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FIRST HITTING TIME OF A ONE-DIMENSIONAL LEVY FLIGHT
TO SMALL TARGETS*

DANIEL GOMEZ' AND SEAN D. LAWLEY?

Abstract. First hitting times (FHTs) describe the time it takes a random “searcher” to find
a “target” and are used to study timescales in many applications. FHTs have been well-studied
for diffusive search, especially for small targets, which is called the narrow capture or narrow escape
problem. In this paper, we study the FHT to small targets for a one-dimensional superdiffusive search
described by a Lévy flight. By applying the method of matched asymptotic expansions to a fractional
differential equation we obtain an explicit asymptotic expansion for the mean FHT (MFHT). For
fractional order s € (0,1) (describing a (2s)-stable Lévy flight whose squared displacement scales as
t1/5 in time t) and targets of radius ¢ < 1, we show that the MFHT is order one for s € (1/2,1)
and diverges as log(1/¢) for s =1/2 and £2°~! for s € (0,1/2). We then use our asymptotic results
to identify the value of s € (0, 1] which minimizes the average MFHT and find that (a) this optimal
value of s vanishes for sparse targets and (b) the value s =1/2 (corresponding to an inverse square
Lévy search) is optimal in only very specific circumstances. We confirm our results by comparison to
both deterministic numerical solutions of the associated fractional differential equation and stochastic
simulations.
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1. Introduction. The timescales of many physical, chemical, and biological pro-
cesses are characterized by first hitting times (FHTSs) [4, 57, 17, 56]. Generically, the
FHT is the time it takes a “searcher” to find a “target.” Applications include animal
foraging [62, 31], transcription factor search for DNA binding sites [39, 43], synaptic
transmission in neuroscience [58], menopause timing [34], financial income dynam-
ics [27], and computer search algorithms [53, 54|, among many other applications
[4, 57, 17]. FHTSs are often called first passage times, first arrival times, exit times,
escape times, or capture times.

Mathematical models of such processes often assume that the searcher randomly
explores a given spatial domain, and a great deal of mathematical and computational
methods have been developed to study the statistics and probability distribution of
the FHT to the target(s) [3, 25, 61, 37, 8, 28]. More precisely, let X = {X(¢)}1>0
denote the stochastic path of a searcher in a d-dimensional spatial domain 2 C R®.
The FHT to a target set Qarget C 2 (Where Qqarger is possibly a union of multiple
disjoint sets) is then

(1.1) T:=inf{t > 0: X (t) € Qearget }-
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FIRST HITTING TIME OF A LEVY FLIGHT 1141

Naturally, the statistics and distribution of the FHT 7 depend on the stochastic
dynamics of the searcher X, the space dimension d > 1, and the size and geometry of
the target set {liarget and spatial domain (2.

A common framework for studying FHT's is to assume that the searcher X is
a pure diffusion process (i.e., a Brownian motion) and the targets are much smaller
than their confining spatial domain, which is called the narrow capture problem (or
narrow escape problem if the target is embedded in the otherwise reflecting boundary)
[65, 16, 2, 25, 23, 9]. For bounded domains in dimension d = 1, the MFHT of such
a diffusive searcher is always finite even if the targets are single points. In contrast,
the MFHT of diffusion in any dimension d > 2 diverges as the target size vanishes.
In particular, if € > 0 compares the lengthscale of the target to the lengthscale of the
confining domain, then it is well known that as e vanishes,

o(1) ifd=1,
(1.2) El[r] = { O(log(1/¢)) if d=2,
O ifd>3,

The stark contrast in (1.2) between dimensions d =1, d = 2, and d > 3 stems from
the fact that Brownian motion is recurrent if d =1, neighborhood recurrent in d = 2,
and transient in d > 3 [20].

FHTs have also been studied for superdiffusive processes, which are characterized
by squared displacements that grow superlinearly in time [42, 15, 40, 50, 32, 49, 46, 45,
65, 24, 14, 47, 60]. A common mathematical model of superdiffusion is a Lévy flight
[5, 19], which is often derived from the continuous time random walk model [44, 42].
In this model, a searcher waits at its current location for a random time and then
jumps a random distance chosen from some jump length probability density f(y) in a
uniform random direction. The searcher repeats these two steps indefinitely or until
it reaches the target. For a finite mean waiting time to € (0,00) and a jump length
density with the following slow power law decay,

(l0)2s

(1.3) fly) ~ T as y — oo for some s € (0,1) and lengthscale Iy >0,

the probability density p(z,t) for the searcher position satisfies the following space-
fractional Fokker—Planck equation in a certain scaling limit [41],

L
o’ =
where (—A)*® denotes the fractional Laplacian of order s € (0,1), defined by [38]

(1.4) —Dy(=4)°p,

4T(s+df2)

(1.5) (—A)s(p(x) = CSP.V./_DO md% C,:= m7

where P.V. indicates the principal value and I'(-) denotes the gamma function. In
(1.4), the parameter Dy is the s-dependent generalized diffusivity and is given by

(1.6) Dy = (lp)** /to >0,

where [y and ty are characteristic spatial and temporal scales of the Lévy flight. Note
that fixing Iy and ty allows us to compare search strategies as the fractional order
is varied. This will be particularly important when we address the optimality of
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1142 DANIEL GOMEZ AND SEAN D. LAWLEY

Lévy flights in section 4. Note also that Lévy flights are often parameterized by their
stability index « € (0,2) [48], which is simply twice the fractional order s € (0,1),

a=2s€(0,2).

Observe that (1.4) is the diffusion equation describing Brownian motion if s = 1.

