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Statistical learning across passive exposure has been theoretically situated with unsupervised learning. However,
when input statistics accumulate over established representations — like speech syllables, for example — there is
the possibility that prediction derived from activation of rich, existing representations may support error-driven
learning. Here, across five experiments, we present evidence for error-driven learning across passive speech
listening. Young adults passively listened to a string of eight beer - pier speech tokens with distributional regu-
larities following either a canonical American-English acoustic dimension correlation or a correlation reversed to
create an accent. A sequence-final test stimulus assayed the perceptual weight — the effectiveness — of the sec-
ondary dimension in signaling category membership as a function of preceding sequence regularities. Perceptual
weight flexibly adjusted according to the passively experienced regularities even when the preceding regularities
shifted on a trial-by-trial basis. The findings align with a theoretical view that activation of established internal
representations can support learning across statistical regularities via error-driven learning. At the broadest level,
this suggests that not all statistical learning need be unsupervised. Moreover, these findings help to account for
how cognitive systems may accommodate competing demands for flexibility and stability: instead of overwriting
existing representations when short-term input distributions depart from the norms, the mapping from input to
category representations may be dynamically — and rapidly — adjusted via error-driven learning from predictions

derived from internal representations.

1. Introduction

The world presents considerable variability, but there is also struc-
ture. The regularities that lurk within perceptual input have an impor-
tant impact on behavior. Speech recognition, for instance, is influenced
by transitional probabilities across syllables (Saffran, Aslin, and New-
port, 1996; Saffran and Wilson, 2003; Thiessen and Saffran, 2003),
patterns of correlated acoustic features (Idemaru and Holt, 2011; Liu
and Holt, 2015; Maye, Weiss, and Aslin, 2008), and the mean of long-
term average spectra (Daikoku, Yatomi, and Yumoto, 2014; Holt,
2005). Each of these examples demonstrates sensitivity to stimulus
statistics accumulated over time, and a corresponding influence on
subsequent behavior. But it is unclear whether a common process un-
derlies these, and other, cases of detecting and exploiting input
regularities.

Over the past decades, understanding how humans make use of
statistical input regularities has developed into the vital and productive

* Corresponding author at: Carnegie Mellon University, Pittsburgh, PA, USA.

E-mail address: ahodson@andrew.cmu.edu (A.J. Hodson).

https://doi.org/10.1016/j.cognition.2023.105473

enterprise of understanding statistical learning (Armstrong, Frost, and
Christiansen, 2017; Aslin, 2017; Frost, Armstrong, and Christiansen,
2019; Saffran and Kirkham, 2018; Sherman, Graves, and Turk-Browne,
2020). In large part, this research has examined how human infants,
children, and adults detect and utilize input regularities in an unsuper-
vised fashion across passive exposure, implicitly and without behavioral
response (Fiser and Aslin, 2002; Saffran et al., 1996; Turk-Browne,
Scholl, Johnson, and Chun, 2010). Nevertheless, even infant learners are
not blank slates. Familiar input — like native speech — activates existing
representations. In doing so, it may generate predictions built from long-
term statistical norms. Prior research examining overt speech categori-
zation demonstrates that when speech input regularities violate these
predictions, there is rapid, online learning to adjust the informativeness
of acoustic input dimensions in speech categorization (Idemaru and
Holt, 2011, 2014, 2020; Liu and Holt, 2015; Wu and Holt, 2022; Zhang
and Holt, 2018). This suggests that predictions generated from existing
representations might support error-driven learning in cases in which
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input regularities depart from expectations (Knudsen, 1994). This
learning is statistical in the sense that it is driven by input regularities,
but it is not unsupervised in the sense traditionally ascribed to statistical
learning.

However, we do not yet know if error-driven learning in speech is
dependent upon active categorization and overt decisions, or if instead
the influence of these regularities can accumulate over passive listening.
Here, across five studies, we capitalize on a case of rapid, online learning
across speech input regularities for which there is evidence for error-
driven learning (Wu and Holt, 2022; Zhang, Wu, and Holt, 2021). We
ask whether this learning depends upon overt categorization decisions
and responses or if passive exposure to speech input regularities may be
sufficient.

1.1. Dimension-based statistical learning

An emerging literature has demonstrated robust and replicable ef-
fects of short-term distributional regularities in modulating how
strongly a particular acoustic dimension influences perceived speech
category identity, its perceptual weight (Holt and Lotto, 2006; Idemaru
and Holt, 2011; Lehet and Holt, 2020; Schertz, Cho, Lotto, and Warner,
2016). Typically, no single acoustic dimension is necessary or sufficient
to define speech category membership. Rather, multiple dimensions
covary and differ in the effectiveness with which they signal a category.
As an example, both voice-onset-time (VOT, the time that elapses be-
tween the release of a consonant and the start of voicing from vibration
of the vocal folds) and fundamental frequency (FO, the frequency of
vibration of this voicing) differentiate /b/ from /p/ in American English
(Abramson and Lisker, 1985; Castleman and Diehl, 1996; Kohler, 1985;
Whalen, Abramson, Lisker, and Mody, 1993). Moreover, VOT and FO
covary in a particular manner: shorter VOTs and lower-frequency FOs
typically signal /b/, whereas longer VOTs and higher-frequency FOs
signal /p/. Additionally, although both acoustic dimensions contribute
to /b/—/p/ categorization, VOT is more diagnostic than FO; it carries
greater perceptual weight (Francis, Kaganovich, and Driscoll-Huber,
2008; Lisker, 1986; Wu and Holt, 2022; Yu, 2022).

