as in the proof of Lemma 3.4, we have

VarFs

⎧⎪⎪⎨⎪⎪⎩

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
s ]

⎫⎪⎪⎬⎪⎪⎭
=VarFs

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫z∈R2 ρs(ε−1x, z)Es,z
0,ε−1x

[Ψβε,0
s ]Ez[Ψβε,h0

ε−2t−s
(B̃, ξ′)]dz

∫z∈R2 ρs(ε−1x, z)Es,z
0,ε−1x

[Ψβε,0
s ]dz

⎫⎪⎪⎪⎬⎪⎪⎪⎭

=
∫z∈R2 ∫z′∈R2 ρs(ε−1x, z)ρs(ε−1x, z′)Es,z

0,ε−1x
[Ψβε,0

s ]Es,z′
0,ε−1x

[Ψβε,0
s ]Cε

z,z′dzdz′

∫z∈R2 ∫z′∈R2 ρs(ε−1x, z)ρs(ε−1x, z′)Es,z
0,ε−1x

[Ψβε,0
s ]Es,z′

0,ε−1x
[Ψβε,0

s ]dzdz′
,

(B.1)

where
Cε

z,z′ ∶=CovFs (Ez[Ψβε,h0
ε−2t−s

(B̃, ξ′)], Ez′[Ψβε,h0
ε−2t−s

(B̃, ξ′)]) .

Since {ξ′(r, ⋅)}r≥0 is independent of the filtration Fs,

CovFs (Ez[Ψβε,h0
ε−2t−s

(B̃, ξ′)], Ez′[Ψβε,h0
ε−2t−s

(B̃, ξ′)]) = Cov (Ez[Ψβε,h0
ε−2t−s

(B̃, ξ′)], Ez′[Ψβε,h0
ε−2t−s

(B̃, ξ′)]) .

For fixed z, z′ ∈ R2 and ε > 0, Cε
z,z′ is a deterministic value, and

Cε
z,z′ = Cov (Ez[Ψβε,h0

ε−2t−s
(B̃, ξ′)], Ez′[Ψβε,h0

ε−2t−s
(B̃, ξ′)])

= Cov(Ez [exp [h0(εB̃1
ε−2t−s)]Ψ

βε,0
ε−2t−s

(B̃1, ξ′)] , Ez′ [exp [h0(εB̃2
ε−2t−s)]Ψβε,0

s (B̃2, ξ′)] )

= E{Ez [exp [h0(εB̃1
ε−2t−s)] (Ψ

βε,0
ε−2t−s

(B̃1, ξ′) − 1)]

Ez′ [exp [h0(εB̃2
ε−2t−s)] (Ψ

βε,0
ε−2t−s

(B̃2, ξ′) − 1)] }

= Ez ⊗Ez′{ exp [h0(εB̃1
ε−2t−s) + h0(εB̃2

ε−2t−s)]E (Ψ
βε,0
ε−2t−s

(B̃1, ξ′) − 1) (Ψβε,0
ε−2t−s

(B̃2, ξ′) − 1)}

= Ez ⊗Ez′{ exp [h0(εB̃1
ε−2t−s) + h0(εB̃2

ε−2t−s)]( exp [β2
ε ∫

ε−2t−s

0
V (B̃1

r − B̃2
r)dr] − 1)},

where V (x) = ϕ ∗ ϕ(x) as defined in (2.1). Note that we can bound

Ez ⊗Ez′ (exp [β2
ε ∫

ε−2t−s

0
V (B̃1

r − B̃2
r)dr] − 1)

uniformly by some constant as in (2.2). Since h0 is also bounded, there exists some 0 < C
(1)
β <

∞, such that

sup
ε≤1

sup
z,z′∈R2

Cε
z,z′ ≤ C

(1)
β . (B.2)
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From (B.1), VarFs {
Eε−1x
[Ψβε,h0

ε−2t
]

Eε−1x
[Ψβε,0

s ]
} is a weighted average of Cε

z,z′ over z, z′ ∈ R2. Therefore,

by (B.2), for ε ≤ 1,

VarFs

⎧⎪⎪⎨⎪⎪⎩

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
s ]

⎫⎪⎪⎬⎪⎪⎭
≤ C

(1)
β , almost surely. (B.3)

Now we first assume that, for a particular realization of the noise field, Eε−1x[Ψβε,0
s ] ≤ bε for

some bε > 0. We will choose an appropriate bε later so that bε = o(1).
By the Markov’s inequality and Lemma 2.3, we have

