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Our recent research on type-I quadrature parity-time (PT) symmetry, utilizing an open twin-beam
system, not only enables observing genuine quantum photonic PT symmetry amid phase-sensitive
amplification (PSA) and loss in the presence of Langevin noise but also reveals an additional classical-
to-quantum (C2Q) transition in noise fluctuations. In contrast to the previous setup, our explo-
ration of an alternative system assuming no loss involves a type-II PSA-only scheme. This scheme
facilitates dual opposing quadrature PT symmetry, offering a comprehensive and complementary
comprehension of C2Q transitions and anti-Hermiticity-enhanced quantum sensing. Furthermore,
our investigation into the correlation with the Einstein-Podolsky-Rosen criteria uncovers previously
unexplored connections between PT symmetry and nonclassicality, as well as quantum entanglement
within the continuous-variable framework.

I. INTRODUCTION

Over the past decade, classical linear and nonlinear photonic systems, characterized by gain and loss, have served as a
robust and versatile platform for exploring non-Hermitian (NH) physics. Notably, these systems have played a key role
in probing parity-time (PT) symmetry [1–17], unveiling a variety of peculiar effects absent in Hermitian counterparts.
These effects include the typical PT phase transition, where eigenvalues transition from real to imaginary, and the
coalescence of eigenvalues and eigenvectors at the phase transition point, known as the exceptional point (EP). The
significant achievements in classical PT systems have prompted a recent shift in focus towards open quantum optical
systems [18–25] with an aim to disclose distinctive quantum features.
However, challenges [26, 27] like Langevin noise, the quantum noncloning theorem, and the causality principle
have led to the prevailing belief that quantum optical PT symmetry with both gain and loss is unlikely. This
limitation confines research mainly to dissipative single-partite systems–such as single photons [18, 22], ultracold
atoms [21], trapped ions [19, 23], nitrogen-vacancy centers [20] in diamond, and superconducting qubits [24]–utilizing
postselection measurement. Consequently, observed PT phase transitions closely resemble classical NH scenarios,
rooted in a (semi)classical interpretation. Unfortunately, these studies fail to offer insights on the viability of gain-
loss-coupled quantum optical PT symmetry or unique effects exclusive to quantum NH settings absent in classical
NH or Hermitian quantum counterparts.
Unlike prior research, our recent work [28] demonstrates the attainability of genuine quantum optical PT sym-
metry in an open twin-beam system through four-wave mixing (FWM), overcoming these challenges by employing
phase-sensitive amplification (PSA) instead of phase-insensitive amplification (PIA) and studying field quadrature
observables. Remarkably, under fair sampling measurement, our PSA-loss bipartite system establishes unique type-I
quadrature PT symmetry without a classical analog, introducing an additional dynamical or stationary classical-to-
quantum (C2Q) transition in quadrature noise fluctuations alongside the standard PT phase transition in eigenvalues.
The emergence of these dual transitions in the continuous-variable (CV) framework is a minimum signature for
claiming quantum behavior, as further supported by our recent studies [29, 30] on a dissipative spin-boson-coupled
superconducting circuit platform, showcasing the co-emergence of eigenspectral phase transition and exceptional en-
tanglement transition in the Fock space through post-projection measure.
In our previous vacuum-input type-I quadrature-PT configuration [28], the system displays unconventional features
challenging conventional expectations of quantum squeezing. Notably, there is no need for a cavity or high parametric
gain, and the system exhibits anomalous loss-induced quadrature squeezing. Moreover, while the quadrature PT
behaviors manifest various sharp C2Q transitions related to quadrature noise fluctuations, the EP generally does not
coincide with these C2Q transition boundaries. Furthermore, the nontrivial interference between PSA or loss and
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parametric conversion expedites the emergence of nonclassical correlations beyond traditional quantum squeezing,
necessitating additional conditions. Here, we deepen our understanding of quadrature PT symmetry and its effects in
the twin-beam system by considering no loss and only involving PSA (Fig. 1(a)). Differing from the previous PSA-loss
(type-I) case, both quadrature pairs in this type-II PSA-only scheme evolve with contrasting PT symmetry, resulting
in dual opposing quadrature PT symmetry. Additionally, this type-II system emerges as a quintessential platform
to unveil various intriguing physics including its profound connection with the renowned Einstein-Podolsky-Rosen
(EPR) correlations, a territory largely uncharted in NH settings thus far.

II. THEORETICAL MODEL

Assuming undepleted and classical input pump lasers, the evolution of correlated signal-idler field operators as and

ai along the ±z-direction is governed by the Hamiltonian H = iℏg(a2i − a†2i )/2 + ℏκ(a†ia†s + aias). The corresponding
Heisenberg equations are dai/dz = ga†i + iκa

†
s and das/dz = −iκa†i , where †, g, κ denote the Hermitian conjugate,

PSA, and FWM parametric conversion coefficient, respectively. Akin to our latest work [28], hidden PT symmetry
emerges upon transforming them into coupled-quadrature forms,

d

dz

[
qi
ps

]
=

[
g κ
−κ 0

] [
qi
ps

]
, (1a)

d

dz

[
pi
qs

]
=

[
−g κ
−κ 0

] [
pi
qs

]
, (1b)

by introducing qj = (a
†
j + aj)/2 and pj = i(a†j − aj)/2 (j = i, s) with the commutation relation [qj , pj ] = i/2. As

detailed in the Supplementary Information (SI), the quadrature pair {qi, ps} follows active PT symmetry, while the
other pair {pi, qs} obeys passive PT symmetry after opposite gauge transformations. Both pairs share the same EP
at b = g/2κ = 1, with an identical pair of eigen-propagation values ±β = ±κ

√
1− b2 phase transitioning from real to

imaginary for b < 1 and b > 1. This striking phenomenon, termed dual opposing quadrature-PT symmetry, represents
a pure quantum effect which is inaccessible in PIA-based structures. For a medium of length l, the solutions of
Eqs. (1a) and (1b) are

[
qi(0)
ps(l)

]
=

− sin ϵ
sin(βl + ϵ)

[
−e− gl

2
sin(βl)
sin ϵ

sin(βl)
sin ϵ −e gl

2

] [
qi(l)
ps(0)

]
, (2a)

[
qs(l)
pi(0)

]
=

sin ϵ

sin(βl − ϵ)

[
−e− gl

2
sin(βl)
sin ϵ

sin(βl)
sin ϵ −e gl

2

] [
qs(0)
pi(l)

]
, (2b)

where ϵ = tan−1(2β/g) is a PT-induced phase shift. Their physics significance will become clear shortly.

FIG. 1. (a) Dual opposing type-II quadrature PT symmetry emerges in twin-beam generation, with the backward-propagating
idler mode undergoing PSA at a rate of g, while the forward-propagating signal experiences lossless transmission. (b) Regular
PT phase transition associated with eigenvalues ±β.
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III. HOMODYNE DETECTION

The concise and symmetrical structures of Eqs. (2a) and (2b) render them well-suited and mutually complementary
for probing the fundamental nature of dual opposing quadrature PT symmetry. They offer valuable insights into
physical phenomena, including versatile C2Q transitions, and effectively address causality concerns, particularly in
single-mode quadrature scenarios. We thus focus on four single-mode quadrature variances, ⟨∆q2j ⟩ = ⟨q2j ⟩ − ⟨qj⟩2 and
⟨∆p2j ⟩ = ⟨p2j ⟩ − ⟨pj⟩2, leaving the two-mode quadrature and relative-intensity squeezing cases for the SI. Applying
Eqs. (2a) and (2b), we arrive at exact expressions for these four variances,

⟨∆q2i (0)⟩ =
e−gl sin2 ϵ+ sin2(βl)

4 sin2(βl + ϵ)
, (3a)

⟨∆p2s(l)⟩ =
egl sin2 ϵ+ sin2(βl)

4 sin2(βl + ϵ)
, (3b)

⟨∆q2s(l)⟩ =
e−gl sin2 ϵ+ sin2(βl)

4 sin2(βl − ϵ)
, (3c)

⟨∆p2i (0)⟩ =
egl sin2 ϵ+ sin2(βl)

4 sin2(βl − ϵ)
, (3d)

where Eqs. (3a) and (3b) are mathematically symmetric to (3c) and (3d). For active PT-symmetric {qi(0), ps(l)},
superluminal (fast) light effects are expected, indicated by an advanced phase shift +ϵ in the variances. Conversely,
passive PT-symmetric {qs(l), pi(0)} are anticipated to manifest subluminal (slow) light effects, evident in a phase
delay −ϵ in their variances. Causality is maintained despite potential effects, as individual signal or idler fields exist
in mixed states. In the presence of optical loss [28], Langevin noise obscures the observation of slow- and fast-light
effects, making it challenging to detect them in the type-I scenario. Besides, PT symmetry disrupts symmetric noise
characteristics and 2π-periodicity in usual two-mode squeezed vacuum (TMSV), facilitating the rapid emergence of
quantum squeezing and exceptional C2Q transitions. The implications of these results are apparent in the numerical
plots against the dimensionless propagation variable 2κl for various b during ±β-phase transitions (Figs. 2(a)-(d)).
Under the same κ, the ideal TMSV (g = 0, solid black curves) fails to yield quantum squeezing, with each quadrature
variance oscillating above the vacuum noise (dashed black lines).

For active quadrature PT symmetry in its phase-unbroken region (b < 1), logarithmic ⟨∆q2i (0)⟩ (Fig. 2(a)) peri-
odically fluctuates at a new period T = 2πκ/β. Gradually growing squeezing peaks at trough locations nT (with
n as positive integers), even without a cavity, signifying flexible-length dynamical C2Q transitions with other fixed
parameters. In the phase-broken regime (b > 1), periodic noise distributions cease, and quantum noise reduction
remains consistently available. A larger b results in greater quantum squeezing. Importantly, the variance curve at
the EP serves as the partition line, distinguishing these two distinct noise behaviors. Note that the stationary C2Q
transition (shaded gray areas) can also occur at a fixed length by changing only g, where the EP-variance again
acts as the exact boundary dividing the incompatible classical and quantum noise worlds. Contrastingly, logarithmic
⟨∆p2s(l)⟩ (Fig. 2(b)) assumes similar periodic classical fluctuations peaking at (nT − 2ϵκ/β) for the intact PT phase.
As symmetry spontaneously breaks down, it grows monotonically with an upper bound set by the EP-variance, and
the greater the b value, the less the de-squeezing.

For passive quadrature-PT, ⟨∆q2s(l)⟩ and ⟨∆p2i (0)⟩ (Figs. 2(c) and (d)) behave similarly despite with distinct
patterns. Specifically, when b < 1, ⟨∆q2s(l)⟩ shows noticeable quadrature squeezing, akin to ⟨∆q2i (0)⟩, but with
periodic squeezing amplitudes shifting to [(n − 1)T + 2ϵκ/β], implying flexible-length dynamical C2Q transitions. In
contrast, ⟨∆p2i (0)⟩ amplifies classical noise with periodic fluctuations, similar to ⟨∆p2s(l)⟩. When b ⩾ 1, apart from a
lone peak at l = ϵ/β, ⟨∆q2s(l)⟩ is anti-squeezed, and increasing b intensifies the anti-squeezing. Compared to ⟨∆q2i (0)⟩,
a complementary stationary C2Q transition at a fixed length (shaded grey areas) appears alongside the ±β-based
PT-phase transition by manipulating only g. For ⟨∆p2i (0)⟩, it exhibits classical noise amplification regardless of PT
symmetry collapse, akin to ⟨∆p2s(l)⟩. The distinction between these variances is evident. The periodic fluctuations
of ⟨∆p2i (0)⟩ (Fig. 2(d)) precede those of ⟨∆p2s(l)⟩ by a net phase 2κ(2ϵ− π)/β before the PT-phase breaks. After the
phase breaks, ⟨∆p2i (0)⟩ always peaks around l = ϵ/β before growing monotonically. The separation distance between
any two adjacent peaks (or valleys) is (π − 2ϵ)/β, uniform for all four periodically fluctuating variances. Previous
work [28] has documented that the presence of a balanced loss to the signal mode diminishes the symmetry of the
entire system, inducing divergent courses in the two sets of conjugate quadrature pairs.
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FIG. 2. Comparing with standard TMSV (b = 0, black solid line) and vacuum noise (black dashed line), the quadrature variances
{⟨∆q2i (0)⟩, ⟨∆p2s(l)⟩} (a,b) and {⟨∆q2s(l)⟩, ⟨∆p2i (0)⟩} (c,d) feature active and passive PT-induced quadrature squeezing and de-
squeezing, respectively. In the PT phase-unbroken region (b < 1), ⟨∆q2i (0)⟩ and ⟨∆q2s(l)⟩ concurrently display flexible-length
dynamical C2Q transitions; whereas complementary stationary C2Q transitions occur for a fixed length (shaded grey areas)
with the EP-variance curves serving as the exact boundary between the incompatible classical and quantum noise realms.

