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MESOSCOPIC AVERAGING OF THE TWO-DIMENSIONAL KPZ
EQUATION

RAN TAO

ABSTRACT. We study the limit of a local average of the KPZ equation in dimension d = 2
with general initial data in the subcritical regime. Our result shows that a proper spatial
averaging of the KPZ equation converges in distribution to the sum of the solution to a
deterministic KPZ equation and a Gaussian random variable that depends solely on the scale
of averaging. This shows a unique mesoscopic averaging phenomenon that is only present in
dimension two. Our work is inspired by the recent findings by Chatterjee [13].
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1. INTRODUCTION AND MAIN RESULT

1.1. Main Result. We are interested in the two dimensional KPZ equation driven by a
mollified space-time white noise

1 1 3
Ohe(t, ) = = AR (t,x) + =|VR*(t, 2)|? + —=&.(t,2) - C., 1.1
) = SRR ) ¢ TR+ el ) (1)
with initial condition h¢(0,x) = ho(x) and C. = %HM%Q(RZ). Here 5> 0 is a constant.

We define &.(t,x) = ¢° » £(t, z), where £ is the space-time white noise, and ¢ € C°(R?) is a
non-negative, smooth, symmetric mollifier with [ ¢dz =1 and ¢°(z) = 6%@25(5*133). We use
* to denote convolution in space. The noise £ is white in time and colored in space, with
spatial correlation length in the scale of €.

Inspired by Chatterjee’s recent work [13], we will investigate the limit of a local average
of the mollified KPZ equation (1.1) when 3 € (0,1/27). We will show that when he(t,z) is
averaged in space in a proper scale, its limit would equal in distribution to the sum of the
solution to a deterministic KPZ equation and a Gaussian random variable. The deterministic
part only depends on the initial condition hy. The Gaussian random variable only depends on
the scale of averaging. Our result shows a “mesoscopic” averaging phenomenon that appears
exclusively in dimension two.

The following theorem is the main result of the paper.

Theorem 1.1. Let hé(t,x) be the solution to the mollified 2-dimensional KPZ equation
(1.1) with the initial condition hy : R? - R being bounded and Lipschitz continuous. Let
0< B <21 and r. == for some 0 <y < 1. We use B(x,r.) to denote a ball with center x

and radius r..
1
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For any fixred t >0, x € R?, the local average of he over B(x,r.) converges as follows

1
— he(t y)d
|B(l',7”5)‘ ly—z|<re ( y) Y .
% N(0, 02 —llog( = )+ (i), gosy<t, 12
o 2 2m - 62 |B(i,1)\ f|y—x|§1 h(t’y)dyu va = 17

as € - 0, where B(t,x) is the solution to the 2-dimensional deterministic KPZ equation

Ot z) = %Ai_z(t, )+ %|Vﬁ(t,x)|2, 70, 2) = ho(x), (1.3)

2732
0<~v <1, we have 02 >0. We treat N'(0,0) as constant zero, when v =1 and 02 = 0.

and N(0,02) is a normal distribution with mean 0 and variance o2 = log(%_ﬁzw). When

We first make the following remarks.

If v = 0, the averaging was performed over a ball with radius r. = . The limit in distribution
is

- 2m 1 2m

Bt ) + N(0.log 5 =) Qlog(27r_52).
If we take hg = 0, then h(t,z) = 0 and the limit coincides with the point-wise limit of he(t,z)
as € - 0 obtained in [6] (see Theorem 1.5 below). In fact, our result generalizes the point-wise
limit of KPZ equation with flat initial data to KPZ equation with more general (bounded
and Lipschitz continuous) initial conditions. The case v =0 can be viewed as a “microscopic”
averaging result.

If v = 1, the averaging was performed over a ball with radius r. = 1. As shown in (1.2),
the Gaussian term equals zero as ag = 0. The limit would be deterministic. It equals to a
spatial average of the deterministic KPZ equation over the ball of radius 1, plus a height shift

1 s
-1 log(zw_m).

The randomness has disappeared due to the independence in the limit of h® for distinct
points. As we will see in Theorem 1.5 below, a result of Caravenna-Sun-Zygouras, for any finite

set of distinct points (x;)1<i<n, the random variables (he(t,x;))1<i<n converge to independent
Gaussians as € - 0. Thus taking a local average over a fixed-radius ball eliminates the

randomness as a result of the law of large numbers. The height shift —% log (273_’752) is the

mean of the Gaussians. The case v =1 can be viewed as a “macroscopic” averaging result.
When v =1, to study the next order random fluctuations, one should look at the error
he(t,x)-Ehs(t,z) with amplification. [14] started such studies. [9] (as well as [23] for a smaller
regime of 3) proved that, after proper rescaling, the error converges to an Edwards-Wilkinson
limit. [31] later enhanced this result for more general initial conditions and multi-dimensional
parameters. Although we both derive Gaussian limits, our work here differs from previous
studies. Our study focuses on the first order term [ B(0r) he(t,x)dx, whereas the previous

works all studied the second order fluctuations /loge! .[B(O,l) he(t,x) —Ehe(t,x)dx.
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If 0 < v < 1, the averaging was performed over a ball with radius r. = ¢!=7, where ¢ < r. < 1.
The limit in distribution is the deterministic KPZ equation with the same height shift, plus a
Gaussian random variable. The variance of the Gaussian, 02, is dependent solely on v. This
is an interpolation between the limiting case v =0 and v =1 and is a “mesoscopic” averaging
result.

The choice of radius 7. = €77 is motivated by the work of Chatterjee [13] in dimensions three
and higher and also by the multi-dimensional limit of 4¢(¢, z) in Theorem 1.5 below. For a finite
collection of space-time points (¢, 2 )i<i<n, (he(t, xsi)))lgign converges in joint distribution to a
multi-dimensional normal distribution with a covariance matrix depending on the power scales
of {lzt? = 29|11 <i<j<n}. When |zl? — 2| = e1=r+() Cov(he(t,2), he(t,2)) - o2
as € - 0. Since an average of Gaussians would remain a Gaussian, the limit of h® averaged
over a ball of radius =7 would be a Gaussian with variance 03.

The “height shift” term ——log(27T 7

ho =0 for any t > 0 and x € R2. This term appears because we take logarithm in solving the
KPZ equation and it is also derived in the point-wise limit in Theorem 1.5.

) equals to lim._oEhs(t,z) with initial condition

Remark 1.2. Another interpretation of Theorem 1.1 is to view the convergence from the
perspective of generalized random fields (also known as random distribution in the literature)
in microscopic variables. For any (¢,z) € [0,+00) x R?, we consider the following microscopic
equation

3 32 2
—451(t,$) - W”CbHLZ(RZ)’

. 1 - 1 -
Ohe(t,x) = iAhs(t,ac) + §|Vh5(t,w)|2 + s

with initial condition h¢(0,z) = ho(ex). The above & is defined as in (1.1) with £ = 1. By
the scaling property of the space-time white noise,

he() =h*(=,-)  jointly in law.
(%) (52,6 jointly in law

The proof of Theorem 1.1 can be modified to generalize the following result:

Fix t>0and x e R2. Let 0 <y <1 and 0< < 27. For any smooth and compactly
supported test function g € C°(R?),

S G 2+ Daawn = V(002 - S1os (575 ) + )] [ a0

g2’ ¢ 2

as € = 0.
By [4, Corollary 2.4], as a generalized random field, A 4,2+ =) converges in law to
the constant Gaussian random field [NV(0,02) - § log (27T 52) + h(t :L‘)]]le( ). This constant

Gaussian field on R? has a fixed spatial covariance o2 independent of the spatial variable.
This limit is distinct from other Gaussian random field limits found in the literature on KPZ
equation.
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One can also consider the locally averaged KPZ equation as a generalized random field on

R2. Let 0 << 1. Define
1
b (t,x) == ——— he(t,y)dy, with r,=¢'".
( ) |B(SL’,7’€)| ly—z|<re ( )
The following corollary shows that, as a generalized random field, h=7(¢,-) converges to the

2-dimensional deterministic KPZ limit h(¢,-) - 1 log (273_”52) as € - 0.