Lévy flights are perhaps the most mathematically tractable model of superdiffu-
sion, though analytical results for Lévy flights are scarce compared to their Brown-
ian counterpart. The mathematical analysis of hitting times of superdiffusive search
processes has also been controversial. Indeed, the influential Lévy flight foraging
hypothesis was based on the claimed theoretical optimality of a certain superdiffu-
sive process involving heavy-tailed jumps as in (1.3) with the “inverse square” value
s=1/2[63, 62], but this decades-old claim was recently shown to be false [35, 11, 36].

In this paper, we study FHTs of Lévy flights to small targets in one space di-
mension. Assuming the targets are much smaller than the typical distance between
them, we apply the method of matched asymptotic expansions to the fractional dif-
ferential equation describing the MFHT. The resulting asymptotic formulas reveal
how FHTs depend on the fractional order s € (0,1), target size, target arrangement,
and initial searcher location (or distribution of locations). We further determine the
full probability distribution of the FHT for fractional orders s € (0,1/2] in the small
target limit. We validate our results by comparison to both deterministic numerical
solutions of the associated fractional differential equation and stochastic simulations.

To describe our results more precisely, let X = {X(¢)}+>0 be a one-dimensional,
(2s)-stable Lévy flight for s € (0,1) with generalized diffusivity Dy > 0 (i.e., the
probability density that X (¢) =« satisfies (1.4)) and periodic boundary conditions at
x = =£l. Since we can always rescale space and time according to

(1.7) x—x/l, t— Dt/I*,

we set Dy = =1 without loss of generality. Suppose that the target set {diarget consists
of N > 1 targets in the interval Q = (—1,1) € R centered at points {z1,...,zn} €
(—1,1) with radii {ely,...,eln}, ie.,

N
(1'8) Qtarget = U ({)31 — gli,:vi + Elz)

i=1

Here, l1,...,In >0 are O(1) constants which allow the targets to differ in size. When
the context is clear, we denote by |- | the 2-periodic extension of the absolute value on
(=1,1) so that |a — b| denotes the minimum distance between a and b in the periodic
domain (—1,1). Assume that 0 < ¢ < 1 and the targets are well-separated in the
sense that |x; —xj| > ¢ for all ¢,j € {1,..., N} with i # j. Let v(z) denote the MFHT
to any of the N targets starting from z € (—1,1), i.e.,

v(z) :=E[r]X(0) =2],
where 7 is the FHT in (1.1). The function v(x) satisfies (see Appendix B)

(7A)S’U(I):1, Z'GQ\Qtargetv
(19) ’U(.’E) =0, T e Qtargct,

v(x) is 2-periodic.

We obtain our results on the FHT by analyzing (1.9) in the limit € — 0.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



FIRST HITTING TIME OF A LEVY FLIGHT 1143

We now state our results on the MFHT for the case of a single target of radius
€ > 0 centered at zy =0 (i.e., N =13 = 1). Note that our assumption of periodic
boundary conditions means that this scenario is equivalent to a Lévy flight on all of
R with a periodic array of targets separated by distance 2. For any fractional order
s # 1/2, the MFHT of a Lévy flight conditioned on starting at « € (—1,1) \ {0} is
given by the following asymptotic formula for 0 <e < 1,

2a, _
(1.10) () ~52Hbi — 2a,Ro(0) + 20, (— |2/~ + Ru(x)) |
where
(1.11) ag:= —271 's['(—2s)sin(7s), [(1/2)

b = B2 ()

and R, is the regular part of the Green’s function given explicitly in Proposition 2.2.
If s=1/2, then this MFHT is

2 2 2
(1.12) v(z) ~ log(2/6); — ;Rl/g(O) + ;(log |z| + Ry /2()).

If the Lévy flight searcher starts from a uniformly distributed position in the interval
(=1,1), then the average MFHT is

1t e2712a,/b, — R,(0)2a,  if s#1/2,
(1.13) 2 /_1 v(@)dz~ {10g(2/€)2/ﬂ' C9Ry(0)/7 if s=1/2.

These results show an analogue between Brownian search in dimensions d > 1
and Lévy search in dimension d = 1 with fractional order s € (0,1). Specifically,
(1.10)~(1.13) imply

O(1) if se(1/2,1],
(1.14) E[r]= ¢ O(log(1/¢)) if s=1/2,
O(e*™ 1) if s€(0,1/2).

Comparing (1.2) to (1.14) shows that FHTs of Brownian motion in different dimen-
sions diverge similarly to FHTs of Lévy flights in one dimension with different frac-
tional orders. As in the case of Brownian motion in (1.2), the different regimes in
(1.14) stem from differences in recurrence versus transience, which manifests in our
analysis as different far-field behavior of the inner solutions used in our matched
asymptotics. FHTs of Lévy flights in one dimension can diverge because the stochas-
tic paths of Lévy flights are discontinuous. Hence, in contrast to Brownian motion,
Lévy flights may jump across a target without actually hitting it in a phenomenon
termed a “leapover” [30, 29, 48, 64] (see Figure 1 for an illustration).

Our analysis allows us to identify the value of s € (0,1] which minimizes the
MFHT. We find that this optimal value (denoted by sept) grows continuously from
Sopt = 0 up to Sepy ~ 1 (i.e., Brownian search) as the target density grows relative
to the lengthscale Iy in (1.3)—(1.6). In particular, we show that the value s = 1/2
(corresponding to stability index a = 2s = 1, i.e., inverse square Lévy search) is
optimal in only very specific circumstances.