P [Eε−1x[Ψβε,0
s ] ≤ bε] = P [(Eε−1x[Ψβε,0

s ])−1 ≥ b−1
ε ] ≤ E [(Eε−1x[Ψβε,0

s ])−1] bε ≤ C
(2)
β bε, (B.4)

for some C
(2)
β > 0. By (B.3) and (B.4) together, we have

E
⎡⎢⎢⎢⎢⎣
VarFs

⎧⎪⎪⎨⎪⎪⎩

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
s ]

⎫⎪⎪⎬⎪⎪⎭
; Eε−1x[Ψβε,0

s ] ≤ bε

⎤⎥⎥⎥⎥⎦
≤ C

(1)
β C

(2)
β bε. (B.5)

We then assume that for a particular realization of the noise field,

Eε−1x[Ψβε,0
s ] > bε.

In this case, by (B.1),

VarFs

⎧⎪⎪⎨⎪⎪⎩

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
s ]

⎫⎪⎪⎬⎪⎪⎭
≤ b−2

ε ∫
z∈R2 ∫z′∈R2

ρs(ε−1x, z)ρs(ε−1x, z′)Es,z
0,ε−1x

[Ψβε,0
s ]Es,z′

0,ε−1x
[Ψβε,0

s ]Cε
z,z′dzdz′.

(B.6)

We bound the expectation of the right-hand-side of (B.6). By Hölder’s inequality and
Lemma 2.1, there exists some 0 < C

(3)
β < ∞, such that

b−2
ε E∫

z∈R2 ∫z′∈R2
ρs(ε−1x, z)ρs(ε−1x, z′)Es,z

0,ε−1x
[Ψβε,0

s ]Es,z′
0,ε−1x

[Ψβε,0
s ]Cε

z,z′dzdz′

= b−2
ε ∫

z∈R2 ∫z′∈R2
ρs(ε−1x, z)ρs(ε−1x, z′)E{Es,z

0,ε−1x
[Ψβε,0

s ]Es,z′
0,ε−1x

[Ψβε,0
s ]}Cε

z,z′dzdz′

≤ b−2
ε C

(3)
β ∫

z∈R2 ∫z′∈R2
ρs(ε−1x, z)ρs(ε−1x, z′)Cε

z,z′dzdz′

= b−2
ε C

(3)
β ∫

y∈R2 ∫y′∈R2
ρε2s(x, y)ρε2s(x, y′)Cε

ε−1y,ε−1y′dydy′,

(B.7)

with a change of variable εz → y and εz′ → y′ in the last equation.
Since we have the term b−2

ε in (B.7), the uniform bound of Cε
ε−1y,ε−1y′ solely will not give us

a desired bound. We shall proceed as the following.
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By the boundedness of h0, there exists some constant Ch0 > 0 such that

∫
y∈R2 ∫y′∈R2

ρε2s(x, y)ρε2s(x, y′)Cε
ε−1y,ε−1y′dydy′

= ∫
y∈R2 ∫y′∈R2

ρε2s(x, y)ρε2s(x, y′)

Eε−1y ⊗Eε−1y′{ exp [h0(εB̃1
ε−2t−s) + h0(εB̃2

ε−2t−s)]( exp [β2
ε ∫

ε−2t−s

0
V (B̃1

r − B̃2
r)dr] − 1)}dydy′

≤ Ch0 ∫
y∈R2 ∫y′∈R2

ρε2s(x, y)ρε2s(x, y′)Eε−1y ⊗Eε−1y′( exp [β2
ε ∫

ε−2t−s

0
V (B̃1

r − B̃2
r)dr] − 1)dydy′

= Ch0 ∫
y∈R2 ∫y′∈R2

ρε2s(x, y)ρε2s(x, y′)E
ε−1 y−y′√

2
( exp [β2

ε ∫
ε−2t−s

0
V (
√

2Br)dr] − 1)dydy′

= Ch0 ∫
R2 ∫R2

ρε2s(y)ρε2s(y′)Eε−1 y−y′√
2
( exp [β2

ε ∫
ε−2t−s

0
V (
√

2Br)dr] − 1)dydy′

= Ch0 ∫
R2

ρ2ε2s(y)Eε−1 y√
2
( exp [β2

ε ∫
ε−2t−s

0
V (
√

2Br)dr] − 1)dy.

