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In this paper, we establish an analytic framework for studying set-
valued backward stochastic differential equations (set-valued BSDE), mo-
tivated largely by the current studies of dynamic set-valued risk measures for
multi-asset or network-based financial models. Our framework will make use
of the notion of the Hukuhara difference between sets, in order to compen-
sate the lack of “inverse” operation of the traditional Minkowski addition,
whence the vector space structure in set-valued analysis. While proving the
well-posedness of a class of set-valued BSDEs, we shall also address some
fundamental issues regarding generalized Aumann—Itd integrals, especially
when it is connected to the martingale representation theorem. In particular,
we propose some necessary extensions of the integral that can be used to rep-
resent set-valued martingales with nonsingleton initial values. This extension
turns out to be essential for the study of set-valued BSDE:s.

1. Introduction. Set-valued analysis, both deterministic and stochastic, has found many
applications over the years, most of them are in optimization and optimal control theory.
Recently, more applications have been studied in economics and finance; the one that partic-
ularly motivated this work is the so-called set-valued dynamic risk measures, which we now
briefly describe.

The risk measure of a financial position & at a specific time ¢, often denoted by p;(§),
is defined as a convex functional of the (bounded) real-valued random variable & satisfy-
ing certain axioms such as monotonicity and translativity (cash-additivity) (cf., e.g., [3, 6,
33]). A dynamic risk measure is a family of risk measures {p;};c[0,7] such that, for each
financial position &, {o;(§)}:[0,7] 1s an adapted stochastic process satisfying the so-called
time-consistency, in the sense that the following “tower property” holds (cf. [6, 9, 33]):

(1.1) ps(€) = ps(—p: (), &E€lLE (QR), 0<s=<r<T,

where ILO;OT (2, R) is the space of Fr-measurable essentially bounded random variables with
values in R. A monumental result in the theory of dynamic risk measures is that, any coherent
or even convex risk measure satisfying certain “dominating” conditions can be represented
as the solution of the following backward stochastic differential equation (BSDE):

T T
(1.2) pi(E) = —& + / g(s. ps(6), Zy) ds — /, Z,dBy,, 1<T,

where the driver g is determined completely by the properties of {o;};¢(0,7] (cf. [9, 27, 33]).

There has been a tremendous effort to extend univariate risk measures to the case where
the risk appears in the form of a random vector & = (§1,...,&y) € L‘}OT (2, R?) with d €
N, typically known as systemic risk in the context of default contagion (see, e.g., [13] for
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another application in the context of multi-asset markets with transaction costs). For example,
one can consider the contagion of (default) risks in a financial market with large number of
institutions as a network, in which each institution’s future asset value can be viewed as a
“random shock™, to be assessed by its ability to meet its obligations to other members of the
network. As a result, it is natural to evaluate these random shocks collectively, which leads
to a multivariate setting of a risk measure, often referred to as “systemic risk measures” (cf.,
e.g., [2,5, 11]).

One way to characterize a systemic risk measure is to consider it as a multivariate
but scalar-valued function. In a static framework, one can define an aggregation function
A: R? - R, so as to essentially reduce the problem to a one-dimensional risk measure. For
example, a systemic risk measure can be defined as (cf. [5])

(1.3) pYS(E) = p(A(E)) =inflk e R: A(§) +k € Al

where & € ]L%OT (€2, R4 ) is the wealth vector of the institutions, 4 is a certain acceptance set,
and p is a standard risk measure. Such a definition of a systemic risk measure is convenient
but has some fundamental deficiencies, especially when one seeks a dynamic version. For
example, it would be almost impossible to define the tower property (1.1), due to the mis-
match of the dimensionality. Furthermore, in practice one is often interested in the individual
contribution of each institution, and assessing the risk for each institution, thus a better way
would be to allocate risks individually, so that the value of a systemic risk measure is defined
as a set of vectors.

It is worth noting that the set-valued risk measure for a random vector £ in R¢ (d > 2)
can no longer be defined as the “smallest” capital requirement vector, as it may not exist, for
instance, with respect to the componentwise ordering of vectors. One remedy is to define it
as the set Ro(§) (say, at t = 0) of all the risk compensating portfolio vectors of & so that the
risk measure Ry is a set-valued functional (see, e.g., [10]). Similarly, one can also define a
dynamic set-valued risk measure {R;};c[0,7]. The tower property (1.1) can be defined by

(1.4) Ri)= |J Ri(=m)=:RJ{-R(¥)], 0<s=<t<T
neR: (§)

However, a BSDE-type mechanism to construct or characterize time-consistent set-valued
dynamic risk measures is a widely open problem, and is the main motivation of this paper.
We also refer the reader to [1] for an alternative approach in discrete time based on difference
inclusions and equations.

Measurability and integration of set-valued functions can be traced back to 1960s. The
commonly used notion of an integral is provided by the celebrated work of Aumann [4],
where the (Aumann) integral of a set-valued function is defined as the set of all (Lebesgue)
integrals of its integrable selections. On the other hand, stochastic integrals of set-valued
processes (with respect to Brownian motion or other semimartingales) are relatively new in
the literature (see [17]). Set-valued stochastic differential equations (SDE), whose solutions
are set-valued stochastic processes, and stochastic differential inclusions (SDI), whose solu-
tions are vector-valued processes, have been studied recently (cf., e.g., [24, 28]). However,
while backward SDIs have been around for some time (see, e.g., [18, 19]), to the best of our
knowledge, the systematic study of set-valued BSDEs, especially in the general form

T T
(1.5) n=s+/.ﬂxnzaw—/’Adm,rGMTL
t t

is still widely open. (Here Y, Z are set-valued processes that form the solution, & is a set-
valued terminal condition, f is a set-valued driver function, B is a standard Brownian motion;
the set operations are understood in the Minkowski sense, and the precise definitions of the
set-valued integrals will be given in Section 3.3.)
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We should point out that the first major difficulty in set-valued analysis, particularly,
for studying set-valued BSDEs, is the lack of a vector space structure. More precisely, the
(Minkowski) addition for sets does not have an “inverse” (e.g., A + (—1)A # {0}(!)). Con-
sequently, the equivalence between the BSDE (1.5) and its more popular form (cf., e.g., [18,
19] for differential inclusions and [7] for vector-valued BSDEs)

T
(1.6) Y,=E[S+ft f(s,Ys,zs)ds\f,} tel0,T1,

is actually not clear at all. To overcome this difficulty, we shall explore the notion of the
so-called Hukuhara difference between sets, originated by M. Hukuhara in 1967 [16] and
establish some fundamental results on stochastic analysis using the Hukuhara difference. It
turns out that the seemingly simple additional algebraic structure causes surprisingly subtle
technicalities in all aspects of the stochastic analysis, we shall therefore focus on the most
basic properties (e.g., Proposition 2.2, Lemmas 2.10, 3.3) and some key estimates (Lemma
4.1, Proposition 4.2) that will be useful for further development.

Another important issue in the study of set-valued BSDE:s is related to the choice of Z.
For BSDE (1.5), one would naturally search for a solution (Y, Z) that is, a set-valued process.
However, it is known that (see Remark 3.2(iv)) when Z is a set-valued stochastic process, the
corresponding set-valued stochastic integral [ Zsd By cannot be square-integrably bounded
(see Section 2.3 for the precise definition) unless Z is singleton-valued. This rules out the
possibility that both components of (Y, Z) are set-valued processes. We shall thus work with
generalized Aumann-It6 integrals [ ZdB in which Z is only a set of matrix-valued pro-
cesses; and consider the simpler version of the BSDE (1.5) and (1.6) in which f is free of Z
(or 2).

It turns out that there are some special technical issues in set-valued stochastic analysis
involving the generalized Aumann-Itd integral [ Z d B. These issues are subtle, and only oc-
cur in the truly set-valued scenarios. For example, in the set-valued framework, a martingale
representation theorem (with zero initial value) was shown in [22], using the generalized
Aumann-Ito integral [ ZdB. However, as was pointed out in the recent work [36], if a set-
valued stochastic integral is both a martingale and null at zero, then it must essentially reduce
to a singleton. Such an observation nullifies any possible role of the martingale representa-
tion theorem in the study of set-valued BSDE, unless some modification on the definition of
the stochastic integral is adopted. We shall therefore propose an extension of the generalized
Aumann-It6 integral that allows nonsingleton initial values, and prove a new martingale rep-
resentation theorem for a fairly general class of set-valued martingales (Theorem 5.6). With
our new notion of set-valued stochastic integrals, we shall also prove the well-posedness of
the set-valued BSDE (1.6) (Theorem 6.8) when f is free of Z. By a careful treatment of the
existence of Hukuhara differences, we shall gradually work towards obtaining a form of the
set-valued BSDE that is similar to (1.5) (Theorems 6.11, 6.14), and discuss the equivalence
between the different forms of the set-valued BSDEs (Corollaries 6.12, 6.16). However, some
technical issues listed in various remarks will be addressed in our future publications in order
not to disturb the main purpose of the paper.

The rest of the paper is organized as follows. In Section 2, we give the necessary pre-
liminaries on set-valued analysis, introduce the notion of the Hukuhara difference and its
properties, and extend the existing results (mostly in the book [21]) to those that involve the
Hukuhara difference. In Section 3, we revisit set-valued stochastic analysis, again with an
eye on these that involve the Hukuhara difference. In Section 4, we establish some key esti-
mates on set-valued conditional expectations and set-valued Lebesgue integrals. In Section 5,
we study set-valued martingales and their representations as generalized stochastic integrals.
Finally, in Section 6, we study the well-posedness of a class of BSDEs of the form (1.5) in
the case where f is free of Z and compare it with the BSDE of the form (1.6).
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2. Basics of set-valued analysis. In this section, we give a brief introduction to set-
valued analysis and all the necessary notation associated to it. The interested reader is referred
to the books [21, 23] for many of the definitions but we shall present all the results in a self-
contained way.

2.1. Spaces of sets. In many discussions on set-valued analysis, it is customary to work
with closed sets; this covers singletons as a special case, see [30], Section 1.1.1, for a discus-
sion.

Although most of our discussion applies to more general Hausdorff locally convex topo-
logical vector spaces, throughout this paper, we let X be a separable Banach space with norm
|-|. We shall denote &(X) to be the set of all nonempty subsets of X, ¥’ (X) to be the set of
all closed sets in #(X), and % (X) to be the set of all compact convex sets in & (X), with
respect to the norm topology on X. We further denote .%;,(X) to be the set of all weakly
compact convex sets in & (X).

2.1.1. Algebraic structure on # (X). Let A, B € #(X) and o € R. We define
2.1 A+B:={a+b:acA, beB}, aA:={aa:acA}.

We note that the operations in (2.1) are often referred to as the Minkowski addition and
multiplication by scalars. It can be checked that .# (X) is closed under these operations. It is
important to note that the so-called cancellation law (cf., e.g., [31, 34]), namely,

(2.2) A+C=B+C = A=B,

holds for A, B, C € J# (X). Clearly, multiplying A by « = —1 gives the “opposite” of A, as
—A :=(—1)A, which leads to the “Minkowski difference”

A—B:=A+(-1)B={a—b:acA, be B}.