These baseline perceptual patterns reflect American English speech
input (Kingston and Diehl, 1994). Yet, short-term input sometimes vi-
olates these norms. We might encounter a stranger with an unfamiliar
dialect, or a spouse with a head cold. Systematic shifts in speech input
like this negatively impact comprehension (Bradlow & Bent, 2008;
Clarke & Garrett, 2004). Yet, a bit of experience with such speech can be
sufficient for comprehension to improve, and even for improvements to
generalize to other contexts or talkers with similar acoustic shifts (Bra-
dlow & Bent, 2008; Davis, Johnsrude, Hervais-Adelman, Taylor, and
McGettigan, 2005; Samuel & Kraljic, 2009). There is no clear consensus
on what drives these adjustments, but one line of research has shown
that listeners track distributional speech regularities and that perceptual
weights of acoustic dimensions adjust when short-term inputs mismatch
long-term norms (Hodson, DiNino, Shinn-Cunningham, and Holt, 2022;
Idemaru and Holt, 2011, 2014, 2020; Idemaru and Vaughn, 2020; Jas-
min, Tierney, Obasih, and Holt, 2021; Lehet and Holt, 2017, 2020; Liu
and Holt, 2015; Schertz, Cho, Lotto, and Warner, 2015; Wu and Holt,
2022; Zhang et al., 2021; Zhang and Holt, 2018).

As an example, consider what happens when speech input shifts so
that the typical English VOTxFO correlation flips, with /b/ now associ-
ated with lower-frequency FOs and /p/ with higher-frequency FOs in an
‘artificial accent.” Introduction of an accent with short-term speech
input statistics that deviate from the language-community norm pro-
duces rapid perceptual adjustments (Idemaru and Holt, 2011, 2014).
Specifically, listeners rapidly down-weight reliance on FO in speech
categorization decisions, so that FO is even less effective in signaling /b/
—/p/ categories.

This pattern of dimension-based statistical learning has been observed
for both consonants (Idemaru and Holt, 2011, 2014, 2020; Idemaru and
Vaughn, 2020; Schertz, Kang, and Han, 2019; Wu and Holt, 2022; Zhang
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et al., 2021; Zhang and Holt, 2018) and vowels (Lehet and Holt, 2020;
Liu and Holt, 2015; Wu and Holt, 2022), as well as for a suprasegmental
contrast (Jasmin et al., 2021). For each instance, listeners exhibit
exquisite sensitivity to evolving statistical regularities across the mul-
tiple acoustic input dimensions that signal speech categories; the map-
ping from speech input to categories is flexible, not fixed. Usefully,
dimension-based statistical learning provides a means of assaying
exactly how this sensitivity affects the mapping; reliance on a secondary
dimension, like FO, is down-weighted.

These effects are unambiguously statistical learning in that that lis-
teners exhibit sensitivity to the evolving short-term regularities in
speech input. Yet, all experiments to date have required listeners to
make overt categorization decisions to individual utterances, with short-
term speech input statistics accumulating across trials (and responses).
No one has tested if listeners accumulate short-term dimension regu-
larities across passive listening and, if they do, whether passive exposure
can drive down-weighting of the secondary dimension, as observed for
regularities accumulated across overt categorization decisions.

This question is especially relevant because dimension-based statis-
tical learning has been proposed to arise from error-driven learning
(Idemaru and Holt, 2011; Liu and Holt, 2015; Wu and Holt, 2022; Zhang
et al., 2021). By this view, information that disambiguates systematic
shifts in speech acoustics — whether lexical (Davis et al., 2005; Norris,
McQueen, and Cutler, 2003; Schwab, Nusbaum, and Pisoni, 1985), vi-
sual information from articulating faces (Bertelson, Vroomen, and De
Gelder, 2003; Vroomen, van Linden, de Gelder, and Bertelson, 2007),
orthographic feedback (Guediche, Fiez, and Holt, 2016; Schwab et al.,
1985), or unambiguous acoustic speech cues like VOT (as in the example
discussed above; Idemaru and Holt, 2011) - resolves the mapping of
ambiguous speech acoustics to a particular speech category. In doing so,
these mappings may generate expectations of category-typical speech
input. If the acoustic input is a poor match to predictions, an error signal
may shift speech categorization — an effect that persists even when the
disambiguating information is no longer present (see Guediche, Blum-
stein, Fiez, and Holt, 2014 for a review of this perspective). In this way,
and convergent with other demonstrations of speech adaptation to
adverse listening conditions, the mapping of acoustics to speech cate-
gories may be driven by supervisory teaching signals available from
disambiguating information sources, which drive activation of existing
representations (Bertelson et al., 2003; Guediche et al., 2014, 2016;
Idemaru and Holt, 2011; Norris et al., 2003).

Based on this logic, Wu and Holt (2022) posited that categorization
accuracy (as defined by the primary dimension) serves as a behavioral
index of successful category activation. Correspondingly, by the
reasoning outlined above, categorization accuracy upon introduction of
an accent should relate to the magnitude of the down-weighting of the
secondary dimension. Moreover, when a change in listening context (e.
g., speech-in-noise) prompts a shift in perceptual weights — such that a
secondary dimension becomes primary in signaling category identity —
the new primary dimension will drive category activation. Conse-
quently, in this context, the formerly primary (now secondary) dimen-
sion will be down-weighted upon introduction of the accent. Wu and
Holt report evidence to support each of these predictions of the error-
driven model, across both consonant and vowel categorization.

As additional evidence, top-down resolution of speech category
activation via lexical knowledge alone can drive dimension-based sta-
tistical learning (Zhang et al., 2021). Ordinarily VOT would play a
strong role in signaling /b/—/p/ category identity, but Zhang and col-
leagues held VOT constant at a perceptually ambiguous value. They
reasoned that if top-down feedback from lexical representations were
sufficient to activate /b/—/p/ categories differentially then it may drive
dimension-based statistical learning even in the absence of bottom-up
acoustic regularities. For example, presenting a high FO, VOT-
ambiguous sound in the context of _eef encourages perceptual resolu-
tion of the stimulus as /b/ (beef is a word, peef is not) but the same sound
is more often heard as /p/ in the context of _eace (peace is a word, beace
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is not). In this way, Zhang and colleagues conveyed ‘phantom’ short-
term stimulus statistics that do not exist in the input: for instance, a
VOT-ambiguous, low-FO stimulus paired with _eef accords with ca-
nonical English VOT-FO regularities whereas paired with _eace it con-
veys the opposite VOT-FO regularity. Phantom distributions reliant on
top-down category activation produced dimension-based statistical
learning. In summary, dimension-based statistical learning depends
upon a ‘teacher signal’ that drives category activation via bottom-up (e.
g., an unambiguous VOT) or top-down (e.g., beef is a word, peef is not;
Ganong, 1980) resolution, a proposition consistent with error-driven
learning.

