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FIRST HITTING TIME OF A ONE-DIMENSIONAL L\'EVY FLIGHT
TO SMALL TARGETS\ast 

DANIEL GOMEZ\dagger AND SEAN D. LAWLEY\ddagger 

Abstract. First hitting times (FHTs) describe the time it takes a random ``searcher"" to find
a ``target"" and are used to study timescales in many applications. FHTs have been well-studied
for diffusive search, especially for small targets, which is called the narrow capture or narrow escape
problem. In this paper, we study the FHT to small targets for a one-dimensional superdiffusive search
described by a L\'evy flight. By applying the method of matched asymptotic expansions to a fractional
differential equation we obtain an explicit asymptotic expansion for the mean FHT (MFHT). For
fractional order s \in (0,1) (describing a (2s)-stable L\'evy flight whose squared displacement scales as
t1/s in time t) and targets of radius \varepsilon \ll 1, we show that the MFHT is order one for s \in (1/2,1)
and diverges as log(1/\varepsilon ) for s= 1/2 and \varepsilon 2s - 1 for s \in (0,1/2). We then use our asymptotic results
to identify the value of s \in (0,1] which minimizes the average MFHT and find that (a) this optimal
value of s vanishes for sparse targets and (b) the value s= 1/2 (corresponding to an inverse square
L\'evy search) is optimal in only very specific circumstances. We confirm our results by comparison to
both deterministic numerical solutions of the associated fractional differential equation and stochastic
simulations.
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1. Introduction. The timescales of many physical, chemical, and biological pro-
cesses are characterized by first hitting times (FHTs) [4, 57, 17, 56]. Generically, the
FHT is the time it takes a ``searcher"" to find a ``target."" Applications include animal
foraging [62, 31], transcription factor search for DNA binding sites [39, 43], synaptic
transmission in neuroscience [58], menopause timing [34], financial income dynam-
ics [27], and computer search algorithms [53, 54], among many other applications
[4, 57, 17]. FHTs are often called first passage times, first arrival times, exit times,
escape times, or capture times.

Mathematical models of such processes often assume that the searcher randomly
explores a given spatial domain, and a great deal of mathematical and computational
methods have been developed to study the statistics and probability distribution of
the FHT to the target(s) [3, 25, 61, 37, 8, 28]. More precisely, let X = \{ X(t)\} t\geq 0

denote the stochastic path of a searcher in a d-dimensional spatial domain \Omega \subseteq Rd.
The FHT to a target set \Omega target \subset \Omega (where \Omega target is possibly a union of multiple
disjoint sets) is then

\tau := inf\{ t\geq 0 :X(t)\in \Omega target\} .(1.1)
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FIRST HITTING TIME OF A L\'EVY FLIGHT 1141

Naturally, the statistics and distribution of the FHT \tau depend on the stochastic
dynamics of the searcher X, the space dimension d\geq 1, and the size and geometry of
the target set \Omega target and spatial domain \Omega .

A common framework for studying FHTs is to assume that the searcher X is
a pure diffusion process (i.e., a Brownian motion) and the targets are much smaller
than their confining spatial domain, which is called the narrow capture problem (or
narrow escape problem if the target is embedded in the otherwise reflecting boundary)
[55, 16, 2, 25, 23, 9]. For bounded domains in dimension d = 1, the MFHT of such
a diffusive searcher is always finite even if the targets are single points. In contrast,
the MFHT of diffusion in any dimension d \geq 2 diverges as the target size vanishes.
In particular, if \varepsilon > 0 compares the lengthscale of the target to the lengthscale of the
confining domain, then it is well known that as \varepsilon vanishes,

E[\tau ] =

\left\{     
O(1) if d= 1,

O(log(1/\varepsilon )) if d= 2,

O(\varepsilon 2 - d) if d\geq 3.

(1.2)

The stark contrast in (1.2) between dimensions d = 1, d = 2, and d \geq 3 stems from
the fact that Brownian motion is recurrent if d= 1, neighborhood recurrent in d= 2,
and transient in d\geq 3 [20].

FHTs have also been studied for superdiffusive processes, which are characterized
by squared displacements that grow superlinearly in time [42, 15, 40, 50, 32, 49, 46, 45,
65, 24, 14, 47, 60]. A common mathematical model of superdiffusion is a L\'evy flight
[5, 19], which is often derived from the continuous time random walk model [44, 42].
In this model, a searcher waits at its current location for a random time and then
jumps a random distance chosen from some jump length probability density f(y) in a
uniform random direction. The searcher repeats these two steps indefinitely or until
it reaches the target. For a finite mean waiting time t0 \in (0,\infty ) and a jump length
density with the following slow power law decay,

f(y)\sim (l0)
2s

y1+2s
as y\rightarrow \infty for some s\in (0,1) and lengthscale l0 > 0,(1.3)

the probability density p(x, t) for the searcher position satisfies the following space-
fractional Fokker--Planck equation in a certain scaling limit [41],

\partial 

\partial t
p= - Ds( - \Delta )sp,(1.4)

where ( - \Delta )s denotes the fractional Laplacian of order s\in (0,1), defined by [38]

( - \Delta )s\varphi (x) =CsP.V.

\int \infty 

 - \infty 

\varphi (x) - \varphi (y)

| x - y| 2s+d
dy, Cs :=

4s\Gamma (s+ d/2)

\pi d/2| \Gamma ( - s)| 
,(1.5)

where P.V. indicates the principal value and \Gamma (\cdot ) denotes the gamma function. In
(1.4), the parameter Ds is the s-dependent generalized diffusivity and is given by

Ds = (l0)
2s/t0 > 0,(1.6)

where l0 and t0 are characteristic spatial and temporal scales of the L\'evy flight. Note
that fixing l0 and t0 allows us to compare search strategies as the fractional order
is varied. This will be particularly important when we address the optimality of
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1142 DANIEL GOMEZ AND SEAN D. LAWLEY

L\'evy flights in section 4. Note also that L\'evy flights are often parameterized by their
stability index \alpha \in (0,2) [48], which is simply twice the fractional order s\in (0,1),

\alpha = 2s\in (0,2).

Observe that (1.4) is the diffusion equation describing Brownian motion if s= 1.
L\'evy flights are perhaps the most mathematically tractable model of superdiffu-

sion, though analytical results for L\'evy flights are scarce compared to their Brown-
ian counterpart. The mathematical analysis of hitting times of superdiffusive search
processes has also been controversial. Indeed, the influential L\'evy flight foraging
hypothesis was based on the claimed theoretical optimality of a certain superdiffu-
sive process involving heavy-tailed jumps as in (1.3) with the ``inverse square"" value
s= 1/2 [63, 62], but this decades-old claim was recently shown to be false [35, 11, 36].

In this paper, we study FHTs of L\'evy flights to small targets in one space di-
mension. Assuming the targets are much smaller than the typical distance between
them, we apply the method of matched asymptotic expansions to the fractional dif-
ferential equation describing the MFHT. The resulting asymptotic formulas reveal
how FHTs depend on the fractional order s \in (0,1), target size, target arrangement,
and initial searcher location (or distribution of locations). We further determine the
full probability distribution of the FHT for fractional orders s \in (0,1/2] in the small
target limit. We validate our results by comparison to both deterministic numerical
solutions of the associated fractional differential equation and stochastic simulations.