The rest of the paper is organized as follows. In section 2, we analyze the mean
and full probability distribution of the FHT. In section 3, we compare our asymptotic
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s =1 (Brownian) s=0.7

time
time
time

space space space

Fi1c. 1. Lévy flight sample paths in one space dimension for (left) s=1 (i.e., Brownian motion),
(middle) s =0.7, and (right) s =0.4. The solid black markers show positions of the Lévy flight. For
s < 1, the black dashed lines show the discontinuous jumps of the Lévy flight, which become larger
for smaller values of s € (0,1) and allow the Lévy flight to jump across the target (regions with red
vertical lines).

results to numerical solutions of the associated fractional equations and stochastic
simulations. In section 4, we address the question of the fractional order s € (0,1]
that minimizes the MFHT. We conclude by summarizing our results and discussing
related work. Appendix A collects some more technical aspects of the numerical
implementation in section 3, while Appendix B includes a derivation of the fractional
equations for the FHT moments.

2. Asymptotic analysis of the MFHT. The method of matched asymptotic
expansions (MMAE) has been an invaluable tool in the analysis of narrow capture and
escape problems for pure diffusion processes since its introduction in [55, 16]. Broadly
speaking, the MMAE proceeds by formulating inner- and outer-problems whose so-
lutions can be expressed in terms of a canonical “electrified disk” solution and an
appropriately weighted sum of Green’s functions, respectively. Combining a solvabil-
ity condition for the outer-problem together with matching conditions between the
inner- and outer-solutions yields a linear system with which all remaining unknowns
arising in the asymptotic analysis can be determined. In this section, we adapt the
MMAE to derive an asymptotic expansion for the MFHT satisfying the fractional
differential equation (1.9). We show how the MMAE in this fractional setting syn-
thesizes the analysis of the standard narrow escape problem in dimensions d =2 and
d = 3. In addition, we introduce a fractional counterpart to the classical electrified
disk problem, as well as a 2-periodic fractional Green’s function.

We begin our asymptotic analysis of the MFHT by seeking an outer asymptotic
expansion of the form

(2.1a) v(x) ~vg(z),

valid for values of x that are sufficiently far from all targets in the sense that |[z—x;| > ¢
for all : = 1,...,N. In addition, for each ¢ = 1,..., N we seek an inner asymptotic
expansion of the form

(2.1b) v(z; +eX) ~VE(X),

valid for values of z = z; + €X sufficiently close to the ith target in the sense that
X = 0O(1). Note that in (2.1) and throughout the remainder of the paper, we use a
superscript € to denote a general dependence on this parameter.

It is here convenient to recall two equivalent definitions of the fractional Laplacian
given by (1.5) when restricted to 2-periodic functions. Specifically, if we let p(z) be
an arbitrary 2-periodic function, then
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FIRST HITTING TIME OF A LEVY FLIGHT 1145

(2.2) (~A)p(z) = C,P.V. / Kl = 9)(el@) — o))y,
where

1
(2.2b) K(z2):= n% PR

and where Z denotes the set of all integers. This expression is conveniently chosen to
determine appropriate inner problems. Moreover, it can be shown (see, for example,
equation (2.53) in [1]) that the restriction of the fractional Laplacian defined by (1.5)
to 2-periodic functions coincides with the spectral fractional Laplacian defined by

s s i 1 ! —inm
(23)  CAPela)= Y e =g [ e
n=7\{0} -1

This formulation proves to be useful when considering global quantities, such as the
relevant periodic fractional Green’s function.
In order to state our main result for this section, we first define the scalars

. —€ .__ 7 . 1—2s
(2.4a) Vi = _710g(5l-/2)7 v° = N E vs, ls:= N g ;7=
? i=1 i=1

as well as the N-dimensional vectors
l%72s
(2.4b) l,:= : , vii= ], en:i=

N2 Vi 1
In addition, we define the N x N diagonal matrices
(2.4c) L,:=diag (I17%*,...,15 %), N& :=diag(vi,...,vy),

as well as the N x N Green’s matriz G whose entries are given by

~ {R.(0), =7
(2.4d) (gs)ij_{]{s(xi—mj)-l-Hs(xi—l‘j)a i # J,

where R, is the regular part of the Green’s function defined in Proposition 2.2, and
Hg(z) is the singular part with Hg(z):=—|z|?*7! for s # 1/2 and H,(z) :=log|z| for
s=1/2. Our main asymptotic result for the hitting time is given below.

PRINCIPAL RESULT 1. Let e < 1, let ly,...,Ixy = O(1), and suppose that —1 <

1 <---<zn <1 are well-separated in the sense that |x; — x| > O(e) for all i # j.
For any 0 <s <1, define

1 <2(138251 o 612shsl’£gs£ng> , S# 1/2,

(2.5a) X© = Nis b
2 T e\T € _
e (1 5(7957). =172
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1146 DANIEL GOMEZ AND SEAN D. LAWLEY

where as and bs are given by (1.11) and where the N-dimensional vector B® =

(B§,...,B%)T is found by solving the linear system
1-2s 1 T - 2a.e>7!
In—c¢ bs | In — ﬁele GsLs | B* = WeNv sF# 1/27
(2.5b) X ’ ) o
<INN€ <INNV86N(VE)T) gl/g) BE:T{'NDEVE’ 511/2,

where Ly is the N X N identity matriz. Then, an asymptotic expression for the MFHT
satisfying (1.9) for |z — z;|>¢€ for alli=1,...,N is given by

N
b2 lel-_sz;(—bU — 2|27 4+ Ry(x — xj)), s#1/2,
(2.5¢) w(x)~x"+19 u =1

ZBJE' (10g|17*17j\+31/2($*%)), s=1/2,
=1

where Rs(x) is the regular part of the Green’s function found in Proposition 2.2.