But in general, A + (—1)A # {0}, that is, the opposite of A is not the “inverse” of A under
the Minkowski addition (unless A is a singleton). Consequently, these operations do not es-
tablish a vector space structure on .# (X). An early effort to address the inverse operation
of Minkowski addition, often still referred to as the Minkowski difference, is the so-called
“geometric difference” or “inf-residuation” (see [12] and [14]), defined by

A—B:={xeX: x4+ B CA},

with x + B := {x} + B. Such a difference satisfies A— A = {0}, and can be defined for all
A, B € JZ (X). However, one only has (A— B) + B C A; the reverse inclusion usually fails.

In 1967, M. Hukuhara introduced a definition of set difference that has since been referred
to as the Hukuhara difference (cf. [16]) as follows: for A, B € 7 (X),

(2.3) ASB=C <+ A=B+C.

The Hukuhara difference has many convenient properties, the only subtlety is that it does
not always exist(!). The following result characterizes the existence and gives an explicit
expression of A © B, which will be used frequently in our future discussions. Recall that,
for A € #(X) and a € A, a is called an extreme point of A if it cannot be written as a strict
convex combination of two points in A, that is, for every x;, xo € A and A € (0, 1), we have
a # Ax1 + (1 — A)xp. We denote ext(A) to be the set of all extreme points of A.

PROPOSITION 2.1. Let A, B € JZ (X). The Hukuhara difference A © B exists if and only
if for every a € ext(A), there exists x € X such that a € x + B C A. In this case, AS B is
unique, closed, convex, and we have

ASB=A—B={xeX:x+BCA}
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PROOF. Since this is an infinite-dimensional version of [16], Proposition 4.2, combined
with a simple application of the Krein—-Milman theorem, we omit the proof. [J

The Hukuhara difference facilitates set-valued analysis greatly, without the vector space
structure on % (X). We list some properties that will be used often in this paper.

PROPOSITION 2.2. Let A, B, Ay, A2, By, By € Z(X). Then, the following identities
hold:

i) AeA={0}, Ac{0}=A;
(i) (A1 +B1)© (A2+ By) =(A1© A2) +(B1© By) if A1 © Az and By © B; exist;
(iii) (A1 4+ B1) © By = A1+ (B1 © By) if B] © B exists;
(iv) A1+ (B1©By)=(A1©By)+ By if B © By and A1 © B exist; and
(v) A=B+ (AS B) if AS B exists.

PROOF. (i) Both relations are immediate since A = A + {0} = {0} + A.

(i1) Denote X := A1 ©® Ay and Y := B © By, thatis, Ay = A, + X and By =B, + Y.
Adding the identities, we get Ay + By = A+ X+ By +Y =A+ B, + X+ Y. By (2.3),
we see that (A1 + B1)) © (A2 + By) =X+ Y = (A1 © Ay) + (B1 © By), proving (ii).

(iii) Let A = {0} in (ii). By the second equality in (i), we obtain (iii).

(iv) Denote X ;=B & By and Y ;= A1 © B, thatis, Bj=X + By and Aj =Y + B».
Then, A1+ X =Y + B> + X =Y + Bj. This is exactly (iv).

(v) This follows immediately by taking A = A and By = B, = B in (iv). U

2.1.2. Topological structure on % (X). We note that both 7 (X) and .#;,(X) are closed
under the Minkowski addition and multiplication by scalars since X is a locally convex topo-
logical vector space under both the strong and weak topologies. Moreover, the cancellation
law (2.2) and Propositions 2.1, 2.2 are valid for both spaces.

For A, B € 7 (X), letus define 4(A, B) := Sup,c4 d(a, B), where d(x, B) :=infpep [x —
b| for x € X. Then, the Hausdor{f distance between A and B is given by

h(A, B):=h(A, B)V h(B,A) =inf{e > 0: A C V.(B), B C V:(A)},

where V. (C) :={x e X: d(x,C) <¢}, C € #(X), ¢ > 0 (cf. [21], Corollary 1.1.3). More-
over, since X is a Polish space, so is (J# (X), h) ([8], Corollary 11.9), and we can define

IA[| :==h(A,{0}) =sup{lal: a € A}, Ae. X (X).

We have the following easy results.

PROPOSITION 2.3. (i) The mapping | - ||: & (X) = R satisfies the properties of a
norm.

(i) If A, B e X (X) and A © B exists, then h(A, B) = ||A © B|.

PROOF. (i) Clearly, ||A]| = 0 implies A = {0}, and we have ||AA| = h(AA,{0}) =
sup{|Ay|: y € A} = |A|sup{|y|: y € A} = |A|||A]| for every A € R. Finally, the “triangle in-
equality”, in the sense that |A + B|| < ||A|| + || B]|, is trivial by definition of || - ||.

(ii) Since A, B € Z (X), applying the translation invariance property of Hausdorff dis-
tance (cf. [26], Proposition 1.3.2), we see that

(2.4) IA© Bl =h(A© B,{0}) =h((AS B) + B, {0} + B) =h(A, B),

whenever A © B exists. U
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REMARK 2.4. It should be noted that the fact that || - || satisfies the properties of a norm
does not imply that (7 (X), || - ||) is a normed space, since % (X) is not a vector space. It
is particularly worth noting that, although the Hausdorff distance is symmetric, the identity
(2.4) does not render (A, B) — ||A © B|| a metric on .# (R?) in the usual sense, since the
existence of A © B by no means implies that of B & A. In fact, it can be checked that both
A S B and BO A existif and only if A is a translation of B, thatis, A = x 4+ B for some x € X.
Nevertheless, the relation in Proposition 2.3(ii) is useful and sufficient for our purposes.

2.2. Set-valued measurable functions and decomposable sets. We now consider set-
valued functions. Let (E, £, u) be a finite measure space. If E is a topological space, then
we take £ = #(E), the Borel o-algebra on E. We shall make use of the following definition
of set-valued “measurable” function.

DEFINITION 2.5 ([30], Definition 1.3.1). A set-valued function F: E — % (X) is said
to be (strongly) measurable if {¢ € E: F(e) N B # @} € £ for every closed set B C X.

The following selection/representation theorems for set-valued functions are well known
and will be useful in later sections. We shall denote cl(A) to be the closure of a set A C X.

THEOREM 2.6. Let F': E — € (X) be a set-valued function.

(i) (Kuratowski and Ryll-Nardzewski, [23], Theorem 2.2.2) If F is measurable, then
there exists an £ | B(X)-measurable function f: E — X, called a measurable selection of
F, such that f(e) € F(e) foreache € E.

(i1) (Castaing, [23], Theorem 2.2.3) F is measurable if and only if there exists a sequence
{ fulnen of measurable selections of F such that F(e) =cl({f,(e): n € N}),e € E.

Let us denote LO(E,X) = Lg(E ,X) to be the set of all £/%(X)-measurable func-
tions f: E — X that are distinguished up to w-a.e. (almost everywhere) equality. For
p €ll,+00), let LP(E,X) = LE(E, X) be the set of all f € LO%(E,X) such that | f||}, :=
[g 1 f(e)|Pu(de) < +oo. Then, LP(E, X) is a Banach space. For p € (1, +00) and X = R4,
LP(E,X) is also reflexive.

Next, let ZO(E, €(X)) = .Zg(E , € (X)) be the set of all measurable set-valued mappings
F: E — %(X) distinguished up to u-a.e. equality. For F € Z°(E, € (X)), we define the set

S(F):=Ss(F):={f e LUE,X): f(e) € F(e) p-ae.e € E}

of its measurable selections, which is nonempty by Theorem 2.6(i). Moreover, by Theo-
rem 2.6(ii), two measurable set-valued functions F and G are identical in Z°(E, € (X))
if and only if S(F) = S(G). An interesting and crucial question in set-valued analysis is
whether a given set of measurable functions in LO(E,R?) can be seen as the set of measur-
able selections of a measurable set-valued function. It turns out that this is a highly nontrivial
question, for which the following notion is fundamental.

DEFINITION 2.7. A set V C LO(E, X) is said to be decomposable with respect to & if it
holds 1p fi + 1pc f> € V forevery f1, fr € Vand D €.

It is easy to check that the intersection of an arbitrary number of decomposable subsets
of LY(E, X) is again decomposable. With this observation, given a set V C L”(E, X) with
p € [1, +00), we define the decomposable hull of V, denoted by dec(V) = decg(V), to be
the smallest decomposable subset of I.” (E, X) containing V. It can be checked that dec(V)
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precisely consists of functions of the form f =" | 1p, fi, where {Dy, ..., D,,} is an &-
measurable partition of £ withm € Nand f1, ..., fi, € V. We shall often consider dec(V) =
decg(V), the closure of dec(V) in LP(E, X). It is readily seen that dec(V) is the smallest
decomposable and closed subset of IL” (E, X) containing V.

For p € [1,400) and F € Z%E, % (X)), we define SP(F) := Sg(F) = S(F) N
LP(E,X). It is easy to check that SP(F) is a closed decomposable subset of L7 (E, X).
But it is possible that S”(F) = &, that is, F' may have no p-integrable selections. We thus
consider the set

2.5)  AP(E,CX) =L (E,CX)):={F e LYE,€(X)): SP(F) # 2},

and say that F is p-integrable if F € &/P(E, % (X)). By [21], Corollary 2.3.1, for F,G €
AP(E, € (X)), F and G are identical if and only if S” (F) = S”(G). Moreover, we have the
following important theorem.

THEOREM 2.8 ([21], Theorem 2.3.2). Let V be a nonempty closed subset of LP (E, X),
p > 1. Then, there exists F € &/P(E, ¢ (X)) such that V = SP(F) if and only if V is decom-
posable.

2.3. Set-valued integrals. We shall now assume that X = R?, and define the Aumann
integral of a set-valued function F: E — % (R?) through its measurable selections. To begin
with, for f € L'(E,R?), we define 1(f) := [ f(e)i(de) and, for a set M C L' (E,R?),
we define I[M]:={I(f): f € M}. Then, one can check (see [21], Lemma I1.3.9) that /[ M]
is a convex subset of RY whenever M is decomposable. Now, for a set-valued function F €
A VE, €[R?)), we define

(2.6) /E F(e)u(de) :=cl(I[S'(F)]).

Clearly, the “integral” [, F(e)u(de) is a nonempty closed convex set, and is called the
(closed version of the) Aumann integral of F.

Let p € [1, 400). We say that F € Z°(E, €(R?)) is p-integrably bounded if there exists
¢ eLP(E,Ry) such that [|[F(e)|| = h(F(e), {0}) < £(e) u-ae. e € E. Let LP(E, € (R?)) =
fgp (E, € [R%)) be the set of all p-integrably bounded set-valued functions in LYE,
€ (R%)). It is readily seen that Z?(E, ¢ (R%)) C «/P(E, € (R?)). Furthermore, by [21],
Theorem 2.4.1(ii), a set-valued function F € o/P(E, % ([R?)) is p-integrably bounded if
and only if SP(F) is a bounded subset of L”(E,R%). In this case, it is even true that
SP(F) = S”/(F) = S(F) for every p’ € [1, p] (cf. [30], Proposition 2.1.4). In what fol-
lows, we shall consider mostly the cases p = 1 and p = 2; and say that F is integrably
bounded if F € LV (E, € (R?)), and square-integrably bounded if F € L*(E, %€ (R?)).
Clearly, £*(E, ¢ RY)) c L (E, €[R?)).

We have the following result on integrably bounded set-valued functions. For a subset A
of a vector space, co(A) denotes the convex hull of A.