IV. NONCLASSICALITY AND EPR CORRELATION

Other than showing the dual transitions, this succinct system is an excellent toolbox for disclosing the singular
relation between PT symmetry and nonclassicality, an emerging frontier barely touched to date. To delve into this,
we first employ the EPR criteria proposed by Reid [31, 32] to seek resolutions. We note that the four single-mode
quadratures (2a) and (2b) coincide with their respective amplitudes and phases, namely, X1(0) = qi(0), X2(0) =
pi(0), Y1(l) = qs(l), and Y2(l) = ps(l) (SI). Consequently, the Cauchy-Schwarz inequality for these quadrature phase
amplitudes can be explored by examining the quantum-mechanical correlation coefficients,

|Cjm| =
∣∣∣∣∣

⟨Xj(0)Ym(l)⟩√
⟨[Xj(0)]2⟩⟨[Ym(l)]2⟩

∣∣∣∣∣ ⩽ 1, (4)

with {j,m} = {1, 2}. After some calculations (SI), we have
Cjj = 0, (5a)

Cjm =
2 cosh (gl/2) sin ϵ sin(βl)√

sin4 ϵ+ sin4(βl) + 2 cosh(gl) sin2 ϵ sin2(βl)
, (5b)

with j ̸= m. Physically, |Cjm| = 1 means a state of perfect quantum correlation between Xj(0) and Ym(l), whereas
|Cjm| = 0 implies a complete absence of such correlation between the two.
Therefore, Eq. (5a) denotes a complete lack of nonclassical correlation between X1(0) (X2(0)) and Y1(l) (Y2(l))

regardless of the presence of PT symmetry. In contrast, the situation described by Eq. (5b) becomes subtle for the
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pair {X1(0), Y2(l)} (or {X2(0), Y1(l)}). To see its behavior, Fig. 3(a) numerically plots C12 (or C21), revealing abrupt
changes made by PT symmetry. Prior to the phase breaking (b < 1), |C12| or |C21| oscillates between 1 and 0 at the
period 2πκ/β, but differs substantially from the conventional case (g = 0, black line), demonstrating periodic shifts
between the perfect existence and complete absence of quantum correlation. Contrarily, after the phase transition
(b > 1), it asymptotically approaches unity, implying a perfect quantum correlation between the cross quadrature
phase amplitudes. Here the EP-line simply acts as the circumscription to differentiate curve patterns across the PT
phase transition. In essence, the scenario resembles the EPR Gedankenexperiment [33]. In the b ⩾ 1 region, maximum
correlation between amplitude X1(0) and Y2(l), as well as between X2(0) and Y1(l), can be easily achieved, leading
to the application of EPR reasoning. In the b < 1 regime, the EPR scenario applies broadly to these two quadrature
phase amplitude pairs, although it may depend on the propagation distance. It is worth noting that the influence of
anti-Hermiticity on EPR correlations here is analogous to the impact of non-Hermiticity on quantum entanglement in
a dissipative spin-boson system–that is, PT symmetry gives rise to extra exceptional nonclassical phenomena [29, 30].
The extent of nonclassicality in the system can be further assessed through the analysis of logarithmic negativity
[34, 35], denoted as EN = max[0,− ln 4η], derived from the system’s 4 by 4 covariance matrix VQ = [A,C;C

Tr, B]

(see SI). Here, η =
√
(Σ−

√
Σ2 − 4detVQ)/2 and Σ = detA + detB − 2detC with A = [⟨∆q2i (0)⟩, 0; 0, ⟨∆p2i (0)⟩],

B = [⟨∆q2s(l)⟩, 0; 0, ⟨∆p2s(l)⟩], C = [0, ⟨qi(0)ps(l)⟩ − ⟨qi(0)⟩⟨ps(l)⟩; ⟨qs(l)pi(0)⟩ − ⟨qs(l)⟩⟨pi(0)⟩, 0], and Tr representing
transpose. The farther the quantum correlation that EN reflects, the farther it is from 0. In Fig. 3(b), we present
representative examples both before and after the β-phase transition, comparing them with the TMSV case (black).
For b < 1, EN exhibits gradually increasing bimodal cyclical oscillations above zero, reaching zero only at valleys.
This signifies a substantially enlarged range with quantum emergence. In contrast, for b ⩾ 1, EN develops a single
peak that is always larger than 0, indicating a full spectrum of quantum availability. As evident, the analysis of EN

aligns with the previously discussed analysis of Cjm (j ̸= k) except from the entire system perspective.

FIG. 3. Assessing PT symmetry’s influence on nonclassicality using quantum correlation coefficient Cjm (a) and logarithmic
negativity EN (b), in comparison to the standard TMSV case.

V. QUANTUM SENSING

As a pivotal nonclassical resource, quantum squeezing [36] plays a key role in traditional quantum sensing and
metrological applications [37]. Recent studies [38, 39] leveraging anti-PT symmetry have demonstrated enhanced
squeezing-based quantum sensitivity near EP. This prompts an exploration of whether improved sensitivity is attain-
able in our type-II quadrature-PT system. In contrast to the type-I quadrature-PT case [28], the type-II system arises
as a versatile PT-enhanced quantum sensor with unparalleled performance, surpassing designs based on squeezing
factors or EP alone. Besides, passive PT quadrature outperforms active PT quadrature, and two-mode quadrature
outshines single-mode quadrature (SI) under the same system parameters. The achievable precision approaches the
quantum Cramér-Rao bound, dictated by the quantum Fisher information (QFI) of the quantum state, although it
experiences a loss of sensitivity near and above the EP.
To commence, we assume the initial preparation of the two bosonic modes in a two-photon coherent state, |Φ⟩0 =

|αi, αs⟩. Subsequently, we set αi = iα∗
s ≡

√
2αeiπ/4 for simplification in the upcoming calculations. In the case of
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single-mode quadrature, homodyning detection is applied at an interaction distance l to an observable, say, qi(0).
Utilizing Eq. (2a), we find the mean value and variance of qi(0) to be

⟨qi(0)⟩ =
e−

gl
2 sin ϵ⟨qi(l)⟩ − sin(βl)⟨ps(0)⟩

sin(βl + ϵ)
. (6)

The ultimate accuracy of sensing relies on the precision with which a small change in ⟨qi(0)⟩ can be measured in
response to a tiny perturbation δκ from a predefined κ-value. This system response is characterized by a susceptibility

(SI), denoted as χ
qi(0)
κ , defined as ∂⟨qi(0)⟩/∂κ and derived from Eq. (6). Next, the achievable accuracy of estimating

the parameter κ’s precision can be evaluated by considering the variance (3a) and susceptibility. This evaluation

involves the relation ∆κ2qi(0) = ⟨∆q2i (0)⟩/[χ
qi(0)
κ ]2.

The inverse variance ∆κ−2
qi(0)

determines the sensing power of the system, with its upper bound constrained by the

QFI, Fκ. The QFI establishes the lower quantum Cramér-Rao bound, expressed as Fκ ⩾ ∆κ−2
qi(0)
, representing the

utmost precision attainable through optimal measurement. For the seeding coherent input state |Φ⟩0, the QFI of the
system can be deduced from (see SI for more detail)

Fκ =

(
dµ

dκ

)⊺
V −1 dµ

dκ
. (7)

with ⊺ for a vector or matrix transpose. In Eq. (7), the amplitude vector µ and V −1 are computed in the quadra-
ture basis via µj = ⟨v̂j⟩ and Vj,k =

1
2 ⟨v̂j v̂k + v̂kv̂j⟩ − ⟨v̂j⟩ ⟨v̂k⟩, for 1 ≤ j, k ≤ 2, with the column vector v̂ =

(qi(0), qs(l), pi(0), ps(l))
⊺
. As Fκ ascribes the entire system, it aligns with all other quantum observables. Notably,

Fκ manifests differently in response to the contrasting PT domains. In Fig. S7, we present logarithmic Fκ with
distinctive characteristics in three circumstances: b = 0.2 (unbroken PT phase), b = 1 (EP), and b = 2 (breaking PT
phase). Similarly, we can test κ-parameter estimation using the rest three single-mode quadratures (SI): pi(0), qs(l),
and ps(l). Our calculations indicate that our current scheme optimally supports quantum sensor performance in the
quadrature-PT phase unbroken regime but away from the EP, distinguishing it from EP-based sensors. Numerical
simulations in Fig. 4 demonstrate that the best sensing is achieved with a suitable medium length l, owing to the
enlarged Hilbert space of the final system state. We illustrate four inverse variances before the quadrature-PT phase
transitions in Figs. 4(a)-(d), portraying the ratios (insets) of ∆κ−2

qi(0)
, ∆κ−2

pi(0)
, ∆κ−2

qs(l)
and ∆κ−2

ps(l)
to Fκ, providing an

instructive view of the data. Upon careful scrutiny of Fig. 4, we deduce that both qi(0) and qs(l) supply the maximum
parameter estimation precision at the first oscillating peaks of log10(∆κ

−2
qi(0)
+ 1) and log10(∆κ

−2
ps(l)
+ 1) with respect

to log10(Fκ+1). However, overall, qs(l) outperforms qi(0) in sensing performance in terms of sensitivity and accuracy,
entailing that the variance ∆κ2qs(l) of passive quadrature-PT symmetry is smaller than the variance ∆κ

2
qi(0)

of active

quadrature-PT. As l increases, the sensing ability of both observables worsens because Fκ gets larger, and the ratios
become smaller. By contrast, pi(0) and ps(l) allow classical sensing exclusively with non-equivalent performance.

VI. CONCLUSION

In contrast to previous studies, the type-II PSA-only twin-beam system serves as an optimal quantum platform
for investigating dual opposing quadrature-PT symmetry. Our sophisticated theoretical framework allows for the
exploration of profound C2Q transitions and establishes a unique link between PT symmetry, nonclassicality, and the
EPR paradox. Our findings unveil nontrivial quantum aspects of PT symmetry beyond the capabilities of non-PSA-
based systems, demonstrating promise for designing PT-enhanced quantum sensors that leverage anti-Hermiticity and
squeezing. We anticipate that our proposed quadrature-PT scheme will unlock novel physical phenomena, enabling
nonreciprocal transmission of continuous-variable (CV) qubits with minimal noise–crucial for CV-based quantum in-
formation processing and computing [40]. This capability poses a challenge for PIA-based apparatus [4–17, 25–27]. By
incorporating PSA, our system protects CVs from decoherence, compensating for loss through noiseless amplification
and advancing CV-based quantum technologies. The nontrivial modulation and acceleration of quantum squeezing
generation by PT symmetry further contribute to the development of diverse CV-based quantum technologies.
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FIG. 4. Quadrature PT-symmetric quantum sensing. The ratios of the inverse variances log10(∆κ
−2
qi(0)

+1) (a), log10(∆κ
−2
ps(l)

+1)

(b), log10(∆κ
−2
qs(l)

+1) (c), and log10(∆κ
−2
pi(0)

+1) (d) of the four observables to the quantum Fisher information log10(Fκ+1) as

functions of dimensionless lengths for parameters {α = 10, κ = 0.5}, illustrating the sensitivity enhancement in the quadrature-
PT phase unbroken region (b = 0.2).
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Supplementary Materials for Dual opposing quadrature-PT symmetry

I. FURTHER DISCUSSION ON TYPE-II QUADRATURE PT SYMMETRY

In our previous work [1], we conducted theoretical research on type-I quadrature PT symmetry within a backward
nonlinear parametric optical process coupled with phase-sensitive linear quantum amplification (PSA) featuring bal-
anced loss. We discovered that in type-I scenarios, only one pair of quadratures exhibits PT symmetry with intriguing
dual transitions namely, a conventional PT phase transition linked to eigenvalues and a unique classical-to-quantum
(C2Q) transition in quadrature noise fluctuations while the other pair displays anomalous loss-induced quadrature
squeezing. This disparity between the two quadrature pairs piqued our curiosity about the outcome in the absence
of loss within the process, leading us to investigate type-II quadrature PT symmetry in our current work. Due to
the straightforward nature of the type-II configuration, it enables us to carry out analytical investigations into the
underlying physics of various topics that might pose challenges in a type-I configuration.