Corollary 1.3. Take any smooth and compactly supported test function g € C(IR?). For any
t>0 and 0<y <1, as e - 0, the random variable [5, h=7(t,x)g(x)dx converges in probability

to [eo [ﬁ(t,x) ~1log (27%32)] g(x)dx.

Remark 1.4. A natural question to ask next is to investigate the second order fluctuations of
h=7(t,-) after proper rescaling. Inspired by the results in [9, 23] and [31], one may expect that
Viege™ [eo[b(t,2) —Eb(t,2)]g(x)dz has a non-degenerate Gaussian limiting distribution
as € - 0. We do not pursue further in this direction, as proving such results may require
techniques that are beyond the scope of this paper.

We now conclude the section with a note on the significance of this study. In Theorem 1.1, we
proved that the local average of the KPZ equation in dimension two shows a specific mesoscopic
averaging phenomenon. In Remark 1.2, when the local average is understood in a microscopic
scale, we obtained a generalized random field converge in law to a constant Gaussian random
field, which is novel to the literature. Additionally, we showed in Corollary 1.3 that the
locally averaged KPZ equation, as a generalized random field, converges to a deterministic
KPZ limit in dimension two. Our work studies the two-dimensional KPZ equation from a
new perspective and it improves the understanding on this subject.

1.2. Context. On (t,z) €[0,+00) x R the KPZ equation is an SPDE formally given by
1 1
Oh(t,z) = 5Ah(t,gc) + 5|vh(t, ) +£(t, 2). (1.4)

Here £ denotes the space-time white noise which is the distribution valued Gaussian field in
spatial dimension d with the covariance function

E[E(t,2)E(, 2")] = do(t —t')do(x — 2').
Here ¢, is the Dirac mass.
The KPZ equation was first introduced in 1986 by Kardar, Parisi and Zhang [27] and
has since become the standard random interface growth model in physics. However, mathe-

matically, the KPZ equation is ill-posed due to the non-linear term Vh being a generalized
function, which makes the interpretation of |Vh|? unclear.

In 1990’s, Bertini and Giacomin [3] formulated the Hopf-Cole solution of (1.4) in d =1 by
a transformation h(t,z) =logu(t,x). In fact, let u(¢,z) be the solution to the d-dimensional
stochastic heat equation (SHE) on (¢, ) € [0, +00) x R?

duult,x) = %Au(t,x) wult 2)E(t ). (1.5)
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Then at least formally, if ignoring the It6 correction, logu(t, z) satisfies (1.4).

However, the stochastic heat equation (1.5) is only well-posed for d = 1. For dimension
d>2, (1.5) does not have function or distribution valued solutions. This makes the problem
of stochastic heat equation and KPZ equation in higher dimensions more challenging to solve.

In [6], Caravenna, Sun and Zygouras introduced a space-regularized equation with a scaling
on the disorder strength to address the well-posedness issue in dimension d = 2. The equation
is given by

O (t,2) = 5 A (£, ) + 4 “(t, 2)&(t, ) (0, 2) = uo(x) (1.6)
u (t,x) = =Au’(t,r) + ——=u(t,x)&(t, ), u(0,2) = up(x). .
' 2 V]oge!
Through the Hopf-Cole transformation h®(t,z) = logu(t,z), h® solves the mollified KPZ
equation (1.1) with hy = log uy.

In [6], the following multi-scale point-wise asymptotic limit of h#(¢,x) with initial condition

ho(z) = 0 was derived.

Theorem 1.5 ([6], Theorem 2.15, Remark 2.16). Let ho(z) = 0. Fiz t > 0. Consider a

finite collection of space-time points (t., xgi))lgign, where t. >0, 2t € R?, such that as € - 0,
te =Mt and

Vi,je{l,...,n}: |x§z) - xé‘j)| < g(1=Gig)ro(1) for some ¢; j €[0,1].

Then if 5 € (0,v/27), (he(t-., xsi)))lgsn converges in joint distribution to the multi-dimensional
normal distribution (Y; - %Var[Y;])lsiSn as e - 0, where (Y;)1<i<n are jointly Gaussian random

variables with
2m - 52@,;'
2r -2 )
If B>/ 2m, he(tg,xgi)) converges to —oo in probability for all 1 <i<n, as € - 0.

E[Y;] =0, Cov[Y;, Y]] = log(

If 5 € (0,/2m), Var[Y;] = log (273_“52) as (;; =0 for any 1 < i <n. For any finite set of distinct
points (x;)1<i<n, the random variables (h®(t.,x;))1<i<n, converge to independent Gaussians as
¢ = 0. This is because (;; = 1 for all 1 <7,5 <n with ¢ # 7, implying independence in the
limit.

Remark 1.6. The value . = /27 is critical here as there is a phase transition in Theorem 1.5.
The interval (0,+/27) is known as the subcritical regime for 2-dimensional KPZ equation. In
our paper, we will only focus on this regime. The research on the 2-dimensional SHE (1.5) in

a critical window around f, initiated with [2], and notable recent advancements have been
made in [7, 11, 10, 5, 25, 8].

The directed polymer model in the random environment in 2 + 1 dimension is related to
the two-dimensional KPZ equation. The solution to the KPZ equation equals in law to the
logarithm of the partition function of a continuum directed polymer. (See (1.10) below.)

In a prior work, Chatterjee [13] proved that a growing random surface generated by discrete
directed polymers in d > 3 converges to a deterministic KPZ equation. It is an analogue of
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our Theorem 1.1 for directed polymers in dimensions d + 1 with d > 3. The same result as
in [13] is expected to hold in the continuum setting, i.e. for the analogue KPZ equation in
dimension d > 3 defined as

~ 1 - 1 - o A~ 2 ~ ~
Oh(t,x) = EAha(t,x) + §|Vh5(t,x)|2 + ﬁg%gs(t,x) - QB—€Q|¢||%Q(W), he(0,) = ho(x),

where fg =&(t,x) * $€ is the space-time white noise in dimension d + 1 spatially smoothened
at scale e, ¢ € C°(R?) is a non-negative, smooth, symmetric mollifier with [ ¢dz = 1 and
¢ (x) = Eidgb(s*lx), hg is bounded and Lipschitz continuous, and S is sufficiently small.

We note that there is a significant difference between the d = 2 KPZ equation and the d > 3
KPZ equation. In dimension d > 3, there is no “mesoscopic” averaging phenomenon. In fact,
in d > 3, by [13, Theorem 2.2|, we expect that, by taking the average of lAzg(t, x) over a ball
B(z,r.) with radius € < r. < 1, the limit would be the corresponding deterministic KPZ
equation with a height shift. The “mesoscopic” averaging result (when ¢ < r. < 1 in our
Theorem 1.1) is exclusive to dimension d = 2.