To describe our results more precisely, let X = \{ X(t)\} t\geq 0 be a one-dimensional,
(2s)-stable L\'evy flight for s \in (0,1) with generalized diffusivity Ds > 0 (i.e., the
probability density that X(t) = x satisfies (1.4)) and periodic boundary conditions at
x=\pm l. Since we can always rescale space and time according to

x\rightarrow x/l, t\rightarrow Dst/l
2s,(1.7)

we setDs = l= 1 without loss of generality. Suppose that the target set \Omega target consists
of N \geq 1 targets in the interval \Omega = ( - 1, 1) \in R centered at points \{ x1, . . . , xN\} \in 
( - 1,1) with radii \{ \varepsilon l1, . . . , \varepsilon lN\} , i.e.,

\Omega target =
N\bigcup 
i=1

(xi  - \varepsilon li, xi + \varepsilon li).(1.8)

Here, l1, . . . , lN > 0 are O(1) constants which allow the targets to differ in size. When
the context is clear, we denote by | \cdot | the 2-periodic extension of the absolute value on
( - 1,1) so that | a - b| denotes the minimum distance between a and b in the periodic
domain ( - 1,1). Assume that 0 < \varepsilon \ll 1 and the targets are well-separated in the
sense that | xi - xj | \gg \varepsilon for all i, j \in \{ 1, . . . ,N\} with i \not = j. Let v(x) denote the MFHT
to any of the N targets starting from x\in ( - 1,1), i.e.,

v(x) :=E[\tau | X(0) = x],

where \tau is the FHT in (1.1). The function v(x) satisfies (see Appendix B)\left\{     
( - \Delta )sv(x) = 1, x\in \Omega \setminus \Omega target,

v(x) = 0, x\in \Omega target,

v(x) is 2-periodic.

(1.9)

We obtain our results on the FHT by analyzing (1.9) in the limit \varepsilon \rightarrow 0.
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FIRST HITTING TIME OF A L\'EVY FLIGHT 1143

We now state our results on the MFHT for the case of a single target of radius
\varepsilon > 0 centered at x1 = 0 (i.e., N = l1 = 1). Note that our assumption of periodic
boundary conditions means that this scenario is equivalent to a L\'evy flight on all of
R with a periodic array of targets separated by distance 2. For any fractional order
s \not = 1/2, the MFHT of a L\'evy flight conditioned on starting at x \in ( - 1,1) \setminus \{ 0\} is
given by the following asymptotic formula for 0< \varepsilon \ll 1,

v(x)\sim \varepsilon 2s - 1 2as
bs

 - 2asRs(0) + 2as
\bigl( 
 - | x| 2s - 1 +Rs(x)

\bigr) 
,(1.10)

where

as := - 2\pi  - 1s\Gamma ( - 2s) sin(\pi s), bs :=
\Gamma (1/2)

\Gamma (3/2 - s)\Gamma (s)
,(1.11)

and Rs is the regular part of the Green's function given explicitly in Proposition 2.2.
If s= 1/2, then this MFHT is

v(x)\sim log(2/\varepsilon )
2

\pi 
 - 2

\pi 
R1/2(0) +

2

\pi 

\bigl( 
log | x| +R1/2(x)

\bigr) 
.(1.12)

If the L\'evy flight searcher starts from a uniformly distributed position in the interval
( - 1,1), then the average MFHT is

1

2

\int 1

 - 1

v(x)dx\sim 

\Biggl\{ 
\varepsilon 2s - 12as/bs  - Rs(0)2as if s \not = 1/2,

log(2/\varepsilon )2/\pi  - 2R1/2(0)/\pi if s= 1/2.
(1.13)

These results show an analogue between Brownian search in dimensions d \geq 1
and L\'evy search in dimension d = 1 with fractional order s \in (0,1). Specifically,
(1.10)--(1.13) imply

E[\tau ] =

\left\{     
O(1) if s\in (1/2,1],

O(log(1/\varepsilon )) if s= 1/2,

O(\varepsilon 2s - 1) if s\in (0,1/2).

(1.14)

Comparing (1.2) to (1.14) shows that FHTs of Brownian motion in different dimen-
sions diverge similarly to FHTs of L\'evy flights in one dimension with different frac-
tional orders. As in the case of Brownian motion in (1.2), the different regimes in
(1.14) stem from differences in recurrence versus transience, which manifests in our
analysis as different far-field behavior of the inner solutions used in our matched
asymptotics. FHTs of L\'evy flights in one dimension can diverge because the stochas-
tic paths of L\'evy flights are discontinuous. Hence, in contrast to Brownian motion,
L\'evy flights may jump across a target without actually hitting it in a phenomenon
termed a ``leapover"" [30, 29, 48, 64] (see Figure 1 for an illustration).

Our analysis allows us to identify the value of s \in (0,1] which minimizes the
MFHT. We find that this optimal value (denoted by sopt) grows continuously from
sopt \approx 0 up to sopt \approx 1 (i.e., Brownian search) as the target density grows relative
to the lengthscale l0 in (1.3)--(1.6). In particular, we show that the value s = 1/2
(corresponding to stability index \alpha = 2s = 1, i.e., inverse square L\'evy search) is
optimal in only very specific circumstances.

The rest of the paper is organized as follows. In section 2, we analyze the mean
and full probability distribution of the FHT. In section 3, we compare our asymptotic
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Fig. 1. L\'evy flight sample paths in one space dimension for (left) s= 1 (i.e., Brownian motion),
(middle) s= 0.7, and (right) s= 0.4. The solid black markers show positions of the L\'evy flight. For
s < 1, the black dashed lines show the discontinuous jumps of the L\'evy flight, which become larger
for smaller values of s \in (0,1) and allow the L\'evy flight to jump across the target (regions with red
vertical lines).

results to numerical solutions of the associated fractional equations and stochastic
simulations. In section 4, we address the question of the fractional order s \in (0,1]
that minimizes the MFHT. We conclude by summarizing our results and discussing
related work. Appendix A collects some more technical aspects of the numerical
implementation in section 3, while Appendix B includes a derivation of the fractional
equations for the FHT moments.

2. Asymptotic analysis of the MFHT. The method of matched asymptotic
expansions (MMAE) has been an invaluable tool in the analysis of narrow capture and
escape problems for pure diffusion processes since its introduction in [55, 16]. Broadly
speaking, the MMAE proceeds by formulating inner- and outer-problems whose so-
lutions can be expressed in terms of a canonical ``electrified disk"" solution and an
appropriately weighted sum of Green's functions, respectively. Combining a solvabil-
ity condition for the outer-problem together with matching conditions between the
inner- and outer-solutions yields a linear system with which all remaining unknowns
arising in the asymptotic analysis can be determined. In this section, we adapt the
MMAE to derive an asymptotic expansion for the MFHT satisfying the fractional
differential equation (1.9). We show how the MMAE in this fractional setting syn-
thesizes the analysis of the standard narrow escape problem in dimensions d= 2 and
d = 3. In addition, we introduce a fractional counterpart to the classical electrified
disk problem, as well as a 2-periodic fractional Green's function.

We begin our asymptotic analysis of the MFHT by seeking an outer asymptotic
expansion of the form

v(x)\sim v\varepsilon 0(x),(2.1a)

valid for values of x that are sufficiently far from all targets in the sense that | x - xi| \gg \varepsilon 
for all i = 1, . . . ,N . In addition, for each i = 1, . . . ,N we seek an inner asymptotic
expansion of the form

v(xi + \varepsilon X)\sim V \varepsilon 
i (X),(2.1b)

valid for values of x = xi + \varepsilon X sufficiently close to the ith target in the sense that
X = O(1). Note that in (2.1) and throughout the remainder of the paper, we use a
superscript \varepsilon to denote a general dependence on this parameter.

It is here convenient to recall two equivalent definitions of the fractional Laplacian
given by (1.5) when restricted to 2-periodic functions. Specifically, if we let \varphi (x) be
an arbitrary 2-periodic function, then
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FIRST HITTING TIME OF A L\'EVY FLIGHT 1145

( - \Delta )s\varphi (x) =CsP.V.

\int 1

 - 1

Ks(x - y)(\varphi (x) - \varphi (y))dy,(2.2a)

where

Ks(z) :=
\sum 
n\in Z

1

| z + 2n| 2s+1
(2.2b)

and where Z denotes the set of all integers. This expression is conveniently chosen to
determine appropriate inner problems. Moreover, it can be shown (see, for example,
equation (2.53) in [1]) that the restriction of the fractional Laplacian defined by (1.5)
to 2-periodic functions coincides with the spectral fractional Laplacian defined by

( - \Delta )s\varphi (x) =
\sum 

n=Z\setminus \{ 0\} 

| n\pi | 2s\varphi ne
in\pi x, \varphi n :=

1

2

\int 1

 - 1

e - in\pi x\varphi (x)dx.(2.3)

This formulation proves to be useful when considering global quantities, such as the
relevant periodic fractional Green's function.