(B.8)
By Taylor expansion, if we set x0 = ε−1 y

√
2 and s0 = 0, the last line equals to

Ch0 ∫
R2

ρ2ε2s(y)

⋅ [
∞

∑
n=1

β2n
ε ∫

0<s1<⋅⋅⋅<sn<ε−2t−s
∫
R2n

n

∏
i=1

V (
√

2xi)ρsi−si−1(xi−1, xi)ds1 . . . dsndx1 . . . dxn]dy.
(B.9)

With ∫R2 ε−2V (ε−1x)dx = 1, we bound the n = 1 term by the following:

∫
R2

ρ2ε2s(y)[β2
ε ∫

ε−2t−s

0
∫
R2

V (
√

2x1)ρs1(x1, ε
−1 y√

2
)ds1dx1]dy

= β2
ε ∫

ε−2t−s

0
∫
R2 ∫R2

ρ2ε2s(y)2ε2ρ2ε2s1(
√

2εx1, y)V (
√

2x1)dx1dyds1

= β2
ε ∫

ε−2t−s

0
∫
R2

2ε2ρ2ε2(s+s1)(
√

2εx1)V (
√

2x1)dx1ds1

= β2
ε ∫

ε−2t−s

0
∫
R2

ρ2ε2(s+s1)(x)V (ε−1x)dxds1 = β2
ε ∫

t

ε2s
∫
R2

ρ2r(x)
1
ε2 V (ε−1x)dxdr

≤ β2
ε ∫

t

ε2s

1
4πr

dr = β2
ε

4π
log t

ε2s
= β2 log ε−2aε

4π log ε−1 =
β2

2π
aε.
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For higher order terms, we have

∫
R2

ρ2ε2s(y)[β2n
ε ∫

0<s1<⋅⋅⋅<sn<ε−2t−s
∫
R2n

n

∏
i=1

V (
√

2xi)ρsi−si−1(xi−1, xi)ds1 . . . dsndx1 . . . dxn]dy

= ∫
R2

ρ2ε2s(y)[β2n
ε ∫

0<s1<⋅⋅⋅<sn<ε−2t−s
∫
R2n

n

∏
i=1

V (
√

2xi)

(2ε2)nρ2ε2(si−si−1)(
√

2εxi−1,
√

2εxi)ds1 . . . dsndx1 . . . dxn]dy

= ∫
R2

ρ2ε2s(y)[β2n
ε ∫

0<s1<⋅⋅⋅<sn<ε−2t−s
∫
R2n

n

∏
i=1

V ( x̃i

ε
)ρ2ε2(si−si−1)(x̃i−1, x̃i)ds1 . . . dsndx̃1 . . . dx̃n]dy

= ∫
R2

ρ2ε2s(y)[β2n
ε ∫

0<s̃1<⋅⋅⋅<s̃n<t−ε2s
∫
R2n

n

∏
i=1

1
ε2 V ( x̃i

ε
)ρ2(s̃i−s̃i−1)(x̃i−1, x̃i)ds̃1 . . . ds̃ndx̃1 . . . dx̃n]dy,

with s̃0 = 0 and x̃0 = y by a change of variable.
Using again ∫R2

1
ε2 V (ε−1x)dx = 1, for any ε, u1, u2 > 0 and z1, z2 ∈ R2, we have

∫
R2

ρu1(z1)ρu2(z2, z1)
1
ε2 V (ε−1z1)dz1

= ∫
R2

1
4π2u1u2

exp(−∣z1∣2
2u1
− ∣z1 − z2∣2

2u2
) 1

ε2 V (ε−1z1)dz1

= ρu1+u2(z2)∫
R2

2π(u1 + u2)
4π2u1u2

exp( ∣z2∣2
2(u1 + u2)

− ∣z1∣2
2u1
− ∣z1 − z2∣2

2u2
) 1

ε2 V (ε−1z1)dz1

= ρu1+u2(z2)∫
R2

2π(u1 + u2)
4π2u1u2

exp(−u1 + u2

2u1u2
(z1 −

u1

u1 + u2
z2)2)

1
ε2 V (ε−1z1)dz1

≤ ρu1+u2(z2)∫
R2

(u1 + u2)
2πu1u2

1
ε2 V (ε−1z1)dz1 =

u1 + u2

2πu1u2
ρu1+u2(z2).

(B.10)

Since V is bounded by ∥V ∥∞, we also have that

∫
R2

ρu1(z1)ρu2(z2, z1)
1
ε2 V (ε−1z1)dz1 ≤

∥V ∥∞
ε2 ρu1+u2(z2). (B.11)

Now if we integrate y first, and then x1, . . . , xn successively utilizing the bounds (B.10) and
(B.11), we will have that

∫
R2

ρ2ε2s(y)[β2n
ε ∫

0<s1<⋅⋅⋅<sn<t−ε2s
∫
R2n

n

∏
i=1

1
ε2 V (ε−1xi)ρ2(si−si−1)(xi−1, xi)ds1 . . . dsndx1 . . . dxn]dy

≤ (β2
ε

2π
)

n

∫
0<s1<⋅⋅⋅<sn<t−ε2s

1
2sn + 2ε2s

n−1
∏
i=1
[( 1

2(si+1 − si)
+ 1

2si + 2ε2s
) ∧ 2π∥V ∥∞

ε2 ]ds1 . . . dsn.