The remainder of this section is organized as follows. In sections 2.1 and 2.2, we
first establish key properties of two quantities relevant to the construction of inner
and outer solutions, respectively. Specifically, in section 2.1 we consider a fractional
counterpart to the classical electrified disk problem. This is followed by a discussion of
a certain 2-periodic fractional Green’s function in section 2.2. In section 2.3, we then
proceed with applying the MMAE to derive Principal Result 1. Finally, in section 2.4
we show that, to leading order, the FHT 7 is exponentially distributed for s € (0,1/2].

2.1. The fractional electrified disk problem. Substituting the change of
variables X = (z — z;)/e into (1.9), we obtain a leading order homogeneous problem
for the inner solution V;(X) (see section 2.3 below). The scaling invariance of this
problem suggests that V;7(X) is proportional to the solution of some canonical prob-
lem, where the constant of proportionality acts as a degree of freedom with which to
match inner and outer solutions. A natural choice for the corresponding canonical
problem is the fractional counterpart to the electrified disk problem, which is given
by
26) {(—A)Swsm =0, |X]>1,

| Wy (X) =1, x| <1,

and for which we now collect several key properties. The function W(X) is the
probability that a Lévy flight starting at X € R eventually hits the ball (—1,1). With
this probabilistic interpretation, one readily obtains the following formula for W (X)
when s < 1/2 (see Corollary 2 in [7]):

B ﬁ [e’s} usfl
(2.7) W,(X) = I(1-5T(s) /XQ,1 \/Tﬁd“'

We proceed to derive an explicit expression for W (X) valid for all s € (0,1). Specif-
ically, we deploy a Kelvin transform and fractional Poisson formula for s # 1/2 and
standard complex analysis tools for s = 1/2. The main result is summarized in the
following proposition.
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FIRST HITTING TIME OF A LEVY FLIGHT 1147

PROPOSITION 2.1. The fractional electrified disk problem (2.6) admits the follow-
ing nonconstant solution:

(2.8a)
W (X)

N 951 1\° 13 1
— X1 =) R (1,52 s — 1/2
— F(S)F(§—5)| | X2 241 72a2 SaXQ ) 5# / ’ |X|>1

2
1—log(X +vX2-1), s=1/2,

)

with Ws(X) =1 for |X| <1. Moreover, this solution has the far-field behavior

s X2s—1 X2s—3 1/2

@8b)  W,x)~ TR OUXT), s A2 X S e,
log(2|X[) + 1+ O(X ), s=1/2,

where by is given by (1.11).

Starting with the s # 1/2 case, we first transform (2.6) into the more commonly
considered fractional problem with extended Dirichlet boundary conditions posed out-
side of (—1,1). Specifically, we first use the Kelvin transform

(2.9a) X=1/X, WX)=[X>""W,(1/X),
in terms of which we readily calculate (see, for example, Proposition A.1 in [59])
(2.9b) (=AW (X) = | X|** (A W, (X).

In particular, we find that W ,(X) solves

(2.10) {(—A)SWS(X) =0, [X|<1,

W.(X)=|X*""1 |X|>1.

Notice that the inhomogeneous term g(X) = [X|?*~1 for [ X|>1 in (2.10) can be
extended to R in such a way that g € L{ (R) N C(R) and

loc

/&ﬁ@o.
R 1 + ‘X|1+25

It then follows that the unique continuous solution to (2.10) is given by (see Theorem
2.10 in [10])

W(X)= /|Y|>1 o
(X[, [ X]>1,

PV, XY=y, [X] <1,

where Ps(y,x) is the fractional Poisson kernel given by

1—22\" 1 1
Pu(y,z) i=ps [ ) —— = Lsin(rs) = ———
s (Y, ) 1= ps <y2 1> P ps =7 sin(ms) T

Reverting to the original variables, we therefore obtain the integral representation
*/X2-1)\" 2|X]
W4 (X) =ps dy
(X0=»p /1 (11/Y2> (XY)2—1

3 1 s o0 (Z+1)87%
—pa X[ (1) | e
p:|X] X2) Jo z(z+1-+5)
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1148 DANIEL GOMEZ AND SEAN D. LAWLEY

where the first equality follows by combining the ¥ € (—o0o0,—1) and Y € (1,00)
contributions and the second from the change of variables Y = /24 1. Using the
integral representation of the Gaussian hypergeometric function (see equation 15.6.1
n [18]), we immediately obtain (2.8a). The far-field behavior (2.8b) of W4 (X) is
likewise immediately obtained by noting that (see equation 15.2.1 in [18])

A(1t3 =1+ + 32" +0(2%) lz| < 1
A hgig T 52 3— 2 452 — 165+ 15 : '

Remark 2.1. The equivalence of (2.8a) and (2.7) is readily verified using properties
of the Gaussian hypergeometric function. Specifically, we first recast the integral in
(2.7) in terms of the Gaussian hypergeometric function using the change of variables
u = X?(z+ 1) — 1. Equivalence with (2.8a) is then verified by first using Euler’s
transformation oF(a,b;c;2) = (1 — 2)°" 2 %3 Fy(c — a,c — b;c; 2) and then using the
symmetry property oF(a,b;c;2) = oFy (b, a;¢; 2).