Yet, all prior studies of dimension-based statistical learning have
employed tasks with an explicit categorization decision and overt
response on each trial. Is passive exposure to short-term distributional
regularities sufficient to produce perceptual down-weighting? Or are
predictions that drive dimension-based statistical learning dependent on
category activation that arises from explicit category decisions and re-
sponses? Answering these questions will be critical in understanding
interactions of error-driven learning via prediction and statistical
learning, and in determining whether dimension-based statistical
learning — whatever its origins — plays a role in more natural listening
contexts that do not demand explicit category decisions.

Experiment 1 establishes a novel approach across three replications.
We present statistically structured sequences of speech syllables across
passive listening, then prompt listeners to categorize FO-differentiated
test stimuli to assess perceptual weight as a function of the statistical
input accumulated over passive exposure. Experiment 2 directly com-
pares the magnitude of learning in the overt category decision paradigm
used in prior literature to the novel passive listening paradigm using a
within-subjects design. Finally, Experiment 3 examines the robustness
and rapidity of these effects by examining whether learning is influenced
by exposure to short-term regularities that are blocked, versus mixed,
across trials.

1.2. Analysis plan

The dependent measure was a two-alternative (beer-pier) speech
categorization of the FO-differentiated test stimuli, so we submitted re-
sults to a general linear mixed effects model with a binomial linking
function (logistic regression), using the glmer function from the Ime4 R
package.

We began with construction of empty models (no fixed effects) to
determine the random effects structure, and iteratively added effects
until obtaining the maximal structure. The maximal structure contained
a random slope of the Block (Canonical, Reverse) and Test Stimulus
(High FO, Low FO) interaction that varied by a random intercept of
Subject. However, in some instances the data could not support the
maximal structure, resulting in a singular fit. In these cases, we reduced
the random effects structure to a random slope of Test Stimulus that
varied by Subject. These modifications are noted in Table 3.

We next used the R anova function to compare different random ef-
fects structures to the empty model. The chi-square statistic (from the
likelihood-ratio test) determined whether models differed significantly
in their fit; the AIC and BIC statistics quantified the quality of fit. We
used the best random effects structure for the fixed effects models,
following the same iterative process of adding effects and their inter-
action terms, and then conducting model comparison.

All models included the fixed effects of Block, Test Stimulus, and the
Block x Test Stimulus interaction. This interaction term is the critical
effect of interest as it represents the dimension-based statistical learning
effect. The reference level for Block was always “canonical”, and the
reference for Test Stimulus was always “Low FO”. Experiments 1c and 2
involved an additional within-subjects factor, described in their
respective sections.

All fully interactive model outputs and parameters are included in
Tables 2 and 3.
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2. Experiment 1

Experiment 1 examines whether passive exposure to short-term
distributional regularities evolving across a sequence of speech sylla-
bles elicits dimension-based statistical learning. Experiment la offers
concurrent visual support (clipart displays) across the passively expe-
rienced, statistically structured speech sequence to encourage unam-
biguous speech category activation across passive listening. Experiment
1b eliminates this visual crutch. Finally, Experiment 1c blends these two
approaches in a within-subjects design to interrogate the potential in-
fluence of category support from visual images. This final experiment
also provides insight into the time course of learning, as each task is half
as long to maintain total study length across experiments.

2.1. Methods

2.1.1. Participants

Previous studies have examined dimension-based statistical learning
elicited within tasks in which participants make an overt categorization
response on each trial, across both exposure and test stimuli and among
in-person participants. These studies can provide rough guide for power
estimates, but because Experiment 1 introduces a novel paradigm we do
not yet have an appropriate effect size estimate. Guided by one such
prior study (Zhang and Holt, 2018) we would anticipate an effect size for
the crucial Block x Test Stimulus interaction to be approximately 0.44,
which would require 16 participants to achieve power of at least 0.80 at
a significance level of 0.05 (see Zhang and Holt, 2018 for details).
Therefore, guided by this imperfect estimate we oversampled (N = 30
per study) to ensure that we could detect subtle effects in this new
paradigm conducted with online participants.

Across all studies, younger adults (18-31 years) were recruited via
Prolific (www.prolific.sc) and tested online using the Gorilla Experiment
Builder (www.gorilla.sc). All participants were native speakers of
American English with self-reported normal hearing. The experiment
included control trials that were unambiguous exemplars of /b/ and /p/
(see below); data from subjects achieving <70% accuracy on control
trials were excluded in analyses to protect against inattentive online
participants. Table 1 presents participant demographics across studies;
individuals participated in at most one study. Informed consent was
obtained in compliance with a protocol approved by Carnegie Mellon’s
Institutional Review Board.

2.1.2. Stimuli

Stimuli were based on Idemaru and Holt (2011). Using a cross-
splicing procedure (McMurray, Tanenhaus, & Aslin, 2002), we gener-
ated 7 VOT steps (0 ms to 30 ms, 5-ms steps) from natural utterances of a
female monolingual English speaker saying beer and pier. Using Praat 5.0
(Boersma & Weenink, 2010), we manipulated the onset fundamental
frequency (FO) to create 7 FO levels (200-320 Hz, 20-Hz steps) for each
VOT. This onset FO frequency was maintained for 80 ms, then decreased
linearly over 150 ms to 180 Hz. This created a 2-dimensional grid of
speech exemplars varying perceptually from beer to pier across variation
in VOT and FO acoustics. Each stimulus was encoded as a .FLAC sound
file and normalized to the same root-mean-square (RMS) amplitude.