In order to state our main result for this section, we first define the scalars

\nu \varepsilon i := - 1

log(\varepsilon li/2)
, \=\nu \varepsilon :=

1

N

N\sum 
i=1

\nu \varepsilon i ,
\=ls :=

1

N

N\sum 
i=1

l1 - 2s
i ,(2.4a)

as well as the N -dimensional vectors

\bfitl s :=

\left(   l1 - 2s
1
...

l1 - 2s
N

\right)   , \bfitnu \varepsilon :=

\left(   \nu \varepsilon 1
...
\nu \varepsilon N

\right)   , \bfite N :=

\left(   1
...
1

\right)   .(2.4b)

In addition, we define the N \times N diagonal matrices

\scrL s := diag
\bigl( 
l1 - 2s
1 , . . . , l1 - 2s

N

\bigr) 
, \scrN \varepsilon := diag(\nu \varepsilon 1 , . . . , \nu 

\varepsilon 
N ),(2.4c)

as well as the N \times N Green's matrix \scrG s whose entries are given by

(\scrG s)ij =

\Biggl\{ 
Rs(0), i= j,

Rs(xi  - xj) +Hs(xi  - xj), i \not = j,
(2.4d)

where Rs is the regular part of the Green's function defined in Proposition 2.2, and
Hs(z) is the singular part with Hs(z) := - | z| 2s - 1 for s \not = 1/2 and Hs(z) := log | z| for
s= 1/2. Our main asymptotic result for the hitting time is given below.

Principal Result 1. Let \varepsilon \ll 1, let l1, . . . , lN = O(1), and suppose that  - 1 \leq 
x1 < \cdot \cdot \cdot < xN < 1 are well-separated in the sense that | xi  - xj | \gg O(\varepsilon ) for all i \not = j.
For any 0< s< 1, define

\chi \varepsilon :=

\left\{       
1

N\=ls

\biggl( 
2as
bs

\varepsilon 2s - 1  - \varepsilon 1 - 2sbs\bfitl 
T
s \scrG s\scrL s\bfitB 

\varepsilon 

\biggr) 
, s \not = 1/2,

2

\pi N \=\nu \varepsilon 

\Bigl( 
1 - \pi 

2
(\bfitnu \varepsilon )T\scrG \bfitB \varepsilon 

\Bigr) 
, s= 1/2,

(2.5a)
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1146 DANIEL GOMEZ AND SEAN D. LAWLEY

where as and bs are given by (1.11) and where the N -dimensional vector \bfitB \varepsilon =
(B\varepsilon 

1, . . . ,B
\varepsilon 
N )T is found by solving the linear system\left\{         
\biggl( 
\scrI N  - \varepsilon 1 - 2sbs

\biggl( 
\scrI N  - 1

N\=ls
\bfite N \bfitl Ts

\biggr) 
\scrG s\scrL s

\biggr) 
\bfitB \varepsilon =

2as\varepsilon 
2s - 1

N\=lsbs
\bfite N , s \not = 1/2,\biggl( 

\scrI N  - \scrN \varepsilon 

\biggl( 
\scrI N  - 1

N \=\nu \varepsilon 
\bfite N (\bfitnu \varepsilon )T

\biggr) 
\scrG 1/2

\biggr) 
\bfitB \varepsilon =

2

\pi N \=\nu \varepsilon 
\bfitnu \varepsilon , s= 1/2,

(2.5b)

where \scrI N is the N\times N identity matrix. Then, an asymptotic expression for the MFHT
satisfying (1.9) for | x - xi| \gg \varepsilon for all i= 1, . . . ,N is given by

v(x)\sim \chi \varepsilon +

\left\{           
bs\varepsilon 

1 - 2s
N\sum 
j=1

l1 - 2s
j B\varepsilon 

j ( - | x - xj | 2s - 1 +Rs(x - xj)), s \not = 1/2,

N\sum 
j=1

B\varepsilon 
j

\bigl( 
log | x - xj | +R1/2(x - xj)

\bigr) 
, s= 1/2,

(2.5c)

where Rs(x) is the regular part of the Green's function found in Proposition 2.2.

The remainder of this section is organized as follows. In sections 2.1 and 2.2, we
first establish key properties of two quantities relevant to the construction of inner
and outer solutions, respectively. Specifically, in section 2.1 we consider a fractional
counterpart to the classical electrified disk problem. This is followed by a discussion of
a certain 2-periodic fractional Green's function in section 2.2. In section 2.3, we then
proceed with applying the MMAE to derive Principal Result 1. Finally, in section 2.4
we show that, to leading order, the FHT \tau is exponentially distributed for s\in (0,1/2].

2.1. The fractional electrified disk problem. Substituting the change of
variables X = (x - xi)/\varepsilon into (1.9), we obtain a leading order homogeneous problem
for the inner solution V \varepsilon 

i (X) (see section 2.3 below). The scaling invariance of this
problem suggests that V \varepsilon 

i (X) is proportional to the solution of some canonical prob-
lem, where the constant of proportionality acts as a degree of freedom with which to
match inner and outer solutions. A natural choice for the corresponding canonical
problem is the fractional counterpart to the electrified disk problem, which is given
by \Biggl\{ 

( - \Delta )sWs(X) = 0, | X| > 1,

Ws(X) = 1, | X| < 1,
(2.6)

and for which we now collect several key properties. The function Ws(X) is the
probability that a L\'evy flight starting at X \in R eventually hits the ball ( - 1, 1). With
this probabilistic interpretation, one readily obtains the following formula for Ws(X)
when s < 1/2 (see Corollary 2 in [7]):

Ws(X) =

\surd 
\pi 

\Gamma 
\bigl( 
1
2  - s

\bigr) 
\Gamma (s)

\int \infty 

X2 - 1

us - 1

\surd 
u+ 1

du.(2.7)

We proceed to derive an explicit expression for Ws(X) valid for all s \in (0,1). Specif-
ically, we deploy a Kelvin transform and fractional Poisson formula for s \not = 1/2 and
standard complex analysis tools for s = 1/2. The main result is summarized in the
following proposition.
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FIRST HITTING TIME OF A L\'EVY FLIGHT 1147

Proposition 2.1. The fractional electrified disk problem (2.6) admits the follow-
ing nonconstant solution:

Ws(X)
(2.8a)

=

\left\{     
\surd 
\pi 

\Gamma (s)\Gamma 
\bigl( 
3
2  - s

\bigr) | X| 2s - 1

\biggl( 
1 - 1

X2

\biggr) s

2F1

\biggl( 
1,

1

2
;
3

2
 - s;

1

X2

\biggr) 
, s \not = 1/2,

1 - log(X +
\sqrt{} 
X2  - 1), s= 1/2,

| X| > 1,

with Ws(X) = 1 for | X| \leq 1. Moreover, this solution has the far-field behavior

Ws(X)\sim 

\Biggl\{ 
bs| X| 2s - 1 +O(| X| 2s - 3), s \not = 1/2,

 - log(2| X| ) + 1+O(X - 2), s= 1/2,
as | X| \rightarrow \infty ,(2.8b)

where bs is given by (1.11).

Starting with the s \not = 1/2 case, we first transform (2.6) into the more commonly
considered fractional problem with extended Dirichlet boundary conditions posed out-
side of ( - 1,1). Specifically, we first use the Kelvin transform

X = 1/X, W s(X) = | X| 2s - 1Ws

\bigl( 
1/X

\bigr) 
,(2.9a)

in terms of which we readily calculate (see, for example, Proposition A.1 in [59])

( - \Delta )sW s(X) = | X| 2s+1( - \Delta )sWs(X).(2.9b)

In particular, we find that W s(X) solves\Biggl\{ 
( - \Delta )sW s(X) = 0, | X| < 1,

W s(X) = | X| 2s - 1, | X| > 1.
(2.10)

Notice that the inhomogeneous term g(X) = | X| 2s - 1 for | X| > 1 in (2.10) can be
extended to R in such a way that g \in L1

loc(R)\cap C(R) and\int 
R

| g(X)| 
1 + | X| 1+2s

dX <\infty .