We consider next the case s = 1/2 for which the previous calculations yield
Ws(X) = 1. Indeed, it is easy to see that W(X) = 1 is the unique continuous
solution to (2.10) when s =1/2. To find a nonconstant solution to (2.6), we instead
consider the extended problem in the two-dimensional upper half-space. Specifically,
we seek a nonconstant solution W(X Y) to

2w 9PW

5‘X2+8Y2:0’ —c0< X <00, Y >0,
(2.11) W=1, |X|<1,Y =0,

oW

— =0 X|>1,Y=0

5y =0 | X|>1, :

in terms of which Wy_; /5(X) = W(X,0) (see [12] for additional details on the exten-
sion property of the fractional Laplacian). Such a nonconstant solution must have
logarithmic growth as X2 + Y2 — oo and is given by

W(X,Y) =14 Im{arcsin(X +iY)},
where Im(z) denotes the imaginary part of z € C. Setting Y =0 and considering only

values of | X| > 1, we readily obtain (2.8a) from which the far-field behavior (2.8b)
immediately follows.

2.2. The periodic fractional Green’s function. Asymptotic matching pre-
scribes the limiting behavior of the outer solution as  — x; for each i=1,..., N (see
section 2.3 below). The resulting limiting behavior in turn implies that the outer solu-
tion can be written as a weighted sum of translations of a fractional Green’s function
G4(x) satisfying

(—A)Sas<m>=1—a<x>, exel,
(2.12) Golo+2) = Glo). ez <o,

/ Gy

Using the spectral definition of the fractional Laplacian (2.3), it is straightforward to
see that

(213) Z cosnmx
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FIRST HITTING TIME OF A LEVY FLIGHT 1149

We readily see that Gs(x) diverges as © — 0 for s < 1/2. The following proposition
extracts this singular behavior and decomposes G4(x) into a singular part and a
reqular part.

PROPOSITION 2.2. The periodic fractional Green’s function G4(x) satisfying (2.12)
s given by

—a, 2s—1 <R, 1/2
(2.148,) GS(.T)Z f’l|$| +a_f% (1')7 5 F# / )
nlogla| + 77 Ryjo(x), s=1/2,

where ag is given by (1.11). When s # 1/2, the reqular part Rs(x) admits the following

rapidly converging series,

(2.14b)

1 25—1 7 (2s—1)(2s —2)(2s — 3)

Ri(@)=3; 15 24
n (23—1 (2s —1)(2s 2)(23—3)) 2?

12

(s—l)( )(28 )| "4+2(2s—1)---(2s—5 i a%’" - cos(mnx),

— [®°.,.25—6
where ass n = fﬂnx

has the series erpansion

sinzdx. On the other hand, when s = 1/2, the reqular part

> T\ COSNTT
2.14 R —142 (S' - f) ,
(2.140) yale) = 1+2 3 (Sitom) - 3) 2
where Si(z fo t~1sin(t)dt denotes the usual sine integral.

The calculation of G4(x) in the case s # 1/2 follows from computing Fourier series
of |z|?, |z|*, and |z|?*~! and can be found in Appendix A of [22]. The case s =1/2
follows similarly, but this time only the Fourier series of log |z| is needed.

For the subsequent asymptotic analysis, the most important part of G4(z) in
(2.14a) is the singular behavior which takes the form of an algebraic singularity for
s < 1/2, a logarithmic singularity for s = 1/2, and a bounded fractional cusp for
s> 1/2. The series expansions for the regular part appearing in (2.14b) and (2.14c),
on the other hand, are computationally useful due to their fast convergence.

2.3. Matched asymptotic expansions. Let x = x; + £X, and substitute the
inner expansion (2.1b) into (1.9) so that using (2.2) for the fractional Laplacian we
obtain

Y VEX) - VE)
(2.15) ECSP.V'/1/EZ|271+E(X Y)|25>‘*‘1dY+hOJ671

where h.o.t. denotes higher-order terms. The n =0 term dominates all other terms in
the left-hand side, and moreover we will also assume that it dominates the right-hand
side by assuming that V> &% for all X = O(1). Further approximating the integral
on the left-hand side by replacing +1/e with 00, we thus obtain the inner problem

(CAPVEX) =0, [X|> 1
(216) {W( -0, |xl<i,

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



1150 DANIEL GOMEZ AND SEAN D. LAWLEY

where the limiting behavior of V(X) as |X| — oo will be found by matching with
the limiting behavior of the outer solution as x — x; for each i =1,..., N.

In light of Proposition 2.1, we seek, for each ¢ = 1,..., N, a nonconstant inner
solution of the form

(2.17) Vi(X) =B; (1 -Ws(X/li)),

where BS is some e-dependent constant that remains to be determined. From Propo-
sition 2.1 we then have the far-field behavior

Bf (1 - by 2 |X* 71+ O(X[*77)), s#1/2,

as | X| — oo.
B (log(2|X/L]) + O(|X|2) s1yp, X

Ve (X) ~ {

The far-field behavior of V(X)) must coincide with the limiting behavior of the outer
solution v§(z) as x — z;. Specifically, writing X =e~!(z — ;) we obtain the matching
condition as |z — x;| — 0,

B (1—b,e' 20|z — 2| 1+ O(%7)), s#1/2,

(219 1ol {Bf (log |z — zi| +1/v] +O(c?)), s=1/2

Given the singular term |z — 2;/?*~! in the limiting behavior (2.18), we find that
v§(x) is the 2-periodic function satisfying

N
1—e'"2%a o, Zl;_QSBjé(I —xj5), s#1/2,
(2.19) (—A)*v§(z) = N =t
1—7TZB§(5($—xj), s=1/2.
j=1

Since this problem is posed on the whole (periodic) interval —1 < x < 1, we can now
use the spectral definition (2.3) for the fractional Laplacian so that by integrating
(2.19) over the domain we obtain the solvability conditions

N N
2
(2.20) a;to. Y LB =27 Y Bi =",
j=1

j=1

for s # 1/2 and s = 1/2, respectively. Provided this condition is satisfied, we can
then write v§(z) in terms of the periodic fractional Green’s function found in Propo-
sition 2.2 as

N
720, Y B (—|r — 2P+ Ru(w — 1)), s#£1/2,
(2.21) US(Q’,‘) =X+ N j=1
> B (logla — x| + Ry jo(a — ;) s=1/2,

j=1

where x¢ is an undetermined constant.