Fig. 1 illustrates the distributions of stimuli sampled from this 49-
token two-dimensional acoustic space. Exposure stimuli conveyed the
short-term speech input regularity (grey, Fig. 1). Since native English
listeners perceptually weight VOT more than FO (Francis et al., 2008;
Lisker, 1986; Wu and Holt, 2022; Yu, 2022), the perceptually unam-
biguous VOT of Exposure stimuli strongly signaled category identity
across blocks. Canonical block exposure stimuli mirroring English
speech regularities (Fig. 1A, left) involved nine exemplars of beer with
short VOT (0-10 ms) and low FO (200-240 Hz) and 9 exemplars of pier
with long VOT (20-30 ms) and high FO (280-320 Hz). In contrast,
Reverse block exposure stimuli involved exemplars with the opposite
VOTXFO correlation (Fig. 1A, right) across Exposure stimuli.
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Table 1
Participant demographic information for Experiments 1a—c.
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Before exclusion

After exclusion

Exp N Age Mean (SD) Age range Gender (F,M,Other) N Age Mean (SD) Age range Gender (F,M,Other)
Exp la 38 23.53 (3.48) 19-31 21, 15,2 30 23.8 (3.40) 19-30 16,12, 2

Exp 1b 34 22.71 (3.29) 18-29 16, 18 30 22.33 (3.09) 18-29 13,17

Exp 1c 37 24.55 (3.60) 18-31 30,6, 1 30 24.2 (3.63) 18-30 24,5,1

We assessed the influence of these short-term regularities on the
perceptual weight of FO with two Test stimuli held constant across
blocks and defined by a perceptually ambiguous VOT (15 ms) that
demanded reliance on the Low FO (220 Hz) or High FO (300 Hz) to signal
category identity. Two additional Control stimuli with perceptually
unambiguous VOT (5 ms, 25 ms) and an intermediate FO (260 Hz)
assessed online participants’ task engagement. Participants who did not
categorize these unambiguous stimuli with 70% accuracy were excluded
from analyses.

2.1.3. Procedure

Participants in each experiment completed the study online using the
Chrome internet browser on their own laptop or desktop computer (no
smartphone or tablet) and their own headphones; operating system was
not restricted. Participants received a reminder to turn off computer
notifications and completed a brief headphone and sound-level check
(Milne et al., 2021).

Each of the 96 approximately 7-s trials was composed of eight
Exposure stimuli followed by a Test stimulus. Participants passively
listened to Exposure stimuli and overtly labeled the final, Test stimulus
as beer or pier. Each sequence of eight Exposure stimuli included four
random selections of beer (VOT <15 ms) and 4 random selections of pier
(VOT > 15 ms), presented in a random order with 300 ms inter-stimulus
silent intervals. A 600 ms silent interval followed each sequence, after
which a Test (or Control) stimulus was presented, accompanied by a
black question mark. At this prompt, participants responded “beer” or
“pier” by pressing the F or J key, respectively (Fig. 1c).

All participants first experienced sequences sampling the Canonical
VOTXFO regularity (Fig. 1a) consistent with the long-term norms of
English across 48 trials. A second 48-trial block conveyed a the Reverse
VOTXFO ‘accent’ (Fig. 1b). Self-timed breaks were offered halfway
through each block and between blocks.

Experiments la and lc provided additional category support by
presenting a clip art image of either a beer or a pier with each Exposure
stimulus. Stimuli with a VOT <15 ms were accompanied by a beer
image; those >15 ms were accompanied by a pier. In experiments
without additional category support (Exp 1b, 1c), a progress bar of green
circles filled in at the onset of each sound.

Test and Control stimuli, to which responses were made, were con-
stant across blocks. For Experiments 1la and 1b, there were 36 Test
stimuli/block (18 High FO, 18 Low F0) and 12 Control stimuli/block (6
Beer, 6 Pier). In all, there were 48 trials/block and 96 trials across the
experiment. Owing to its within-participant design, Experiment 1lc
involved half as many trials per block and the order of visual-support
and no-visual-support blocks was counterbalanced. Each experiment
took about 20 min to complete.

2.2. Experiment 1a results

Experiment la paired a clip art image that unambiguously differ-
entiates /b/ versus /p/ across Exposure stimuli as additional category
support, providing a conservative test of whether passive exposure to
speech conveying distinct short-term regularities induces dimension-
based statistical learning.

We first examined test stimulus categorization as a function of Block
(Canonical, Reverse) and Test Stimulus FO (High, Low FO) with a general
linear mixed-effects regression model (GLMER). Due to the occurrence

of a singular fit with the maximal random effect structure, a base model
included the random intercept of Subject and a random slope of Test
Stimulus (AIC = 2813.73, BIC = 2836.44). We examined fixed effects by
adding predictors to the base model and observing model fit. Here, and
in subsequent analyses, “Canonical” was used as the reference level for
Block and “Low FO” was used as the reference level for the Test Stimulus
FO. We assessed interaction effects by adding the interaction term to a
model including both fixed effects.

As shown in Fig. 2a, dimension-based statistical learning was elicited
across passive exposure to the speech regularities that differentiated
Canonical and Reverse blocks, as reflected by an interaction of Block and
Test Stimulus FO (f = —4.29, SE = 0.23,z = —-19.04, p < .001, ng =0.85)
that significantly improved model fit (AIC = 2337.49, BIC = 2377.24,
X? = 452.87, p < .001) compared to an additive model that included
only Block and Test Stimulus FO fixed effects (AIC = 2788.37, BIC =
2822.43). Categorization reliant on FO was influenced by short-term
speech input regularities.

Further planned analyses inform the nature of this interaction. When
distributional regularities conveyed by Exposure stimuli aligned with
English VOTXFO patterns, FO differentially signaled beer and pier, in line
with norms. Participants categorized the High FO Test Stimulus signifi-
cantly more often as pier than the Low FO test stimulus ( = 3.38, SE =
0.24, z = 13.86, p < .001). When Reverse Exposure stimuli conveyed a
short-term regularity that mismatched English norms, there also was a
significant difference in categorization of High and Low FO test stimuli
(p = —0.91, SE = 0.21, z = —4.33, p < .001), but in the opposite di-
rection — mirroring the reversed short-term input distribution. As we
discuss below, the cross-over is unexpected and - should it replicate —
may implicate passive exposure as more potent than trial-by-trial
accumulation of regularities across overt categorization responses.
There also were significant effects of Block (f = 1.67, SE = 0.14, z =
12.09, p < .001) and Test Stimulus (p = 3.38, SE = 0.24,z = 13.86, p <
.001); listeners were more likely to respond pier in the Canonical block
and to the High FO test stimulus, across blocks.

2.3. Experiment 1b results

Experiment 1b eliminated category support from visual images by
replacing them with neutral images of green circles. This maintained
experimental details from Experiment 1a, including audio-visual tem-
poral alignment.