It then follows that the unique continuous solution to (2.10) is given by (see Theorem
2.10 in [10])

W s(X) =

\left\{   
\int 
| Y | >1

Ps(Y,X)| Y | 2s - 1dY, | X| < 1,

| X| 2s - 1, | X| > 1,

where Ps(y,x) is the fractional Poisson kernel given by

Ps(y,x) := ps

\biggl( 
1 - x2

y2  - 1

\biggr) s
1

| x - y| 
, ps := \pi  - 1 sin(\pi s) =

1

\Gamma (s)\Gamma (1 - s)
.

Reverting to the original variables, we therefore obtain the integral representation

Ws(X) = ps

\int \infty 

1

\biggl( 
X2  - 1

1 - 1/Y 2

\biggr) s
2| X| 

(XY )2  - 1
dY

= ps| X| 2s - 1

\biggl( 
1 - 1

X2

\biggr) s \int \infty 

0

(z + 1)s - 
1
2

zs
\bigl( 
z + 1 - 1

X2

\bigr) dz,
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where the first equality follows by combining the Y \in ( - \infty , - 1) and Y \in (1,\infty )
contributions and the second from the change of variables Y =

\surd 
z + 1. Using the

integral representation of the Gaussian hypergeometric function (see equation 15.6.1
in [18]), we immediately obtain (2.8a). The far-field behavior (2.8b) of Ws(X) is
likewise immediately obtained by noting that (see equation 15.2.1 in [18])

2F1

\biggl( 
1,

1

2
;
3

2
 - s; z

\biggr) 
= 1+

z

3 - 2s
+

3z2

4s2  - 16s+ 15
+O(z3), | z| \ll 1.

Remark 2.1. The equivalence of (2.8a) and (2.7) is readily verified using properties
of the Gaussian hypergeometric function. Specifically, we first recast the integral in
(2.7) in terms of the Gaussian hypergeometric function using the change of variables
u = X2(z + 1)  - 1. Equivalence with (2.8a) is then verified by first using Euler's
transformation 2F1(a, b; c; z) = (1  - z)c - a - b

2F1(c  - a, c  - b; c; z) and then using the
symmetry property 2F1(a, b; c; z) = 2F1(b, a; c; z).

We consider next the case s = 1/2 for which the previous calculations yield
Ws(X) \equiv 1. Indeed, it is easy to see that W s(X) \equiv 1 is the unique continuous
solution to (2.10) when s = 1/2. To find a nonconstant solution to (2.6), we instead
consider the extended problem in the two-dimensional upper half-space. Specifically,
we seek a nonconstant solution \widetilde W (X,Y ) to\left\{             

\partial 2\widetilde W
\partial X2

+
\partial 2\widetilde W
\partial Y 2

= 0,  - \infty <X <\infty , Y > 0,\widetilde W = 1, | X| < 1, Y = 0,

\partial \widetilde W
\partial Y

= 0, | X| > 1, Y = 0,

(2.11)

in terms of which Ws=1/2(X) =\widetilde W (X,0) (see [12] for additional details on the exten-
sion property of the fractional Laplacian). Such a nonconstant solution must have
logarithmic growth as X2 + Y 2 \rightarrow \infty and is given by\widetilde W (X,Y ) = 1+ Im\{ arcsin(X + iY )\} ,

where Im(z) denotes the imaginary part of z \in C. Setting Y = 0 and considering only
values of | X| > 1, we readily obtain (2.8a) from which the far-field behavior (2.8b)
immediately follows.

2.2. The periodic fractional Green's function. Asymptotic matching pre-
scribes the limiting behavior of the outer solution as x\rightarrow xi for each i= 1, . . . ,N (see
section 2.3 below). The resulting limiting behavior in turn implies that the outer solu-
tion can be written as a weighted sum of translations of a fractional Green's function
Gs(x) satisfying \left\{           

( - \Delta )sGs(x) =
1

2
 - \delta (x),  - 1<x< 1,

Gs(x+ 2) =G(x),  - \infty <x<\infty ,\int 1

 - 1

Gs(x)dx= 0.

(2.12)

Using the spectral definition of the fractional Laplacian (2.3), it is straightforward to
see that

Gs(x) = - 
\infty \sum 

n=1

cosn\pi x

(n\pi )2s
.(2.13)
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We readily see that Gs(x) diverges as x \rightarrow 0 for s \leq 1/2. The following proposition
extracts this singular behavior and decomposes Gs(x) into a singular part and a
regular part.

Proposition 2.2. The periodic fractional Green's function Gs(x) satisfying (2.12)
is given by

Gs(x) =

\Biggl\{ 
 - as| x| 2s - 1 + asRs(x), s \not = 1/2,

\pi  - 1 log | x| + \pi  - 1R1/2(x), s= 1/2,
(2.14a)

where as is given by (1.11). When s \not = 1/2, the regular part Rs(x) admits the following
rapidly converging series,

Rs(x) =
1

2s
 - 2s - 1

6
+

7

15

(2s - 1)(2s - 2)(2s - 3)

24

+

\biggl( 
2s - 1

2
 - (2s - 1)(2s - 2)(2s - 3)

12

\biggr) 
| x| 2

+
(2s - 1)(2s - 2)(2s - 3)

24
| x| 4 + 2(2s - 1) \cdot \cdot \cdot (2s - 5)

\infty \sum 
n=1

a2s,n
(\pi n)2s

cos(\pi nx),

(2.14b)

where a2s,n =
\int \infty 
\pi n

x2s - 6 sinxdx. On the other hand, when s = 1/2, the regular part
has the series expansion

R1/2(x) = 1+ 2
\infty \sum 

n=1

\Bigl( 
Si(n\pi ) - \pi 

2

\Bigr) cosn\pi x

n\pi 
,(2.14c)

where Si(z) =
\int z

0
t - 1 sin(t)dt denotes the usual sine integral.

The calculation of Gs(x) in the case s \not = 1/2 follows from computing Fourier series
of | x| 2, | x| 4, and | x| 2s - 1 and can be found in Appendix A of [22]. The case s = 1/2
follows similarly, but this time only the Fourier series of log | x| is needed.

For the subsequent asymptotic analysis, the most important part of Gs(x) in
(2.14a) is the singular behavior which takes the form of an algebraic singularity for
s < 1/2, a logarithmic singularity for s = 1/2, and a bounded fractional cusp for
s > 1/2. The series expansions for the regular part appearing in (2.14b) and (2.14c),
on the other hand, are computationally useful due to their fast convergence.

2.3. Matched asymptotic expansions. Let x = xi + \varepsilon X, and substitute the
inner expansion (2.1b) into (1.9) so that using (2.2) for the fractional Laplacian we
obtain

\varepsilon CsP.V.