The difference arises as follows. For d > 3, if xél), xéz) € R? and € « |x§1) - x§2)| « 1, then as

g0, lAzE(t, xgl)) and ﬁg(t, asg)) always become asymptotically independent, regardless of the
scale of |x§1) - x£2)|. Taking a spatial average over a ball with radius € «< r. «< 1 eliminates
the “randomness” due to the law of large numbers. However, in dimension d = 2, as noted

in Theorem 1.5, when (; ; # 0, there is a nontrivial multi-scale correlation in the limit of
(he(t, i) 1<isn-

We shall finish this section by mentioning some other relevant recent works. The second order
fluctuations of KPZ equation in dimension d = 2, i.e. the limit of \/loge=1[h¢(¢,-)-Ehs(¢,-)] as
e - 0, was studied in the aforementioned works [14, 9, 23, 31]. The second order fluctuations
of SHE and nonlinear SHE in d = 2 were studied in [6, 31] and [33] respectively. [22] studied
the macroscopic-level limit of the polymer paths in dimension 2+ 1. In d > 3, the point-wise
limit of SHE and KPZ equation were studied in [30, 17]. The second order fluctuations
of SHE and KPZ equation were studied in [16, 19, 18, 21, 26, 28, 29]. The second order
fluctuations of nonlinear SHE was studied in [24].

Studies of the deterministic KPZ equation and deterministically growing surfaces were
recently conducted in [15, 12]. By dropping the random noise from the environment, the
deterministic KPZ equation is a much simpler object and is well-defined in all dimensions.
The hope of such studies was that it could lead to an understanding of the universal nature
of KPZ growth with noise in the dimensions greater than one.

1.3. Sketch of proof. Before beginning the proof of Theorem 1.1, let us first outline its
central idea.

To study h®, we analyze u® = €"". To do so, we employ the Feynman-Kac formula from [1],
which can be easily adapted to any dimension.

Let 0 < inf,pz up(x) < sup,epz uo(x) < oo, which is equivalent to the requirement that
ho(x) is bounded. The Feynman-Kac formula states that the solution to the 2-dimensional
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stochastic heat equation (1.6) is given by:

u(t,x) = E, [uo(Bt) exp {Bg foté}(t -, B.)dr - ?‘?E [(Atﬁa(t -7, BT)dT)Q]}] . (1)

where [, := \/%, E, is the expectation w.r.t. (B,),»0, (B;)r0 is a standard Brownian

motion in R? starting from By = x and E denotes the expectation with respect to the space-
time white noise in the environment. Later, we will also make use of the Brownian bridge
from (0,z) to (s,y) with s >0 and z,y € R2. We denote the expectation w.r.t. such Brownian
bridge by Eg?.

By a time reversal in ., a scaling property of the space-time white noise in dimension d = 2,

and the scaling invariance of Brownian motion (eB.-2, ‘v p ), we find that {u®(t,z)},gz2 in
(1.7) has the same joint distribution as {@°(¢, )} g2, Where

(1) = Bafuo(Beso {6 [ & B)ar - Z8( ["e(r Byar)’)]
~BunBexp (5. [ [ 6 (B~ )G p)dydr - 16 e )

=E.1, [uo(sBafzt) exp {55 /O.g_gt /RQ (B — ?J)g(ﬁ §)dgds — %5_2t|¢||%2(R2)}]'

In the last step, we made the change of variable (e7,e%7) := (y,7). The scaling property of
the space-time white noise implies that

E(7,§)dgdr = £72¢(%7, eg)d () d(°7)
is another space-time white noise in R2.

Now since h® =logu® and hg = logug, we have

e (t,2) 2 o B [exp {ha(eBo) + 5. [ [ 6B - n)e(r )y - L2310l |
(1.8)
For any s >0 and f € C'(R?) being bounded and Lipschitz continuous, define

Wil < w(B,6) = e[ 1B+ 6 [ [ oly-Boetrpdvdr - 2ks|. (19

Then (1.8) can be rewritten as

Bt 2) " og B, | 020 . (1.10)

_2t

In the following sections, in order to prove Theorem 1.1 for h#(¢,x), we analyze the limit
of log Eeqx[\llffg}zo] as € - 0.

The main idea behind the proof for Theorem 1.1 is the following decomposition:
B, [W75]

_Qt

o[ U]

log Ec-1,[075"] = 1og +log B, [ U750, (1.11)

for some a. = o(1) satisfying 24 = 0(1) that we will define later.
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This decomposition is based on the following observation: the random part in the limit
of he(t,z) depends only on the white noise £ in an infinitesimal time window [t - o(1),1]
as € > 0, and it is independent of the initial condition hy. Thus, we can split h*(t,z) into
two components: a “random” quantity which is the solution to the KPZ equation on time
window [t —o0(1),t] with zero initial condition, and an “almost deterministic” quantity that
concentrates to a deterministic value when € — 0. The right-hand-side of (1.11) demonstrates
this decomposition, with the first term being the “almost deterministic” quantity and the
second term being the “random” quantity.

The remaining proof consists of two parts. In the first part, we show that the “almost
deterministic” quantity converges to the solution of the deterministic KPZ equation with
original initial data hy. This is proved in Proposition 3.2 below, with the assistance of

Proposition 3.1. In the second part, we prove that the local average of the “random” quantity

2
2732

converges in law to the Gaussian random variable N'(0,02) - %log( ) This is shown in

Proposition 3.3.
We should note that the idea of this decomposition was previously mentioned in [6] Remark

2.18 for 2-dimensional SHE with general initial conditions. It has since been utilized in
various recent works, including [9, 20, 28|, with a particular emphasis in [13].
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2. MOMENT BOUNDS

In this section, we will discuss some properties of the random variables EE—II[\I]/?E’O:I,

Egziii[\lffso] and log qum[\lf’fg’o], where U2 is defined as in (1.9) with f being a zero
function. These properties will be used in the proof of Theorem 1.1 later.
Hereafter, for any p > 0, we use the notation |- |z»(q) to denote the LP(£2) norm of the

probability space (€2,.%,P) where the space-time white noise £ is built on.

2.1. Second moments. We will first show that EE—II[\IIEE’O:I and ES’E_ly[\Ifff’O] have bounded

0,e 1z
second moments. Let

V()= [, o@-po)ay 21)
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We first remark that for any z,y € R?,
oo v ] [o2)

~ By @By 0 B(exp[A [ [ [0(y- BY + 6y~ BYJ(ry)dydr - 3216]35])
2

~Ep o By (exp[ 2 [ [ [6(- B + oy - B Pydr - 5210[3.5))
=B, @By (exp [0 [ [ oly-BDo(y - Baydr]) (22)

=E.1,® Eg_ly( exp [ 32 fo V(B - Bf)dr])

_ 2 s

=By (exp[82 [ V(V2B,)dr])

- i 2" [ /l% H V(\/_l'z)psz Si— 1($1 luxl)dsl dsndxl .. dxn
n=1 0<81<+<8p <8 Qni 1

3@2
where we set xg = 5*”—\;%” , S0 =0 and let p(x) = (27rt)*1e‘% be the heat kernel in d = 2
such that pi(z,y) = pt(xr —y). We use E, ® E, to denote the expectation in two independent
Brownian motions B! and B? starting from x and y respectively.

Since

1
sup [ V(V2y)pr(2,y)dy < —— AV oo, (2.3)
R2 47y

zeR2

where ||V |« denotes the supremum norm of V' on R?, (2.2) is bounded from above by

S [ ) 1§ (ol s Ly

4 4
Now for any fixed ¢ > 0, we have that as € - 0,
logdn|V]ee™2t 1 B2 /loge™?2 1+logdn| V|t 32
p(lotnlVlms | 1y (logs? LrlognlViaty 5
AT Aw/  loge AT 47 2m
Hence when s <e72t and 0 < 3 < /27 , we have
2.n 2
: 82,0 Be., p T
hxisOupE(Eflx[\Ifs ]E [mp ]) Z (%) el (2.4)

We also have a second moment bound for the expectation w.r.t. Brownian bridge.