Following the approach of Experiment 1a, we examined main effects
and interactions in Experiment 1b. The base model accepted the
maximal random effect structure of a random effect of Subject with
random slopes of Block, Test Stimulus, and the Block x Test Stimulus
interaction (random effects only: AIC = 2449.01, BIC = 2511.47). As in
Experiment 1a, there were significant main effects of both Block (f =
1.18,SE=0.17,z=6.74,p < .001) and Test Stimulus FO (p = 2.38, SE =
0.24, z = 10.07, p < .001).

As evident in Fig. 2b, the short-term Canonical and Reverse regu-
larities impacted reliance on FO in categorization, as evidenced by a
significant interaction effect between Block and Test Stimulus FO (p =
~1.78, SE = 0.34, z = —5.19, p < .001, n? = 0.49) that significantly
improved model fit (AIC = 2399.98, BIC = 2479.47, X2 = 18.22, p <
.001) when compared to a model with the two main effects (AIC =
2416.19, BIC = 2490.01). Test Stimulus FO signaled /b/ and /p/
differentially in the Canonical block (f = —2.38, SE = 0.24, z = —10.07,
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Table 2
GLMER model outputs.
Effect Estimate  Std. zvalue  Pr(>| Sig.
Error z[)
Exp la (Intercept) —-1.10 0.16 —6.85 0.000
Block 1.67 0.14 12.09 0.000
Test Stimulus 3.38 0.24 13.86 0.000  ***
Block x Test —-4.29 0.23 —19.04 0.000
Stimulus
Exp 1b (Intercept) —0.74 0.19 —3.86 0.000
Block 1.18 0.17 6.74 0.000 ok
Test Stimulus 2.38 0.24 10.07 0.000  ***
Block x Test ~1.78 0.34 —5.19  0.000  ***
Stimulus
Exp 1c (Intercept) -1.25 0.22 —-5.73 0.000 ok
Visual Support 0.27 0.20 1.33 0.185
Block 1.56 0.25 6.24 0.000 i
Test Stimulus 3.14 0.32 9.84 0.000 i
Visual Support x —0.08 0.27 -0.29 0.769
Block
Visual Support x -0.21 0.32 —0.64 0.520
Test Stimulus
Block x Test —2.90 0.42 —6.85 0.000  ***
Stimulus
Visual Support x —0.02 0.42 —0.05 0.963
Block x Test
Stimulus
Exp 2 (Intercept) —0.73 0.24 -3.09 0.002  **
Task Type 0.02 0.21 0.10 0.917
Block 1.41 0.21 6.66 0.000
Test Stimulus 2.96 0.33 8.88 0.000
Task Type x Block —0.89 0.29 —3.04 0.002  **x
Task Type x Test —0.80 0.34 —2.36 0.018 *
Stimulus
Block x Test —2.85 0.33 —8.63 0.000  ***
Stimulus
Task Type x Block 1.67 0.44 3.76 0.000 ok
x Test Stimulus
Exp 2 (Intercept) —1.04 0.29 —-3.60 0.000 ekl
(Passive Task Type 0.34 0.29 1.17 0.241
first) Block 1.15 0.29 3.97 0.000 ek
Test Stimulus 2.86 0.46 6.19 0.000 ok
Task Type x Block —0.49 0.40 -1.23 0.218
Task Type x Test 0.03 0.48 0.06 0.955
Stimulus
Block x Test —2.08 0.44 —4.74 0.000  ***
Stimulus
Task Type x Block 0.08 0.63 0.13 0.898
x Test Stimulus
Exp 2 (Intercept) -0.43 0.40 -1.09 0.275
(Overt Task Type —0.32 0.30 -1.06 0.292
first) Block 1.86 0.33 5.58 0.000
Test Stimulus 3.30 0.53 6.19 0.000
Task Type x Block —1.50 0.45 —3.37 0.001
Task Type x Test -1.62 0.53 —3.04 0.002  **
Stimulus
Block x Test —4.04 0.55 —7.34 0.000
Stimulus
Task Type x Block 3.48 0.69 5.07 0.000
x Test Stimulus
Exp 2 (Intercept) -0.70 0.23 -3.07 0.002 o
(Passive Block 0.51 0.20 2.52 0.012  *
Only) Test Stimulus 2.12 0.30 7.13 0.000 ¥
Block x Test -1.16 0.30 —3.94 0.000 ok

Stimulus
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Table 2 (continued)

Effect Estimate  Std. zvalue  Pr(>| Sig.
Error z|)

Exp 2 (Intercept) -0.79 0.28 —2.78 0.005  **
(Overt Block 1.53 0.23 6.74 0.000  ***
Only) Test Stimulus 3.17 0.38 8.26 0.000  ***

Block x Test —3.06 0.35 —8.80 0.000  ***
Stimulus
Exp 3 (Intercept) —0.87 0.16 —5.38 0.000  ***
Block 0.75 0.13 5.59 0.000  ***
(Regularity)
Test Stimulus 2.21 0.22 10.02 0.000 ok
Block -1.11 0.20 —5.65 0.000
(Regularity) x
Test Stimulus
* <0.05, ** < 0.01, *** < 0.001.
Table 3
GLMER model parameters.
AIC BIC logLik deviance  df.resid
Expla 2337.49  2377.24 -1161.75  2323.49 2153
Formula Correct ~ (Test Stimulus|Subject) + Block*Test Stimulus
Explb 2399.98  2479.47  —-1185.99  2371.98 2146
Formula Correct ~ (Block*Test Stimulus|Subject) + Block *Test Stimulus
Explc 2444.63 2546.83 —1204.32 2408.63 2142
Formula Correct ~ (Block *Test Stimulus|Subject) + Visuals*Block *Test
Stimulus
Exp2 2173.54 2234.7 -1075.77  2151.54 1909
Formula Correct ~ (Test Stimulus|Subject) + Task *Block *Test Stimulus

Exp2 (Passive first)
Formula

1096.9 1150.5 —537.5 1074.9 949
Correct ~ (Test Stimulus|Subject) + Task *Block *Test Stimulus

Exp2 (Overt first)
Formula

1054.9 1108.4 —516.4 1032.9 949
Correct ~ (Test Stimulus|Subject) + Task*Block *Test Stimulus

Exp2 (Passive only)
Formula

1163.12 1197.19 —574.56 1149.12 953
Correct ~ (Test Stimulus|Subject) + Block*Test Stimulus

Exp2 (Overt only) 1020.58  1054.65 —503.29 1006.58 953
Formula Correct ~ (Test Stimulus|Subject) + Block*Test Stimulus
Exp3 2565.59 2605.34 —1275.8 2551.59 2153
Formula Correct ~ (Test Stimulus|Subject) + Block (Regularity)*Test
Stimulus

p < .001) but FO was not effective in signaling category identity in the
Reverse block (f = —0.61, SE = 0.34, z = —1.79, p = .074). In summary,
passive exposure to short-term speech statistics is sufficient to evoke
dimension-based statistical learning even without additional support
from visual images that differentiate Exposure stimuli.