\int 1/\varepsilon 

 - 1/\varepsilon 

\sum 
n\in Z

V \varepsilon 
i (X) - V \varepsilon 

i (Y )

| 2n+ \varepsilon (X  - Y )| 2s+1
dY +h.o.t.= 1,(2.15)

where h.o.t. denotes higher-order terms. The n= 0 term dominates all other terms in
the left-hand side, and moreover we will also assume that it dominates the right-hand
side by assuming that V \varepsilon 

i \gg \varepsilon 2s for all X =O(1). Further approximating the integral
on the left-hand side by replacing \pm 1/\varepsilon with \pm \infty , we thus obtain the inner problem\Biggl\{ 

( - \Delta )sV \varepsilon 
i (X) = 0, | X| > li,

V \varepsilon 
i (X) = 0, | X| \leq li,

(2.16)
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where the limiting behavior of V \varepsilon 
i (X) as | X| \rightarrow \infty will be found by matching with

the limiting behavior of the outer solution as x\rightarrow xi for each i= 1, . . . ,N .
In light of Proposition 2.1, we seek, for each i = 1, . . . ,N , a nonconstant inner

solution of the form

V \varepsilon 
i (X) =B\varepsilon 

i (1 - Ws(X/li)) ,(2.17)

where B\varepsilon 
i is some \varepsilon -dependent constant that remains to be determined. From Propo-

sition 2.1 we then have the far-field behavior

V \varepsilon 
i (X)\sim 

\Biggl\{ 
B\varepsilon 

i

\bigl( 
1 - bsl

1 - 2s
i | X| 2s - 1 +O(| X| 2s - 3)

\bigr) 
, s \not = 1/2,

B\varepsilon 
i

\bigl( 
log(2| X/li| ) +O(| X|  - 2)

\bigr) 
, s= 1/2,

as | X| \rightarrow \infty .

The far-field behavior of V \varepsilon 
i (X) must coincide with the limiting behavior of the outer

solution v\varepsilon 0(x) as x\rightarrow xi. Specifically, writing X = \varepsilon  - 1(x - xi) we obtain the matching
condition as | x - xi| \rightarrow 0,

v\varepsilon 0(x)\sim 

\Biggl\{ 
B\varepsilon 

i

\bigl( 
1 - bs\varepsilon 

1 - 2sl1 - 2s
i | x - xi| 2s - 1 +O(\varepsilon 3 - 2s)

\bigr) 
, s \not = 1/2,

B\varepsilon 
i

\bigl( 
log | x - xi| + 1/\nu \varepsilon i +O(\varepsilon 2)

\bigr) 
, s= 1/2.

(2.18)

Given the singular term | x - xi| 2s - 1 in the limiting behavior (2.18), we find that
v\varepsilon 0(x) is the 2-periodic function satisfying

( - \Delta )sv\varepsilon 0(x) =

\left\{           
1 - \varepsilon 1 - 2sa - 1

s bs

N\sum 
j=1

l1 - 2s
j B\varepsilon 

j \delta (x - xj), s \not = 1/2,

1 - \pi 
N\sum 
j=1

B\varepsilon 
j \delta (x - xj), s= 1/2.

(2.19)

Since this problem is posed on the whole (periodic) interval  - 1< x< 1, we can now
use the spectral definition (2.3) for the fractional Laplacian so that by integrating
(2.19) over the domain we obtain the solvability conditions

a - 1
s bs

N\sum 
j=1

l1 - 2s
j B\varepsilon 

j = 2\varepsilon 2s - 1,
N\sum 
j=1

B\varepsilon 
j =

2

\pi 
,(2.20)

for s \not = 1/2 and s = 1/2, respectively. Provided this condition is satisfied, we can
then write v\varepsilon 0(x) in terms of the periodic fractional Green's function found in Propo-
sition 2.2 as

v\varepsilon 0(x) = \chi \varepsilon +

\left\{           
\varepsilon 1 - 2sbs

N\sum 
j=1

l1 - 2s
j B\varepsilon 

j ( - | x - xj | 2s - 1 +Rs(x - xj)), s \not = 1/2,

N\sum 
j=1

B\varepsilon 
j

\bigl( 
log | x - xj | +R1/2(x - xj)

\bigr) 
, s= 1/2,

(2.21)

where \chi \varepsilon is an undetermined constant.
The asymptotic analysis has thus far yielded an expression for the outer solution in

terms of the N +1 unknown quantities B\varepsilon 
1, . . . ,B

\varepsilon 
N and \chi \varepsilon . The solvability condition

(2.20) yields one equation in these N + 1 unknowns. By revisiting the matching
condition (2.18) we obtain the remaining N equations with which all N+1 unknowns
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can be uniquely determined. Specifically, substituting the asymptotic expansion of
(2.21) as x\rightarrow xi into the left-hand side of (2.18) gives the matching condition

\varepsilon 1 - 2sbsl
1 - 2s
i B\varepsilon 

iRs(0) + \varepsilon 1 - 2sbs
\sum 
j \not =i

l1 - 2s
j B\varepsilon 

j ( - | xi  - xj | 2s - 1 +Rs(xi  - xj)) + \chi \varepsilon =B\varepsilon 
i

when s \not = 1/2 and

B\varepsilon 
iR1/2(0) +

\sum 
j \not =i

B\varepsilon 
j

\bigl( 
log | xi  - xj | +R1/2(xi  - xj)

\bigr) 
+ \chi \varepsilon =B\varepsilon 

i /\nu 
\varepsilon 
i

when s = 1/2 for each i = 1, . . . ,N . In light of the definitions (2.4), we can rewrite
the solvability and matching conditions in vector notation as\left\{     

\bfitl Ts \bfitB 
\varepsilon =

2as
bs

\varepsilon 2s - 1, \bfitB \varepsilon  - \varepsilon 1 - 2sbs\scrG s\scrL s\bfitB 
\varepsilon = \chi \varepsilon \bfite N , s \not = 1/2,

\bfite TN\bfitB \varepsilon =
2

\pi 
, \bfitB \varepsilon  - \scrN \varepsilon \scrG 1/2\bfitB 

\varepsilon = \chi \varepsilon \bfitnu \varepsilon , s= 1/2.

Left-multiplying the matching condition in the s \not = 1/2 (respectively, s= 1/2) case by
\bfitl Ts (respectively, \bfite TN ) and using the solvability condition yields the expression for \chi \varepsilon 

found in (2.5a). Substituting this expression for \chi \varepsilon back into the matching condition
then gives the linear system (2.5b).

We claim that the solution \bfitB \varepsilon to (2.5b) is O(\varepsilon 2s - 1) for all s \in (0,1). Indeed,
when s < 1/2 we readily obtain the expansion

\bfitB \varepsilon =
2as\varepsilon 

2s - 1

N\=lsbs

\infty \sum 
q=0

\varepsilon q(1 - 2s)\scrJ q
s \bfite N , \scrJ s := bs

\biggl( 
\scrI N  - 1

N\=ls
\bfite N \bfitl Ts

\biggr) 
\scrG s\scrL s.

Similarly, when s= 1/2 we obtain an expansion in powers of \nu \varepsilon 1 , . . . , \nu 
\varepsilon 
N starting with

an O(1) term since \bfitnu \varepsilon /\=\nu \varepsilon = O(1). When s > 1/2, we must proceed by imposing
a solvability condition. Specifically, assuming that \scrG s is invertible we find that the
kernel of \scrJ s is one-dimensional and spanned by \bfitxi s =\scrL  - 1

s \scrG  - 1
s \bfite N . Seeking an expansion

of the form \bfitB \varepsilon = \varepsilon 2s - 1\bfitB 0+ \varepsilon 2(2s - 1)\bfitB 1+ \cdot \cdot \cdot and imposing a solvability condition for
the \bfitB 1 equation yields

\bfitB \varepsilon = \gamma 0\varepsilon 
2s - 1\bfitxi s +O(\varepsilon 2(2s - 1)), \gamma 0 =

2as
N\=lsbs

\bfitl Ts \bfite N

\bfitl Ts \bfitxi s
.

The preceding discussion implies that our asymptotic expansion is consistent with
the assumption V \varepsilon 

i (X) \gg \varepsilon 2s that we made to neglect the inhomogeneous term on
the right-hand side of (2.15).

Remark 2.2. Since \bfitB \varepsilon = O(\varepsilon 2s - 1) for all 0 < s < 1, we deduce from (2.5a) that
\chi \varepsilon = O(\varepsilon 2s - 1) for s < 1/2 and \chi \varepsilon = O(log(1/\varepsilon )) for s = 1/2, whereas \chi \varepsilon = O(1) for
1/2< s< 1. Hence, (2.5c) implies that to leading order the MFHT in the outer region
is spatially constant for s\leq 1/2, whereas it is spatially variable for 1/2< s< 1.