A. Further remarks on Equations (1a) and (1b) in the main text

Here, we would like to provide additional remarks regarding Eqs. (1a) and (1b) in the main text. In the derivation
of these two sets of coupled quadrature equations, we assumed a squeezing angle of θ = 0◦ in the general quadrature
operators, specifically X1j = (a

†
je

iθ + aje
−iθ)/2 and X2j = i(a†je

iθ − aje
−iθ)/2. Additionally, from these equations,

we derived the effective NH Hamiltonian matrices governing the dynamics of the quadrature pairs {qi, ps} and {pi, qs},
which establish the foundation of our quaduature PT symmetry, taking the form:

H(qi,ps) =

[
ig iκ
−iκ 0

]
= i

g

2
I+
[
i g2 iκ
−iκ −i g2

]
= i

g

2
I+Ha, (S1a)

H(pi,qs) =

[
−ig iκ
−iκ 0

]
= −ig

2
I+
[
−i g2 iκ
−iκ i g2

]
= −ig

2
I+Hp. (S1b)

Here, I denotes the 2×2 unit matrix, and Ha+H
⊤
p = 0, where ⊤ stands for the transpose of a matrix. It is evident that

both quadrature pairs evolve PT-symmetrically, satisfying
[
H(qi,ps), PT

]
=
[
H(pi,qs), PT

]
= 0, where P represents

the parity operator

[
0 1
1 0

]
and T assumes the complex conjugation. Of importance, according to Eqs. (S1a) and

(S1b), it is immediately apparent that {qi, ps} exhibits active PT symmetry while {pi, qs} demonstrates passive PT
symmetry. Both pairs share the same EP at κ = g/2 (i.e., b = 1) and the same pair of eigen-propagation constants

(±β = ± κ
√
1− b2), transiting from purely real (b < 1) to conjugate imaginary (b > 1). We are ware that Eqs. (1a)

and (1b) in the main text can be directly derived by recasting the given Hamiltonian in the quadrature format,
H = ℏg(qipi + piqi)− 2ℏκ(qiqs − pips).

We note previous exploration of the coexistence of dual active-passive PT symmetry in the classical regime, achieved
through coupled microcavities and the directional nature of parametric gain driven by momentum conservation [2].
This leads to an intriguing phenomenon where an input signal traveling in one direction experiences parametric gain
and adheres to active PT symmetry, while its counterpart traveling in the opposite direction remains unaffected by
the gain, exhibiting passive PT symmetry. This yields what is known as non-reciprocal PT symmetry for signal field
launching in different directions [2].

However, our type-II quadrature PT displays a fundamentally different behavior from this classical scenario. Here,
the active and passive PT symmetry experienced by the two sets of conjugate quadrature pairs pertain to the same
light field. Furthermore, in addition to the eigenvalues-based PT phase transition, the dynamic and stationary C2Q
transitions in noise fluctuations also occur in these two sets of quadrature pairs, but in a complementary manner, as
demonstrated in the single-mode quadrature case in the main text.

In the subsequent discussion, we will illustrate that, similar to type-I quadrature PT symmetry [1], these dual
transitions, especially the C2Q transitions, can also be observed in two-mode quadrature homodyne detection and
relative-intensity squeezing measurement (RISM), albeit with distinct characteristics.
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B. Two-mode homodyne detection

As shown in the main text, the PT-inherent eigenvalues ±β modulate the corresponding single-mode quadrature
properties through noise fluctuations, resulting in both dynamic and stationary C2Q transitions. Our earlier investi-
gation on type-I quadrature PT symmetry [1] revealed that these C2Q transitions can also be observed in two-mode
quadrature homodyning measurements. Therefore, it is interesting to explore the behaviors of these C2Q transitions
by measuring two-mode quadratures in the present type-II scenario.

Similar to type-I, we start with the following two-mode quadratures, d1 = [qi(0) + qs(l)]/
√
2 and d2 = [pi(0) +

ps(l)]/
√
2, which are linear combinations of the signal-idler field quadrature operators and satisfy the commutation

relation [d1, d2] = i/2. For the vacuum input state, the variances of d1 and d2 are simply the sum of the corresponding
single-mode quadrature variances (3a)–(3d) given in the main text,

⟨∆d21⟩ =
〈(

qi(0) + qs(l)√
2

)2
〉

−
〈
qi(0) + qs(l)√

2

〉2

=

〈
∆q2i (0)

〉
+
〈
∆q2s(l)

〉

2
, (S2a)

⟨∆d22⟩ =
〈(

pi(0) + ps(l)√
2

)2
〉

−
〈
pi(0) + ps(l)√

2

〉2

=

〈
∆p2i (0)

〉
+
〈
∆p2s(l)

〉

2
. (S2b)

Mathematically, Eqs. (S2a) and (S2b) imply that the (logarithmic) noise characteristics of ⟨∆d21⟩ and ⟨∆d22⟩ can
be inferred from the variances of single-mode quadratures, aided by Figs. 2(a)-(d) in the main text. Physically, we
anticipate that both dynamical and stationary C2Q transitions can be also observed in ⟨∆d21⟩, depending on the
length l of the medium.

In comparison to Fig. 2 presented in the main text, the noise characteristics of the two-mode quadrature observ-
ables d1 and d2 (illustrated in Fig. S1(a) and (b)) inherit, to some extent, those of the single-mode quadratures
{qi(0), ps(l), qs(l), pi(0)} but exhibit discernible differences. Akin to {qi(0), qs(l)}, dual transitions manifest in d1:
besides the regular ±β-phase transition (Fig. 1(b) in the main text), a stationary C2Q transition takes place for
some properly fixed lengths l by changing b, with its EP-variance (red solid) curve acting as the partition boundary
between classical and quantum noise distributions. For your reference, we have illustrated the emergence of these
stationary C2Q transitions with gray shaded rectangles in Fig. S1(a). (Please note that the stationary C2Q tran-
sitions manifested in single-mode quadratures qi(0) and qs(l) (Figs. 2(a) and (c) in the main text, as well as NF
(Fig. S2(a) below), can be similarly understood in this way.) Simultaneously, a dynamical C2Q transition emerges
in the quadrature-PT phase intact region (blue solid) for a variable length, with the boundary curve dynamically
responding to the b value. Moreover, a slight noise reduction (zoom-in inset) is consistently visible over a very short
propagation distance, regardless of PT symmetry, owing to the insufficient competition between PT and squeezing.
Beyond this range, the logarithmic variance of d1 proceeds with a more symmetrical shape compared to Figs. 2(a)
and 2(c) in the main text and comprises interleaved dual periodic oscillations with maximum squeezing outputs at
troughs (l = nπ/β with n being positive integers) before PT symmetry spontaneously breaks down. However, it
diminishes to a sole peak at l = ϵ/β with classical noise fluctuations on top of the vacuum-noise level (black dashed
line) at and above the EP (b = 1). On the other hand, as illustrated in Fig. S1(b), d2 always encounters the classical
noisy amplification but showcases dissimilar noise undulation over different PT zones. Below the EP threshold (blue
curve), log4⟨∆d22⟩ incrementally displays double periodic fluctuations at the same period T = 2πκ/β, with repeated
double peaks occurring sequentially at l = [(n− 1)π + ϵ]/β and l′ = (nπ − ϵ)/β. At and above the EP, it ceases to a
single peak centered at l = ϵ/β, with its right-side curve flattening out as b is further augmented. For reference, the
variances of d1 and d2 for the standard TMSV (b = 0, solid black curves) are also provided in Fig. S1(a) and (b). As
explained in our previous study on type-I quadrature PT symmetry [1], the decision to plotting logarithmic variances
in this context is purely for the numerical convenience.

Before proceeding the discussion, let us make further remarks: Upon comparing our current findings with the type-I
case (Figs. 3(a) and (b) in Ref. [1]), significant deviations become apparent. The key disparity lies in the divergent
C2Q transitions observed in log4⟨∆d21⟩. This discrepancy arises from the fact that in type-II (PSA-only), d1 is ruled
by both active and passive PT symmetry, whereas in type-I (balanced PSA and loss), d1 is governed by active PT
and the TMSV, thus leading to distinct noise profiles. This disparity also manifests the different curves of log4⟨∆d22⟩
under the two situations. These distinctions underscore the importance of considering the specific physical system
and parameter selection space when analyzing the response of PT symmetry to quadrature squeezing.
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FIG. S1. In comparisons to usual TMSV (b = 0, black solid) and vacuum noise (black dashed), d1 (a) and d2 (b) exhibit
distinct squeezing and de-squeezing features under type-II quadrature PT symmetry. In the PT phase-unbroken region (b < 1),
⟨∆d21⟩ displays dynamic C2Q transitions for some flexible lengths whereas stationary C2Q transitions at any specifically fixed
length within the ranges (illustrated by gray shaded rectangular), demarcated by EP-variance curve as exact boundary between
classical and quantum noise realms for the latter scenario. Conversely, d2 consistently experiences classical noise amplification.
For comparison, the dashed lines denote vacuum noise, while the solid black lines depict the standard two-mode squeezed
vacuum without PSA and loss. The inset in (a) is a zoom-in view for the dimensionless propagation length 2κl ∈ (0, 1).
Parameters remain consistent with those in Fig. 2 of the main text.

C. Relative intensity squeezing measurement

In addition to homodyning detection, the relative intensity squeezing measurement (RISM) [3] provides an alter-
native method to explore quadrature PT symmetry and the C2Q transitions. As previously demonstrated [1], RISM
offers an ingenious alternative for capturing the essential aspects of type-I quadrature PT symmetry, even in scenarios
with two highly unbalanced channels. This detection technique cleverly allows the shot noise of one beam to be
measured and subtracted from the other, resulting in a lower-noise differential measurement of the desired signal.
In practice, this is often achieved by splitting the signal beam using a 50:50 beam splitter and then subtracting the
photo-currents of the two outgoing beams using a balanced photo-detector. By properly adjusting the relative phase
between the two outgoing beams, the noise level of the difference photo-current can be reduced below the shot noise
limit, thence enabling squeezing in the relative intensity noise of the two beams. From this point of view, the RISM
technique furnishes a complementary approach to standard quadrature homodyne detection for studying quadrature
PT symmetry and the C2Q transitions in two-mode squeezed states.

Now we shift our attention to the relative-intensity operator, defined as Ni(0)−Ns(l) = a
†
i (0)ai(0)−a†s(l)as(l). This

photon-number difference operator acts as a metric for quantifying the extent of squeezing in a PDC or FWM process.
It capitalizes on the strong quantum correlation present in the synchronized photon number fluctuations in twin beams,
which induce relative-intensity squeezing in the paired signal-idler modes. Derived from the Ni(0)−Ns(l) operator,
the noise figure (NF) emerges as a measurable indicator that characterizes the level of squeezing. NF represents the
ratio of the measured relative-intensity noise to the combined shot noise of the two unequal fields.