2.4. Experiment Ic results

Experiment 1c examined whether modest differences across Experi-
ments 1a and 1b might be due to cohort differences, or whether there is a
true influence of visual support. Experiment 1c was identical to Exper-
iments 1a and 1b, except that a single sample of participants experi-
enced trials both with and without visual support, presented in blocks
counterbalanced in order. To keep the duration of the experiment the
same, the number of trials in each condition was half that of Experiments
la and 1b.
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this article.)

We constructed a base GLMER including the random slopes of Block
(Canonical, Reverse), Test Stimulus FO (High FO, Low FO0), and their
interaction varied across Subject (intercept) and iteratively added fixed
effects of Visual Support (Yes, No), Block, Test Stimulus FO, and their
interactions (AIC = 2484.6, BIC = 2547.0). Visual Support could not be
added to the random effect structure due to singular fit. “Canonical” was
used as the reference level for the Block condition, “Low FO” was used as
the reference level for the Test Stimulus FO condition, and “No Visual”
was used as the reference level for visual support. Fig. 2¢ plots the
results.

In a model with the full set of interactions, there were main effects of
both Block (f = 1.56, SE = 0.25, z = 6.23, p < .001) and Test Stimulus FO
(B = 3.14, SE = 0.32, z = 9.84, p < .001), and no main effect of Visual
Support (B = 0.27, SE = 0.20, z = 1.33, p = .185).

As in Experiments 1a and 1b, there was a Block x Test Stimulus FO
interaction (p = —2.90, SE = 0.42, z = —6.85, p < .001, ng = 0.73),
consistent with the down-weighting of FO in the Reverse block. Criti-
cally, this interaction was not modulated by Visual Support as a three-

way interaction (§ = —0.02, SE = 0.42, z = —0.05, p = .963, r]f, <
0.001), indicating that the magnitude of down-weighting did not differ
with the presence of visual support.

Visual Support also did not interact with either Block (p = —0.08, SE
=0.27,z=-0.29, p =.769) or Test Stimulus (p = —0.21, SE=0.32,z =
—0.64, p = .520). Compared to a fully additive model (AIC = 2472.5,
BIC = 2552.0), a model containing a Block by Test Stimulus interaction
and an additive effect of Visual Support provided a significantly better
fit to the data (AIC = 2440.0, BIC = 2525.2, X = 34.48, p < .001). This
partially additive model did not significantly differ from a model of the
full set of interactions (AIC = 2444.6, BIC = 2546.8, X> = 1.39, p=
.708).

In summary, three replications across 90 online participants
demonstrate that passive exposure to distributions of speech input has a
robust influence on the perceptual weight of acoustic dimensions in
signaling speech categories. Upon encountering short-term speech reg-
ularities that depart from the language community norm in passive
listening, listeners’ speech categorization reflects an adjustment of the
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effectiveness of the mismatching dimension in signaling category
membership. The mapping from acoustic input to speech categories is
dynamically tuned in response to changes in the distributional charac-
teristics of ongoing speech input, passively experienced.
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3. Experiment 2

How does the magnitude of dimension-based statistical learning
across passive exposure compare to that observed across overt trial-by-
trial categorization decisions? One possibility is that the category de-
cisions involved in overt response paradigms amplify category activa-
tion and thereby exaggerate dimension-based statistical learning
compared to well-matched passive exposure. Alternatively, experi-
encing distributions on a trial-by-trial basis in passive listening may be a
more potent driver of perceptual weight adjustments. Experiment 2
evaluates these possibilities within a single cohort of listeners that
completes both passive exposure and overt categorization tasks.

3.1. Method

3.1.1. Participants

A group of 41 adults (30 female, 11 male) between the ages of 18 and
28 years (M = 23.77, SD = 2.84) was winnowed by 11 subjects who
failed to categorize control trials with >70% accuracy to arrive at a
sample of 30 participants (M = 24.07 years, SD = 2.89; 22 female, 8
male).

3.1.2. Stimuli
Stimuli were identical to Experiment 1b.

3.1.3. Procedure

The passive listening task was the same Experiment 1b except that
there were 40 total trials total (20 trials/block) with High FO and Low FO
Test stimuli heard 8 times per block and Control stimuli heard twice in
each block. The passive task took about 10 min to complete. In the overt
categorization task, each stimulus was presented in isolation, immedi-
ately followed by a black question mark prompting a beer-pier catego-
rization decision by keypress. This differed from the passive listening
task in which 8 exposure stimuli and a final test or control stimulus
comprised a trial. Therefore, the overt categorization task had 360 total
trials (180/block), with a test or control trial presented after every 8
exposure trials to align with the passive listening task. The overt cate-
gorization task took about 15 min to complete. Task order was coun-
terbalanced across participants.

3.2. Results

To avoid singular fit, a base GLMER model included the random
slope of Test Stimulus FO that varied by Subject, AIC = 2296.8, BIC =
2319.1. Fixed effects and their interactions were subsequently added to
the base random effects structure to assess model fit. “Canonical” was
used as the reference level for Block, “Low FO” was used as the reference
level for Test Stimulus FO, and “Overt” was used as the reference level
for Task.