Remark 2.3. If the target configuration is symmetric, in the sense that l1 = \cdot \cdot \cdot =
lN = l and adjacent targets are equidistant, then \nu 1 = \cdot \cdot \cdot = \nu N = \nu , the Green's matrix
\scrG s is circulant, \scrL s = l\scrI N , and \scrN \varepsilon = \nu \scrI N . The solution to (2.5b) is then explicitly

given by \bfitB \varepsilon = 2as\varepsilon 
2s - 1

Nlbs
\bfite N and \bfitB \varepsilon = 2

\pi N \bfite N for s \not = 1/2 and s = 1/2, respectively.
Moreover, it suffices to consider symmetric configurations for only N = 1 since the
case N > 1 can be obtained by a simple spatial rescaling.
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2.4. Probability distribution for \bfits \in (0,1/2]. We now extend the preceding
analysis of the MFHT to obtain the full probability distribution of the FHT in the
limit \varepsilon \rightarrow 0 for s\in (0,1/2]. The mth moment of the FHT,

vm(x) :=E[\tau m | X(0) = x], m\in \{ 1,2, . . .\} ,

satisfies the following fractional equation, which couples to the (m - 1) moment (see
Appendix B),

( - \Delta )svm =mvm - 1,(2.22)

with identical boundary conditions to the first moment and v1 = v. For the m = 2
moment, this becomes

( - \Delta )sv2 = 2v1.(2.23)

For s \in (0,1/2], we have shown that v1(x) is constant in space to leading order,
v1(x) \sim \mu s,\varepsilon . Dividing (2.23) by twice this constant implies that w2 := v2/(2\mu s,\varepsilon )
satisfies the same fractional equation as the first moment v1 to leading order. Hence,
w2 \sim v1 and thus v2 \sim 2(v1)

2. Continuing this argument yields the leading order
behavior of the mth moment,

vm \sim m!(v1)
m, m\in \{ 1,2, . . .\} ,

which implies that \tau /\mu s,\varepsilon is exponentially distributed with unit mean in the limit
\varepsilon \rightarrow 0 (since exponential random variables are determined by their moments [6]).

3. Numerical simulations. In this section, we numerically calculate the FHT
by solving the fractional differential equation (1.9) directly, as well as by using Monte
Carlo methods. These numerical calculations will serve the purpose of validating
the formal asymptotic calculations of the previous section, with the Monte Carlo
simulations also allowing us to investigate the full probability distribution of the FHT.
We proceed by first outlining the numerical methods used to solve (1.9) in section 3.1.
In section 3.2, we outline the methods used in the Monte Carlo simulations. Finally,
in section 3.3 we showcase the results from our numerical computations.

3.1. Solving the MFHT fractional differential equation. To numerically
solve (1.9), we require only a numerical discretization of the periodic fractional Lapla-
cian ( - \Delta )s. Our numerical discretization of the periodic fractional Laplacian is based
on the finite difference--quadrature approach of Huang and Oberman [26]. Fix an in-
teger M > 0, let h= 2/M , and let

zn = - 1 + hn, n\in M := \{ 0, . . . ,M  - 1\} ,(3.1)

be a uniform discretization of the interval  - 1 < x < 1. Denote by ( - \Delta h)
s the

numerical discretization of the periodic fractional Laplacian on  - 1 < x < 1. The
discrete operator ( - \Delta h)

s acts on an arbitrary vector \bfitvarphi = (\varphi 0, . . . ,\varphi M - 1)
T according

to (see equation (FLh) in [26])

(( - \Delta h)
s\bfitvarphi )n =

\sum 
m\in M

(\varphi n  - \varphi m)Wn - m, W\sigma :=w\sigma +

\infty \sum 
k=1

(w\sigma  - kM +w\sigma +kM ) ,(3.2)

where we have used periodicity to simplify the expression and where each wm (m\in Z)
is an appropriately chosen weight. See Appendix A for additional details on our choice
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of weights, as well as some practical considerations for their computation. Define the
set I := \{ n\in M | zn \in \cup N

i=1(xi - \varepsilon li, xi+ \varepsilon li)\} . The numerical solution to the hitting-
time problem (1.9) is then obtained by finding \bfitv = (v0, . . . , vM - 1)

T satisfying linear
system \left\{     

\sum 
m\in M\setminus I

(vn  - vm)Wn - m = 1, n\in M \setminus I ,

vn = 0, n\in I .

(3.3)

In section 3.3, we use M = 50,000 points and K = 10,000 terms in the evaluation of
the weights W\sigma (see (A.3) in Appendix A) and solve the resulting symmetric linear
systems using the conjugate gradient routine in the SciPy Python library.

3.2. Monte Carlo. We now describe the stochastic simulation algorithm used
to generate FHTs of L\'evy flights. Our stochastic simulation algorithm relies on con-
structing a L\'evy fight by subordinating a Brownian motion [33]. Specifically, let
B = \{ B(u)\} u\geq 0 be a one-dimensional Brownian motion with unit diffusivity (i.e.,
scaled so that E[(B(u))2] = 2u for all u \geq 0), and let U = \{ U(t)\} t\geq 0 be an indepen-
dent s-stable L\'evy subordinator (i.e., it has Laplace exponent \Phi (\beta ) = \beta s). Then, the
following random time change of B,

X(t) :=D1/(2s)
s B(U(t)), t\geq 0,(3.4)

is a L\'evy flight with generalized diffusivity Ds > 0.
Given a discrete time step \Delta t > 0, we construct a statistically exact path of the

s-stable subordinator \{ U(t)\} t\geq 0 on the discrete time grid \{ tk\} k\in N with tk = k\Delta t via

U(tk+1) =U(tk) + (\Delta t)1/s\Theta k, k\geq 0,

where U(t0) =U(0) = 0 and \{ \Theta k\} k\in N is an i.i.d. sequence of realizations of [13]

\Theta =
sin(s(V + \pi /2)

(cos(V ))1/s

\biggl( 
cos(V  - \gamma (V + \pi /2))

E

\biggr) (1 - s)/s

,

where V is uniformly distributed on ( - \pi /2, \pi /2) and E is an independent exponential
random variable with E[E] = 1. We then construct a statistically exact path of the
Brownian motion \{ B(u)\} u\geq 0 on the (random) discrete time grid \{ U(tk)\} k\in N via

B(U(tk+1)) =B(U(tk)) +
\sqrt{} 

2(\Delta t)1/s\Theta k\xi k, k\geq 0,

where \{ \xi k\} k\in Z is an i.i.d. sequence of standard Gaussian random variables and we
impose periodic boundary conditions. Finally, we obtain a statistically exact path
of the L\'evy flight X = \{ X(t)\} t\geq 0 in (3.4) on the discrete time grid \{ tk\} k\in N via

X(tk) = D
1/(2s)
s B(U(tk)) for k \geq 0. The FHT \tau to the target set Utarget is then

approximated by \tau \approx k\Delta t, where k :=min\{ k\Delta t\geq 0 :X(tk)\in Utarget\} .
The Monte Carlo data in the results below is computed from 103 independent

trials with \Delta t= 10 - 5 and Ds = 1.

3.3. Results. To validate our asymptotic analysis, we compare our asymptotic
approximations for the MFHT with full numerical simulations using the methods
outlined in sections 3.1 and 3.2. We present this comparison for two types of con-
figurations. The first, which we refer to as the symmetric one-target configuration,
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Fig. 2. MFHT for the symmetric one-target configuration. Solid curves, dashed curves, and
hollow squares correspond to solutions obtained by numerically solving the fractional PDE (1.9), by
using the asymptotic approximations (2.5c), and from Monte Carlo simulations, respectively.
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Fig. 3. MFHT for the asymmetric three-target configuration. Solid curves, dashed curves, and
hollow squares correspond to solutions obtained by numerically solving the fractional differential
equation (1.9), by using the asymptotic approximations (2.5c), and from Monte Carlo simulations,
respectively.

consists of a single target with x1 = 0 and l1 = 1. The second, which we refer to
as the asymmetric three-target configuration, consists of N = 3 targets centered at
x1 = - 0.6, x2 = 0.4, and x3 = 0.75 with l1 = 1, l2 = 1.25, and l3 = 1.5.