Mathematically, NF [3] is defined as:

NF ≡ Var[Ni(0)−Ns(l)]

⟨Ni(0)⟩+ ⟨Ns(l)⟩
=

⟨∆N2
i (0)⟩+ ⟨∆N2

s (l)⟩ − 2[⟨Ni(0)Ns(l)⟩ − ⟨Ni(0)⟩⟨Ns(l)⟩]
⟨Ni(0)⟩+ ⟨Ns(l)⟩

. (S3)

To evaluate the NF (S3), determining ai(0) and as(l) in relation to their initial conditions are essential. Utilizing the
key results described by Eqs. (2a) and (2b) in the main text, and following some algebraic manipulation, we arrive
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at their expressions as

ai(0) =e
− gl

2 qi(l) csc(ϵ+ βl) sin ϵ− ps(0) csc(ϵ+ βl) sin(βl)

+ ie
gl
2 pi(l) csc(ϵ− βl) sin ϵ− iqs(0) csc(ϵ− βl) sin(βl)

=Aqi(l) + iBpi(l) + iCqs(0) +Dps(0)

=
A+B

2
[qi(l) + ipi(l)] +

A−B

2
[qi(l)− ipi(l)] + i

C −D

2
[qs(0) + ips(0)] + i

C +D

2
[qs(0)− ips(0)]

=
A+B

2
ai(l) +

A−B

2
a†i (l) + i

C −D

2
as(0) + i

C +D

2
a†s(0), (S4a)

as(l) =e
− gl

2 qs(0) csc(ϵ− βl) sin ϵ− pi(l) csc(ϵ− βl) sin(βl)

+ ie
gl
2 ps(0) csc(ϵ+ βl) sin ϵ− iqi(l) csc(ϵ+ βl) sin(βl)

= iDqi(l) + Cpi(l) + Eqs(0) + iFps(0)

=i
D − C

2
[qi(l) + ipi(l)] + i

C +D

2
[qi(l)− ipi(l)] +

E + F

2
[qs(0) + ips(0)] +

E − F

2
[qs(0)− ips(0)]

=i
D − C

2
ai(l) + i

C +D

2
a†i (l) +

E + F

2
as(0) +

E − F

2
a†s(0), (S4b)

for the vacuum input. Here, the involved coefficients correspond to

A = e−
gl
2 csc(ϵ+ βl) sin ϵ, B = e

gl
2 csc(ϵ− βl) sin ϵ,

C = − csc(ϵ− βl) sin(βl), D = − csc(ϵ+ βl) sin(βl),
E = e−

gl
2 csc(ϵ− βl) sin ϵ, F = e

gl
2 csc(ϵ+ βl) sin ϵ.

Using Eqs. (S4a) and (S4b), we next compute the terms involved in the definition of NF (S3):
〈
∆N2

i (0)
〉
,
〈
∆N2

s (l)
〉
,

and ⟨Ni(0)Ns(l)⟩ − ⟨Ni(0)⟩ ⟨Ns(l)⟩. After some calculations, we have
〈
∆N2

i (0)
〉
=
〈
a†i (0)ai(0)a

†
i (0)ai(0)

〉
−
〈
a†i (0)ai(0)

〉2

=
1

8

[(
A2 +D2

)2
+
(
B2 + C2

)2 − 2 (AB − CD)
2
]

=
1

8

[(
A2 +D2

)2
+
(
B2 + C2

)2 − 2
]
, (S5a)

〈
∆N2

s (l)
〉
=
〈
a†s(l)as(l)a

†
s(l)as(l)

〉
−
〈
a†s(l)as(l)

〉2

=
1

8

[(
F 2 +D2

)2
+
(
E2 + C2

)2 − 2 (FE − CD)
2
]

=
1

8

[(
F 2 +D2

)2
+
(
E2 + C2

)2 − 2
]
, (S5b)

⟨Ni(0)Ns(l)⟩ − ⟨Ni(0)⟩ ⟨Ns(l)⟩ =
〈
a†i (0)ai(0)a

†
s(l)as(l)

〉
−
〈
a†i (0)ai(0)

〉 〈
a†s(l)as(l)

〉

=
1

8

[(
A2 −B2 − E2 + F 2

) (
D2 − C2

)
+ 2 (AD +BC) (CE +DF )

]

=
1

8

[
(AD +DF )

2
+ (CE +BC)

2 − (AC −DE)
2 − (BD − FC)

2
]

=
1

8

[
(AD +DF )

2
+ (CE +BC)

2
]
. (S5c)

The commutation relations (S7a) and (S7b) below imply the following useful identities: AB − CD = FE − CD = 1
and AC −DE = BD−FC = 0. Leveraging these results, after lengthy derivations, we arrive at the final NF formula
below, albeit complicated,

NF =

[(
A2 +D2

)2
+
(
B2 + C2

)2
+
(
F 2 +D2

)2
+
(
E2 + C2

)2 − 4− 2D2 (A+ F )
2 − 2C2 (E +B)

2
]

2
[
(A−B)

2
+ (E − F )

2
+ 2 (C +D)

2
] . (S6)

Note that the A–B coefficients have been given right after Eqs. (S4a) and (S4b).
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Since the RISM makes use of the relative-intensity fluctuation rather than simpler quadrature variances as the
quantum observable, we anticipate peculiar noise statistics may arise from the NF. Our numerical simulations indeed
confirm this expectation. From Figs. S2(a) and (b), we observe distinct NF curve patterns before and after the regular
PT-phase transition. Specifically, in the PT-phase intact regime (b < 1), the logarithmic NF gives rise to dual periodic
oscillations with the same periodicity T = 2πκ/β and features two adjacent peaks at 2κ(nπ−ϵ)/β and 2κ[(n−1)π+ϵ]/β.
In this region, negative values signify quantum squeezing occurrences. Through numerical simulations, we find that
NF no longer strictly remains below 0 when b exceeds 0.6 ∼ 0.61, due to channel imbalances. Thus, Fig. S2 suggests
that for b ∈ (0, 0.6), quantum squeezing can persist for some evolution distance before transitioning into classical
noise distributions.

When b ⩾ 1, lg(NF + 1) demonstrates steady classical noise amplification with a solitary peak at 2 ln(
√
b2 − 1 +

b)/
√
b2 − 1, as seen in Fig. S2(a). This contrasts with our recent findings in type-I quadrature PT symmetry [1],

where a balanced loss rate γ introduced into the signal path disrupted the system’s symmetry, bringing all values of
lg(NF + 1) into the upper space when γ/κ ⩾ 0.53. This alternative method suggests another approach to identify
regular PT-phase transitions, in addition to the typical means of extracting eigenvalues. By observing the sharp
change in NF patterns while manipulating b for a fixed appropriate length, one can deduce the occurrence of the PT
phase transition indirectly. Note that this indirect method is also applicable to single-mode and two-mode quadrature
measurements.

Moreover, both dynamical and stationary C2Q transitions are also achievable in RISM. For a small fixed length,
the stationary C2Q transition in relative-intensity noise fluctuations can be realized by simply varying b, with the
upper boundary at b = 0.6 ∼ 0.61. Conversely, for a slightly larger length, the dynamical C2Q transition can be
approached with the separation set by b = 0.6 ∼ 0.61. In short, the RISM approach offers a neat and elegant solution
to explore type-II quadrature-PT symmetric systems without classical analogies.

To accurately delineate the classical and quantum noise domains, we opt to numerically plot the NF using the
function lg(NF⩾0 + 1) for NF ⩾ 0 and − lg(|NF<0| + 1) for NF < 0, as these logarithm expressions effectively
represent the original noise contours and allow us to depict the full patterns more conveniently. The same strategy
has been previously applied to the study of type-I quadrature PT symmetry [1].

FIG. S2. PT-modulated NF in relative intensity squeezing measurement. In (a), the logarithmic NF illustrates classical noise
amplification for b > 0.61, whereas relative-intensity squeezing is observed for 0 < b < 0.6 at short interaction lengths. Moreover,
for b ⩾ 1, the logarithmic NF exhibits dual periodic oscillations with sequential peaks at 2κ(nπ − ϵ)/β and 2κ[(n− 1)π + ϵ]/β
(n ∈ N+, i.e., positive integers). However, when b < 1, the logarithmic NF manifests as a solitary peak above the vacuum
noise level. As exemplified in (b), quantum squeezing occurs when b ⩽ 0.6, persisting over longer distances for smaller b values
before disappearing. The dashed lines represent the regular two-mode squeezed vacuum without PSA and loss. The inset in
(a) is a zoom-in view for the dimensionless propagation length 2κl ∈ (0, 1).

D. Verification of the commutation relations

In line with our previous research [1], it is important to validate the commutation relationships of the solutions
(2a) and (2b) presented in the main text to ensure the consistency of our findings. Demonstrating their adherence to
the requisite commutation relations is a straightforward task.
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By working out the algebra, one can show that the solutions (2a) and (2b) in the main text indeed satisfy the
demanded commutation relations:

[qi(0), pi(0)] =
sin2 ϵ

sin(ϵ+ βl)sin(ϵ− βl)
[qi(l), pi(l)] +

sin2(βl)

sin(ϵ+ βl)sin(ϵ− βl)
[ps(0), qs(0)] =

i

2
, (S7a)

[qs(l), ps(l)] =
sin2(βl)

sin(ϵ+ βl)sin(ϵ− βl)
[pi(l), qi(l)] +

sin2 ϵ

sin(ϵ+ βl)sin(ϵ− βl)
[qs(0), ps(0)] =

i

2
. (S7b)

Alternatively, confirming the preservation of the correct commutation relations (S7a) and (S7b) substantiates the
accuracy of Eqs. (1a) and (1b) given in the main text.

E. Type-II quadrature PT symmetry at phase angle φ = π
2

So far, our discussions have been carried out under the assumption of a zero squeezing angle within the Hamiltonian

H = iℏg(a2i − a†2i )/2 + ℏκ(a†ia†s + aias) as given in the main text. Typically, this Hamiltonian is associated with a
variable squeezing angle φ,

Hφ = iℏg(a2i − a†2i )/2 + ℏκ(a†ia
†
se

−iφ + aiase
iφ), (S8)

originating from the input pump. Here, φ represents the overall phase of the input pump fields engaged in the
nonlinear FWM process.

In the following, we would like to examine an alternative case where φ = π
2 rather than 0 and see its impact on the

phenomena of the proposed quadratrure PT symmetry. By following a similar procedure, we can derive two sets of
coupled-quadrature equations:

d

dz

[
qi
qs

]
=

[
g κ
−κ 0

] [
qi
qs

]
, (S9a)

d

dz

[
pi
ps

]
=

[
−g −κ
κ 0

] [
pi
ps

]
. (S9b)

From Eqs.(S9a) and (S9b), by the similar procedure we can obtain the effective NH Hamiltonian matrices that govern
the dynamics of the two sets of quadrature pairs {qi, qs} and {pi, ps}:

H(qi,qs) =

[
ig iκ
−iκ 0

]
= i

g

2
I+
[
i g2 iκ
−iκ −i g2

]
= i

g

2
I+H ′

a, (S10a)

H(pi,ps) =

[
−ig iκ
−iκ 0

]
= −ig

2
I+
[
−i g2 −iκ
iκ i g2

]
= −ig

2
I+H ′

p. (S10b)

In contrast to the case where φ = 0 (see Eqs. (S1a) and (S1b) in Section 1.A), we observe that here H ′
a +H

′
p = 0.

Additionally, both quadrature pairs evolve PT-symmetrically, satisfying
[
H(qi,qs), PT

]
=
[
H(pi,ps), PT

]
= 0. Similar

to the φ = 0 case, now {qi, qs} follows active PT symmetry, while {pi, ps} exhibits passive PT symmetry. When
comparing the two cases – φ = 0 and φ = π

2 , it is interesting to note that, owing to the symmetry inherent in the
type-II system, the initial overall pump phase φ rotates the quadrature pairs and provides additional options for
establishing dual quadrature PT symmetry. This flexibility is unique to our scheme and may become challenging for
other PT configurations.

It is also worthwhile to point out that the original Hamiltonian (S8) of the system is in fact Hermitian with
respect to ai and as. The non-Hermiticity appearing in the resulting effective Hamiltonians (S10a) and (S10b) as
well as the effective Hamiltonians (S1a) and (S1b) stems from the evolution of the corresponding quadratures. This
is also applicable to type-I quadrature PT symmetry [1]. One indication of non-Hermiticity in these derived effective
Hamiltonian matrices is the appearance of the EP(s), which strongly signifies anti-Hermiticity. EPs differ from the
degeneracies observed in Hermitian Hamiltonians. The emergence of EPs resembles scenarios of perfect anti-PT
symmetry, even in the absence of gain and loss components [4–13].