THEOREM 2.9 ([21], Theorem 2.3.4). Let F € L' (E, € (RY)). Then,

/I;F(e),u,(de)=LC0(F(€))M(CZ€).

In view of Theorem 2.9, in the integrably bounded case, it is enough to consider the Au-
mann integrals of convex-valued functions. On the other hand, if F € £?(E, % (RY)), then
it is immediate that F(e) is a bounded (hence compact) set for p-a.e. e € E. In what fol-
lows, we mostly restrict our attention to the case F : E — .# (R?) and define the spaces
AP(E, # (R, LP(E, # (R?)), and so on in an obvious manner.
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Let F € ZP(E, # (R%), p > 1. By [30], Theorem 2.1.18, we have SP(F) = S(F) €
Hyp(LP(E,R?)). Moreover, since I is a (weakly) continuous linear mapping on IL” (E, RY),
I[SP(F)] = I[S(F)] is a nonempty compact convex set and one can remove the closure in
(2.6), that is,

/E F(e)u(de) = I[S(F)] € # (RY).

The following lemma will be helpful in some later calculations.

LEMMA 2.10. Let Fi, F» € £P(E, # (R%)), p> 1. Then, Fi + F> € LP(E, % (R%))
and

(2.7) S(F1 + F2) = S(F) + S(F2).
Furthermore, if F1 © F, exists, then F1 & F» € P (E, K (RY)). In this case, we have
S(F1© F2) = S(F1) © S(F2).

PROOF. The relation (2.7) is known (see, e.g., [21], Lemma 2.4.1). In particular, S? (F; +
F>) # @ sothat Fi + F> € &/P(E, # (R?)). Moreover, since S” (F; + F>) is clearly bounded,
we have F| + F> € ZP(E, # (RY)) and SP(F; + F») = S(Fi + F»).

Assume now F| © F» exists. We first claim that it is measurable. Indeed, for e € E and
x eRe it is easy to check that (cf. [12], Proposition 4.16) x € Fi(e) © F>(e) holds if and
only if there exists a countable dense set D C R? (independent of the choice of e) such that

(w,x)> sup (w,x1)— sup (w,x2), weD.
x1€F(e) x2€F(e)

In other words, we can write

2.8) Fi(e) © Fr(e) = ﬂ{xeRd:(w,x)z sup (w,x;)— sup (w,x2>}.

weD x1€F(e) xreF>(e)

For fixed w € D, the mappings e — Sup, ¢, (o) (W, X1), SUPy, ¢, (o) (W, X2) are measurable
([32], Example 14.51). Since halfspace-valued mappings inside the intersection in (2.8) are
measurable, so is the countable intersection F; & F> ([32], Proposition 14.11(a)).

Next, note that || Fi(e) © Fa(e)|| < ||Fi(e)|| + || F2(e) || for every e € E. Since Fy, F» are
p-integrably bounded, we see that || F| © F>|| € LP(E,R) and F3 := F| © F> is p-integrably
bounded. Finally, since F», F3 € ZP(E, K (RY)) and Fy = F», + F3, (2.7) yields S(F1) =
S(F2) + S(F3), which then implies that S(F1 & F») = S(F3) = S(F)) © S(F2). O

To end this section, we state a famous result concerning the minimization of integral func-
tionals, which will be particularly useful in Section 4.

PROPOSITION 2.11 ([15], Theorem 2.2). Let F € &/P(E,€R?)) and p > 1. Let
¢: E x R - R be a jointly measurable function. Suppose that the integral Ty(f) =
[ ¢ (e, f(e))u(de) is well-defined for each f € SP(F), and Ty(f) < 400 for at least one
f € SP(F). Suppose further that one of the following conditions holds: (i) x — ¢ (e, x)
is upper semicontinuous for every e € E. (i) (E, &, 1) is a complete measure space and
x > ¢ (e, x) is lower semicontinuous for every e € E. Then,

inf T, = inf de).
Lt Ty(h) = [ int gte.nu(de)
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3. Set-valued stochastic analysis revisited. In this section, we review some basics of
set-valued stochastic analysis, and establish some fine results that will be useful for our
discussion but not covered by the existing literature. Throughout the rest of the paper, we
shall consider a given complete, filtered probability space (€2, F, P, = {F;}s¢0,7]), on
which is defined a standard m-dimensional Brownian motion B = {B;}:c[0,1], where T > 0
is a given time horizon. We shall denote Lﬁ([o, T] x Q,R?) to be the space of all FF-
progressively measurable d-dimensional processes {¢;}:c[o,7] with E[ fOT |¢¢|P dt] < +o00.
The space ]Lﬁ([O, T] x €, R?™) of matrix-valued processes can be defined similarly.

3.1. Set-valued conditional expectations. A set-valued random variable X : Q@ — € (R%)
is an F-measurable set-valued function. If X € &71(Q2, €(RY)), then we define its expec-
tation, denoted by E[X] as usual, by its Aumann integral [ X (w)P(dw). Given p > 1,
if X € a/P(Q2,€[RY)), then SP(X) is a closed decomposable subset of L”(§2, RY) and
SP(co(X)) =co(SP(X)) (see [21], Lemma 2.3.3). Further, X is p-integrably bounded if and
only if S”(X) is a bounded set in L? (2, RY), that is,

E[IX]”] = fQ sup{|x|”: x € X (w)}P(dw) = /th(X(a)), {0)P(dw) < 0.

In particular, if X € ZP (2, & (R?)), then SP(X) = S(X) isa weakly compact convex subset
of LP(Q, RY).

Let G be a sub-o-field of F. We denote L5 (Q,RY), &7 (Q, ¢RY)), L[ (Q, 4 R)),
Sg (X) to be the same as those in Sections 2.2, 2.3, on the probability space (€2, G, P). Further,
for X € M}(Q, € (R?)), the conditional expectation of X given G is defined as the P-a.s.
(almost surely) unique set-valued random variable E[ X |G] € ,Qfgl (22, €(R?)) that satisfies

(3.1 SS(E[XIG]) = {E[£IG]: f € S' (X)),

where the closure is evaluated in ]ng(Q, R9). The existence of E[X |G] follows by The-
orem 2.8 since the set on the right in (3.1) is decomposable. Moreover, for p > 1, if
X e .Z}—_’ (Q2, 7 (RY)), then it can be shown that the closure in (3.1) is not needed and
E[X|G] e .ng (2, # (RY)). In this case, E[X |G] satisfies the usual identity

/ E[X|G](0)P(dew) = / X(0)P(dw). DeG.
D D

It can be easily checked that [E[-|G] satisfies all the natural properties of a conditional expec-
tation, except that the “linearity” should be interpreted in terms of the Minkowski addition
and multiplication by scalars. Furthermore, we note that the conditional expectation of a set
VcL }_-(SZ, R¥) of random variables can also be defined in a generalized sense even if it is not
the set of selections of a set-valued random variable. To be more precise, if V C ]L}_-(Q, Rd)
is a nonempty closed decomposable set, then there exists a unique E[V |G] € ;zfgl (€2, € (RY))
(by a slight abuse of notation) such that

SG(E[VIG]) = {E[fIG]: f e V]

The following is a seemingly obvious fact regarding set-valued conditional expectations.

COROLLARY 3.1. Let X1, X» € LP(Q, # (RY)) with p € [1, +00). Suppose that X| ©
X exists. Then, E[ X © X,|G] exists in ,,2”5(52, H (R?)) and it holds that

(3.2) E[X1 © X»|¢]1 =E[X|G] © E[X2|G].
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PROOF. By Lemma 2.10, X| © X, € ZP(Q2, # (R%)) so that E[X| © X»|G] exists in
fgp (Q, 2 (R%)). By the definition of conditional expectation and repeated applications of
Lemma 2.10, we have

Sg(E[X1 © X2|G1+ E[X2|G]) = Sg(E[X1 © X21G]) + Sg(E[X2|G1)
={E[f11G]: f1 € S(X1 6 X2)} +{E[/21G]: f» € S(X2)}
={E[fIG]: f € S(X1© X2) + S(X2)}
={E[fIG]: f € S((X1 © X2) + X2)} = Sg(E[X1]G]).
This is equivalent to having E[X{|G] = E[ X © X»|G] + E[X3|G], whence (3.2). [J

3.2. Set-valued stochastic processes. A set-valued stochastic process ® = {®;};¢[0,1] 18
a family of set-valued random variables taking values in % (R?). We call ® measurable if it
is #([0, T]) ® F-measurable as a single set-valued function on [0, T'] x €. The notions such
as “adaptedness” or “progressive measurability” can be defined accordingly in the obvious
ways. We denote ZEQ([O, T] x Q, % ([RY)) to be the space of all set-valued, F-progressively
measurable processes taking values in ¢ (R%). For ® € .,2”]19([0, T1 x @, €(R%)), we denote
Sr(®P) to be the set of all F-progressively measurable selections of @, which is nonempty
by Theorem 2.6. For p € [1, +00), we define SF(®) := Sp(®) NLE([0, T] x @, RY) and
denote f{ ([0, T] x 2, F@R%)) to be the set of all F-progressively measurable, € (R?)-
valued processes @ with E[ fOT |®;]|P” dt] < 400 (i.e., p-integrably bounded). The notation
XFD([O, T] x Q, # (RY)), fﬂf([O, T] x Q, # (R9*™)) for set-valued processes with com-
pact convex values are defined similarly for p = 0 and p > 1. It is worth pointing out that the
space ,,S”FZ([O, T1x Q, % (R?)) is not a Hilbert space, but only a complete metric space, with

the metric dy (®, W) := (B[] h*(®,, ¥,)dt])'/>.

3.3. Set-valued stochastic integrals. In this section, we assume that F = FB, the natural
filtration generated by B, augmented by all the P-null sets of F so that it satisfies the usual
hypotheses.

Let us consider the two linear mappings J : IL%([O, T] x Q,R%) — ]L%_-T (2, R?), and
J: LE([0, T] x ,R>™) — L3 (2, RY) defined by

T T
(3.3) 1) = fo bods,  TOW) = fo Vs dB,

for ¢ € LZ([0, T1 x Q,RY), ¢ € LZ([0, T] x Q, R¥*™), respectively. For K C LZ([0, T] x
Q,RY) (resp. K' C ]LIZF([O, T] x ©,R¥*™)) the set J[K] (resp. J[K']) is defined in an
obvious way.

Let ® € Z2([0, T] x 2, € [R?)) and ¥ € L2([0, T] x Q, €(RY*™)) such that S2(P) #
a, S]%(\IJ) # &. Then, one can show that there exist unique set-valued random variables
Jo @sds € /2 (2, € RY) and [ W, dB, € /% (2, % (RY)) such that

(3.4) S%, (/OT R ds) =decr, (J[SF(®)])., 5% (/OT W, st> = decr, (T[S2(¥)]).

We call fOT ®, ds and fOT W, d By set-valued stochastic integrals. As usual, for t € [0, T], we
define the indefinite stochastic integrals as [j ®yds := [ 1)(s)®yds and [§ Wsd B :=
fOT 1(0,,1(s) ¥y d Bs. Equivalently, one can define them via the relations

t _ t I
S% ( /O @ ds) =decr, (Jo.[SE(®)]), SE ( /0 \psst> = decr, (Jo..[SE(¥)]),
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where Jo :(¢) := [3 ¢ ds, Jo.(¥) := [3 ¥y d By. The integrals [ @, ds and [ W, d By, and
the mappings J; 7, J;, can be defined similarly for ¢ € [0, T].