Lemma 2.1. Let 0< 3 </2m, t >0 and x,y € R%. There exists Cg < oo independent of t,x.y,
such that

sup sup
e<l s<e~2¢

B2 [w5-0]

0,1z s

ey <O (2.5)

Proof. By the shear invariance of the environment, for any € > 0 and z,y € R?,

By [wseo]

0,71z

e = B T2 -
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(2.5) is then derived by applying [31, (2.5)]. O

2.2. Higher moments. Next we present the boundedness of some higher moments of
nglx[llffs’ ] and E>° y[\IfB = ] This is proved via hypercontractivity.

0,71

Lemma 2.2. Let 0 < f <27, t >0 and x,y € R%. There exists some pg > 2 such that
V2 <p<pg, 3Cs, < 0o independent of t,x,y, such that

Be,
sup sup [|Ee-s [W5°]] 1y ) < Cs (2.6)
and
S$E Y Be,0
sup sup [E550 (0 ]] g, < o 27

Proof. (2.6) is exactly [9, (5.11)] with pg = 1+ 27//52.

ss Ly
0 -1
expansion and is bounded in L?. A discrete version of (2.7) for the partition function of
point-to-point polymer was proved in [22, Corollary 2.8 (i)]. Here we present a proof in the
continuum setting.

(2.7) can be proved in a similar way, as [\Ifﬂ © ] admits a similar Wiener chaos

Let (€2,.%,P) be the probability space on which the space-time white noise ¢ is built. Let
{T.),v 2 0} be the Ornstein-Uhlenbeck semigroup on L*(Q2) (see e. g [32] for a reference). Let
€ be an independent copy of & built on the probability space (,.%,P). By Mehler’s formula,

7, (B [0]) = T (Bt oo [ [ [ 6o B pdayar - 5210125
BB, [exp 0. [ [ 6= B (7€) + VIS ) dydr - 56210035 .
where I is the expectation w.r.t. . Since
Bleso[s. [ [0l B2) (e 60r) + VI= e 0) dudr - 582101305
—exp| . [T [ oty- Boe e pdydr - e 2ol s,

we have

(B 2]

8,7 s -v 1 —zv
~eife[o [T [ o= Boetsaydr- st o] @)
s [ate 0]

0,e 1z

By the hypercontractivity property of {T},,v >0}, for any v > 0, if p(v) = €2* + 1, we have

T, (B [02)] i < [ ES [02]

L2(Q)
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With 0 < 8 <27, we have e’3 < /27 when v < log % Thus by (2.8) and Lemma 2.1, if
we restrict p < pg =1+ 27/3? and let v = 1log(p - 1) accordingly, then

DGR [w5-0] DG [\Ijgevﬂg)@]

Sup sup 0,e 1z s 0,e 1z

<1 s<e—2¢

< sup sup

C v
3 ~ B, )
( ) e<1 s<e 21

L2(9)

for some constant C,. O

2.3. Negative moments. We next bound the negative moments of Es-lw[\lffg’o]. The

following lemma is proved in [9] via concentration inequality.

Lemma 2.3 ([9], (5.13)). Let 0 < 8 < /2w, t >0 and x € R2. For any p > 0, there exists
C, 3 < oo independent of t and x, such that

sup sup E [(Ealx[\llfe’ob_p] <Chpp.

e<l s<e~2t
A direct corollary is the following moment bounds of the logarithm.

Corollary 2.4. Let 0 < 3 < /27w, t >0 and v € R2. For any p > 0, there exists Cp 3 < o0
independent of t and x, such that

sup sup E( ‘log E571w[\llf€’0]|p) < Cpp.

e<l s<e~2t

Proof. For any p > 0, there exists C, > 0 such that |z[P < C,(e® + e7®) for any x € R. Apply
(2.4) and Lemma 2.3. O

If hy : R? - R is bounded, (2.4) and Lemma 2.3 remain valid for W=l after we multiply
some constants to the bounds. As a result, Corollary 2.4 also holds for gt

3. PrROOF OF THEOREM 1.1

The proof here is inspired by [13].

We first state the following propositions that we will prove later.

Proposition 3.1. Let 0 < 5 < /271 and hg € C(R?) be bounded and Lipschitz continuous. Let
a. =o(1). There ezxist C3 >0 and gy > 0, such that when 0 < € < g, for any t >0, x € R?, we

have
]E[

where h(t,r) is defined as in (1.3).

Fo [ F5] ’

e2¢t

Es—lx[ Be 0 ]

e-2(1-ac)y

—exp[h(t - e2*t,x)]

< Og(e%t +all?), (3.1)

Proposition 3.2. With the same assumptions as in Proposition 3.1, there exist Cg >0 and
g0 >0, such that when 0 < e < &g, for any t >0, z € R2, we have

2 .h 2
HE [ Iae_lm[gpﬁizto]

B [V 0]

e—2(1-ag)¢

—h(t-c%=t,z)| |<Ca(e2et+all®)e, (3.2)

log
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Proposition 3.3. Let 0 < <27, r. =& for some 0 <y <1 and a. = (loge™1)~1/2. For
anyt>0, x €eR?, ase— 0,
1 d 1 2m

Be,0
log Ecv, [ 9750, ), Jdy > N(0,02) - 3 log (%——62) , (3.3)
where N'(0,02) is a normal distribution with mean 0 and variance o2 := log (%) When
0<y<1,02>0. Wheny=1,02=0.

We first use Proposition 3.2 and Proposition 3.3 to prove Theorem 1.1.
Let

a. = (loge )12, (3.4)
Then we have a. = o(1) and £% = o(1). In particular, as € - 0,
Oﬁ(€2a5t+a;/3)l/8 0. (35)
By applying (1.8) and the decomposition in (1.11), we have
1 law 1 Be.h
h* L,y dy = 57 N IOgEE—l e no dy
|B($’T€)| |y—x|£r5 ( ) |B($7T€)| |y—$\37‘s y[ e?t ]
1 B, [055] .
- log = +log E.1, [U70  ]dy
BCro)l Juaer By [0S, ] V]
= Il + 1—2 + 1—3,
where
1 Es‘ly[mﬁfého] _
Il = log e “t dy _ h(t _ €2a6t, y)dy,
|B($77’6)| ly—z|<re ngly[ ffé?l_ag)t] |B(I7T€)| ly—z|<re
1
Tyi= ——— log B, [gPe0 d
’ |B(z,7e)| Jly-al<r. 08 e y[ 5’2(1’“5)7&] Y,
1 _
I3 = h(t —e%=t,y)dy.

|.B(I'7 7“5)| ly—z|<re

By the Minkowski’s integral inequality, Proposition 3.2 and (3.5), when ¢ < g,

1 By [905)°] 1 _
il = |5 o] log g Y- h(t - 2t y)dy
() |B(I;T6)| ly—z|<re ngly[ ffé[()l—ae)t] |B(J],T‘5)| ly—=|<re o)
! R e I
: 1B, )] Jy-afer. | [0 ] —h(t-e*t,y) dy
) s ety ¥ c-2(1-ae)g £2(9)
1

1/2/ 2a. 1/3
S B Juoer, O (€t a0y
y e —T|STe

= C’;/Q(gzaft + a;/g)l/16 -0, ase—0.

In particular, Z; converges to 0 in distribution.
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By Proposition 3.3, Z converges to N'(0,02) - z log( ) in distribution for all 0 <y < 1.