In Figures 2 and 3, we plot the MFHT for the symmetric one-target and asym-
metric three-target configurations, respectively. Specifically, each figure compares the
solution obtained by solving (1.9) numerically (solid curves), the solution obtained
using the asymptotic approximation (2.5c) (dashed curves), and the values of the
MFHT starting from specific values of x \in ( - 1,1) obtained from Monte Carlo sim-
ulations (hollow squares). In each case, we observe excellent agreement between the
asymptotic and numerical solutions even for moderately sized values of \varepsilon > 0. In
addition to validating our asymptotic approximations, the plots in Figures 2 and 3
also showcase the qualitative properties of the MFHT predicted by our asymptotic
analysis. Specifically, they illustrate a strong \varepsilon -dependence when s < 1/2 in contrast
to when s > 1/2 which supports the scaling v=O(\varepsilon 2s - 1) for s < 1/2 and v=O(1) for
s > 1/2. Moreover, we observe that for sufficiently small values of \varepsilon > 0, the MFHT
in the outer region is approximately spatially constant when s < 1/2, whereas it is
spatially variable when s > 1/2. Although the leading order asymptotics predict a
spatially constant solution for s = 1/2, this is difficult to see numerically since the
first order correction is O(1/ log \varepsilon ).

An additional quantity of interest is the MFHT averaged over uniformly distrib-
uted initial points x\in ( - 1,1), i.e.,

v :=
1

2

\int 1

 - 1

v(x)dx.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



FIRST HITTING TIME OF A L\'EVY FLIGHT 1155

10 3 10 2 10 1

100

101

102

103
Averaged MFHT (Symmetric)

s
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

10 3 10 2 10 1

10 1

100

101

102

103
Averaged MFHT (Asymmetric)

s
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Fig. 4. The MFHT averaged over a uniformly distributed initial condition in \Omega \setminus \Omega target for
the (left) symmetric one-target configuration and the (right) asymmetric three-target configuration.
In each plot, the solid curve indicates the asymptotic approximation, the dots indicate results from
numerically solving the fractional differential equation (1.9), and the hollow squares indicate those
values obtained by stochastic simulations.
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Fig. 5. Probability distribution of FHT.

In Figure 4, we plot this averaged MFHT versus \varepsilon > 0 for different values of 0< s< 1
for both the symmetric one-target and the asymmetric three-target configurations. In
each plot, the solid curve corresponds to the asymptotically computed solution which,
in light of the vanishing integral constraint in (2.12), is equal to \chi \varepsilon given by (2.5a).
The solid dots correspond to values obtained by numerically integrating the numerical
solution to (1.9), whereas the hollow squares are results from Monte Carlo simula-
tions. These plots shows good agreement between the asymptotic approximation and
numerical simulations.

Finally, in Figure 5, we compare (i) the full probability distribution of the FHT \tau 
computed from stochastic simulations to (ii) the exponential distribution implied by
the analysis in section 2.4. This plot is for the symmetric one-target configuration in
Figure 2 with s= 0.3. The convergence to an exponential distribution is apparent as
\varepsilon decreases from \varepsilon = 0.05 in the left panel down to \varepsilon = 0.005 in the right panel.

4. Optimal random search. We now investigate the value of the fractional
order s \in (0,1] which minimizes the averaged MFHT. By averaging over a uniformly
distributed initial position, considering the case N = 1, neglecting the highest order
terms from our asymptotic expansion, and reversing the nondimensionalization in
(1.7), we arrive at the following dimensional measure of the search time:

Ts :=

\Biggl\{ 
(l2s/Ds)(\varepsilon 

2s - 12as/bs  - 2asRs(0)) if s \not = 1/2,

(l2s/Ds)(log(2/\varepsilon )2/\pi  - 2R1/2(0)/\pi ) if s= 1/2
for s\in (0,1).
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Fig. 6. (left) \rho (s) in (4.1) as a function of s \in (0,1) for \varepsilon = 10 - 3 and different values of the
target density l0/l. Square markers indicate sopt in (4.2). (right) sopt as a function of the target
density l0/l for different values of \varepsilon .

That is, Ts is the averaged MFHT over uniformly distributed initial positions of a
one-dimensional, (2s)-stable L\'evy flight with generalized diffusivity Ds > 0 and an
infinite periodic array of targets with separation distance 2l > 0 where each target
has radius \varepsilon l with 0< \varepsilon \ll 1.

To study how Ts depends on s \in (0,1], we must choose how the generalized
diffusivity Ds depends on s (since it has dimension [Ds] = (length)2s/(time)). We
follow [50] and introduce a lengthscale l0 > 0 (independent of s) and suppose

Ds = (l0)
2s/t0

for some timescale t0. Such a lengthscale l0 > 0 arises naturally in the continuous-time
random walk derivation of a L\'evy flight (see (1.3)--(1.6) in section 1 and [42] for more
details). Normalizing Ts by the Brownian search time T1 := (l2/D1)(1 - \varepsilon )2/3 yields
the following ratio for s\in (0,1):

\rho (s) :=
Ts

T1
=

(l0/l)
2(1 - s)

(1 - \varepsilon )2/3
\times 

\Biggl\{ 
\varepsilon 2s - 12as/bs  - 2asRs(0) if s \not = 1/2,

log(2/\varepsilon )2/\pi  - 2R1/2(0)/\pi if s= 1/2.
(4.1)

Hence, \rho (s)< 1 (respectively, \rho (s)> 1) means that the L\'evy search is faster (respec-
tively, slower) than Brownian search.

In the left panel of Figure 6, we plot \rho (s) as a function of s \in (0,1) for different
values of l0/l. Notice that l0/l \ll 1 describes sparse targets and l0/l \not \ll 1 describes
dense targets (where ``sparse"" and ``dense"" are relative to the lengthscale l0). This
plot shows that L\'evy search is faster than Brownian search for sparse targets, whereas
Brownian search is faster than L\'evy search for dense targets.

In the right panel of Figure 6, we plot the ``optimal"" value of s \in (0,1] which
minimizes the search time,

sopt := argmin
s

\rho (s),(4.2)

as a function of the target density l0/l for fixed values of \varepsilon . This plot shows that
sopt varies continuously from sopt \approx 0 for sparse targets up to sopt \approx 1 (i.e., Brownian
search) as the target density increases. Hence, the value s= 1/2 (which corresponds
to stability index \alpha = 2s= 1, i.e., so-called inverse square L\'evy search) is not distin-
guished from other values of s \in (0,1] in the sense that sopt = 1/2 for only a single
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value of the target density l0/l for each \varepsilon > 0. To further emphasize this point, observe
that treating l0/l and \varepsilon as independent variables we deduce lim\varepsilon \rightarrow 0 liml/l0\rightarrow 0 sopt = 0,
whereas liml/l0\rightarrow 0 lim\varepsilon \rightarrow 0 sopt = 1/2. The former follows from noting that (l0/l)

2(1 - s)

is minimized at s= 0 for any l0/l\ll 1. To deduce the latter, note first that we must
have lim\varepsilon \rightarrow 0 sopt > 1/2 since (4.1) implies lim\varepsilon \rightarrow 0 \rho (s) = +\infty if s \leq 1/2. Next, (4.1)
implies

lim
\varepsilon \rightarrow 0

\rho (s) = - ((l0/l)
2(1 - s)/3)(2asRs(0))> 0 if s > 1/2,

and therefore liml0/l\rightarrow 0 lim\varepsilon \rightarrow 0 sopt = 1/2. Since the limiting value of sopt depends on
the order in which we take \varepsilon \rightarrow 0 and l/l0 \rightarrow 0, we deduce that details of the configu-
ration's target size and density must be considered to draw quantitative conclusions
about the optimal value sopt.