REMARK 3.2. The set-valued It6 stochastic integrals have many interesting properties,
we refer the interested reader to the books [21, 23] for the exhaustive explorations. Here, we
mention a few that will be useful for our discussion.

(i) The definition (3.4) implies that both foT ®,ds and fOT W, d B, are Fr-measurable set-
valued random variables. However, neither of the sets J [S%(@)], J [S%(‘IJ)] C ]Lz}-T (2, RY)
are necessarily decomposable (see [21], p.105, for counterexamples). Thus, by virtue of The-
orem 2.8, they cannot be seen as the selections of any Fr-measurable set-valued random
variables.

(ii) One can actually show that {E[x]: x € j[SI%(\I!)]} = {0}, and j[Sﬂ%(\Il)] is decompos-
able if and only if it is a singleton(!).

(iii) By [21], Theorem 3.1.1, we have decr, (J[SF(¥)]) = L%, (2,R) if and only if
dec(J[SF(W)]) # 2.

(iv) If ® and ¥ are convex-valued, then so are fOT ®,ds and fOT W, dB;. If ® €
L3I0, T] x Q, 4 (RY), then it is known that f) dyds € L3 (Q, 4 (RY)), that is,
the stochastic time integral of a square-integrably bounded process is a square-integrably
bounded set-valued random variable (see [20], Theorem 3.2). However, the It integral
fOT W, dB; fails to be square-integrably bounded in general even if W € .%2([0, T] x
Q, H# (RY*™)) (see [29]).

(v) The set-valued stochastic integrals f(g Oy ds, fé W, dB; are defined, almost surely,
for each t € [0, T], and they are F-adapted, in the usual sense. Furthermore, when ® €
92”1%([0, T] x Q, % (R)), by [25], Theorem 2.4, the process {fot D, ds}iefo,77 has a con-
tinuous (with respect to #), whence progressively measurable, modification. We can define
the indefinite integral [, ®;ds by this progressively measurable set-valued process. How-
ever, the continuity of the It6 integral { fé W, d Bs}ie[0,1) 1s much more involved, and so is the
progressive measurability issue (see [23], Section 5.5, for a special case).

The following lemma shows that the additivity holds for both integrals, which also allows
to calculate the integrals of the Hukuhara difference of two processes.

LEMMA 3.3. Suppose that P is a nonatomic probability measure. Let ®' &% ¢
L2(10,T] x Q, # (RY)) and W', W2 € L2([0, T] x Q, # (RI*™)). Then, for every t €
[0, 7],

t t t
/(cb},+c1>§)ds=] <1>j,ds+f @2 ds,
(3.5) 0 0 0
’ t t t
/O(\psl + W?) d By :/O ! aB, +f0 W2 dB,

hold almost surely. If ®' © ®2 and W' © W? exist (dt x dP-a.e.), then we have ®' © &2
ZL2(10,T] x Q, # (RY)), d' © @2 € L2([0, T x Q, # (R¥*™)) and, for every t € [0, T],

t t t
/O(cpgecbf)ds=/0 cbidsefo 2 ds,

(3.6) t t ,
/O(\ps‘ e\pf)dBS:/O w! ste/O W2 d B

hold almost surely.
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PROOF. The relations in (3.5) are by [20], Theorem 3.1-3.2. Suppose that ol o o2
exists. It is clear that ' © ®? takes values in # (R?). Since |®! © ®2|| < ||} + || D?|,

Tl o w22 Tal)2 T 22
E A |®, ©®;| dr| <2E A |®, |~ dt | +2E A |7 |~ dt | < +oo.

This and Lemma 2.10 imply that ®! © ®2 € Z2([0, T] x Q, # (RY)). We have ®! = d2 +
(@' © ®?). Let ¢ € [0, T]. By the first relation in (3.5), we obtain [ ®!ds = [j ®2ds +
J5 (@} © ®2)ds. By the definition of Hukuhara difference, the first relation in (3.6) follows.
The proofs of the claims related to W' & W? are similar, hence omitted. [

REMARK 3.4. The nonatomic assumption on probability P in Lemma 3.3 is inherited
from [20], Theorem 3.1-3.2, where the argument relies on the fact that a bounded weakly
closed decomposable subset of L.?(£2, R) is convex under such assumption, thanks to Lya-
punov’s theorem (cf. [20], Theorem 2.1(viii), and [23], Theorem 3.2.1, Lemma 3.2.5).

COROLLARY 3.5. Suppose that P is a nonatomic probability measure. Let ® €
L0, T1 x Q, # (RY)), ¥ € L2(0, T x Q, H (RI*™)). Then, for every t € [0, T1,

/(Dds_/d>ds+/ @, ds, /lDdB_/\DdB+/\DdB
/CDds_/ c1>dse/c1>ds /‘I’dB—f xdee/xde

hold almost surely.

an

PROOF. This is immediate from Lemma 3.3 and the definitions of the integrals since
Lo,71(8)&s = 1(0,11(8)&s + Lz, 71(5)85, § € {P, W}, forall s [0, T]. U

The notion of stochastic integral can be extended to the case where the integrand is only a

set of processes instead of a set-valued process. We briefly describe the idea (cf. [22]). Let
Ze QZ(L ([0, T] x €, R¥*™)) be a nonempty set and consider the sets 7;[Z] = {fo zsd By :
z € Z},t €0, T]. Due to lack of decomposability, J;[Z] is not equal to the set of square-
integrable selections of a set-valued random variable, in general. But similar to the stochastic
integral discussed above, one can show that, for each ¢ € [0, T'], there exists unique fot ZdB e
A} (2, ([RY)) such that

t _
(3.7) SE (/0 ZdB) = decr, (7 [2]).

We call fot Z d B the generalized (indefinite) Aumann—Ito stochastic integral (cf. [22]). If Z
is convex, then fé ZdB is convex-valued (see [22], Theorem 2.2).
We have the following analogue of Lemma 3.3.

LEMMA 3.6. Assume that P is nonatomic, and let Z', Z* € %, (L ([0, T] x 2, R4xmy),
Then, the following statements are true:

i) Z'+2%2e, (IL ([0, T1 x €, R¥*™)) and, for every t € [0, T1, it holds that

t
(3.8) f(zl+22)d3=/ zldB+/ 22dB P-as.
0 0 0
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(i) If 2' © 22 exists, then Z' © 2% € A, (LA([0, T1 x Q,R*™)) and, for every t €
[0,7],

t t t
(3.9) /(Zlezz)dB=/ zldBe/ 22dB  P-as.
0 0 0

(i) If Z' © 22 exists and fo ZldB = fé Z2dB P-a.s. foreveryt € [0, T, then Z' = 22
as subsets ofL ([0, T] x Q, Rdxm).

PROOF. (i) The additivity result (3.8) is given in [22], Theorem 2.2.

(ii) Since Z!, Z2 are bounded subsets of ]LIZF([O, T1 x €, R4>™) it can be checked that
Z1o 22 is also bounded. Moreover, Z! © 22 is convex and closed as a Hukuhara difference.
Since IL%( 0, T1 x Q,R?*™) is reflexive, we may conclude that Z! © 22 is weakly compact.
Hence, Z' © 2% € %, (]L ([0, T] x €, R¥*™))_ The proof of the identity (3.9) follows from
the additivity of the integral as in the proof of Lemma 3.3.

(ii1) First, by the property of the Hukuhara difference and assertion (ii), it suffices to show
that having f(; ZdB = {0} P-a.s. forevery t € [0, T] implies Z = {0}. To see this, we observe
that, for a fixed ¢ € [0, T'], having fé Zd B = {0} PP-a.s. amounts to saying, by definition, that
S%t (f(; ZdB) = @;[ (J:[Z]) = {0}, which is obviously equivalent to J;[Z] = {0}. In other
words, we have fé zsd By = {0} P-a.s. for all z € Z. But since the integral M} := fé zs d By,
t € [0, T], is a continuous martingale, we can conclude that P{M; =0 forallt € [0, T]} =1
for each z € Z. This leads to that z =0 P-a.s. for all z € Z, thatis, Z ={0}. U

In the proof of Lemma 3.6(iii), the existence of the Hukuhara difference Z 1o 22 is needed
in order to obtain the conclusion Z! = 22, and hence Z' © 22 = {0}, by using Lemma 3.6(ii).
To remove this assumption, we will pass to a quotient space of 73, (]LF([O, T] x Q, Rdxmy)
in which two sets of processes are considered identical if they yield the same It6 integral. To
make this idea precise, let us define a relation = on ,)ifw(L%([O, T] x §, Rdxmy) by

t t
(3.10) 22z — /ZldB:/ Z22dB P-as. foreveryr €0, T].
0 0

It is easy to see that = is an equivalence relation on %(LIZF([O, T1 x Q,R4*™M)); let us
denote K, (]L ([0, T] x ,R¥*™)) to be the set of all equivalence classes of =. For a class
Z e Ky (L ([0, T] x Rdxm)) we define its stochastic integral {fo ZdB}eo,1], as the
stochastic integral of any member of Z, which is uniquely defined up to modifications. Hence,
for 21, 22 € Ky (LA([0, T] x , R¥>™)) if [§ Z'dB = [§ Z2dB P-ass. forevery t € [0, T,
then 2! = 22 in K,, (LA ([0, T] x Q, R9*™m)).

For future use, let us extend the definition of Minkowski addition for the new space. For
Z, Z e Ky, (LZ([0, T] x £, R¥*™)), we define

(3.11) z+z =242l 2lez 2 e 2),

which is well defined since Z! + Zl~ z2 + Z2 whenever zl 22 ¢ Z and 21,22 € Z.
Then, © has an obvious definition on Ky, (LZ([0, T] x €, R?*™)) by (2.3). With these defi-
nitions, Lemma 3.6 can be rewritten for K,, (LIZF([O, T] x Q, Rdxmy) except that, in (iii), the
existence of the Hukuhara difference is not needed.

The next corollary is an important observation.

COROLLARY 3.7. Suppose that P is a nonatomic probability measure. Let Z €
Ty (]L ([0, T] x 2, R4*™)) be a nonempty set of processes and t € [0, T). Then, it holds
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almost surely that

T t T
3.12) / ZdBC/ ZdB+/ ZdB.
0 0 t

Moreover, if Z is decomposable, then it holds almost surely that
T t T T T t
(3.13) / ZdB:/ ZdB—i—/ ZdB, / ZdB:/ ZdB@/ZdB.
0 0 t t 0 0

PROOF. Lett € [0, T]. By [23], Lemma 3.3.4, we have Z C 19 1 Z +1(;, 712, and equal-
ity holds when Z is decomposable. Applying Lemma 3.6(i) together with the monotonicity
of the integral with respect to C, the relations in (3.12) and (3.13) hold. [

REMARK 3.8. The essence of Corollary 3.7 is that, unlike Corollary 3.5, the temporal
additivity f] = fo + /" is not necessarily true in the case of generalized stochastic inte-
grals for lack of decomposability of the integrand. In particular, the Hukuhara difference
fOT ZdB © [j ZdB may not exist in general. This peculiar feature of generalized stochastic
integrals will be particularly felt when we study the set-valued BSDEs in Section 6.