27— ,82

The last term 73 is deterministic. By Lebesgue’s dominated convergence theorem, if
0<y<1,Z3 > h(t,z) ase > 0. If y=1,

1

Iy > —=—
’ |B(2,1)] Jly-sl<1

h(t,y)dy, ase 0.

Therefore, by proving Proposition 3.2 and Proposition 3.3, we would have proved Theo-
rem 1.1. In order to prove Proposition 3.2, we shall first prove Proposition 3.1.

3.1. Proof of Proposition 3.1. Hereafter, we always assume 0 < § < /27. By the Markov
property, for any 0 < s < e72¢,
E.- [\1155 ho]

B e (B + A, [ [ 6B i) y)dudr - 0 )]
=E5f1x[exp{ho(eBgfzt Vi [T [ (B - ey uar

w5 [" [ 6B -9 y)dydr - 2526 e}
= [ B [ew {5 [ 0B -0t ydudr - 5525101 e ]

Ez[exp {ho(eégfzt_s) + 3. fOE_Qt_S [R (B, —y)E(r +s,y)dydr - %Bf(s_zt - ) ||¢|\%2(R2)}]dz
_ f po( e, )BT | WEO(BE &) B W (B,¢) |

ZE

Here ¢’ is a time shift of § by s, i.e. '(r,) = &(s+7,-) , {BF:0<r < s} is a Brownian
bridge starting from 7'z at time 0 and ending at z at time s, and {B,:0<r<e?t-s} is a
Brownian motion starting from z, where BP and B are independent.

For any s > 0,

B, [050] = f pu(e™te, 2)EyE, [W5-0(B7,6)]d=. (3.6)
In the rest of the paper, we will always set

s =g 2(-ae)y

where a. is defined as in (3.4) and %s = €2¢= = o(1). By (3.6), the ratio expression in (3.1)
satisfies that

B [050] Lo e )G [ VOB O B W (B.€) dz
E [\Ijﬁ:(l as)t] i fze]R2 ps(e_l‘T?Z)Esz [\IJ?E, (BB,f)]dZ

0,71z

(3.7)
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Beh
Efilz [\IISEQtO]

B
Es’l I:\II f2(1 ag)y

We could thus interprete the ratio ] as a (randomly) weighted average of

E, I:\I/,B&ho

5 S(B,S’)] over z € R2.

Let %, be the o-algebra generated by the environment {{(r,-) : 0 < r < s}. Let EZs,
P7:, Var”s, Cov”* denote the conditional expectation, conditional probability, conditional
variance and conditional covariance given %, respectively. In particular, the noise (with a

time shift by s) & is independent of the filtration .#,

B, |wft
We first show that the conditional expectation of the ratio —= 1[1[5 = ] ] in (3.7) w.r.t.
Es’l v f2(1 ag)¢

F, is approximately deterministic as € — 0.

Lemma 3.4. Let h(t,x) be as in (1.3) and a. < 1. There exists some Cg > 0 such that for
any t >0, x € R2,

D RV _
HE’Q{ ] _t] }—exp[h(t—eQaft,x)]

Ee* [\Ijﬁfz(l ag)t]

< Cge\/t. (3.8)

L2(Q)

We leave the proof of Lemma 3.4 to Appendix A.

We next show that the expectation of the conditional variance

E[Varﬁa { B, [00] }]
E [\1163(1 as)t]

converges to 0 as € — 0. This result is basically saying that the randomness from the shifted
B[]

Be ;0
Ee’lz \I}sz(l—ag)t

fact, we have the following bound and we leave its proof to Appendix B.

white noise £’ is not contributing to the randomness in the ratio ] as € — 0. In

Lemma 3.5. Let a. = o(1). There exists some Cz >0 and £¢ > 0 such that for any x € R?
and t >0, when 0 < e < gg,

s | Berg[U25)
E[Var‘/s{ [5 /] } SCﬂa;/g.
E [\Il fé(1 ae)t]

Now by the law of total expectation, we have

B, [U75] _ i
E L2 —exp [h(t—szaft,x)]]

[E ! [\Ijﬂfzu a5>t]
B, [0 ) i o B [0y
=E (E“@{ [6 _t] }—exp[h(t—sQaft,x)])]+E[Var"‘s{ [ﬁ _t] }],
E [\Ij fé(1 as)t] E [\I] fé(1 as)t]

which makes (3.1) a direct result of Lemma 3.4 and Lemma 3.5.
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3.2. Proof of Proposition 3.2. We then use Proposition 3.1 to prove Proposition 3.2. We
first start with the L'/2(Q) norm.

Lemma 3.6. Under the same assumptions as in Proposition 3.2, there exist some Cg >0
and g9 > 0, such that when 0 < e < gy, we have

Eo1,[ WP
]E|:‘10g xl: _t]

[\Ijﬁs

< Og(e2t +al*)V,
-2(1- aa)t]

o 1/2
h(t —e**t,x)

Proof. For any a,b> 0, we have |loga —logb|'? <\/|1 = 4] ++/|1 = | =/|a - b|(a1/? + b=1/2).
Thus

1
2

B, [UF]
E| [log % — h(t - %=t )
E [qjﬁf;lo] _ . % ],EE_1 [\111852}1/0] 7% 17 u
<E m—@(p[h(t—€2 st;‘r)] (W\Psﬂst] +6Xp[_§h(t_€2 Et7x):|

—

E.1, [\Ijﬁs ho]

_2t

B, [00°]

E(M) [0,

<V2|E

—exp[h(t -2t x)]

| (i) o]
El ———"'=2] +exp[-h(t-e*t,x)]]| .

E.-1, [\Iffg ]

Note that
(3.9)

B, [05] [\Ifﬁe "]

By (2.4) and Lemma 2.3, together with the assumption that hg is bounded, (3.9) is bounded
by some constant Cs. Lemma 3.6 is then the consequence of the Cauchy-Schwarz inequality
and Proposition 3.1. O

2

Now to prove Proposition 3.2, we apply the Cauchy-Schwarz inequality to the following
expression:

\Ijﬁs ho
[|10gM h(t - et x)|2]

[wi7]
~ 1/4 . 7/4
=E logm h(t - %=t x) logm h(t - e*=t, x)
B, [05] B, [ 0] ’

and bound the L7/2(Q) term by using Corollary 2.4 and the discussion after it. Then there
exists some constant C'z such that the above is bounded by

Be,h 1/4
Cj ||log Beto [;I: Zto] — h(t - e%%t, x)
[\Ij -2(1- ae)t] LU2(Q)

We now apply Lemma 3.6.
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3.3. Proof of Proposition 3.3. We shall prove that

1

=YY 1 IE _ q}ﬂs70 d
|B($,Ts)| ly—z|<re 08 gly[ € ] Yy

-2(1-ag)t

21
2m—32

converges to the Gaussian random variable A/ (0, 02) - %log( ) as € - 0. To do so, we

prove the convergence of all its moments.

By the shear invariance of the space-time white noise, we can set x = 0 without loss of
generality.

We first show the convergence of the mean.