With use of the initial boundary conditions, the general solutions to Eqs. (S9a) and (S9b) take on the following
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compact and symmetrical forms:

[
qi(0)
qs(l)

]
= csc (βl + ϵ)

[
e

−gl
2 sin ϵ −sin(βl)

−sin(βl) e
gl
2 sin ϵ

] [
qi(l)
qs(0)

]
, (S11a)

[
pi(0)
ps(l)

]
= csc (βl − ϵ)

[
−e gl

2 sin ϵ −sin(βl)
−sin(βl) −e−gl

2 sin ϵ

] [
pi(l)
ps(0)

]
. (S11b)

Again, it is not difficult to check that the solutions (S11a) and (S11b) satisfy the necessary commutation relations:

[qi(0), pi(0)] =
−sin2 ϵ

sin (βl + ϵ)sin (βl − ϵ)
[qi(l), pi(l)] +

sin2 βl

sin (βl + ϵ)sin (βl − ϵ)
[qs(0), ps(0)] =

i

2
, (S12a)

[qs(l), ps(l)] =
sin2 βl

sin (βl + ϵ)sin (βl − ϵ)
[qi(l), pi(l)] +

−sin2 ϵ
sin (βl + ϵ)sin (βl − ϵ)

[qs(0), ps(0)] =
i

2
. (S12b)

As these results are essentially no fundamental difference from those obtained in the φ = 0 case, all our discussions
pertaining to the latter case are applicable to the φ = π

2 scenario. Regarding other angles φ, we leave their exploration
as an exercise for the reader.

II. EPR CORRELATIONS AND ENTANGLEMENT IN TYPE-II QUADRATURE PT SYMMETRY

In what follows, we would like to make an effort on investigating the nontrivial connection between nonclassical
correlations (including quantum entanglement) and PT symmetry utilizing our type-II quadrature PT system. We are
aware that the area of research remains largely unexplored, especially in the continuous-variable (CV) domain [14–17].
It is worth to point out that the discussion presented in this section provides additional insights into quadrature PT
symmetry, in addition to the nontrivial C2Q transitions studied above.

A. Calculations of quantum-mechanical correlation coefficients

Historically, measurements of quadrature phase and amplitude of two-mode squeezed light have been widely em-
ployed in the study of CV entanglement [18–22]. To rigorously test entanglement, the two modes may be separately or
jointly detected, and correlation measurements be performed on the photo-currents. One of the methods for charac-
terizing nonclassicality and quantum entanglement, proposed by Reid [18, 19] using quantum-mechanical correlation
coefficients, follows the EPR standard.

Thanks to the simplicity and idealism of the type-II configuration, it provides us a quintessential platform for
exploring the peculiar relationship between nonclassical correlation and PT symmetry from a theoretical point of
view. Utilizing Eqs. (2a)-(2b) and (4) given in the main text, after some labor, we get the following interesting
expressions for the quantum-mechanical correlation coefficients |Cj,m| with {j,m} = {1, 2} for the case where φ = 0:

∣∣∣Cφ=0
11

∣∣∣ =
∣∣∣∣∣

⟨X1(0)Y1(l)⟩√
⟨X2

1 (0)⟩ ⟨Y 2
1 (l)⟩

∣∣∣∣∣ =
∣∣∣∣∣

⟨qi(0)qs(l)⟩√
⟨q2i (0)⟩ ⟨q2s(l)⟩

∣∣∣∣∣ = 0, (S13)

∣∣∣Cφ=0
22

∣∣∣ =
∣∣∣∣∣

⟨X2(0)Y2(l)⟩√
⟨X2

2 (0)⟩ ⟨Y 2
2 (l)⟩

∣∣∣∣∣ =
∣∣∣∣∣

⟨pi(0)ps(l)⟩√
⟨p2i (0)⟩ ⟨p2s(l)⟩

∣∣∣∣∣ = 0, (S14)
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∣∣∣Cφ=0
12

∣∣∣ =
∣∣∣∣∣

⟨X1(0)Y2(l)⟩√
⟨X2

1 (0)⟩ ⟨Y 2
2 (l)⟩

∣∣∣∣∣ =
∣∣∣∣∣

⟨qi(0)ps(l)⟩√
⟨q2i (0)⟩ ⟨p2s(l)⟩

∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

−e− gl
2 csc2(βl + ϵ) sin ϵ sin(βl)

〈
q2i (l)

〉
− e

gl
2 csc2(βl + ϵ) sin ϵ sin(βl)

〈
p2s(0)

〉
 [

e−glsin2 ϵ+sin2(βl)
4sin2(βl+ϵ)

] [
eglsin2 ϵ+sin2(βl)

4 sin2(βl+ϵ)

]

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
e−

gl
2 sinϵsin(βl) + e

gl
2 sinϵsin(βl)√[

e−glsin2ϵ+ sin2(βl)
] [
eglsin2ϵ+ sin2(βl)

]

∣∣∣∣∣∣

= 2cosh

(
gl

2

) ∣∣∣∣∣∣
sinϵsin(βl)√

sin4ϵ+ sin4(βl) + 2 cosh(gl)sin2ϵsin2(βl)

∣∣∣∣∣∣
, (S15)

and

∣∣∣Cφ=0
21

∣∣∣ =
∣∣∣∣∣

⟨X2(0)Y1(l)⟩√
⟨X2

2 (0)⟩ ⟨Y 2
1 (l)⟩

∣∣∣∣∣ =
∣∣∣∣∣

⟨pi(0)qs(l)⟩√
⟨p2i (0)⟩ ⟨q2s(l)⟩

∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

−e gl
2 csc2 (βl − ϵ) sinϵsin(βl)

〈
p2i (l)

〉
− e−

gl
2 csc2 (βl − ϵ) sinϵsin(βl)

〈
q2s(0)

〉
 [

e−glsin2ϵ+sin2(βl)
4sin2(βl−ϵ)

] [
eglsin2ϵ+sin2(βl)

4sin2(βl−ϵ)

]

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
e−

gl
2 sinϵsin(βl) + e

gl
2 sinϵsin(βl)√[

e−glsin2ϵ+ sin2(βl)
] [
eglsin2ϵ+ sin2(βl)

]

∣∣∣∣∣∣

= 2cosh

(
gl

2

) ∣∣∣∣∣∣
sinϵsin(βl)√

sin4ϵ+ sin4(βl) + 2 cosh(gl)sin2ϵsin2(βl)

∣∣∣∣∣∣
. (S16)

These results have been presented in the main text as Eqs. (5a) and (5b). From the above findings, we find that
due to the absence of coupling for the quadrature pairs {qi(0), qs(l)} and {pi(0), ps(l)}, their quantum correlation
coefficients (S13) and (S14) are always zero. However, this does not hold true for {qi(0), ps(l)} and {pi(0), qs(l)}.
On the other hand, since H(qi,ps) (S1a) and H(pi,qs) (S1b) are complementary, i.e., Ha + H

⊤
p = 0, their quantum

correlation coefficients (S15) and (S16) are identical. This nonzero quantum correlation coefficient allows for an EPR
reasoning, as emphasized in the main text. As explicitly illustrated in Fig. 3(a) in the main text, the nonclassicality
behaves distinctively before and after the PT-phase transition at the EP (b = 1). Interestingly, we observe that
quantum correlation coefficients (S15) and (S16) provide distinct insights into understanding the nonclassicality of
the system compared to the single-mode or two-mode quadrature variances, as well as the relative-intensity squeezing
aforementioned.Apart from these observations, it might be interesting to explore the nontrivial connection with
quantum steering [17, 23], examining how PT symmetry manifests in steering, nonlocaility, and entanglement.
By conducting a similar analysis for the case where φ = π

2 and using Eqs. (S11a) and (S11b), we find that the

quantum correlation coefficients accordingly turn to be |Cφ=π/2
11 | = |Cφ=π/2

22 | = |Cφ=0
12 | = |Cφ=0

21 | and Cφ=π/2
12 =

C
φ=π/2
21 = Cφ=0

11 = Cφ=0
22 = 0, exactly opposite to the φ = 0 case.

B. Calculations of the EPR correlations

For quite some time, it has been understood that quantum entanglement demands much stronger nonclassical
correlations. In the CV framework, a variety of methods [14–19] has been put forward to characterize these quantum
correlations and entanglement. Alongside the quantum-mechanical correlation coefficients discussed in Section 2.A,
one can also employ both output beams to demonstrate the system’s high nonclassical properties.
As such, we are interested in using the sum and difference combinations of the amplitude and phase quadratures of

idler and signal fields defined in the main text – Xθ
1 (0) + Y

ϕ
1 (l), X

θ
1 (0)− Y ϕ

1 (l), X
θ+π

2
2 (0)− Y

ϕ+π
2

2 (l), and X
θ+π

2
2 (0) +

Y
ϕ+π

2
2 (l) – to reveal the intriguing relationship between PT symmetry and EPR entanglement. Here, we introduce
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our notions:

Xθ
1 (0) =

1

2

[
eiθa†i (0) + e

−iθai(0)
]
= qi(0)cos θ + pi(0)sin θ, (S17a)

X
θ+π

2
2 (0) =

i

2

[
eiθa†i (0)− e−iθai(0)

]
= −qi(0)sin θ + pi(0)cos θ, (S17b)

Y ϕ
1 (l) =

1

2

[
eiϕa†s(l) + e

−iϕas(l)
]
= qs(l)cosϕ+ ps(l)sinϕ, (S17c)

Y
ϕ+π

2
2 (l) =

i

2

[
eiϕa†s(l)− e−iϕas(l)

]
= −qs(l)sinϕ+ ps(l)cosϕ. (S17d)

One can easily check that the amplitude quadratures sum and phase quadratures difference (or the amplitude

quadratures difference and phase quadaratures sum) are commutative since
[
Xθ

1 (0) + Y
ϕ
1 (l), X

θ+π
2

2 (0)− Y
ϕ+π

2
2 (l)

]
= 0

(or
[
Xθ

1 (0)− Y ϕ
1 (l), X

θ+π
2

2 (0) + Y
ϕ+π

2
2 (l)

]
= 0); while the amplitude quadratures sum and phase quadratures sum (or

the amplitude quadratures difference and phase quadratures difference) between the two beams form one pair of Heisen-

berg uncertainty conjugate variables, as they satisfy the commutation relation
[
Xθ

1 (0) + Y
ϕ
1 (l), X

θ+π
2

2 (0) + Y
ϕ+π

2
2 (l)

]
=

i (or
[
Xθ

1 (0)− Y ϕ
1 (l), X

θ+π
2

2 (0)− Y
ϕ+π

2
2 (l)

]
= i).

In order to unveil quantum entanglement, the two generalized quadratures
{
Xθ

1 (0) + Y
ϕ
1 (l), X

θ+π
2

2 (0)− Y
ϕ+π

2
2 (l)

}
or

{
Xθ

1 (0)− Y ϕ
1 (l), X

θ+π
2

2 (0) + Y
ϕ+π

2
2 (l)

}
must fulfill the inseparability criterion. The stronger EPR criterion demands

the variances of these generalized quadrature pairs to satisfy

ET1 ≡ Var
[
Xθ

1 (0)− Y ϕ
1 (l)
]
+Var

[
X

θ+π
2

2 (0) + Y
ϕ+π

2
2 (l)

]
<
1

2
, (S18a)

ET2 ≡ Var
[
Xθ

1 (0) + Y
ϕ
1 (l)
]
+Var

[
X

θ+π
2

2 (0)− Y
ϕ+π

2
2 (l)

]
<
1

2
. (S18b)

Accordingly, the weaker EPR criterion requires these generalized quadrature pairs to obey

ET1 ≡ Var
[
Xθ

1 (0)− Y ϕ
1 (l)
]
+Var

[
X

θ+π
2

2 (0) + Y
ϕ+π

2
2 (l)

]
< 1, (S19a)

ET2 ≡ Var
[
Xθ

1 (0) + Y
ϕ
1 (l)
]
+Var

[
X

θ+π
2

2 (0)− Y
ϕ+π

2
2 (l)

]
< 1. (S19b)

It is notable that the inseparability criterion proposed by Duan et al. [21] and Simon [22] falls within the scope of
the weaker EPR criterion outlined above.
As noted from the above inequalities, for simplicity, we have denoted the entire left-hand side of Eq. (S18a) or
(S19a) as “ET1” and the whole left-hand side of Eq. (S18b) or (S19b) as “ET2”. Our goal now is to evaluate these
variances for the input vacuum state. After some tedious derivations, we attain

4U1U2 ·Var
[
Xθ

1 (0)− Y ϕ
1 (l)
]
=V1
(
U1cos

2θ + U2cos
2ϕ
)
+ V2

(
U2sin

2θ + U1sin
2ϕ
)