4. Some important estimates. In this section, we establish some important estimates
regarding set-valued conditional expectations and stochastic integrals. These estimates, albeit
conceivable, need justifications given the special natures of the set-valued stochastic analysis,
as well as the lack of a vector space structure in general. Some of the arguments are following
those in [21] closely, but we nevertheless provide the details for the sake of completeness.

Recall the set .7 (RY), the collection of all nonempty convex compact subsets of R?. For
p €ll,+00) and X1, X2 € LE(Q, # (R?)), define

@.1) Hp(X1, X2) = (E[AP (X1, X)])7.

The following result is a strengthened version of [21], Theorem 2.4.1, in the L2 sense.

LEMMA 4.1. Let X1, X, € .,2{%(52, K (RY) and G C F be a sub-o-algebra. Then, one
has

4.2) h*(E[X11G1, E[X2|G]) < E[A*(X1, X2)IG]  P-as.
In particular, the following inequalities hold:

(4.3) Ha2(E[X 1G], E[X2]G]) < Ha(X1, X2),

(4.4) |ELX 1G> < E[IX11219]  P-a.s,

PROOF. Let us introduce the notation E[§: D] :=E[£1p] for & € LjT(Q, R)and D € F.
Note that (4.2) is equivalent to

(4.5) E[h*(E[X1]G], E[X2|G]): D] <E[h*(X1,X2): D], D €g.
Let D € G and set
C :={w e Q: h(E[X1|G)(w), E[X2|G](®)) = h(E[X|G](®), E[X2|G](e))}.
Clearly, by the definition of conditional expectation, C € G. Now we can write
E[h*(E[X1]G]. E[X2|G]): D] =E[A*(E[X,]G]. E[X2IG]): DN C]

(4.6) ) _
+E[2*(E[X,11G]. ELX2|G]): DN C].
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Repeatedly applying Proposition 2.11, we obtain
E[i*(B[X1|G1, E[X2|G1): DN C]
= sup  d*(x, E[X2|G](@))P(dw)
DNC xeE[X1|G)(w)

= sup E[dz(n,E[leg]): DNC]
neSE[X11GD

= sup E[d*(n, E[X2|G]): DN C]
ne{ElplG]: peS(X1)}

= sup E[d’(E[|G]. E[X2|G]): DNC]

peS(Xy)
4.7 = su / inf E[o|G(w 2D (de
7 soeS(I))(l) DNC yeE[X;|G)(w | [¢Gl(w) — y| P(dw)
= sup 1nf E[|E[¢|g] E[y|G1: DN C]

peS(X,) VeSX

= su inf E|[E[ gl-:bncC
«JeS(};m)%l'GS(Xz) [ty — 161" ]

< su inf E[E[|lo —v|?|Gl: DNC
_wes(I;(,)WGS(Xz) [E[lg — 17| G] ]

= su inf Ef] | DnNncC
gges(r))(l)!//GS(Xz) [(p 4 ]

=E[h*(X1, X2): DNC] <E[h*(X1, X2): DNC].

Here in the above, the inequality is due to the conditional version of Jensen’s inequality. Sim-
ilarly, we also have E[A%(E[X|G], E[X2|G]): D N C¢] <E[h*(X1, X»): D N C¢]. Combin-
ing the two inequalities with (4.6), we obtain (4.5) and hence (4.2). Then, (4.3) is immediate
from (4.2). Finally, (4.4) follows from (4.2) by taking X, = {0}. O

Next, we present a Holder-type inequality regarding the Aumann integral. A similar in-
equality appears in [24], Theorem 2.1, for a special class of integrands. For completeness, we
provide a full proof here for our version.

PROPOSITION 4.2. Let ®', ®% € £2([0,T] x @, % (R?)), and t € [0, T1. Then, it

holds that
h2</ ® ds/ d>2ds)<(T—t)/ h* (@), ®2)ds P-as.
PROOF. Recalling the definition of the Hausdorff metric /4, it suffices to show that
h2</ ®! ds, / <1>2ds> <(T—t)/ h*(®!, ®?)ds P-as.,

h2</ c1>2ds/ ®, ds><(T—t)/ R (®%, o ds P-as.

By symmetry, we shall check only the first inequality in (4.8). To begin with, we first note
that the statement is equivalent to showing, for every D € Fr, that

T T T
(4.9) E[l?(/t @;ds,/t q>§ds):D]§(T—z)E[/t fzz(cb;,cpf)ds:D},

where we keep using the notation introduced in the proof of Lemma 4.1.

4.8)
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To see (4.9), we first note that, similar to (4.7) in the proof of Lemma 4.1, we have

_ T T
E[hz(/ c1>§ds,/ c1>§ds>:D]
t t

= sup ~_inf E[|m — ml*: D].
niedec(J; 7 (S2(1)) MEdeCr T (SF(@?))

(4.10)

Next, by the standard Holder’s inequality, we have

sup inf E[|n1 — na|*: D]
el 7 (S2(@1)) ST (SF(®D)
= sup inf  E[|J;.7(0") — J,,T((pz)}z : D]

(4.11) leS2(@!) ¥PESFP?)

T
<(T—t) sup inf E[/ % —gof|2ds: D].
S0165]%(¢,1)(pZGS]%(dﬂ) t

Now, for given D € Fr, we consider the probability space (D, F. D PDY where ]—"f ={CnN
D : C e Fr} and PP(C) = [P(C)/P(D)11pp)=0;, C € FR. We also define the filtration
FP = {FP},ci0.7) in a similar way. Applying Proposition 2.11 again, we have

T
sup inf E[/ }gosl —(ps2|2ds: D]
401651%(@1)(/726‘5‘1%‘((1)2) t

— : o[ (1) 212
= sup inf E lps — @2|"ds
¢1€SI%(¢1)¢2€SI%‘((I)2) 1

i 2
= 5P inf f [0 (@) = ¢f (@) PP (dw) ds
(4.12) goleS];D(qﬂ)sozeSFD(qﬂ) Dx[t,T]

_ sup inf |x — y[*PP(dw)ds
DX[1,T] xed! (o) YEPF (@)

= R (@ (w), @2 ()PP (dw) ds
Dx[t,T]

T _ T _
:EPDU hz(q>§,q>§)ds}=1a[f h2(<1>j,q>§)ds:D].
t t
Let ap := (T — OE[f h*(®!, ®2)ds: D). Combining (4.11) and (4.12), we have

(4.13) sup inf E[|m — ml|*: D] <ap.
nied 7 (SE(®1) MEST(SF(P?)

Next, we show that (4.13) implies

(4.14) sup inf E[|n1 —n21*: D] <ap.
medec(J; 7 (SE(®1))) MET(SHP))

For every n; € dec(],,T(SH%(QDI))), we may write n; = Z?;l 1p,n1,; for some Dy, ..., Dy €
Fr partitioning 2, and 011, ..., n1,m € J,7(S2(®")). Then, for 1, € J; 7 (52(P?)), we can
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]
m m

<E" [Z Ip;In1i— n2|2} =2 Ellonp;Ini —ml’]
i=1

i=1

apply Jensen’s inequality to get

m
> 1p,(ni —m2)

E[ln — n2/*: D] =EPD[
izl

(4.15)

Since n; and 7, are arbitrary, we deduce from (4.15) and (4.13) that

sup inf2 E[|n1 — na|*: D]
nedec(J, 7 (S3(@1))) meld;,r(Sg(®2))
m m
< sup inf ~ E[ln.; —m*: DN D] <Y apnp, =ap.
i=1n1i€Jy 7 (SH(®)) MESLT (S5(D?) i=1

This proves (4.14). Noting that dec(J;, 7 (S2(®2))) D J;. 7 (S2(P?)), (4.14) implies that

(4.16) sup ~inf E[|m — ml*: D] <ap.
miedec(J; 7 (S3(@1)) 12€dec(r.7 (SF(@2))

Finally, we claim that (4.16) implies

4.17) sup ~inf E[|n — ml*: D] <ap,
medec(y 7 (SH(®!))) M2€dec(r, 1 (S(®7))

which, together with (4.10), leads to (4.9). Indeed, let 1y € dec(J;, 7(S3(®1))), and let
{n}nen be a sequence in dec(]t,T(SI%«(CDI))) that converges to n; (strongly) in szT (€2, RY).
Let ¢ > 0. For each n € N, thanks to (4.16), we may find 1} € dec(J;,7(S2(P?))) such that

(4.18) E[|n! —ni)*: D] <ap +e.

By Remark 3.2, {}},en is a bounded sequence in LZH (€2, R?); hence, by the Banach—Saks
theorem, it has a subsequence {775”‘ }ken for which the sequence {ﬁg}keN converges to some
M, € ILQIT (2, RY) strongly, where ﬁg = % Z/EZI ’7’2” is the Cesaro average, for k£ € N. More-
over, since @(JIYT(SI%(CDZ))) is a closed convex set, all Cesaro averages and their limit 7,
belong to @(J,,T(SI%(CDZ))). The strong convergence of {n}},ecn implies that {ﬁlf}keN C
E(JI,T(SI%(CDl))) converges to 11 strongly in IL%_-T (€2, RY), where ﬁll‘ = % Zlézl n'l”f, k eN.
By (4.18), we have

1& 1\’
el — 3t D)= (; SEln —a2 P o)) <ap e ke
(=1
Thus,

(E[ln1 —m1*: D))

D=

< (E[[m — 7% D])? + (E[[7 — 75*: D])? + (E[[75 — 7p*: D))

1 1 — — >
< E[lm =7i°D? + @b + )7 + E[[15 —m.["]) .
and letting kK — oo yields

__inf E[ln1 — n2f*: D] <E[lm —7,/*: D] <a +e.
noedec(Jy, 7 (SE(92)))

Since & > 0, n; € dec(J; 7 (Sp(®'))) are arbitrary, (4.17) follows, concluding the proof. [
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5. Set-valued martingales and their integral representations. Using the notion of
conditional expectation in Section 3.1, one can define ser-valued martingales as follows.
We say that a set-valued process M = {M;};cjo0.1] 1S a set-valued F-martingale if M €
Z2(0.T] x Q,€RY)), M; € #}(Q,CR?)), and My = E[M,|F;] for all 0 <s <1.
M is called square-integrable it M; € 427/% (Q,FRY), 0 <t <T, and uniformly square-
integrably bounded if there exists £ € L2(S2, R4) such that sup, ¢ 77 [IM: || < € P-as.

We note that, if M is a square-integrable set-valued martingale, then S% (M,;), the set of
all square-integrable selections of M, is decomposable for each ¢ € [0, T]. On the other
hand, we consider the set of all square-integrable martingale selections of M, that is, all d-
dimensional F-martingales f = {f;}/c[0,7] such that f; € SJZE[ (M;), t €0, T], and denote
it by MS(M). If M is convex-valued, then it is known that M S(M) # @ (cf. [22], Sec-
tion 3). For ¢ € [0, T'], consider the ¢-section of M S(M), defined as P [MS(M)] :={f; :
feMSM)}C L%(Q, R9). We remark that the two sets SJZEI (M;) (the selections of the -
section) and P;[M S(M)] (the z-section of the selections) are quite different. In particular, the
former is known to be decomposable, but the latter is not. However, the following relation
holds (see [22], Proposition 3.1):

(5.1) 5% (M;) =decy, (P[MS(M)]), t€[0,T],

where dec 7, denotes the closed decomposable hull with respect to LZFI (Q,RY).