The asymptotic analysis has thus far yielded an expression for the outer solution in
terms of the IV 41 unknown quantities BY,..., By and x°. The solvability condition
(2.20) yields one equation in these N + 1 unknowns. By revisiting the matching
condition (2.18) we obtain the remaining N equations with which all N + 1 unknowns
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can be uniquely determined. Specifically, substituting the asymptotic expansion of
(2.21) as  — x; into the left-hand side of (2.18) gives the matching condition

e B Ra(0) 20 D12 B (i — [P o R — )+ X = B
J#i
when s# 1/2 and
B§Ry5(0) + Y B (logla; — x| + Ryjo(zi — x7)) + x° = B; /v§
J#i

when s = 1/2 for each i = 1,...,N. In light of the definitions (2.4), we can rewrite
the solvability and matching conditions in vector notation as

205 94

lZBE:b—E 1 B - %0,G,L,B°=x%ey, s#1/2,
28
e%BEZE, B® — N®G, s B° = X1°, s=1/2.

Left-multiplying the matching condition in the s # 1/2 (respectively, s =1/2) case by
lz (respectively, €X) and using the solvability condition yields the expression for y®
found in (2.5a). Substituting this expression for x° back into the matching condition
then gives the linear system (2.5b).

We claim that the solution B® to (2.5b) is O(e2*~ 1) for all s € (0,1). Indeed,

when s < 1/2 we readily obtain the expansion

€ 2(1 E ! q(1-2s) 7q 1 T
B =" e Z \Tien,  Joi=bs w7, eVl ) Geles

Similarly, when s =1/2 we obtain an expansion in powers of v§,...,v5% starting with
an O(1) term since v°/0° = O(1). When s > 1/2, we must proceed by imposing
a solvability condition. Specifically, assuming that G, is invertible we find that the
kernel of 7; is one-dimensional and spanned by &€, = £;1Gey. Seeking an expansion
of the form B =&>~'By+£2?5~) B, 4 ... and imposing a solvability condition for
the B; equation yields

2a, 1r

Bt = 2s—1 9] 2(2s—1) ’ =
Vo€ £s + (5 ) Y0 lebs lZSS

The preceding discussion implies that our asymptotic expansion is consistent with
the assumption V(X) > 2° that we made to neglect the inhomogeneous term on
the right-hand side of (2.15).

Remark 2.2. Since B® = O(e**71) for all 0 < s < 1, we deduce from (2.5a) that
XE = O0(e*7 1) for s <1/2 and x° = O(log(1/¢)) for s = 1/2, whereas x* = O(1) for
1/2 < s < 1. Hence, (2.5¢) implies that to leading order the MFHT in the outer region
is spatially constant for s <1/2, whereas it is spatially variable for 1/2 < s <1.

Remark 2.3. If the target configuration is symmetric, in the sense that [y =--- =
Iy =1 and adjacent targets are equidistant, then 1y =--- = vy = v, the Green’s matrix
Gs is circulant, L = lIN, and N¢ = vZy. The solution to (2.5b) is then explicitly
given by B = 2‘1;\51 ey and B = Z-ey for s # 1/2 and s = 1/2, respectively.
Moreover, it suffices to consider symmetric configurations for only N = 1 since the
case N > 1 can be obtained by a simple spatial rescaling.
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2.4. Probability distribution for s € (0,1/2]. We now extend the preceding
analysis of the MFHT to obtain the full probability distribution of the FHT in the
limit € — 0 for s € (0,1/2]. The mth moment of the FHT,

() =E[r™|X(0)=2z], me{l,2,...},

satisfies the following fractional equation, which couples to the (m — 1) moment (see
Appendix B),

(2.22) (—A)* vy, = MUy, _1,

with identical boundary conditions to the first moment and v; = v. For the m = 2
moment, this becomes

(223) (—A)svg :21)1.

For s € (0,1/2], we have shown that vi(x) is constant in space to leading order,
v1(z) ~ pse. Dividing (2.23) by twice this constant implies that wa := vo/(2us.)
satisfies the same fractional equation as the first moment v; to leading order. Hence,
wy ~ v; and thus vy ~ 2(v1)?. Continuing this argument yields the leading order

behavior of the mth moment,
Um ~ml(v)™, me{l,2,...},

which implies that 7/us . is exponentially distributed with unit mean in the limit
¢ — 0 (since exponential random variables are determined by their moments [6]).

3. Numerical simulations. In this section, we numerically calculate the FHT
by solving the fractional differential equation (1.9) directly, as well as by using Monte
Carlo methods. These numerical calculations will serve the purpose of validating
the formal asymptotic calculations of the previous section, with the Monte Carlo
simulations also allowing us to investigate the full probability distribution of the FHT.
We proceed by first outlining the numerical methods used to solve (1.9) in section 3.1.
In section 3.2, we outline the methods used in the Monte Carlo simulations. Finally,
in section 3.3 we showcase the results from our numerical computations.