+ 2ξ (U1sinϕcosθ + U2cosϕsinθ) , (S20a)

4U1U2 ·Var
[
X

θ+π
2

2 (0) + Y
ϕ+π

2
2 (l)

]
=V1
(
U1sin

2θ + U2sin
2ϕ
)
+ V2

(
U2cos

2θ + U1cos
2ϕ
)

+ 2ξ (U1cosϕsinθ + U2sinϕcosθ) , (S20b)

4U1U2 ·Var
[
Xθ

1 (0) + Y
ϕ
1 (l)
]
=V1
(
U1cos

2θ + U2cos
2ϕ
)
+ V2

(
U2sin

2θ + U1sin
2ϕ
)

− 2ξ (U1sinϕcosθ + U2cosϕsinθ) , (S20c)

4U1U2 ·Var
[
X

θ+π
2

2 (0)− Y
ϕ+π

2
2 (l)

]
=V1
(
U1sin

2θ + U2sin
2ϕ
)
+ V2

(
U2cos

2θ + U1cos
2ϕ
)

− 2ξ (U1cosϕsinθ + U2sinϕcosθ) , (S20d)

where the involved coefficients are, respectively, ξ = 2sin ϵsin(βL)cosh
(

gl
2

)
, U1 = sin

2 (βl − ϵ), U2 = sin
2 (βl + ϵ),

V1 = e
−glsin2 ϵ+ sin2(βl), and V2 = e

glsin2 ϵ+ sin2(βl).
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With use of these above results (S20a)–(S20d), we readily approach the following results:

ET1 =
sin2 (βl − ϵ) + sin2 (βl + ϵ)

2sin2 (βl − ϵ)sin2 (βl + ϵ)

[
cosh (gl)sin2ϵ+ sin2(βl) + 2cosh

(
gl

2

)
sin(βl)sin ϵsin (θ + ϕ)

]
, (S21a)

ET2 =
sin2 (βl − ϵ) + sin2 (βl + ϵ)

2sin2 (βl − ϵ)sin2 (βl + ϵ)

[
cosh(gl)sin2ϵ+ sin2(βl)− 2cosh

(
gl

2

)
sin(βl)sin ϵsin (θ + ϕ)

]
. (S21b)

Please note that compared to traditional studies, one apparent difference arises from the terms involving the argument
βl. It is this aspect that piques our interest in exploring the relationship between PT symmetry and EPR correlations.
Given the complexity of these formulas, we opt to utilize numerical simulations to seek the connection between the
two seemingly non-overlapping research areas.
In Fig. S3, we present some representative simulations of ET1 (S21a) and ET2 (S21b) under varying values of

b. Observations from these plots reveal the following: (i) Both ET1 and ET2 lose EPR correlations quickly with
increasing b. (ii) Due to the similarity between the two expressions, ET1 displays complementary features to ET2

along the (θ + ϕ)-dimension. (iii) Strong EPR criteria can be approached only when b is below 0.45, indicating the
emergence of quantum entanglement in the system. (iv) In the regime where b is small and within the PT-phase
intact regime, both ET1 and ET2 exhibit rapidly decaying intervals of periodic strong and weak EPR correlations.
Also, the simulations indicate that the competition between imbalanced amplification and the FWM process can
negatively impact the EPR strong and weak criteria. This effect is especially notable when b becomes large, even
before the symmetry breaks down. Nevertheless, for b values below 0.45, quadrature PT symmetry prevails over the
FWM process, propelling the system towards the optimal quantum domain in advance. From these observations,
we are aware that the dynamical participation of PSA yields distinctive effects compared to stationary participation
in traditional squeezing research. Moreover, the underlying physics manifests in different forms as well. In essence,
when b is small, quadrature PT symmetry significantly enhances nonclassical correlations and quantum entanglement
within the twin-beam system. Although there exists a trade-off between the two competing processes, notably, these
discoveries represent novel insights that have not been uncovered in prior studies within the realms of NH quantum
physics and traditional quantum squeezing research.
At the EP, Eqs. (S21a) and (S21b) reduce to be

ET1(b = 1) =
e−2κl(κ2l2 + 1)

[
1 + e4κl + 2κ2l2e2κl + 2κleκl

(
e2κl + 1

)
sin (θ + ϕ)

]

2 (κ2l2 − 1)2
, (S22a)

ET2(b = 1) =
e−2κl(κ2l2 + 1)

[
1 + e4κl + 2κ2l2e2κl − 2κleκl

(
e2κl + 1

)
sin (θ + ϕ)

]

2 (κ2l2 − 1)2
, (S22b)

which have been illustrated in Figs. S3(g) and (h) respectively. As one can see, very weak EPR correlations persist
only within a narrow range of interaction lengths, due to the high competition between PT symmetry and FWM.
Based on both expressions (S21a) and (S21b), as well as the simulations given in Fig. S3, we expect that their
optimal EPR quantum correlations are associated with θ+ϕ = 3π

2 and θ+ϕ =
π
2 , respectively. In such circumstances,

ET1 and ET2 assume the following characteristics:

ET1

(
θ + ϕ =

3π

2

)
= ET2

(
θ + ϕ =

π

2

)

=

[
1

4 sin2(βl − ϵ)
+

1

4 sin2(βl + ϵ)

]{[
e

−gl
2 sin ϵ− sin(βl)

]2
+
[
e

gl
2 sin ϵ− sin(βl)

]2}
, (S23)

a value always greater than 0. According to Cauchy–Schwartz inequality, Eq. (S23) is bounded from below, yielding

ET1

(
θ + ϕ =

3π

2

)
= ET2

(
θ + ϕ =

π

2

)
≥
[
e

−gl
2 sin ϵ− sin(βl)
2sin (βl − ϵ)

+
e

gl
2 sin ϵ− sin(βl)
2sin (βl + ϵ)

]2
. (S24)

The equality holds if and only if the following condition is met: [e
gl
2 sin ϵ − sin(βl)] sin(βl + ϵ) = [e

−gl
2 sin ϵ −

sin(βl)] sin(βl − ϵ).

C. Calculations of the logarithmic negativity

In Sections 2.A and 2.B above, we have examined quantum correlations by focusing on specific properties of the
system. However, it is important to note that there are various methodologies to characterize the nonclassicality
properties based on the entire system. One such approach is the logarithmic negativity EN [24–27].
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FIG. S3. PT-manifested EPR stronger and weaker criteria for different b values as a function of θ+ϕ and 2κl. The white color
signifies that the values of ET1 and ET2 exceed unity.
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In this subsection, we will outline the main procedure for calculating EN as given in the main text. To this end,
our first step is to compute the covariance matrix VQ, which encapsulates the system’s properties as a whole,

VQ =




Var[qi(0)] 0 0 CoVar[qi(0), ps(l)]
0 Var[pi(0)] CoVar[pi(0), qs(l)] 0
0 CoVar[pi(0), qs(l)] Var[qs(l)] 0

CoVar[qi(0), ps(l)] 0 0 Var[ps(l)]


 . (S25)

In Eq. (S25), we have introduced the following notions:Var[x] = ⟨∆x2⟩ and CoVar[x, y] = ⟨xy⟩ − ⟨x⟩⟨y⟩, to simplify
the expression. Moreover, VQ is constructed for the column vector V̂ = (qi(0), pi(0), qs(l), ps(l))

⊤
.

With use of the covariance matrix VQ (S25), our next step is to determine EN = max[0,− ln 4η] by finding out η,
which is defined as follows:

η =

√
Σ−
√
Σ2 − 4detVQ

2
. (S26)

In order to evaluate η, one needs to work out Σ, which is given by

Σ = Var[qi(0)]Var[pi(0)] + Var[qs(l)]Var[ps(l)] + 2CoVar[qi(0), ps(l)]CoVar[pi(0), qs(l)]. (S27)

After some lengthy derivation, we eventually find η to be

 
[β2 + κ2 sin2(βl)]2 + 4

{
β2κ2 sin2(βl) cosh(gl)− κ cosh( gl2 )

√
β2 sin2(βl)

[
2β2κ2 sin2(βl) cosh(gl) + κ4 sin4(βl) + β4

]}

|g2 − 4κ2 cos2(βl)| .

(S28)
From the preceding discussions, we have learnt that in both type-I and type-II quadrature PT symmetry, the sharp
change in quantum correlation typically does not align precisely with b = 1 (i.e., the EP). Nonetheless, it is good to
have the expression of η at the EP, which takes the form of

ηEP =

√√√√ (κ2l2 + 1)
2
+ 4
[
κ2l2cosh(2κl)− κlcosh(κl)

√
1 + κ4l4 + 2κ2l2cosh(2κl)

]

16 (κ2l2 − 1)2
. (S29)

The derived results above provide the foundation for the plot of the logarithmic negativity EN shown in Fig. 3(b) of
the main text across the PT phase transition for various b values.

Before proceeding to the next session, it is noteworthy to mention that the discussions presented in this section
regarding the exploration of the relationship between PT symmetry and quantum correlations/entanglement can be
extended to the type-I case, with exception of its complexity stemming from the Langevin noise in theory.

III. FURTHER DISCUSSION ON QUANTUM SENSING IN TYPE-II QUADRATURE PT SYMMETRY

As pointed out in the main text, a fundamental distinction between type-I and type-II in quantum sensing lies
in the fact that the latter scheme explicitly demonstrates enhanced quantum sensitivity in the PT-unbroken region,
inaccessible to the former. This improvement is achieved through the combined effect of PT symmetry and quantum
squeezing. However, the presence of Langenvin noise can quickly degrade this quantum sensitivity, pushing the system
into the classical domain, as shown in our earlier work on type-I quadrature PT symmetry [1].

In this section, we will delve deeper into our calculations of quantum sensing, expanding upon the points briefly
mentioned in the main text. Our focus will be on providing more comprehensive details regarding the theoretical
derivations and conducting further analysis on the quantum sensing performance, particularly in the type-II scenario
with an initial two-photon coherent state |α, α⟩ as an input.
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A. Calculations of the quantum Fisher information Fκ

For Gaussian states [28] (e.g., our case), the quantum Fisher information can be computed in the following way,

Fκ ≈1
2
Tr

(
V −1
ou 

dVou 

dκ
V −1
ou 

dVou 

dκ

)
+

(
dµou 

dκ

)⊤
V −1
ou 

dµou 

dκ

≈
(
dµou 

dκ

)⊤
V −1
ou 

dµou 

dκ
(when α is large). (S30)

In Eq. (S30), the amplitude vector µou is defined in the quadrature basis via µj = ⟨v̂j⟩ and Vj,k =
1
2 ⟨v̂j v̂k + v̂kv̂j⟩ −

⟨v̂j⟩⟨v̂k⟩, for 1 ≤ j, k ≤ 2, with the column vector v̂ = (qi(0), qs(l), pi(0), ps(l))⊤. It is easy to check that here Vou 

resembles the covariance matrix VQ described in Eq. (S25), with the only difference being the interchange of the
second and third rows. In general, the quantum Fisher information Fκ (S30) characterizes the overall SNR of the

whole system. Furthermore, the column vector dµou 

dκ assumes the following form,

dµou 

dκ
=
[
χqi(0)

κ , χqs(l)
κ , χpi(0)

κ , χps(l)
κ

]⊤
, (S31)

with χA
w ≡ ∂⟨A⟩

∂w being the susceptibility, a quantity characterizing the system’s response to the parameter w of interest
by measuring the quantum observable A. One important point to note regarding Eq. (S30) in the first line is that as α
rises, the significance of the first term on the right-hand side diminishes. To illustrate, in Fig. S4, we have conducted
a comparison, showing that when α > 3, the impact of the first term becomes negligible.
The final neat expression of Fκ is found to be

Fκ ≈ 4
{
[cosh(gl) + 1][g2 sin(βl)− 4κ2βl cos(βl)]2 + 2g2κ2[sin(2βl)− 2βl]2

}

β2[g2 − 4κ2 cos(βl)2]2

+
16α2

{
cosh(gl)[g2 sin(βl)− 4κ2βl cos(βl)]2 + g2κ2[sin(2βl)− 2βl]2

}

β2[g2 − 4κ2 cos(βl)2]2 , (S32)

which amounts to the quantum Fisher information of the entire system, so it aligns with all other quantum observables
including single-mode and two-mode quadratures as well as relative-intensity squeezing. Equation (S32) is highly
complex and lacks intuitiveness. Therefore, we resort to numerical simulations in this context to illustrate its behavior.
For different values of b, one can visualize how Fκ behaves from Fig. 4 in the main text and the accompanying Figs. S8,
S9, and S10 below. While Fκ may not hold significance in the vicinity of the EP (i.e., when g → 2κ), having its
reduced format available can still provide valuable insights,