By Corollary 2.4, for any t > 0, y € R?, logE.1, [\Ilfa’o] is uniformly integrable. With

2) as € > 0. By a change

a. = o(1), by Theorem 1.5, its expectation converges to —% log( 2”5

27—
of variable £ — g,
Te

1 1
E| —— logE 1, [ ¥50]d ):E(— logE -1, W50 d~).
(B Sy o927 108) =2 Gy o 92
By Lebesgue’s dominated convergence theorem,

2

1 . 1
E ( log Ec-14,, [‘Ilfg’o]dy) - -5 log (%—_52

—_— , ase—0.
|B(0, )] Jaist 2 )

For the second moment, with £ — ¢ and VAN i,

Te Te

1
Var| —— logE, 1, | W0 dy)
(IB(O,rg)I lyl<r o[ 9]

1
T 1B0.r)E2 -1 Be,0 1, [wBe0 /
|B(0,7.)[? AI% /y,ME Cov (log Ec-1,[W50], log E.-1,, [ W5<0]) dydy
1
“1B(0. 12 -1 Be,0 sy Be,0 Gdi’.
1B(0,1)[2 ﬁ;,q fg,lq Cov (log Ec-14, [U5°], log Ec-15,, [ 050]) djdg

Again, Corollary 2.4 gives the uniform integrability. By Theorem 1.5 and the continuous
mapping theorem, for any 7,7’ € R?, as ¢ - 0,

Cov (log Es‘lgrs [\Ij?ao]v log Es‘lg’rs [‘1156’0]) - COV[Yla }/2]7

where (Y7,Y3) are the jointly Gaussian random variables defined in Theorem 1.5 with (2 = 7.

In particular, since Cov[Y7,Y3] = log (2;_%2;’) =102, we have

1
(|B(07T5)| ly|<re & y[ ] Yy N
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The convergence of any higher moments can be proved following a same procedure. In fact,
for any p > 1, with —:—>yl for all 1 <i<p,

1 1 P
E(| =——— logE, 1, [WF=0 dy—E(— logE, 1, [WF:0 dy)] )
(e R L (e IS

p
B:,07 _ ) B:,0
"o BT Sy oy E| L1 OB [2] - Blog B, [10] |yt

=1

logE T ‘IJBE ElogEs* gire | ¥ =0 dyy ... dyg,.
|B(0 1)|p .[yl|<1 /;,pq |J—1 €7 E[ ] 19 s[ s ])] hn Yp
(3.10)

Again the uniform integrability is guaranteed by Corollary 2.4. Using Theorem 1.5, the
continuous mapping theorem and the uniform integrability, for any (7;)1<i<p,

E [ﬁ (log Ec-15,,. [U5°] - Elog Eelg“.g[\ljsﬁg’o])] - E lﬁ Yi] ., ase—0,

i=1 i=1
where (Y;)1<i<, are again the jointly Gaussian random variables defined in Theorem 1.5 with
Gij = for any i # j.
Let P? be the set of all the pairings of {1,...,p}. By Wick’s probability theorem,

p
]ElHY;] = > J] Cov[v,Y;].
i=1 seP2 {i,j}es
In particular,
H Y, %f P %s odd,
(p ni, if p is even.
Here we use n!! to denote the double factorial.

By Lebesgue’s dominated convergence theorem, (3.10) converges to E[[]7_, Yi] as ¢ - 0.
Thus for any p > 1, the p-th moment of

1

e — lOgE€71 \Ij§570 dy
’B(Oars)| ly|<re y[ ]

converges to the p-th moment of the Gaussian distribution N (0,02) - i log(27r Bg) as € = 0.
This implies (3.3).
4. PROOF OF COROLLARY 1.3
By the equality in law (1.10), we can prove Corollary 1.3 by showing that as € — 0,

| L (50 S B = 000~ 108 (5275 oo o
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In order to prove (4.1), we prove that as € - 0,

1 1
log Be, | W53 |dy ~ B | o log E.-1,| @75 |d d
AQ (|B(‘T7T€)| ly—z|<re o8 B y[ = ] Y |:|B(ZE,T€)| ly—z|<re 08 Fe y[ et ] Y g($) x

-0,

L2()

| (4.2)
/};@ (E [m aler. log E€-1y[\ﬂff§?°]dy] - [l_z(t,x) - %log (%)]) g(x)dx — 0.
(4.3)

Let b= (t, ) := m f\yfmlga log E5_1y[ ffgi”“]dy. By using again the decomposition (1.11),

we can prove that for any zq # 29, 1,79 € R2, as € - 0,

Cov [65’7(@ 1), b7 (¢, x2)]

- E( I l; (logEe-lyi[\IJff;ftLo] - ]ElogEE-lyi[ ff;?])dyi])

i=1,2 |B($i» Ta)| lyi—xi|<re

-E ( I1 [—|B(xli, 1 Je (108 Bers (i o,y [\Ifffgi“’] ~Elog Bt (g,r4a) [\Ifffg’;o]) dgi])

i=1,2

- 0.

More precisely, we can apply (1.11) to split h=7(¢,z;) into an “almost deterministic” part
on [0,t—-0(1)) and a “random” part on [t —o(1),t] again. We can then use the Lebesgue’s
dominated convergence theorem to prove that the covariance of the “random” part converges
to zero as € - 0, where we appeal to Corollary 2.4 with p = 1 for the uniform integrability. If
hg = 0, the above convergence is a direct consequence of Theorem 1.5 and Corollary 2.4.

We can now prove (4.2). In fact,

2
1 Pe;ho Be,ho
: Uw (|B(x,r5)| yalene 08 Bet, | W25 | - Blog B, [ W2 |dy | g()da

- fRQ _[Rz Cov [68’7(1&’ xl)v 6677(t7 5152)] g($1)g(x2)dx1dx2.

Again by using Corollary 2.4, we can apply Lebesgue’s dominated convergence theorem to
show that (4.4) converges to zero as & - 0.

(4.4)

To prove (4.3), we note that Corollary 2.4 also guarantees the uniform integrability of
B(I—ﬂs)‘f'y%‘gs log Es_ly[ﬁlffg}zo]dy for any fixed ¢t > 0,2 € R2. Thus for any fixed z € R?, as
e—0,

1 _ 1 o
El—— log Eo1, | 0P ldy | - h(t,2) - =1 ( )
l|B(:v,re)| slsre y[ o ] y] (1) = 5 los o — 52

Now by using again Corollary 2.4 with p = 1, we can apply Lebesgue’s dominated convergence
theorem to obtain (4.3).
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APPENDIX A. PROOF OF LEMMA 3.4

From (3.7), we have

Eﬁs anx[\lfffé}tm]
Eer,[U70, ]

-2(1-ae)t

} - exp [}_L(t — g2, x)]

. {fzeRQ ps(e7z, z)ESi_lw[\IIfE’O(BB,ﬁ)] {Ez[ ffgftlfs(é,ﬁ’)] - exp[/_z(t - SQ%t,x)]}dz}
Sz po(e 1, 2) B, [WE0(BP, ) |z

) [ I By [WE(BP, O | {B [0 (B, €)] - explh(t - e, 2)]} .

o Jege ps(e7'2, z)ES’;_lx[\If?f’O(BB, 5)]012 ‘

(A.1)
By the definition above,

§I(T7 ) = 5(3 +r, )
is a time shift of £ by s. Thus {£/(r,-) }rs0 is independent of the filtration .%,. Since BP and

B are independent, and Eg’j_lm[\lffg’o(BB,f)] is measurable w.r.t. %, the above (A.1) equals
to

8,2 Be,0 B
[ |l
zeR2 [zeRQ ps(g—lx’ Z)Eéi,lx[\lffa’o(BB, 6)](12’

]E{EZ[ Be;ho (3,5’)] —exp[ﬁ(t—amft,x)]}dz

e2t-s
B, | U8B, ) )
= [zeR2 ps(e1x, 2) 0, ;Ea[lz[qj;o] )]E{Ez[ ff;?fs(B,g’)] —exp[h(t _€2ast’$)]}dZ’

where we applied (3.6) to the denominator. Since E[\I/fg’o(é,g’)] = 1, through scaling
invariance of the Brownian motion B, the above equals to

L Eu[v@ng)

fzeR2 ps(e™ x,2) EE-lx[\Iffa’O]
E{E. [exp [ho(eB-2s_)] ff;g_s(B, ¢")] - exp[h(t —e**t,z)]} dz
By, [80(B6)

0,e 1z
= s(e7lx, 2)—
fz€R2 ps( ) Ee-lx[\llfg’o]

(Eaz [exp[hO(Bt—azaft)]] - exp[iz(t - 52a6t7 ‘T)]) dz

By [90(B2,9)] i ]
= /;IeRZ ps(e7tw, et ) — Eg—lx[\l’fa’o] (E. [exp[ho(B-c2e:¢)]] - exp[h(t — e**t,x)]) e72dz".