Compared to a purely additive model (AIC = 2264.5, BIC = 2303.4),
a full model of interactions provided a significantly better fit (AIC =
2173.5, BIC = 2234.7, X*> = 98.96, p < .001). This model was also a
significantly better fit compared to a partially additive model involving
only the interaction term of Block x Test Stimulus (AIC = 2182.7, BIC =
2227.2, X% = 15.17, p = .002). The full model with all interactions
revealed main effects of both Block (f = 1.41, SE = 0.21, z = 6.66, p <
.001) and Test Stimulus FO (f = 2.96, SE = 0.33, z = 8.88, p < .001), as
in previous experiments. There was no main effect of Task (p = 0.02, SE
=0.21,z=0.11, p = .917), indicating that the overall proportion of pier
responses did not differ significantly for overt versus passive tasks. The
effect of Task significantly interacted with Block (p = —0.89, SE = 0.29,
z = —3.04, p = .002) and with Test Stimulus FO (p = —0.80, SE = 0.34, z
= -2.36,p = .018).

As Fig. 3 shows, there was a significant interaction of Block and Test
Stimulus FO (p = —2.85, SE = 0.33, z = —8.63, p < .001, 17 = 0.72), the
hallmark of dimension-based statistical learning, across tasks.
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short-term speech input regularities. Light symbols show individual means and
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and Low FO Test stimuli in Canonical and Reverse blocks for (A) overt category
decisions and (B) passive listening.

Considering each task separately, the interaction was significant for both
the overt categorization task (f = —3.06, SE = 0.35,z = —8.80, p < .001,
1]1% = 0.75) and the passive listening task (p = —1.16, SE = 0.29, z =
~3.94, p = .002, 17 = 0.29).

This was moderated by Task in a three-way interaction (f = 1.67, SE
=0.44,z=3.76,p < .001, ng = 0.47). Overall, with data pooled across
the counterbalanced orders, FO was down-weighted less in the passive
listening task than in the overt categorization task. This is consistent
with the possibility that overt category decisions and responses amplify
the effects of dimension-based statistical learning, perhaps by exagger-
ating category activation effects. Yet, we note that the potential for
carry-over effects across the task manipulations warrants caution. When
the passive paradigm preceded the overt task, there was no significant
difference in the magnitude of FO down-weighting (Task type x Block x
Test Stimulus, § = 0.08, SE = 0.63, z = 0.13, p = .898) observed across
passive and overt paradigms. However, when participants first made
explicit category decisions and then experienced passive exposure, we
observed significantly less down-weighting of FO perceptual weight
across passive exposure to the accent (Task type x Block x Test Stimulus,
B = 3.48, SE = 0.69, z = 5.07, p < .001). In summary, participants track
short-term speech regularities across individual trials in the overt task
and mere exposure in the passive task, with the accent introduced by the
Reverse block diminishing the perceptual weight of FO in speech cate-
gorization. There are carry-over effects of task that might be examined
in future research.

4. Experiment 3

Experiment 3 examines the time course of dimension-based statisti-
cal learning across passive exposure by asking whether listeners track
trial-wise short-term regularities when opposing short-term regularities
are mixed in presentation.
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4.1. Methods

4.1.1. Participants

A total of 36 younger adults (16 male, 20 female) ages 18 to 30 years
(M = 25.36, SD = 3.5) were recruited. Six participants were excluded
from further analyses for failing to reach 70% accuracy on control trials,
for a total of 30 participants included in subsequent analyses.

4.1.2. Stimuli and procedure

Stimuli, experimental design, and procedure mirrored Experiment
1b, except that Canonical and Reverse trials were mixed instead of
blocked across trials. This mixing did not change the total number of
trials (96 total trials). Each subject heard a unique trial order.

4.2. Results

The base GLMER model included a random slope of Test Stimulus FO
(High FO, Low FO) that varied by Subject, (AIC = 2635.6, BIC = 2658.3).
Fixed effects of Regularity (Canonical, Reverse) and Test Stimulus and
their interaction were then added to this base model. Fig. 4 shows the
results.

Dimension-based statistical learning was evident across passive
exposure even when Canonical and Reverse short-term regularities were
mixed on a trial-wise basis, as evident in a significant interaction of
Regularity and Test Stimulus FO (§ = —1.11, SE = 0.19, z = —5.65, p <
.001, ng = 0.28). Dimension-based statistical learning operated across as
few as 8 stimuli conveying a short-term distributional regularity and in
the context of rapidly changing distributions. Compared to an additive
model (AIC = 2595.7, BIC = 2629.8), addition of a Regularity x Test
Stimulus FO interaction term significantly improved model fit (AIC =
2565.6, BIC = 2605.3, X2 = 32.11, p < .001), further supporting the
presence of FO down-weighting in the context of Reverse compared to
the Canonical speech regularities experienced across passive exposure.
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Fig. 4. Experiment 3 Results. Mean percent “pier” response as a function of the
short-term regularity conveyed across the Exposure sequence High FO (purple)
and Low FO (blue) Test stimuli. Light symbols show individual means and dark
symbols show group means (error bars represent +1 SE). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Like all previous experiments, there were significant main effects of both
Regularity (p = 0.75, SE = 0.13, z = 5.59, p < .001) and Stimulus Type
(p=2.21,SE=0.22,z=10.01, p < .001). In a sense, mixed presentation
of Canonical and Reverse short-term regularities across trials simulates
an unreliable speaker who rapidly shifts accent. Listeners are sensitive to
these regularities in passive listening, as evidenced by a re-weighting of
the influence of FO in speech categorization.

5. Discussion

Listeners track distributional regularities across passive exposure to
speech even when they do not make overt categorization judgements.
Upon encountering short-term distributional regularities that depart
from language norms, as in accented speech, listeners rapidly adjust the
perceptual weight, or effectiveness, with which incoming acoustic di-
mensions signal speech categories. Observing this dimension-based
statistical learning across passive exposure to short-term distributional
regularities opens the possibility that dimension-based statistical
learning may play a role in natural listening contexts, such as daily
conversation and listening to spoken media. It also demonstrates that
explicit speech categorization decisions are not necessary to trigger
perceptual re-weighting based on input statistics. These conclusions are
supported across five independent samples (N = 180 total participants)
drawn from diverse young adults recruited and tested online. Indeed,
results across the three replications of Experiment 1 demonstrate that
passive exposure to speech regularities is sufficient to drive dimension-
based statistical learning, without the need for additional support for
category activation from visual images. Experiments 2 and 3 provide
further converging evidence. Dimension-based statistical learning per-
sists even in the volatile statistical context of Experiment 3, in which
regularities could shift trial-by-trial.