Fκ(g → 2κ) ≈
4l2
[
9κ4l4 − 6κ2l2 + 9 +

(
κ2l2 − 3

)2
cosh(2κL)

]
+ 16α2l2

[
4κ4l4 +

(
κ2l2 − 3

)2
cosh(2κL)

]

9 (κ2l2 − 1)2
. (S33)

In Eq. (S33), it is observed that Fκ becomes divergent (i.e., infinite) when κl = 1, which poses disadvantage for
quantum sensing purposes. Put differently, utilizing type-II quadrature PT symmetry for enhancing sensitivity at or
near EPs seems impractical. We will get back to this point shortly.
Here, as an additional note, it’s worth mentioning that, for the current system, the quantum Fisher information
can also be computed by

Fκ = 4(⟨∂κψf |∂κψf ⟩ − |⟨∂κψf |ψf ⟩|2),
for the final system state |ψf ⟩ in the Schrödinger representation. The final state evolves as |ψf ⟩ = D̂ [αi(0), αs(l)] |TMCSV⟩
with |TMCSV⟩ = S(2)|0, 0⟩ being the two-mode combination squeezed vacuum state and S(2) the two-mode squeezing
operator. Next, we can cast the above Fκ as

Fκ = 4
(
⟨TMCSV

∣∣∣ξ̂†ξ̂
∣∣∣TMCSV⟩ − ⟨TMCSV

∣∣∣ξ̂†
∣∣∣TMCSV⟩⟨TMCSV|ξ̂|TMCSV⟩

)
,

where ξ̂ = ∂κ− [
|∂καi(0)|2+|∂καs(l)|2]

2 − [ai(l)∂κα∗
i (0) + as(0)∂κα

∗
s(l)]+

[
a†i (l) + α

∗
i (0)
]
∂καi(0)+

[
a†s(0) + α

∗
s(l)
]
∂καs(l).

We can prove that when α becomes large, the above two methods become equivalent for type-II quadrature PT
systems, producing identical results for Fκ as referenced in Eq. (S32). To have a visual presentation, in Fig. S4, we
have graphed the ratio of ∆κ−2

qi(0)
/Fκ for l = 2π/β, with Fκ computed using the aforementioned two methods. As one

can see from the figure, it becomes evident that the two methods converge to similar values when α > 2. However, this
equivalence does not extend to type-I systems owing to the interference of Langevin noise. In practice, the calculation
of Fκ using the covariance matrix offers broader applicability.
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FIG. S4. Plot of ∆κ−2qi(0)/Fκ as a function of α for l = 2π/β, with parameters b = 0.2, κ = 0.5. The red (black) line
represents Fκ calculated using the covariance matrix (final state vector  ψf ⟩). The blue line corresponds to Fκ obtained by
excluding the first term on the right-hand side (i.e., the second line of Eq. (S30)).

B. Calculations of susceptibilities

Following the definition of the susceptibility introduced in the main text, we can readily derive the system response,
i.e., the susceptibility χ, to a tiny perturbation on the parameter κ based on measuring either of the single-mode
quadratures [qs(l), ps(l), qi(0), pi(0)]. For the sake of simplicity, we will hereafter assume that the average photon
number of the thermal bosonic mode from the environment is zero.
In order to compute the χ, we first need to find out the expectation or mean value of each quadrature when seeding
a two-photon coherent state |ψi⟩ = |α, α⟩. After performing some calculations, we get

⟨qi(0)⟩ = e−
gl
2 csc (βl + ϵ) sinϵ ⟨qi(l)⟩ − csc (βl + ϵ) sin(βl) ⟨ps(0)⟩ , (S34a)

⟨pi(0)⟩ = e
gl
2 csc (βl − ϵ) sinϵ ⟨pi(l)⟩ − csc (βl − ϵ) sin(βl) ⟨qs(0)⟩ , (S34b)

⟨qs(l)⟩ = e−
gl
2 csc (βl − ϵ) sinϵ ⟨qs(0)⟩ − csc (βl − ϵ) sin(βl) ⟨pi(l)⟩ , (S34c)

⟨ps(l)⟩ = e
gl
2 csc (βl + ϵ) sinϵ ⟨ps(0)⟩ − csc (βl + ϵ) sin(βl) ⟨qi(l)⟩ . (S34d)

Using the results from Eqs. (S34a) to (S34d), we can readily calculate the four susceptibilities, which are

χqi(0)
κ =

e−
gl
2 sin(βl) [2κl + (2− gl) cosϵ]− 2βle− gl

2 cosϵcos(βl)− sinϵ (2κl + cosϵ) + cosϵsin (2βl + ϵ)
2β sin2 (βl + ϵ)

α, (S35a)

χpi(0)
κ =

2βle
gl
2 cosϵcos(βl)− e

gL
2 sin(βl) [(2 + gl) cosϵ− 2κl] + sinϵ (cosϵ− 2κl) + cosϵsin (2βl + ϵ)

2β sin2 (βl − ϵ)
α, (S35b)

χqs(l)
κ =

2βle−
gl
2 cosϵcos(βl)− e−

gl
2 sin(βl) [(2 + gl) cosϵ− 2κl] + sinϵ (cosϵ− 2κl) + cosϵsin (2βl + ϵ)

2β sin2 (βl − ϵ)
α, (S35c)

χps(l)
κ =

e
gl
2 sin(βl) [2κl + (2− gl) cosϵ]− 2βle gl

2 cosϵcos(βl)− sinϵ (2κl + cosϵ) + cosϵsin (2βl + ϵ)
2β sin2 (βl + ϵ)

α. (S35d)

To have an intuitive understanding of the behaviors of these susceptibilities (S35a)–(S35d), we have numerically
plotted them in Figs. S5(a)–(d) respectively. As one can see, in the PT-phase unbroken region (b < 1, indicated by
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FIG. S5. The logarithmic susceptibilities χ
qi(0)
κ (a), χ

ps(l)
κ (b), χ

qs(l)
κ (c), and χ

pi(0)
κ (d) plotted for the parameters {α = 10 and

κ = 0.5} across various b values under the measurement of a single-mode quadrature {qi(0), ps(l), qs(l), pi(0)}.

blue), all four susceptibilities exhibit periodic fluctuations with a period T = 2πκ/β. Notably, χ
qi(0)
κ and χ

ps(l)
κ peak

at locations (nT − 2ϵκ/β), while χqs(l)
κ and χ

pi(0)
κ peak at locations (nT + 2ϵκ/β), aligning with the peak positions

of corresponding quadrature variances as discussed in the main text. These susceptibility peaks indicate particular
strong response signals, implying the (sub)optimal locations for superior sensing measurement.

Oppositely, in the phase-broken regime (b > 1), the periodic patterns vanish. Specifically, χ
qi(0)
κ displays a smooth,

monotonically increasing curve bounded above by the b = 1 curve. χ
ps(l)
κ shows a dip initially, followed by monotonic

increase with an upper bound from the b = 1 curve. In contrast, χ
qs(l)
κ demonstrates a solitary peak near the beginning,

contrasting with χ
ps(l)
κ . The pattern of χ

pi(0)
κ becomes a bit complicated; starting with a dip, followed by a peak, a

secondary dip, and then monotonic growth.
Noteworthy is that for all four susceptibilities, as κl increases, they all grow monotonically, bounded above by the

b = 1 curve, regardless of passing through a dip or a peak.
On the other hand, we can also analyze the system’s response, i.e., the susceptibility, by measuring two-mode
quadratures. It can be demonstrated that the corresponding susceptibilities are now

χd1
κ =

∂(⟨qi(0)⟩+ ⟨qs(l)⟩)√
2∂κ

=
χ

qi(0)
κ + χ

qs(l)
κ√

2
, (S36a)

χd2
κ =

∂(⟨pi(0)⟩+ ⟨ps(l)⟩)√
2∂κ

=
χ

pi(0)
κ + χ

ps(l)
κ√

2
, (S36b)

which are essentially combinations of susceptibilities (S35a)–(S35d) derived from single-mode quadratures. Using
the same parameters as in Fig. S5, the behaviors of χd1

κ and χ
d2
κ are presented in Figs. S6(a) and (b) respectively.

Comparing with Fig. S5, χd1
κ shows periodic bimodal oscillations before the phase transition and a sole peak after

the transition, whereas χd1
κ showcases periodic dips followed by double peaks in the unbroken phase region and a dip

followed by a peak and a secondary dip in the broken region. It is worth noting that the b = 1 curve in the χd1
κ case

only exhibits a dip followed by a single peak.



16

FIG. S6. The logarithmic susceptibilities χd1
κ (a) and χd2

κ (b) for the parameters {α = 10 and κ = 0.5} and different b values
under the measurement of a two-mode quadrature {d1, d2}.

All in all, a sharp peak in χ indicates that the system responds sharply around that location to an infinitesimal
perturbation in the observed quantity. Contrarily, a flat curve suggests that the system lacks a sensitive response to
a small perturbation of the observed quantity.

C. Calculations of inverse variances

In order to assess the system’s sensing performance using the quantum Fisher information Fκ, it is essential to
juxtapose it with the inverse variances. Here, in line with our previous discussion on susceptibilities (Section 3.B), we
will also look at two cases: single-mode quadratures versus two-mode quadratures. As demonstrated below, varying
quantum measurement techniques applied to the same system can result in differing sensitivity levels and signal-to-
noise (SNR) ratios. Specifically, our current study reveals that the two-mode quadrature surpasses the single-mode
quadrature in sensing performance in general.
Single-Mode Quadrature Case The inverse variance, critical for determining the ultimate precision of the parameter
estimation for κ, is defined as ∆κ−2 ≡ (χO

κ )
2/⟨∆O2⟩, where O represents the observable for either of the four single-

mode quadratures. For the single-mode quadrature case, specifically, comparing ∆κ−2
pi(0)
, ∆κ−2

qi(0)
, ∆κ−2

qs(l)
, and ∆κ−2

ps(l)

with Fκ becomes crucial. These inverse variances relative to the quantum Fisher information must satisfy the following

inequalities: Fκ ≥
{
∆κ−2

qs(l)
,∆κ−2

ps(l)
,∆κ−2

qi(0)
,∆κ−2

pi(0)

}
. In other words, the Cramér-Rao lower bound is determined

by F−1
κ ∆κ

−2 ≤ 1. (In the insets of Fig. 4 in the main text, we have illustrated such a ratio for each single-mode
quadrature for your reference. A ratio approaching unity indicates the location where the best sensitivity is available.
However, whether the nature of sensing is classical or quantum depends on whether the observable’s nature at those
locations is classical or quantum.)
As such, our next step is to determine these inverse variances and conduct comparisons with Fκ. To accomplish this,
we initiate similar calculations to those performed for the vacuum input state, this time recalculating the variances
for the two-photon coherent seeding state |ψi⟩ = |α, α⟩. After some necessary calculations, we reach the following
results:

⟨∆q2i (0)⟩ =
e−gl sin2 ϵ+ sin2(βl)

4 sin2(βl + ϵ)
, (S37a)

⟨∆p2i (0)⟩ =
egl sin2 ϵ+ sin2(βl)

4 sin2(βl − ϵ)
, (S37b)

⟨∆q2s(l)⟩ =
e−gl sin2 ϵ+ sin2(βl)

4 sin2(βl − ϵ)
, (S37c)

⟨∆p2s(l)⟩ =
egl sin2 ϵ+ sin2(βl)

4 sin2(βl + ϵ)
. (S37d)

In Fig. S7, we have numerically simulated these variances with κ = 0.5 for different b values. Upon comparison with



17

the variances (3a)–(3d) of single-mode quadratures in the main text, we observe that they are in fact identical.
With these variances (S37a)–(S37d) and susceptibilities (S35a)–(S35d), calculating the corresponding inverse vari-
ances becomes straightforward. A simple calculation leads us to the following important results:

∆κ−2
qi(0)

=
α2
{
e−

gl
2 sin(βl) [2κl + (2− gl) cos ϵ]− 2βle− gl

2 cos ϵcos(βl)− sin ϵ(2κl + cos ϵ) + cos ϵsin (2βl + ϵ)
}2

β2 sin2 (βl + ϵ)
[
e−glsin2 ϵ+ sin2(βl)

] ,

(S38a)

∆κ−2
pi(0)

=
α2
{
2βle

gl
2 cos ϵcos(βl)− e

gl
2 sin(βl) [(2 + gl) cos ϵ− 2κl] + sin ϵ (cos ϵ− 2κl) + cos ϵsin (2βl + ϵ)

}2

β2 sin2 (βl − ϵ)
[
eglsin2 ϵ+ sin2(βl)

] , (S38b)

∆κ−2
qs(l)
=
α2
{
2βle−

gl
2 cos ϵcos(βl)− e−

gl
2 sin(βl) [(2 + gl) cos ϵ− 2κl] + sin ϵ (cos ϵ− 2κl) + cos ϵsin (2βl + ϵ)

}2

β2 sin2 (βl − ϵ)
[
e−glsin2 ϵ+ sin2(βl)

] ,

(S38c)

∆κ−2
ps(l)

=
α2
{
e

gl
2 sin(βl) [2κl + (2− gl) cos ϵ]− 2βle gl

2 cos ϵcos(βl)− sin ϵ (2κl + cos ϵ) + cos ϵsin (2βl + ϵ)
}2

β2 sin2 (βl + ϵ)
[
eglsin2 ϵ+ sin2(βl)

] . (S38d)

FIG. S7. The logarithmic variances ⟨∆q2i (0)⟩ (a), ⟨∆p2s(l)⟩ (b), ⟨∆q2s(l)⟩ (c), and ⟨∆p2i (0)⟩ (d) for the parameter κ = 0.5 and
different b values. The dashed lines represent the vacuum noise for comparison.

Despite the complexity of the mathematical expressions (S38a)–(S38d), we can gain insight into the behaviors

of the inverse variances
{
∆κ−2

qi(0)
,∆κ−2

pi(0)
,∆κ−2

qs(l)
,∆κ−2

ps(l)

}
by numerically comparing them with Fκ, as depicted

in Fig. S8 for various b values. Understanding these relationships aids our comprehension. From the definition of
∆κ−2, we recognize that the susceptibility χO

κ and the variance ⟨∆O2⟩ jointly determine the overall measurement
accuracy. Furthermore, as discussed in Section 3.B, the peak locations of χO

κ coincide with those of ⟨∆O2⟩ and
closely approach the Fκ bound, suggesting these locations as potential optimal sensing measurement points. On the
other hand, examining Fig. S7, we observe that the corresponding single-mode quadrature variances exhibit classical
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FIG. S8. Comparisons between the logarithmic inverse variances log10

(
∆κ−2

qi(0)
+ 1

)
(a), log10

(
∆κ−2

ps(l)
+ 1

)
(b),

log10

(
∆κ−2

qs(l)
+ 1

)
(c), and log10

(
∆κ−2

pi(0)
+ 1

)
(d) of four single-mode quadrature observables and the logarithmic quan-

tum Fisher information log10(Fκ + 1) as a function of dimensionless length for parameters {α = 10, κ = 0.5} and different b
values. The solid lines correspond to log10

(
∆κ−2 + 1

)
, while the dashed lines correspond to log10(Fκ + 1).

characteristics. This observation leads to the conclusion that, in the phase unbroken region, optimal classical sensing
measurements are only attainable at these peak locations.
In addition to this finding, our focus shifts to whether optimized quantum sensing measurements are achievable
in the type-II scheme. By carefully examining Figs. S5(a) and (c), Figs. S7(a) and (c), and Figs. S8(a) and (c), we
discern that (sub)optimal quantum sensing can indeed be achieved in the unbreaking symmetry region by measuring
qi(0) or qs(l) at the dip locations (nT ) in Figs. S7. These dip locations correspond to the series of secondary small
peaks in Figs. S8(a) and (c). Notably, such accomplishment arises from they synergistic interplay of PT symmetry
and quantum squeezing; either alone cannot facilitate this (sub)optimal quantum sensing. This is a stark contrast to
the type-I scenario [1] where quantum sensing is challenging to be reached because of the Langevin noise. However,
as b surpasses unity, despite the presence of quantum squeezing, achieving (sub)optimal quantum sensing becomes
unfeasible. This is attributed to the substantially monotonic increase in Fκ due to the rapidly expanded Hilbert space
of the system’s final state from the PSA.
Our previous work on the type-I system [1] revealed that there is no enhancement in quantum sensitivity in the
vicinity of EP. It is now interesting to know whether this statement holds true for a type-II system as well. To address
this, we conducted numerical analyses and presented the results in Fig. S9. As we can see from Fig. S9, regardless of
the approach to the EP, optimal quantum sensing remains unattainable. This mirrors the findings in type-I systems
[1]: achieving EP-enhanced quantum sensors in PT-symmetric quantum systems proves challenging with fair sampling
measurements.
Two-Mode Quadratures Case Thanks to the simplicity of the system, we are able to carry out an analytical
evaluation of quantum sensing performance by measuring two-mode quadratures as well. This further enables us to
compare the results with those obtained from the single-mode quadrature case discussed right above.
In order to have a quantitative understanding of the quantum sensitivity offered by two-mode quadrature detection,
our objective is to find out the corresponding inverse variances and compare them with the quantum Fisher information
Fκ, since the latter remains the same for the same system. In other words, we need to examine the Cramér-Rao bound
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FIG. S9. Comparisons between the logarithmic inverse variances log10

(
∆κ−2

qi(0)
+ 1

)
(a), log10

(
∆κ−2

ps(l)
+ 1

)
(b),

log10

(
∆κ−2

qs(l)
+ 1

)
(c), and log10

(
∆κ−2

pi(0)
+ 1

)
(d) of single-mode quadrature observables and the logarithmic quantum Fisher

information log10(Fκ + 1) as a function of dimensionless length for parameters {α = 10, κ = 0.5} and different b values in the
proximity of the EP. In particular, both approaches to the EP are considered, with the solid lines representing b = 0.98 and
the dashed lines representing b = 1.02.

as implemented in the single-mode quadrature case. With use of Eqs. (S2a)-(S2b) and Eqs. (S36a) and (S36b), we
can easily derive the expressions for the inverse variances of the two-mode quadratures d1 and d2 as follows,

∆κ−2
d1
=

2
(
χd1

κ

)2

⟨∆q2i (0)⟩+ ⟨∆q2s(l)⟩
=

(
χ

qi(0)
κ + χ

qs(l)
κ

)2

⟨∆q2i (0)⟩+ ⟨∆q2s(l)⟩
, (S39a)

∆κ−2
d2
=

2
(
χd2

κ

)2

⟨∆p2i (0)⟩+ ⟨∆p2s(l)⟩
=

(
χ

pi(0)
κ + χ

ps(l)
κ

)2

⟨∆p2i (0)⟩+ ⟨∆p2s(l)⟩
. (S39b)

A quick comparison with the inverse variances (S38a)–(S38d) in the single-mode quadrature case unveils a nontrivial
constructive interference occurring in the two-mode quadrature scenario. This constructive interference is anticipated
to provide better sensitivity than the single-mode quadrature case. To validate our hypothesis, in Fig. S10, we
have compared the logarithmic ∆κ−2

d1
and ∆κ−2

d2
with the logarithmic Fκ. Further comparison with the single-mode

quadrature case illustrated in Fig. S8 allows us to infer that both optimal classical sensing and (sub)optimal quantum
sensing can be improved at present. To facilitate comprehension, we have also directly examined the ratios of
∆κ−2

d1
/Fκ and ∆κ

−2
d2
/Fκ (i.e., the Cramér-Rao bound) and represented them in the insets of Figs. S10(a) and (b) for

your convenience. In these insets, a peak approaching one indicates best or optimal sensitivity, while other peaks
with values less than one correspond to suboptimal sensitivities. However, whether these sensitivities are classical or
quantum in nature depends on the characteristics of the observable involved at these peak locations.

In fact, this expectation can be supported by a mathematical proof. In the following, we outline such a proof. ■
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FIG. S10. Comparisons between the logarithmic inverse variances ln
(
∆κ−2

d1
+ 1

)
(a) and ln

(
∆κ−2

d2
+ 1

)
(b) of two-mode

quadrature observables and the logarithmic quantum Fisher informaiton ln(Fκ+1) as a function of dimensionless length for the
parameters {α = 10 and κ = 0.5} and different b values. Again, the solid lines represent ln

(
∆κ−2

d1
+ 1

)
or ln

(
∆κ−2

d2
+ 1

)
while

the dashed lines represent ln(Fκ + 1). The insets depict the ratios of ∆κ−2
d1
/Fκ and ∆κ−2

d2
/Fκ (i.e., the Cramér-Rao bound),

respectively.

For χj
κ and ⟨∆2

j ⟩ with j ∈ {qi(0), pi(0), qs(l), ps(l)}, we readily have the following inequalities:

(χi
κ)

2⟨∆2
s⟩

⟨∆2
i ⟩

+
(χs

κ)
2⟨∆2

i ⟩
⟨∆2

s⟩
≥ 2χi

κ(χ
s
κ),

(χi
κ)

2(
〈
∆2

s

〉
+
〈
∆2

i

〉
)

⟨∆2
i ⟩

+
(χs

κ)
2(
〈
∆2

s

〉
+
〈
∆2

i

〉
)

⟨∆2
s⟩

≥ (χi
κ + χ

s
κ)

2,

(χi
κ)

2

⟨∆2
i ⟩
+
(χs

κ)
2

⟨∆2
s⟩

≥ (χi
κ + χ

s
κ)

2

⟨∆2
i ⟩+ ⟨∆2

s⟩
.

In terms of the inverse variances, the last inequality can be rewritten as

(χi
κ + χ

s
κ)

2

⟨∆2
s⟩+ ⟨∆2

i ⟩
≤ ∆κ−2

i +∆κ
−2
s . (S41)

Now with the additional help of the first and second inequalities, we can show that
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κ

)2
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, (S42a)
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The conditions under which the equality sign in Eqs. (S42a) and (S42b) holds are, respectively, if and only if

χ
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i (0)⟩ =
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s(l)⟩ and

χ
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χ
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κ

 
⟨∆p2

s(l)⟩
⟨∆p2

i (0)⟩ =
 

⟨∆p2
i (0)⟩

⟨∆p2
s(l)⟩ . The physics underlying these inequalities (S42a)

and (S42b) suggests that, in the scenario of two-mode quadratures, apart from the upper limit imposed by the
quantum Fisher information Fκ, there exists an additional lower limit representing the theoretically optimal bound-
ary for measurement accuracy. To elaborate further, through mathematical analysis, the condition for achieving
optimal and maximum quantum measurement accuracy for ∆κ−2

d1
is found to be when nT satisfies the condition

4nπExp
[
−ngπ

β

]
= β

κ , where the parameters {g, κ} are involved. ■
Similar to the single-mode quadrature case, we do not observe any sensitivity improvement in the vicinity of the
EP even with use of d1. Moreover, the only area where enhanced sensitivity becomes approachable is within the
PT-phase unbroken region, away from the EP. Furthermore, upon comparing the insets in Fig. 4 of the main text
with those in Fig. S10, it becomes obvious that measuring two-mode quadratures can get better sensitivity than
measuring single-mode quadratures, whether in classical or quantum contexts.
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In summary, as one can see from the above derivations and discussions, it becomes evident that measuring a two-
mode quadrature offers superior sensitivity compared to measuring a single-mode quadrature in type-II quadrature
PT symmetry. Most importantly, our discoveries emphasize that when dealing with the quantum Fisher information
Fκ of a given quantum system, our selection of a suitable observable plays an essential role in determining how close
we can approach this limit. Once again, it’s worth pointing out that different observables may result in varying
sensitivity and signal-to-noise ratio (SNR). Exploring the sensing performance offered by relative-intensity squeezing
measurements in comparison to single-mode and two-mode quadrature cases could prove insightful. However, we defer
this investigation to future research endeavors.
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