We applied a change of variable ez — 2’/ in the last equation.
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Using Minkowski’s integral inequality and the above computation, we have

= {Eelm[\vfx’?]

m} —exp[h(t - e¥t,x)]

12(0)
< fmu@ ps(e7w,e72") [EL [explho(Bi_c2aet)]] - exp[h(t — £%<t, z)]| (A.2)
By [wi0(Br,6)] 2
e~°dz".
B, [00°]
L2(Q)

By Holder’s inequality, for any p,q > 2 and 1/p+1/q=1/2,

Es,s_lz'[qj?s,O(BB’f):l

0,elz

B, [00]

1

R ROl W P 7

0,e 1z

<|

Lr(Q)
£2(Q) L1(Q)
By Lemma 2.2 and Lemma 2.3, if p < pg, there exists some C‘g > 0 such that for any 2z’ € R?
and 0 <e <1,

By [wi (s, 6)]

0,e 1z

B, [05°]

1

IN
™

L2()
Therefore, (A.2) is bounded by

Cp ps(etx,e712") |Ezr [exp[ho(ét_szagt)]] — exp[h(t - e2t, x)]| e 2dz
=Cy ./’G]R2 pe2s(2,2") |Ezf [exp[ho(Bt_EzaEt)]] — exp[h(t - e2t, x)]| dz'.

By Feynman-Kac formula, exp[h(t - e2%t, )] = E, [exp[ho(Bi_2ec;)]] for some Brownian
motion B starting at z. Let B° be another Brownian motion starting at 0. For any a,b € R,
le® — e?| < (e® + e?)|a - b|. Now since hg is bounded and Lipschitz continuous, there exists some
C >0, such that

|Ez/ [exp [ho(ét_EQagt)]] —exp [h(t — glacg, x)“
= ‘EZ/ [exp[ho(ét,gzagt)]] -E, [exp[ho(Bt,EzaSt)]]‘
< Eg |exp[ho(2" + Bf_s%st)] —exp[ho(z + Bf_sgaat)]‘

<Cl2' -zl

Then since

IN| / oo 2 2 T 9
pe2s(x, 2|2 —x|ld2’ =27 e 2% dr =1/ =25
’RQ E“S Y 0 2 5
AKS

2mels

and s = e72(17¢:)¢ we have proved (3.8).
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APPENDIX B. PROOF OF LEMMA 3.5

Again, we shall use the facts that {£'(r,-)},»0 is independent of the filtration %, B and
B are independent, and E0 » [\pfs ] =E>* [\Ifgs (BB,f)] is measurable w.r.t. .%,. With

0,1z
the same approach as in the proof of Lemma 3.4, we have

Be,0 Be,h
Vargs{EE_1 [‘IJBEJZO]}: ar” Jue pule Z)EOE_I [\IIS ] [\Ij —Qtos(B f)]

Eeflml:\llge ] fz€R2 Ps(ﬁ_ll’,Z)Eg Z71 I:\Ijga :Idz
fzeRQ fz 'eR2 pS(E Lo Z)ps(f-: 1z Z’)EO flx[qj?& ]Egi lx[\IIES7 ]Cg,z’dZdZ,

Jere Lorege ps(e7 2, 2) ps (71w, 2/ )EY E_lx[\llfs’ ]Egz_lx[\lf’fs’o]dzdz’

where
€. = Cov”* (E ( [xpﬁg’;os(B ¢ )] [\Ifﬁszﬁos(B,g')]).
Since {&'(r,-)}r»0 is independent of the filtration %,
Cov” (B[ W (B,&)], B [0l (B,€)]) = Cov (B[ Wil (B, |, B[ Wl (B,¢)])

For fixed 2,2’ €¢ R?2 and € > 0, C: ./ 1s a deterministic value, and

¢z = Cov (B[ w5 (B,€)) B[94 (B.)])
= Cov(E. [exp[ho(eBLs, )W (B',€)], Bur [exp[ho(e B2, )| WE-0(B2,¢N)] )
=E{E. [exp[ho(cBLs, )] (75 (B.€) - 1)]
B [exp [ho(e B2s, )] (W25 (B%€) - 1)] }

=E. ®Ezr{exp [ho(eBls, ) + ho(eB2, ) |E (W75 (BY,€) - 1) (V5] (B2¢) - 1)}

“2t-s

=E.® EZ/{ exp [ho(aég_gt_s) + ho(eéf_gt_s)]( exp [662 _[05 V(B} - Bf)dr] - 1)},

where V() = ¢ * ¢(z) as defined in (2.1). Note that we can bound
e 2t-s - -
E.®E. (exp [ f V(B! - B?)dr] - 1)
0

uniformly by some constant as in (2.2). Since hy is also bounded, there exists some 0 < Cy <
oo, such that

sup sup C: SC(l) (B.2)

€<l z 2/eR?
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7 (B w0
From (B.1), Var” {%} is a weighted average of C¢ , over z,z’ € R2. Therefore,
Eg—lz Ui ’
by (B.2), for e <1,
BEyhO

E -1 2
Var” { % } < Cél), almost surely. (B-3>
x| Ws

Now we first assume that, for a particular realization of the noise field, Eg_lz[\lfff’o] <b. for
some b. > 0. We will choose an appropriate b, later so that b. = o(1).

By the Markov’s inequality and Lemma 2.3, we have
P B, [050] <b] = P[(Ber o [W50]) 2 02 | < B[ (Bera[W50]) b < PP, (B4

for some C’éz) >0. By (B.3) and (B.4) together, we have

Be,ho
E |:Varys {M} ; Es‘lx[quao] < bz—:

<Py, B.5
1, [00] o (B5)

We then assume that for a particular realization of the noise field,
Eeo,[050] > b..
In this case, by (B.1),

Var” {Ea‘lw[ =] }

Ez—:—lz[\p?ao] (BG)
<bZ? f . f . po(elm, 2)pu(e 7, VB [ WO BT (w0 ez dzd

We bound the expectation of the right-hand-side of (B.6). By Hélder’s inequality and
Lemma 2.1, there exists some 0 < C’é‘g) < 0o, such that

-2 -1 -1 NS, 2 Be,0 | s,z Be,0 | e /

b E/ZE]RQ LERQPS(g z,2)ps(e x,z)Eoﬁs_lx[\Ifs ]EO,s‘lx[\IlS ]Cz,z'dZdZ
02 [ e e e BBy [0 Ey [ e ded
zeR2 J2/eR? ) ) )
Squ(ag)/ / ps(e7rm, 2)ps (e, 2")CE L d2d2
zeR2 J2/cR2 ?