3.1. Solving the MFHT fractional differential equation. To numerically
solve (1.9), we require only a numerical discretization of the periodic fractional Lapla-
cian (—A)®. Our numerical discretization of the periodic fractional Laplacian is based
on the finite difference—quadrature approach of Huang and Oberman [26]. Fix an in-
teger M >0, let h=2/M, and let

(3.1) Zn =—14hn, ne# :={0,...,.M —1},

be a uniform discretization of the interval —1 < x < 1. Denote by (—Ap)® the
numerical discretization of the periodic fractional Laplacian on —1 < z < 1. The
discrete operator (—Ay)* acts on an arbitrary vector ¢ = (¢g, ..., on—1)7 according
to (see equation (FLj,) in [26])

(3'2) ((_Ah)sso)n = Z (‘pn - @m)anma Wy i=ws + Z (wako + wUJrkM) s
me.H k=1

where we have used periodicity to simplify the expression and where each w,, (m € Z)
is an appropriately chosen weight. See Appendix A for additional details on our choice
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of weights, as well as some practical considerations for their computation. Define the
set S :={n€ .4 |z, € UY | (x; —¢l;,x; +¢l;)}. The numerical solution to the hitting-
time problem (1.9) is then obtained by finding v = (vg,...,vpr—1)7 satisfying linear
system

Z (U =V )Whem =1, ne#\ 7,
(3.3) me.#\.I
’U’I’L = 07 n E f

In section 3.3, we use M = 50,000 points and K = 10,000 terms in the evaluation of
the weights W, (see (A.3) in Appendix A) and solve the resulting symmetric linear
systems using the conjugate gradient routine in the SciPy Python library.

3.2. Monte Carlo. We now describe the stochastic simulation algorithm used
to generate FHTSs of Lévy flights. Our stochastic simulation algorithm relies on con-
structing a Lévy fight by subordinating a Brownian motion [33]. Specifically, let
B = {B(u)}y>0 be a one-dimensional Brownian motion with unit diffusivity (i.e.,
scaled so that E[(B(u))?] = 2u for all u > 0), and let U = {U(t) }s>0 be an indepen-
dent s-stable Lévy subordinator (i.e., it has Laplace exponent ®(3) = ). Then, the
following random time change of B,

(3.4) X(t):=DYE)B(U(t), t>0,
is a Lévy flight with generalized diffusivity D > 0.
Given a discrete time step At > 0, we construct a statistically exact path of the
s-stable subordinator {U(t)};>¢ on the discrete time grid {¢x}ren with ¢, = kAt via
Ultpsr) =Ul(te) + (A0, k>0,

where U(tp) =U(0) =0 and {Of}ren is an i.i.d. sequence of realizations of [13]

_ sin(s(V +7/2) (cos(v —(V +7/2)) > s
(cos(V))!/ E )

where V' is uniformly distributed on (—n/2,7/2) and E is an independent exponential
random variable with E[E] = 1. We then construct a statistically exact path of the
Brownian motion {B(u)},>0 on the (random) discrete time grid {U (¢x)}ren via

B(U(tr41)) = BWU(t8)) + /2801048, k>0,

where {&;}rez is an i.i.d. sequence of standard Gaussian random variables and we
impose periodic boundary conditions. Finally, we obtain a statistically exact path
of the Lévy flight X = {X(¢)}+>0 in (3.4) on the discrete time grid {tx}ren via
X(ty) = Di/(QS)B(U(tk)) for k > 0. The FHT 7 to the target set Ugarget is then
approximated by 7~ kAt, where k:=min{kAt > 0: X (t1) € Urarget }-

The Monte Carlo data in the results below is computed from 102 independent
trials with At=10"° and D; = 1.

3.3. Results. To validate our asymptotic analysis, we compare our asymptotic
approximations for the MFHT with full numerical simulations using the methods
outlined in sections 3.1 and 3.2. We present this comparison for two types of con-
figurations. The first, which we refer to as the symmetric one-target configuration,
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MEHT for s = 0.3 MFHT for s=0.5 MFHT for s=0.7

0 T T T 0 T L il T
-1.0 -0.5 0.0 0.5 1.0 -10 05 0.0 05 10 -l0 -0.5
X X

Fic. 2. MFHT for the symmetric one-target configuration. Solid curves, dashed curves, and
hollow squares correspond to solutions obtained by numerically solving the fractional PDE (1.9), by
using the asymptotic approzimations (2.5¢), and from Monte Carlo simulations, respectively.

MFHT for s =0.3 MFHT for s = 0.5 MFHT for s =0.7

&
04t o / \

0.025
034 — 0.01

0.2 4

0.14

0 I I ! ) T - T 0.0 T
~1.0 05 00 05 10 -10 -05 0.0 0.5 1.0 -10 -0.5
X

Fic. 3. MFHT for the asymmetric three-target configuration. Solid curves, dashed curves, and
hollow squares correspond to solutions obtained by numerically solving the fractional differential
equation (1.9), by using the asymptotic approrimations (2.5¢), and from Monte Carlo simulations,
respectively.

consists of a single target with ;1 = 0 and I; = 1. The second, which we refer to
as the asymmetric three-target configuration, consists of N = 3 targets centered at
T = 70.6, T = 04, and Tr3 = 0.75 with ll = 1, 12 = 125, and lg =1.5.