One might question whether this new paradigm is entirely “passive”
in that listeners report a category decision for test stimuli. In this regard,
it is important to note that these explicitly labeled test stimuli were
constant across conditions. Learning across the distinct speech regular-
ities happens across the sequence of sounds that precedes test stimuli
and therefore must play out over passive exposure. Statistical learning
experiments utilizing passive exposure often expose listeners to long
passages of input and then introduce an active behavioral task to assess
learning. Here, given the rapid nature of dimension-based statistical
learning, we are able to take this approach at the trial level.

As described above, dimension-based statistical learning appears to
be dependent upon speech category activation driven by a disambigu-
ating information source, such as an unambiguous acoustic dimension
(like VOT in the present studies; Wu and Holt, 2022) or top-down res-
olution through lexical context (Zhang et al., 2021). This activation may
allow for predictions of typical patterns of multidimensional speech
input, and error-based adjustments when input mismatches expecta-
tions. Yet, statistical learning across passive exposure has been more
typically considered as unsupervised learning (Fiser and Aslin, 2001;
Saffran et al., 1996). Observing dimension-based statistical learning
across passive exposure, as we do here, suggests another possibility that
departs from traditional accounts of statistical learning in two important
ways.

First, the present results underscore the importance of language-
specific knowledge, acquired over the long-term, in resolving ambigu-
ity and driving learning. When distributional input conveys information
sufficient to differentially activate speech categories (as here via the
unambiguous VOTs of passively experienced exposure stimuli), then
learning may operate via the predictions generated by category activa-
tion, and error signals arising when input does not match predictions. In
this way, the disambiguating dimensions present in multidimensional
speech input can serve as ‘teacher signals’ by activating internal cate-
gory representations that produce both predictions and errors to drive
learning. Indeed, even beyond dimension-based statistical learning,
other forms of passive statistical learning that have been thought to
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emerge from unsupervised learning may, in fact, get a boost from in-
ternal predictions if perceptual input aligns well enough with prior
experience to activate existing representations.

Second, the present results do not implicate a change in category
representation. It would be disadvantageous to overwrite or distort
native category representations after brief encounters with input that
deviates from these norms. Instead, dimension-based statistical learning
appears to adjust the effectiveness of acoustic dimensions in signaling
speech categories. This can be accommodated through transient ad-
justments to the connection-weights (efficiency) of communication from
acoustic input to speech categories. This generates rapid and short-term
flexibility, without producing rapid changes to long-term category rep-
resentations that could lead to perceptual instability. Lehet and Holt
(2020) lend support for this possibility by demonstrating that down-
weighting of an acoustic dimension in signaling speech categories, as
in dimension-based statistical learning, does not diminish the effec-
tiveness of the dimension — conveyed by the same speech sound - in
evoking lower-level, pre-categorical context-dependent interactions
with other speech sounds. In this way acoustic input dimensions persist
as a potent driver of pre-categorical interactions even when their in-
fluence in differentially signaling speech categories may diminish. A
model like this has the advantage of reconciling the classic stability
versus plasticity dilemma faced by systems that need to represent long-
term statistical regularities while also maintaining flexibly adjust to
short-term deviations.

Of course, all prior studies of dimension-based statistical learning
have required explicit categorization decisions. Thus, the best evidence
for error-driven learning is from tasks demanding explicit categorization
decisions and a trial-by-trial accumulation of distributional statistics
(Wu and Holt, 2022; Zhang et al., 2021; Lehet and Holt, 2020). Yet, the
present results make clear that the pattern of dimension down-weighting
associated with dimension-based statistical learning emerges with pas-
sive exposure to short-term input distributions that deviate from English
norms. Explicit decisions are not necessary for dimension-based statis-
tical learning; passive exposure is sufficient.

Experiment 2 provided a direct comparison of overt-response and
passive-listening paradigms among the same listeners. The greater
down-weighting observed in the overt categorization compared to the
passive exposure task is consistent with the possibility that overt cate-
gory decisions and responses amplify the effects of dimension-based
statistical learning. Yet, this evidence is equivocal, as task order also
impacted outcomes. Experiment 2 provides a clear demonstration that —
under the right conditions of task order — short-term regularities that
build up across many trials involving explicit category decisions and
passive exposure to the same distributions in a trial-wise manner pro-
duce comparable dimension-based statistical learning. We leave it to
future work to understand how the substantial task differences in the
presence of trial-wise categorization decisions, the time course of the
build-up of distributions (across vs. within trials) and, presumably,
active engagement or attention impact the nature and degree of
dimension re-weighting. Paradigms like this one open this possibility in
studies of statistical learning because of the trial-by-trial evaluation of
input statistics on the perceptual weighting of input dimensions.

Finally, Experiment 3 assessed the degree to which dimension-based
statistical learning elicited through passive listening is robust to trial-by-
trial variability in short-term regularities, and whether the adjustment of
perceptual weights requires build-up of statistical information across
many exposures. The statistically volatile context created by shifting
randomly between Canonical and Reverse distributions on a trial-by-
trial basis led to significant dimension-based statistical learning,
although the effect size was smaller than the more consistent contexts.

The preservation of perceptual flexibility in a highly variable speech
environment additionally contributes support to dimension-based sta-
tistical learning as a learning mechanism valuable in in ecologically
relevant contexts, like adapting rapidly across talkers in a group
conversation.
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6. Conclusion

In sum, the present study offers five replications of dimension-based
statistical learning elicited through passive exposure to short-term dis-
tributions in speech input. In conjunction with previous work, the pre-
sent data support the proposition that error-driven learning—whereby
activation of internal speech category representations provides teaching
signals that generate predictions—can drive statistical learning even
across passive exposure.

Ultimately, this work encourages further theoretical discourse. When
structured inputs consistently activate established internal category
representations, discrepancies between canonical categorical pre-
dictions and experienced input-output regularities can drive statistical
learning, and thus need not operate solely via an unsupervised process.
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