5.1. Representation of martingales with trivial initial value. In what follows, we assume
that F = F2, for some m-dimensional standard Brownian motion B = { B:}iero,1]- The fun-
damental building block of the theory of BSDEs is the celebrated martingale representation
theorem, which states that every square-integrable F-martingale can be written, uniquely,
as a stochastic integral with respect to B, whence continuous. There is a similar result for
set-valued martingales (see Section 3.2), which we now describe.

Let M be a convex set-valued F-martingale that is square-integrable, that is, we have M; €
sszzr(Q, % (R%)) for each ¢ € [0, T']. Then, for each y € MS(M), by the standard martingale

representation theorem, there exists unique z” € ILIZF([O, T1, R¥*™) such that y, = [é z3 d B,
t €10, T], P-a.s. Denote ZM := {7 : y € MS(M)} € Z(L2([0, T], R*™)).

REMARK 5.1. We should note that while a set-valued martingale always gives rise to a
set of vector-valued martingales, that is, stochastic integrals, not every set of vector-valued
martingales can be realized as M S(M) for some set-valued martingale M.

The following set-valued martingale representation theorem is due to [22].

THEOREM 5.2 (Kisielewicz [22], Proposition 4.1, Theorem 4.2). For every convex
square-integrable set-valued martingale M = {M;};c[0,1] with My = {0}, there exists ZM ¢
PILA(0, T] x Q,R>*™)) such that M; = [y ZM dB P-a.s. for every t € [0, T1. If M is
also uniformly square-integrably bounded, then Z™ is a convex weakly compact set, that is,
ZM e 2, (LA([0, T] x ©, Rmy).

REMARK 5.3. (i) We first note that in the set-valued martingale representation, the “mar-
tingale integrand” Z¥ may not correspond to a measurable set-valued process. In fact, if the
set-valued martingale is square-integrably bounded, then the integrand Z* cannot be decom-
posable unless it is a singleton (see [23], Corollary 5.3.2). Thus the stochastic integral can
only be in the generalized sense. But on the other hand, if ZM is not decomposable, then the
temporal additivity of the set-valued stochastic integral fails in general (see, Corollary 3.7,
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Remark 3.8), that is, we may not write M7 = M, + ftT ZM 4B, and M7 © M, may not even
exist in general. Such a conflict leads to some fundamental difficulties for the study of set-
valued BSDEs, and it does not seem to be amendable unless some more general framework
of set-valued stochastic integrals is established.

(i) If 2 is separable, then there exists a sequence {z;},eN in ]L%([O.T], R*™MY such that
M; = cl({ ozt dBs: n € N}), % (M) = decr,({fy 2! dBy: n € N}, 1 € [0, T] (see [22],
Theorem 4.3).

(iii) If M is a uniformly square-integrably bounded martingale and PP is nonatomic, then
there exists a sequence {z,},cn in IL%([O.T], R>™Y such that M, = E({fot 24 dBs: n e N})
for every ¢ € [0, T] (see [22], Theorem 4.3).

(iv) In light of the equivalence relation = in (3.10), in the last part of Theorem 5.2, we
can easily conclude that such ZM is unique in K, (IL%([O, T1 x Q,R4*™)). Indeed, if there
exist ZM and ZM in 27, (LZ([0, T] x Q,R¥*™)) such that [y ZM¥ dB = [§ Z¥dB = M,,
t €0, T], then ZIM = Zé” , that is, they correspond to the same element of K, (}L]%([O, T] x
Q, R¥*™)) and we may denote this element by Z¥ with a slight abuse of notation.

(v) Unlike usual stochastic integrals, set-valued stochastic integrals do not always generate
set-valued martingales. In fact, given a nonempty set Z € %(IL,%([O, T] x §,RI*m)) (or
Z e Ky (IL,%([O, T] x €, R9¥™))) of processes, the set-valued process {fé Z dB}eo,1) forms
a set-valued submartingale in the sense that [} ZdB C E[[j ZdBs|F,] for every 0 < u <
t <T (see [25], Theorem 4.2). Nevertheless, the stochastic integrals that appear in Theorem
5.2 are naturally martingales.

5.2. Representation of martingales with general initial value. We would like to point
out that, in Theorem 5.2, it is assumed that My = {0}. Such a seemingly benign assump-
tion actually has some severe consequences. In particular, as it was pointed out recently in
[36], a set-valued martingale whose initial value is a singleton is essentially a vector-valued
martingale. Therefore, Theorem 5.2 is not a suitable tool for the study of set-valued BSDEs
with nonsingleton terminal values. The main purpose of this subsection is to establish a re-
fined version of set-valued martingale representation theorem for set-valued martingales with
general (nonsingleton) initial values.

Our idea is to extend the notion of the Aumann—It6 integral so that it is a martingale but
its expectation is not necessarily zero (see [36], Example 3.1, for the set-valued dilemma).
To this end, for every ¢ € [0, T], we consider the space R; := szl(Q, RY) x L]%-([t, T] x
Q, Rdxm)‘

Given a process z = {zy,}ue[0,7], W€ denote 2T = (Zu)uels,T] to be the restriction of z
onto the interval [z, T'], and define a mapping F': Ry — R; by

t
o= (x+ [ 20dBa2 ™). o eRo
We have the following result.

LEMMA 5.4. For given t € [0,T] and (£,7') € R,, define a process J'(£,7') =
{THE, 2D uero, 17 by

(52) J;(s,z’):=E[s|fu]1[o,,><u>+(s+ / z;st>1[,,n(u>, welo, 7).

Then, J' (£, 7') is an F-martingale on [0, T]. Moreover, it holds that J' o F* = J° on Ry.
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PROOF. That J' (&, z") is a martingale is obvious. To check the identity, let (x, z) € Ry.
Following the definitions of 77, F', 7°, we have

t( ot gt
T(F (x,z))—Ju(er/O

t

Zs st,Zt’T)
t t u
=E[x+ /0 zsst|fu}1[o,f)<u)+(x+ /0 sas+ [ stBs>1[z,T](u)
t

= (x ["zan ) on@ + (x+ [ 2edB )1 = 70002
for every u € [0, T]. Hence, 7' (F'(x,2)) = J%x,z). O

Next, let R C Rp be a nonempty set and ¢ € [0, T']. By virtue of Theorem 2.8, there exists
a set-valued random variable in szt (22, €(R?)), denoted by fé_ R dB, such that

(5.3) S </0th3) = decr, (7 [R)).

We call fé_ ‘R dB the stochastic integral of R. Clearly, such a stochastic integral is an ex-
tended version of the generalized Aumann—Itd stochastic integral fé Z d B defined by (3.7),
and in particular, the integrand R consists of pairs (x, z), which keeps track of the initial
values x of the martingales in J O[R], motivating the choice of the notation fé_.

To see how the integral fé_ RdB (or more precisely, R) can be defined through a set-
valued martingale, let M = {M,},c[0,7) be a convex uniformly square-integrably bounded
set-valued martingale with respect to F = IFZ, and M, is a nonsingleton convex set. Let
MS(M) be the set of all L?>-martingale selections of M. By standard martingale represen-
tation theorem, for fixed ¢ € [0, T'], each y € M S(M) can be written as y = J' (£, z) for a
unique pair (£, z) € R;. We shall define, for each ¢ € [0, T],

(5.4) RM =1, 2)eR,: J'(E,2)e MS(M)}; and RM =R}

In what follows, for (§,z) € R;, we write ¢(§,z) :=§& and m,;(§, z) := z. (For conve-
nience, we suppress the dependence of the mappings g, 7, on t.) Furthermore, we define
Z,M =, [Rﬁ” ]. The following theorem collects various forms of “time-consistency” prop-
erties of the collection {Rf"’ }ter0, 77, which will be useful in our future discussion.

PROPOSITION 5.5 (Time-consistency). Let t; € [0, T]. Then, it holds that
(5.5) F'[RY' =R
Furthermore, the following relations hold for every ty € (t1, T]:

(i) JNRM] = TE[RM] = MS(M),
(i) me[RY = Mo,
(if) e[ R = J{1[RM) = JEIRM ) = P, [MS(M)],
(iv) 7 [RM = (E[§|F,1: & € me[RM]). and
™) 2y 1= ZM 1= Z) 1)

PROOF. We first prove (5.5). Fix t; € [0, T'] and let (x, ) € Rg”. By Lemma 5.4 and the
definition of R}, we have J''(F"(x, z)) = J%(x, z) € MS(M). On the other hand, since
(x,z) € Rg, we have F'I(x, z) € Ry, which implies F'l(x,z) € Rf‘f Namely, F" [Rg”] C
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Conversely, let (§, 7)€ Rf‘l” Define a martingale y; := E[gl}}], s €[0, t1]. By martingale
representation theorem, there exists a unique pair (x, z) € Rg such that

u
yu:x—i-/o zsdBs, ue€l0,1].

Let z := z1jo,) + Z1py, 17 € L%([O, T1 x Q,R4*™) Then, (x,z) € Ry and, for every u €
[0, T'], we have

u u . u
IO, 2) = x + /0 zsst=<x+ fo zsst>1[o,t1)(u)+(s+ /t zsst)l[,.,mu)
1

A A M N A N
—EIE | Fulljos,) @) + (s 4 / 2 st)l[tl,mu) _JNE5),
1
Hence, 70(x, z) = J" (€, 3) € MS(M), that is, (x, z) € R Finally,
1 T N
F(x,2) = (x +/0 2y dBy, ) —£.2).

So (£,2) e Fh [R}!1. Consequently, we have R{‘l” C FO[RY, proving (5.5).

We now turn to properties (i)—(v). The proof of (i) is immediate since 7" [RQ/’ 1=MS(M)
by the definition of Rg’[ fori € {1, 2}.

To see (ii), let (x, z) € Rg”. Since J(x, z) € MS(M), we have Te(x,2) =x = j(?(x, 7) €
My. Conversely, since M is a set-valued martingale, Mo = E[Mr|Fo] = E[M7], thanks to
Blumenthal’s 0-1 law. Hence, by the definition of set-valued expectation, for every x € Mo,
there exists & € S%T (MT) such that x = E[£]. Furthermore, by the martingale representation

theorem, there exists z € ]LIZF([O, T1 x €, R4*™) such that
u
Blg|F]=x+ [ 2 dB = J0x.2). uel0.T]

Note that, as M is a set-valued martingale, we have E[£|F,] € szfu (M), u €0, T]. Hence,

JOx,2) = {E[&|Fullueio,r) € MS(M), thatis, (x,z2) € Ré"’, or x € mg [Rg’[], proving (ii).
To prove (iii), first note that, for every (x, z) € Ry,

e (F"' (x, 2)) :ng<x +/0

This implies that

t

1 1
zsst,z“’T> =X+f0 z5dBs = J)(x, 2).

7[Ry | = ms[F'[Rg' ]| = {J,) (v, 92 (x,2) € Ry}
= Jn[Re') =i o F'[Rg'] = 7[Ry ]

where the first and last equalities are by (5.5) and the fourth equality is due to Lemma 5.4.
On the other hand, by the definitions of P;,, J 1, we see that PioJ n—= j,tll. Therefore,

we[Ry 1= Ty [Riy 1= Po[T" [Rif 1] = P [T2[Re 1] = P [MS ()]

thanks to (i), which concludes the proof of (iii).
To prove (iv), first note that E[ P, (y)|F;, 1 = P, (y) whenever y = {y,}ue[o,7] 15 a martin-
gale. Hence, applying (iii) twice, we obtain

{E[£1F,1: & € me[RY]} = (BIEIF,]: € € Py[MS(M)]} = P, [MS(M)] = m[R}].