_3-20(3)
=b.7Cy fy - fy . pe25(T,Y) pezs (2, Y )Comny -y dydy’,

with a change of variable ez - y and £z’ — y’ in the last equation.

(B.7)

Since we have the term 22 in (B.7), the uniform bound of CZ, _, , solely will not give us
a desired bound. We shall proceed as the following.
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By the boundedness of h, there exists some constant Cj,, > 0 such that

fy - fy oo P2 (@) Pes (2,5 )C o dydy’

S f etz e

E.1,® Ee—ly/{ exp [ho(aég_gtﬂ) + ho(i?Bf-zt,s)]( exp [63 foa h V(B! - Bf,)dr] - 1)}dydy’
-2

e “t-s ~ ~
< Cho / f pEZS(x7 y)pezs(x, y,)Es‘ly ® Es‘ly’( €xp [552 f V(B% - Bg)dr] - l)dydy,
yeR2 Jy/eR2 0

e 2t-s

:Ohof f pezs(2,y)pezs (2,9 )E_ oy (exp [ﬁff V(V2B,)dr] - 1)dydy’

yeR2 Jy'eR2 75 0

e 2t-s

:Chof f pezs(y)pezs(y’)Es_le(eXp[53f V(V2B,)dr] - 1)dydy’

R? JR? V2 0

e 2t-s
= Chy [, (@B g (exo[82 [ V(V2B)ar] - 1)y,
(B.8)

By Taylor expansion, if we set xg = 5‘1% and sg = 0, the last line equals to

Cho /l; anQs(?J)
. [ Z Bgn f f H V(\/ﬁ{[‘i)psi_si_l (l‘i—ly {Ei)dsl R dSndl’l e dl’n]dy
O<sy<<sp<e™2t—s JR2™ ;]

n=1

(B.9)

With [p, 2V (e 'a)dz = 1, we bound the n =1 term by the following:

Lopn2 [ V(B0 (o2 Lyasian oy

e t-s

= [0 [ [ s )22 s, (VI )V (VEr ) dandyds,
e t-s

= 662 /(; /R? 252P2s2(s+sl)(\/§€$1)V(\/§x1)dx1d51

e 2t-s t 1

3 [0 [ e @V ) dadsi = 8 [ [ ()5 (= ) dadr
0 R2 25 JR2
t 2 2 —2a¢ 2

5552/ 1dr:&logt _ B?loge B

e2s 4mr A4t Ce2s  dwloge! 2w
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For higher order terms, we have

/ p2€28(y) 62" f0<s o 3/1;2" HV(\/_JQ),OSZ NN T ‘)dsl...dsndxl...dxn]dy

_ 2n
- \/IREQ p2525(y) BE ,/0<51<~--<sn<52t—s AQZQ" 1:[ V(\/_xZ

(282)np262(3i_5i—1)(\/§€$i_17 ﬂgxi)dsl ...ds,dz; .. .d:z:n]dy

2n 5, =
= /]1%2 p2525(y)|:65 _/0<51<~--<sn<52t—s /R% UV( ),0252(31 o) (Tic1, T5)dsy .. ds,dy . .dxn]dy
n 1
— 2n - ~ ~
- ./11;2 ;02523(1/)[55 f0<§1<...<§n<t52s [Rgzn o 52 )pQ(Sl —s) (Tie1, 1)dS1 - dSpdTy .dxn]dy,
with 59 =0 and Zo =y by a change of variable.
Using again [p. 5V (e z)dxz = 1, for any e, u1,us > 0 and 21, 25 € R2, we have
Loty
LG 2) 5 V(20
1 21?1 - Z2|2) Lo
- - - —V(e d
fR? 4m2uquy exp( 2uq 2us g2 (e721)dz
27 (uy + ug) |22/ |21 |21 - 2
= Puy+u — - V d :
Pureua(22) R2 472U Uy 2(uy +uz) 2wy 2uy (7z)dz (B.10)
27 (uy + ug) ( Uy + U Uy 2) -1
= —_— - - _V d
Praua(22) R2  Am2uq U 22U Us (= Up + Us 22) g2 (7 21)d=
(U1+U2) 1 _ U1 + U9
$purenn(2) [ 5o SV (e = g ().
Since V' is bounded by |V, we also have that
g Ve .
R? Puy (Zl)pUQ(Z% 21)62 V(é? Zl)dzl < 22 pU1+ug(22)’ ( '11)
Now if we integrate y first, and then xq,...,x, successively utilizing the bounds (B.10) and
(B.11), we will have that
f p2€28(y)|:52” f [ 1 V(€ I’L)pQ(S —S; )('Tz laxz)dsl dsndwl .. da:n:ldy
R2 € O<sy<<sp<t—e2s JR2" ;7 5 ol
52)"[ — 1 27|V oo
<= A dsy...ds,.
(27r O<s1<<sn<t—e2s 28, + 252 H 2(sz+1 - 5;) 23i +2e2s g2 °1 °

(B.12)



MESOSCOPIC AVERAGING OF 2d KPZ 25

To bound the last integral, we integrate sq,..., s, successively. For any 1 <i<n-1, we

have
[( 1 1 ) znuvuw
+ A Si
0 281'_,_1 - 281* 287; +2e2s
Si+ t—-e2s
0 28,11 — 28; g2 2 S; + 82
Si+ 1 2 oo 1 t—-e2s
g[ 1—/\Mdsi+—[ ds;
o 2s; g2 2 Jo s; + 52

</tiA2F’|V’|wdS.+lft_a2s 1 ds.
~Jo 2s; g2 " 2o s;+¢e2s "

L Vit 1,1
:—O —_— — _O R
7 T 2 9 "9 %8 g

1 1
=3 log (47| V| et) + 5t loge™ +a.loge™.

Thus (B.12) is bounded by

(5) [t” ! (11 (| V]wt) + © +loge +a.1 ‘l)nld
— ([ =log(47|V | —+loge +a.loge Sn,

on) Jo 25, +2:25\2 8 g 708 &

(52

1 1 n-1
) (2 log(4m |V |oot) + 3+ loge™ +a.log 5‘1) a:loge™ (B.13)
2

2 n—-1
:(5—) (1+a5+&) e,
27 loge~!

with some constant Cy € R depends only on V' and t.
We can now bound (B.7) by (B.8)—(B.9) and (B.12)—(B.13). We have that

_ 3
b€QCé ) -/ye]R2 fy/eR2 pa25($’ y)pgs(x, y,)cs‘ly ey’ dydy

oo 2\ n—1
Sb;2cé3)(jh0a52 (g—) (1+a5+ 1052_1) :

n=1 ™

Since a. - 0 and — (0 as € = 0, the above sum is bounded when ¢ is sufficiently small

logs‘1
and (§ < 27. In particular, there exist constants ng) > 0 and ¢y > 0, such that when
0 < £ < €p, the infinite sum equals to

— Z(/B_) (1+a5+—01) = 2 = C chl)'
=\ 2 loge~ 1—(57)(1+a€+1og§-1)

Now by (B.6) and (B.7), we have

E \I]B& ho
E [Varfs {M} i Ec1, [U50] > b,

< Cp, CPCWab2.
Eor, [U50] SR
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Together with (B.5), we conclude that when ¢ < &g,

Es—lx[ ﬁaho]

E | var®: .
ar Ee_lm[qlgg,O]
[gBeho [ Wl
=E| Var” M ;B [U50] < b |+ E| Var” i en) B, [ 05-0] > b,

B, [157]

1 2 3 4 —
<V CPb. + 0y, 0PN a2,

By choosing b, = as

[14]
[15]
[16]

[17]

/3, Lemma 3.5 is proved.
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