(B.12)
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To bound the last integral, we integrate s1, . . . , sn successively. For any 1 ≤ i ≤ n − 1, we
have

∫
si+1

0
( 1

2si+1 − 2si

+ 1
2si + 2ε2s

) ∧ 2π∥V ∥∞
ε2 dsi

≤ ∫
si+1

0

1
2si+1 − 2si

∧ 2π∥V ∥∞
ε2 dsi +

1
2 ∫

t−ε2s

0

1
si + ε2s

dsi

≤ ∫
si+1

0

1
2si

∧ 2π∥V ∥∞
ε2 dsi +

1
2 ∫

t−ε2s

0

1
si + ε2s

dsi

≤ ∫
t

0

1
2si

∧ 2π∥V ∥∞
ε2 dsi +

1
2 ∫

t−ε2s

0

1
si + ε2s

dsi

= 1
2 log 4π∥V ∥∞t

ε2 + 1
2 +

1
2 log t

ε2s

= 1
2 log(4π∥V ∥∞t) + 1

2 + log ε−1 + aε log ε−1.

Thus (B.12) is bounded by

(β2
ε

2π
)

n

∫
t−ε2s

0

1
2sn + 2ε2s

(1
2 log(4π∥V ∥∞t) + 1

2 + log ε−1 + aε log ε−1)
n−1

dsn

= (β2
ε

2π
)

n

(1
2 log(4π∥V ∥∞t) + 1

2 + log ε−1 + aε log ε−1)
n−1

aε log ε−1

= (β2

2π
)

n

(1 + aε +
C0

log ε−1)
n−1

aε,

(B.13)

with some constant C0 ∈ R depends only on V and t.
We can now bound (B.7) by (B.8)–(B.9) and (B.12)–(B.13). We have that

b−2
ε C

(3)
β ∫

y∈R2 ∫y′∈R2
ρε2s(x, y)ρε2s(x, y′)Cε

ε−1y,ε−1y′dydy′

≤ b−2
ε C

(3)
β Ch0aε

∞

∑
n=1
(β2

2π
)

n

(1 + aε +
C0

log ε−1)
n−1

.

Since aε → 0 and C0
log ε−1 → 0 as ε→ 0, the above sum is bounded when ε is sufficiently small

and β <
√

2π. In particular, there exist constants C
(4)
β > 0 and ε0 > 0, such that when

0 < ε < ε0, the infinite sum equals to

Aε ∶=
∞

∑
n=1
(β2

2π
)

n

(1 + aε +
C0

log ε−1)
n−1
=

β2

2π

1 − (β2

2π)(1 + aε + C0
log ε−1 )

≤ C
(4)
β .

Now by (B.6) and (B.7), we have

E
⎡⎢⎢⎢⎢⎣
VarFs

⎧⎪⎪⎨⎪⎪⎩

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
s ]

⎫⎪⎪⎬⎪⎪⎭
; Eε−1x[Ψβε,0

s ] > bε

⎤⎥⎥⎥⎥⎦
≤ Ch0C

(3)
β C

(4)
β aεb

−2
ε .
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Together with (B.5), we conclude that when ε < ε0,

E
⎡⎢⎢⎢⎢⎣
VarFs

⎧⎪⎪⎨⎪⎪⎩

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
s ]

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦

= E
⎡⎢⎢⎢⎢⎣
VarFs

⎧⎪⎪⎨⎪⎪⎩

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
s ]

⎫⎪⎪⎬⎪⎪⎭
; Eε−1x[Ψβε,0

s ] ≤ bε

⎤⎥⎥⎥⎥⎦
+E
⎡⎢⎢⎢⎢⎣
VarFs

⎧⎪⎪⎨⎪⎪⎩

Eε−1x[Ψβε,h0
ε−2t
]

Eε−1x[Ψβε,0
s ]

⎫⎪⎪⎬⎪⎪⎭
; Eε−1x[Ψβε,0

s ] > bε

⎤⎥⎥⎥⎥⎦
≤ C

(1)
β C

(2)
β bε +Ch0C

(3)
β C

(4)
β aεb

−2
ε .

By choosing bε = a
1/3
ε , Lemma 3.5 is proved.
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