Finally, to prove (v), note that, for every (x, z) € Ry,

1
nz(Ftl(x’Z)):nz(.X'i_‘/O ZSdBS’Z“’T>:Zt1,T'
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Hence,
Ry Uiy, 71 = 7[Ry i 11 = 70 [F [ R T )
= (""" (v, 2) e Ry = {2l 110 2 € 20} = 20 10
Taking t; = r, above, we also obtain Zéll[tz,T] =ZMy, . O

The following theorem is a martingale representation theorem for set-valued martingales
with possibly nontrivial initial values, that is, My is a nonsingleton deterministic set.

THEOREM 5.6. Let M = {M,},c[o0.1] be a convex uniformly square-integrably bounded
set-valued martingale with respect to F =F8B . Then, for each u € [0, T1, it holds that

u
M, = RMdB P-as.,
O_
where RM s defined by (5.4). Moreover, for each t € [0, u], it holds that S}_—u M) =
dec, (JLIRMD).

PROOF. By Lemma 5.5(ii), we have JP[RM] = P,[T°[RM]] = P.[MS(M)], u €
[0, T']. On the other hand, by [22], Proposition 3.1, we have decr, (P, [M S(M)]) = S}u (M,).
Combining these with the definition of the stochastic integral in (5.3), we get

SF. ( [ R dB) = decr, (7 [RM]) = decr, (P[MS(M)]) = ST, (My).

This shows that M,, = fouf RM 4B P-a.s. The second part of the theorem is an immediate
consequence of Lemma 5.4. [

REMARK 5.7. It is interesting to note the relationship between the new stochastic
integral [y RM dB defined by (5.3) and the generalized Aumann—Ito stochastic integral
Jo' 2™ dB defined by (3.7), where Z¥ := Z} . Recalling (3.3) and (5.2), we have

T(x.2) =x + Ju(2) € Mo+ Tu[ZM]
for every (x,z) € RM Hence, jMO[RM 1C Mo+ J,[ZM]. After taking closed decomposable
hulls, it follows that
u o _ u
3, ([ RMaB) = decr, (FURM)) Mo+ dec, (7.[2¥) = Mo+ 53, ([ 2" aB)

Therefore,

u u

RMdB c My +/ ZM 4B  P-as.

0— 0

and the reverse inclusion fails to hold in general. When My = {0}, we have fd‘_ RMdB =
Jo ZM d B since RM = {0} x ZM in this case.

REMARK 5.8. In view of Remark 5.7 and Theorem 5.6, the new integral fé‘_ RM 4B
is a nontrivial and necessary extension of the generalized Aumann-Itd stochastic integral,
which can be used for the integral representation of any truly set-valued martingale M with
a nonzero (nonsingleton) initial value My.
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6. Set-valued BSDEs. We are now ready to study set-valued BSDEs. Assume from now
on that (2, F, P, F) is a filtered probability space on which is defined an m-dimensional
standard Brownian motion B = {B;};c[0,7]. We assume further that F = F8, the natural
filtration generated by B, augmented by all the P-null sets of F so that it satisfies the
usual hypotheses. In particular, we may assume without loss of generality that (2, F) =
(C(0,TD, B(C(0, T])) is the canonical space with F; = o{w(- At): w € 2}, 1t € [0, T],
and P is the Wiener measure on (€2, F). Hence, 2 is separable and [P is nonatomic.

6.1. Set-valued BSDEs in conditional expectation form. In this section, we shall focus
on the following simplest form of set-valued BSDE:

T
6.1) Yt:E[ngft f(s,Ys)ds]ft], 1 €[0.T].

where & € X%T (Q, # (R, £:10,T]x Q2 x # (R — # (R?) is a set-valued function to
be specified later. We first give the definition of the solution to the set-valued BSDE (6.1).

DEFINITION 6.1. A set-valued process Y € L”FZ([O, T] x Q, % RY) is called an
adapted solution to the set-valued BSDE (6.1) if, for each ¢ € [0, T'], we have

T
Y, = E[g +/ f(s, Ys)ds ‘ ]-",} P-as.
t
We shall make use of the following assumptions on the coefficient f.
ASSUMPTION 6.2. The function f : [0, T]x Q x . (RY) — # (R?) enjoys the follow-

ing properties:

(i) for fixed A € #'(RY), f(-,-, A) € L0, T1 x Q, # (RY));
(i) £, {0}) € Z2([0, T] x Q, # (RY)), that is,

(6.2) E[_/OT”f(t, {O})||2dt} =E[/0T hz(f(t, {0}), {O})dt] < 00;

(iii)) f (¢, w, -) is Lipschitz, uniformly in (¢, w) € [0, T] x €2, in the following sense: there
exists K > 0 such that

63)  h(f(t,w,A), f(t,w,B)) <Kh(A,B), A,Bex(RY),( w)el0,T]x Q.

REMARK 6.3. Note that a multifunction f satisfying Assumption 6.2 must be a
Carathéodory multifunction (see [23], Section 2.2), which requires only continuity in the
spatial variable.

REMARK 6.4. By Assumption 6.2, it is easy to check that {f(z, Y;)}:c[0,1] € .,Q”FZ([O,
T1 x Q, # (RY)) whenever {Y:}ej0,7] € Z2([0, T1 x Q, # (RY)).

We shall consider the following standard Picard iteration. Let Y© = {0} and, for n € N,
we define Y™ recursively by

T
(6.4) Y,(”):E[é—i—/ f(s,Ys(”l))ds‘}}], t €0, T].
t

We should point out that the set-valued random variable Y, ,(”) is defined almost surely for each
fixed ¢ € [0, T]. An immediate question is whether {Y,(”)},e[o,r] makes sense, as a (jointly)
measurable set-valued process, which, as usual, requires justification as we have seen fre-
quently in the set-valued case. The following lemma is important for this purpose.
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LEMMA 6.5. Let X € L%(Q, # (RY)) and define F, := E[X|F], t € [0, T]. Then,
{Fi}ie[0,7] has an optional modification that is a uniformly square-integrably bounded mar-
tingale.

PROOF. Consider the (trivial) set-valued process G; = X, t € [0, T'], which is clearly
(jointly) measurable and G, = X is integrable for every F-stopping time t: Q — [0, T'].
By [35], Theorem 3.7, there exists a unique optional projection {°G};c[0,7] of process
{G:}ief0,77 such that E[G;|F;] = °G, P-as. for every F-stopping time 7. In particular,
{°G}tef0,1) 1s an optional modification of {F;};c[0,7]-

It is easy to check that {°G/};¢[0, 7] 1S a square-integrable set-valued martingale, and by an
L!-version of Lemma 4.1, it holds that

|G| = |EXIF1| <E[IXI|F], e[0,T].

Finally, note that X € .Z?(Q, # (RY)); applying Doob’s I.>-maximal inequality to the (real-
valued) martingale M, := E[|| X|||F:], t € [0, T], we obtain

E[ sup ||"Gt||2] < [ sup. |M, | ]<4E[||X||2]<+oo.
t€[0,T] tel0,T

That is, {°G}:c[0,7] is uniformly square-integrably bounded. [J
The next proposition establishes the desired measurability for the Picard iteration.
PROPOSITION 6.6. For eachn € N, Y™ has a progressively measurable modification.

PROOF. Note that Y© = {0} is progressively measurable itself. Let n € N and suppose
that ¥ —D has a progressively measurable modification, which we denote by ¥~ for ease
of notation, and interpret (6.4) accordingly.

For each ¢ € [0, T'], using Corollaries 3.1 and 3.5, we have

t
(6.5) y™ = [s+ / 5, YD) dﬂf;} /0 f(s, YD) as.

By Remark 3.2(v), { fé f (s, YS("_I)) ds}iefo,1) has a progressively measurable modification.
Moreover, by Lemma 6.5, {E[§ + fOT f (s, Ys("_l)) ds|F:1}tef0,71 has an optional, hence pro-
gressively measurable, modification. Replacing the original processes with such modifica-
tions in (6.5), and using Lemma 2.10, we have that Y ™ is progressively measurable. [

In view of Proposition 6.6, we will assume without loss of generality that ¥ is progres-
sively measurable, in particular, ¥ ) ¢ ZFZ([O, T1x Q, % (R%)) for each n € N.

In order to guarantee the convergence of the sequence {Y M}, N constructed in (6.4), we
will use a recursive estimate on {E[hZ(Y,("), Y, ,("_1))]} neN, which is provided by the following
lemma. We note that unlike the vector-valued BSDEs, this lemma is nontrivial because of the
lack of standard tools, in particular, a set-valued It6’s formula.

LEMMA 6.7. For each n > 2, it holds that

T
(6.6) E[R2(y™, v ] < TK? / E[R*(x"D, y"=2)]ds, 1e[0,T].

t
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PROOF. By Proposition 2.3, Lemma 4.1, and the properties of the Hausdorff distance,
we get

E[hZ(Yt("), Yt(”_l))]

e )l [ s )
oo [ s )5

< E:h2</tT I (s, Ys(n_l))ds, ‘/tT f(s, YS("_Z)) ds)].

Then, combining (6.7) with Proposition 4.2, Assumption 6.2(iv), and Proposition 2.3, we
derive (6.6). O

(6.7)

We are now ready to establish the well-posedness of the set-valued BSDE (6.1).

THEOREM 6.8. Assume Assumption 6.2. Then, the set-valued BSDE (6.1) has a solution
Ye .,?2([0 T1 x Q, % (R)). Moreover, the solution is unique up to modifications: if Y' €
.,2”2([0 T] x %(Rd)) is another solution of (6.1), then Y; =Y/ P-a.s.,t € [0, T].

PROOF. Recall that (.ZH?([O, T] x Q, % RY), dy) is a complete metric space, where
the metric is defined by dy(®, W) = (ELfJ h2(D;, W,)dt])2 for &, W € L2([0, T] x
Q, 7 (R?)). We shall argue that the sequence {Y™}, ey of the Picard iteration is Cauchy
in Z2([0, T] x 2, (R%)). To this end, for fixed 7 € [0, T, we note that ¥”’ = {0}. Thus,
by repeatedly applying Lemma 4.1, we have

E[R2(v", Y")] =E|n < [5+/ {0})ds\ft],{0}>]

[
|:h <$+/ {0} ds {0}>:|
2]+ & [ 765, 00 as. 01)])

T
< 2<E[||§||2] + T/O E[| (s, {0})[*] ds) =:C.
Note that C is free of the choice of t. We claim that, for n € N, it holds that

2w pi—iyg _ CTKH" (T =D
(6.9) E[R2(y™, v )] < - -

Indeed, for n =1, (6.9) is just (6.8). Now assume that (6.9) holds for n — 1, then by Lemma
6.7 we have

A

E
(6.8)

A

T
E[hz(Yt("),Y,(”_l))] < TKZ/ E[hz( (n 1) Y(n 2))]d

t

ds

T 2\n—2 _ \n=2)
3 TK2/ C(TK2" (T — )
- ! (n—2)!
C(TKZ)n—l(T _t)(n—l) CKZ(n—l)TZ(n—l)
= < = .
n—1)! =T = ! n

(6.10)
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Since H; is a metric on j% (2, # (RY)) (see (4.1)), the estimate in (6.10) then yields for
m>n>1:

m m—1
6.11) Ho(Y, ", 7)< S Ho (Y v ) < 3 e,
k=n k=n

where a; = %, k > 1, by (6.10). Hence,

6.12) a2, (Y y™) :/

T m—1 2
H%(Yt(n), Yt(m)) dt < T(Z ak-i—l) )
0

k=n
Now note that
JCKkT*

Ap+1 i . TK
o~ JCRG-DTED = W —0 ask— oo.
JE—D!