5. Discussion. In this paper, we calculated an asymptotic approximation for
the MFHT to a small target in a periodic one-dimensional domain. Our asymptotic
approximation is summarized in Principal Result 1 and reduces the calculation of the
MFHT to that of solving the linear system (2.5b), thereby providing a fast method
for approximating the MFHT when the target size is small. In the special case of a
symmetric configuration, it suffices to consider the case of a single target for which the
system (2.5b) can be solved explicitly (see (1.10)--(1.13) in section 1). Furthermore,
we validated our asymptotics by comparing them to numerical computations of the
MFHT obtained by solving the fractional differential equation (1.9) directly and by
using stochastic simulations.

The asymptotic analysis leading to Principal Result 1 is analogous to that used in
two- and three-dimensional narrow capture/escape problems involving pure diffusion
[55, 16]. This analogy was previously identified in [21, 22] and is a result of the singular
behavior of the fractional free-space Green's function which is logarithmic when s=
1/2 and algebraic when s < 1/2, mirroring that of the classical free-space Green's
function in two and three dimensions, respectively. A novel aspect of the asymptotic
analysis presented in this paper is the recognition of a fractional counterpart to the
classical electrified disk problem. This fractional differential equation was solved
by using a fractional Kelvin transform and fractional Poisson kernel for s \not = 1/2
and by considering a two-dimensional extended problem solvable by complex analysis
methods for s = 1/2. In addition, we determined that when s \leq 1/2 the MFHT
is spatially constant to leading order, with this observation further allowing us to
conclude that the FHT is exponentially distributed when s\leq 1/2.

The present study joins many prior works which use L\'evy flights as simple the-
oretical models to investigate optimal search strategies. Prior works often choose
one-dimensional spatial domains due to their analytical tractability and as models for
search in effectively one-dimensional domains such as in streams, along coastlines, at
forest-meadows, and in other borders [50, 32, 49, 51, 48, 45, 47]. The very interesting
work of Palyulin, Chechkin, and Metzler [50] is perhaps most closely related to our
present study. In [50], the authors consider a one-dimensional, possibly biased L\'evy
flight on the entire real line with a single point-like target. A major result of [50] is
that despite the frequent claim that L\'evy flights with s = 1/2 are most efficient for
sparse targets, the optimal value of s may range the entire interval between s = 1/2
and s= 1 and thus include Brownian search (the assumption of a point-like target in
[50] meant that these authors did not consider s < 1/2). Indeed, as the authors of
[50] state, ``the main message from this study is that L\'evy flight search and its opti-
mization is sensitive to the exact conditions"" and ``our results show clear limitations
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for the universality of L\'evy flight foraging"" [50]. Our results agree with these main
points, as the optimal value of s in our study spans the entire interval (0, 1] as the
target density l0/l increases from l0/l\leq \varepsilon up to l0/l\approx 1 (see Figure 6).

Appendix A. Additional considerations for the numerical discretization
of the periodic fractional Laplacian. To numerically implement (3.3), we choose
weights wn (n \in Z) that are based on linear interpolants. Specifically, we define (see
section 3.1 of [26])

F (t) :=

\left\{   
Cs

2s(2s - 1)
| t| 1 - 2s, s \not = 1/2,

 - Cs log | t| , s= 1/2,
(A.1)

where Cs is given by (1.5) and in terms of which the weights are given by

wn :=
1

h2s

\left\{   
Cs

2 - 2s
 - F \prime (1) + F (2) - F (1), | n| = 1,

F (n+ 1) - 2F (n) + F (n - 1), | n| \geq 2.
(A.2)

We use the explicit form of the weights to numerically speed up the evaluation
of the infinite sums appearing in the definition of W\sigma in (3.2). For sufficiently large
n\in Z, we have

wn =
Cs

h2s| n| 1+2s

\biggl( 
1 +O

\biggl( 
1

n4

\biggr) \biggr) 
,

so that for any fixed \sigma \in Z and any sufficiently large integer k\geq 1 we have

w\sigma  - kM +w\sigma +kM =
Cs

22s - 1Mk1+2s

\biggl( 
1 +O

\biggl( \Bigl( \sigma 

kM

\Bigr) 2
\biggr) \biggr) 

.

Choosing a sufficiently large integer K \geq 1, we obtain

W\sigma =w\sigma +
K\sum 

k=1

(w\sigma  - kM +w\sigma +kM ) +
Cs

22s - 1M
\zeta (1 + 2s,K + 1) +O

\biggl( 
\sigma 2

M3K2+2s

\biggr) 
,

(A.3)

where \zeta (z, q) :=
\sum \infty 

n=0(n + q) - z is the Hurwitz zeta function which can be quickly
computed by standard numerical libraries. This formula for the weights W\sigma (\sigma \in Z)
provides a good approximation for W\sigma for moderately sized K, thereby reducing
computational costs.

Appendix B. Derivation of fractional equations for FHT moments. Let
p(y, t| z,u) denote the conditional probability density that X(t) = y given that X(u) =
z for 0 \leq u \leq t. Since X is a Markov process, its density satisfies the Chapman--
Kolmogorov equation [52],

p(y, t| z,0) =
\int 

p(y, t| x,u)p(x,u| z,0)dx for any 0\leq u\leq t.(B.1)

Differentiating (B.1) with respect to the intermediate time u and using the forward
Fokker--Planck equation in (1.4) yields

0 =

\int 
p(y, t| x,u) \partial 

\partial u
p(x,u| z,0)dx+

\int 
p(x,u| z,0) \partial 

\partial u
p(y, t| x,u)dx

= - Ds

\int 
p(y, t| x,u)( - \Delta x)

sp(x,u| z,0)dx+

\int 
p(x,u| z,0) \partial 

\partial u
p(y, t| x,u)dx,
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where  - ( - \Delta x)
s denotes the fractional Laplacian acting on x. Since the fractional

Laplacian is self-adjoint, we then obtain

0 =

\int 
p(x,u| z,0)

\biggl( 
\partial 

\partial u
p(y, t| x,u) - Ds( - \Delta x)

sp(y, t| x,u)
\biggr) 

dx.

Taking u \rightarrow 0 and using that p(x,0| z,0) = \delta (z  - x) and \partial 
\partial up(y, t| x,u) =  - \partial 

\partial tp(y, t - 
u| x,0) yields the backward Fokker--Planck (or backward Kolmogorov) equation,

\partial 

\partial t
p(y, t| x,0) = - Ds( - \Delta x)

sp(y, t| x,0).(B.2)

The survival probability of the FHT \tau conditioned that X(0) = x can be written
in terms of the density,

P(\tau > t | X(0) = x) =

\int 
p(y, t| x,0)dy.

Now, the mth moment of any nonnegative random variable T is [20]

E[Tm] =

\int \infty 

0

P(Tm >a)da=

\int \infty 

0

mtm - 1P(T > t)dt,

where the final equality follows from changing variables. Therefore,

vm(x) =E[\tau m | X(0) = x] =

\int \infty 

0

mtm - 1

\int 
p(y, t| x,0)dy dt.

Taking the fractional Laplacian with respect to x, using (B.2), and integrating by
parts yields

 - Ds( - \Delta x)
svm(x) =

\int \infty 

0

mtm - 1

\int 
\partial 

\partial t
p(y, t| x,0)dy dt

=

\biggl( 
mtm - 1

\int 
p(y, t| x,0)dy

\biggr) \bigm| \bigm| \bigm| \infty 
0

(B.3)

 - m

\int \infty 

0

(m - 1)tm - 2

\int 
p(y, t| x,0)dy dt.

Ifm= 1, then the integral term in (B.3) vanishes and we obtain the fractional equation
in (1.9). If m> 1, then the boundary terms vanish and we obtain (2.22). The result
that vm satisfies the boundary conditions in (1.9) is immediate.
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