By ratio test, Y 2 ; ax converges. That is, (YM),en is a Cauchy sequence in XIFZ([O, T] x

Q, # (R?)), thanks to (6.11); whence converges to some Y € .L”FZ([O, T] x Q, # (RY)).
Next, we show that the limit process Y = {Y;};¢[0,7] indeed leads to a solution to the

BSDE (6.1). Since dy (Y, Y"™) — 0 as n — oo, there exists a subsequence {¥ "0}, such

that 1 (Y;(w), Y,("Z)(a))) — 0 as £ — oo for dt x dP-a.e. (t,w) € [0, T] x Q. By Lemma 4.1,
Proposition 4.2, and Assumption 6.2(iii), (iv), we have

E[W(IE[/IT fis. Vo) ds | E],E[/ZT £, ¥ as | f,m

(6.13) sE[hz(/tT £, Ys)ds,/tTf(s, Ys(’”))ds)}

T T
<(T —t)EU B2 (f (s, Ys), f(s, YS(”@)))ds} < TKZ/O H3 (Y, YO) ds.
t

By the construction of the limit ¥, we have fOT ’H%(YS, Ys(nl)) ds — 0as £ — o0o0. Now, (6.13)
shows that

T T
sup E[hz(E[/ Fs. Y)Y ds | .7-",], EU F(s.Yy)ds | }",D} 50 asn— oo
€0, 7] t t
It follows that Y satisfies the BSDE

T
Yt:E[S—i—/t f(s,Ys)dsl]:t}, tel0,T]

In fact, a similar argument as above (using Assumption 6.2(iii)) also shows that Y is actually
unique, as the solution of (6.1) in the space 92”1%([0, T] x Q, # (RY)) up to modifications.
This proves the theorem. [J

6.2. Set-valued BSDEs with martingale terms. The set-valued BSDE (6.1) considered in
Section 6.1 is formulated using set-valued conditional expectations. In this section, we aim
to remove the conditional expectation by introducing an additional term to the BSDE, that is,
a set-valued martingale. More specifically, we consider a set-valued BSDE of the form

T
(6.14) Y,+MT=§+/ fG,Y)ds+M,;,, tel0,T],
t

where {M;};¢[0,7] 1s a set-valued martingale and {Y;};c[0,77, &, f: [0, T] x Q2 — A (RY) are
as in Section 6.1.
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DEFINITION 6.9. A pair (Y, M) € (ZFZ([O, T1 x @, % (R%)))? of set-valued process

is called an adapted solution to the set-valued BSDE (6.14) if M is a uniformly square-
integrably bounded set-valued martingale with My = Yy and, for each t € [0, T],

T
Y,+MT=§+/ f(s,Ys)ds + M; P-as.
t

REMARK 6.10. In light of the Hukuhara difference, the set-valued BSDE (6.14) is equiv-
alent to

T
V= (e+ [ Sevds+M) @My re(0.T)
t
Furthermore, if M; © Mt exists, the same BSDE is also equivalent to
T
Vo=g+ [ f6.Y0ds+ (M 0 Mp). 1el0.T]
t

thanks to Proposition 2.2. However, the existence of M; © M is a tall order due to the lack of
temporal additivity of the generalized stochastic integral (see Remark 6.15 for more details).

We now establish the well-posedness of the set-valued BSDE (6.14).

THEOREM 6.11. Suppose that Assumption 6.2 holds. Then, the set-valued BSDE (6.14)
has a solution (Y, M) € (Xﬂg([O, T1 x Q, % (R)))2. Moreover, the solution is unique up to
modifications: if (Y',M') € (.32”152([0, T] x Q, % (R%)))? is another solution of (6.14), then
Y, =Y/ and M; = M| P-a.s. for every t € [0, T].

PROOF. By Theorem 6.8, the set-valued BSDE (6.1) in conditional expectation form has
a solution Y € zﬁ([o, T] x Q, # (R%)). Define a process M = {M;}ie10.77 by

T
MtzzE[§+/0 f(s,Ys)ds|f,}, te[0,T).

By Remark 6.4, {f(¢, Yi)}icf0.7] € ZFZ([O, T] x Q, # (R%)); by Lemma 6.5, M is a uni-
formly square-integrably bounded set-valued martingale. On the other hand, by Corollary 3.5,

T T
(6.15) /0 f(s,Ys)ds:/Otf(s,Ys)ds+/t f(s,Y)ds, tel[0,T].

By the linearity of set-valued conditional expectation and (6.15), we have

M,zE's+/0Tf<s,mds\ﬁ}

- ¢ T
=E|e+ | fGs,Yds+ | f(s,Y)ds|F
(6.16) ' /0 S S ft S S‘ t]

:E:§+ftTf(s,Ys)ds‘.7:;}+/Otf(S,Ys)dS

t
IY1+/(; f(s, Yy)ds.

Using the definitions of M7, M;, and combining (6.15) and (6.16) give

t T T
Y,+MT=Y,+§+/0 f(s,Ys)ds—i-ft f(s,Ys)ds=§+/t f(s,Ys)ds + M;.
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Finally, My = E[£ + fOT f (s, Yy)ds] = Yo by the definitions of My and Yy. Hence, the pair

(Y, M) is a solution to the set-valued BSDE (6.14).
To prove uniqueness, let (Y’, M’) be another solution to (6.14). Let ¢ € [0, T']. Hence,

T
(6.17) Y/ + My =& +/ f(s,Y))ds+ M, P-as.
t
Since M’ is a martingale, taking conditional expectation in (6.17) under F; gives
T
Y/ + M, =E[§ +/ f(s,Y))ds | f,} + M;.
t

Hence, by cancellation law, Y’ is a solution to the BSDE (6.1). By the uniqueness part of
Theorem 6.8, Y; = ¥/ P-a.s. Using this, we may rewrite (6.17) as

T
Y, +Mp=¢ +f f(s,Y)ds+ M, P-as.
t
In particular, when t = 0, we have
T
(6.18) Y0+M/T=§+/O f(s,Ys)ds+M6.

On the other hand, we have My =Yy = Yé = M(/). Hence, cancellation law in (6.18) and the
definition of M7 yield

T
M=+ [ 7Y ds =My

Finally, since M, M’ are both martingales with the same terminal value, we obtain M; = M|
P-a.s. for each 7 € [0, T']. Hence, (Y, M) and (Y’, M’) coincide up to modifications. [J

We conclude this section by proving that the forms of the set-valued BSDE given by (6.1)
and (6.14) are indeed equivalent.

COROLLARY 6.12. () If Y € £2([0, T x @, # (R?)) is a solution of (6.1), then there
exists a unique M € .32”]1;2([0, T1x Q, % (RY) such that (Y, M) is a solution of (6.14).
(i) If (Y, M) € (Z2([0, T1 x 2, 2 (R)))? is a solution of (6.14), then Y solves (6.1).

PROOF. (i) Let Y be a solution of (6.1). Following the construction in the proof of Theo-
rem 6.11, one can find a set-valued martingale M such that (Y, M) solves (6.14). The unique-
ness of such M is also a consequence of the uniqueness part of Theorem 6.11.

(i1) Let (Y, M) be a solution of (6.14). For each ¢ € [0, T'], taking conditional expectation
with respect to F; in (6.14) gives

T
Y, + M, = E[g +/ fs,Yo)ds | ]—}] + M,
t
since M is a set-valued martingale. By cancellation law, it follows that Y solves (6.1). [
6.3. Set-valued BSDEs with generalized stochastic integrals. We can now combine the

martingale representation theorem developed in Section 5.2 with the set-valued BSDE (6.14)
to study the equation of the form

T T t
(6.19) Yt—i-/ RdB=g+f f(s,Ys)ds+/ RdB, t€l0,T],
0— t 0—

where R C Rg = RY x ILIZF([O, T] x 2, Rdxm) is a set of martingale representer pairs.
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DEFINITION 6.13. A pair (Y,R) with Y € zﬂ%([o, T] x Q, % (R%) and R € Ry is
called a solution of the set-valued BSDE (6.19) if Yy = m¢[R], { fotf R dB}tci0,7) 18 a uni-
formly square-integrably bounded set-valued martingale and, for each ¢ € [0, T'],

T T t
Y,—l—/ RdB:é—l—f f(s,YS)ds+f RdB P-as.
0— t 0—

The following theorem provides a well-posedness result for the set-valued BSDE (6.19).

THEOREM 6.14. Under Assumption 6.2, the set-valued BSDE (6.19) has a solution
(Y, R). Moreover, the solution is unique in the following sense: if (Y', R') is another solution
of (6.19),then Y, =Y/ and [j_RdB = [;_R'dB P-a.s. for everyt € [0, T].

PROOF. By Theorem 6.11, there exists a solution (Y, M) of the set-valued BSDE (6.14).
By Definition 6.9, M is a uniformly square-integrably bounded set-valued martingale. Hence,
by Theorem 5.6, we may write M; = jg_ RM dB P-a.s. for each € [0, T]. Hence, (Y, RM)
is a solution of (6.19). The uniqueness claim is an immediate consequence of the uniqueness
part of Theorem 6.11. [

REMARK 6.15. The indefinite integral M = {f;_ R™ dB};c[0,1] in the proof of Theo-
rem 6.14 is a uniformly square-integrably bounded set-valued martingale. Following similar
arguments as in [23], Corollary 5.3.2, it can be shown that if ZM g decomposable, then,
ZM a5 well as RM are singletons. Hence, in all cases where ZM contains more than one
processes, the set ZM is not decomposable. Similar to Corollary 3.7 for the generalized
Aumann-It6 stochastic integral, the indefinite integral considered here does not have time-
additivity in general, that is, the Hukuhara difference M1 © M; = foi RMdBo [j_RMdB
does not exist. In particular, in view of Remark 5.7, the inclusion [5_RM dB C My +
fé ZM 4B is generally a strict one.

We conclude the paper by showing that the equivalence between the set-valued BSDE
(6.19) and the one in (6.14).

COROLLARY 6.16. (i) If (Y,R) is a solution of (6.19), then (Y, {féf RdB}icio.1)) is a
solution of (6.14).

(i) If (Y, M) € (Z2([0, T]1 x @, # (R)))? is a solution of (6.14), then there exists R €
Ro such that (Y, R) solves (6.19), and such R is unique in the following sense: if (Y, R')
solves (6.19) for some R’ € Ry, then [{_RdB = [{_R'dB P-a.s. for everyt € [0, T].

PROOF. (i) is an immediate consequence of Definitions 6.9 and 6.13. The existence part
of (ii) follows by the set-valued martingale representation theorem (Theorem 5.6) as in the
proof of Theorem 6.14. The uniqueness part follows from the uniqueness claim in Theo-
rem6.11. 0O

Corollaries 6.12 and 6.16 together yield that the three forms of the set-valued BSDE,
namely, (6.1), (6.14), and (6.13), are essentially equivalent.
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