In Figures 2 and 3, we plot the MFHT for the symmetric one-target and asym-
metric three-target configurations, respectively. Specifically, each figure compares the
solution obtained by solving (1.9) numerically (solid curves), the solution obtained
using the asymptotic approximation (2.5¢) (dashed curves), and the values of the
MFHT starting from specific values of x € (—1,1) obtained from Monte Carlo sim-
ulations (hollow squares). In each case, we observe excellent agreement between the
asymptotic and numerical solutions even for moderately sized values of ¢ > 0. In
addition to validating our asymptotic approximations, the plots in Figures 2 and 3
also showcase the qualitative properties of the MFHT predicted by our asymptotic
analysis. Specifically, they illustrate a strong e-dependence when s < 1/2 in contrast
to when s > 1/2 which supports the scaling v = 0(e?*~ ) for s <1/2 and v=0O(1) for
s> 1/2. Moreover, we observe that for sufficiently small values of £ > 0, the MFHT
in the outer region is approximately spatially constant when s < 1/2, whereas it is
spatially variable when s > 1/2. Although the leading order asymptotics predict a
spatially constant solution for s = 1/2, this is difficult to see numerically since the
first order correction is O(1/loge).

An additional quantity of interest is the MFHT averaged over uniformly distrib-
uted initial points z € (—1,1), i.e.,
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10° Averaged MFHT (Symmetric) 100 Averaged MFHT (Asymmetric)
[ s s
— 0.1 l—— 0.1
0.2 102 4 0.2
1024 — 0.3 — 03
— 0.4 — 04
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| — 06 | — 06
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- O.S\G\E\Q\B\E = os
0.9 - 0.9
. A% 1014 W
‘E\H\g =)
10- 102 10! 102 102 10
£ £

Fi1G. 4. The MFHT averaged over a uniformly distributed initial condition in Q\ Qarget for
the (left) symmetric one-target configuration and the (right) asymmetric three-target configuration.
In each plot, the solid curve indicates the asymptotic approximation, the dots indicate results from
numerically solving the fractional differential equation (1.9), and the hollow squares indicate those
values obtained by stochastic simulations.

=005
1 1y 1g
—xp=—-08
—xg=—0.5 A
0.8 0 0.8 0.8
0.6 _m:gi =06 =06
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& 04 --- exponential & 04f & 04f
0.2} 0.2} 0.2}
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F1G. 5. Probability distribution of FHT.

In Figure 4, we plot this averaged MFHT versus € > 0 for different values of 0 < s < 1
for both the symmetric one-target and the asymmetric three-target configurations. In
each plot, the solid curve corresponds to the asymptotically computed solution which,
in light of the vanishing integral constraint in (2.12), is equal to x© given by (2.5a).
The solid dots correspond to values obtained by numerically integrating the numerical
solution to (1.9), whereas the hollow squares are results from Monte Carlo simula-
tions. These plots shows good agreement between the asymptotic approximation and
numerical simulations.

Finally, in Figure 5, we compare (i) the full probability distribution of the FHT 7
computed from stochastic simulations to (ii) the exponential distribution implied by
the analysis in section 2.4. This plot is for the symmetric one-target configuration in
Figure 2 with s =0.3. The convergence to an exponential distribution is apparent as
€ decreases from € = 0.05 in the left panel down to € =0.005 in the right panel.

4. Optimal random search. We now investigate the value of the fractional
order s € (0,1] which minimizes the averaged MFHT. By averaging over a uniformly
distributed initial position, considering the case N =1, neglecting the highest order
terms from our asymptotic expansion, and reversing the nondimensionalization in
(1.7), we arrive at the following dimensional measure of the search time:

_ {(z%/Ds)(éwaS/bs ~20,R.(0)  ifs#1/2

(12 /D,)(log(2/£)2/7 — 2Ry 5(0) /) if s =1/2 for s € (0,1).
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101 1
—_—ly/l=e=10"° — — 107
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lo/1 (target density)

Fic. 6. (left) p(s) in (4.1) as a function of s € (0,1) for e = 1073 and different values of the
target density lo/l. Square markers indicate sopt in (4.2). (right) sopt as a function of the target
density lo /1 for different values of €.

That is, Ts is the averaged MFHT over uniformly distributed initial positions of a
one-dimensional, (2s)-stable Lévy flight with generalized diffusivity Dy > 0 and an
infinite periodic array of targets with separation distance 21 > 0 where each target
has radius el with 0 <e < 1.

To study how T, depends on s € (0,1], we must choose how the generalized
diffusivity Ds depends on s (since it has dimension [D;] = (length)?¢/(time)). We
follow [50] and introduce a lengthscale Iy > 0 (independent of s) and suppose

Dy = (l0)* /to

for some timescale ty. Such a lengthscale [y > 0 arises naturally in the continuous-time
random walk derivation of a Lévy flight (see (1.3)—(1.6) in section 1 and [42] for more
details). Normalizing T by the Brownian search time T} := (12/D1)(1 — €)?/3 yields
the following ratio for s € (0,1):

_ T (/D07 e 20,0, —20,R0(0)  ifs#1/2,
ey =g = (1-22/3 " {10g(2/€)2/77—2R1/2(0)/7T if s=1/2.

Hence, p(s) <1 (respectively, p(s) > 1) means that the Lévy search is faster (respec-
tively, slower) than Brownian search.

In the left panel of Figure 6, we plot p(s) as a function of s € (0,1) for different
values of ly/l. Notice that lo/l < 1 describes sparse targets and lo/l €« 1 describes
dense targets (where “sparse” and “dense” are relative to the lengthscale ly). This
plot shows that Lévy search is faster than Brownian search for sparse targets, whereas
Brownian search is faster than Lévy search for dense targets.

In the right panel of Figure 6, we plot the “optimal” value of s € (0,1] which
minimizes the search time,

(4.2) Sopt 1= argmin p(s),

as a function of the target density lp/l for fixed values of . This plot shows that
Sopt varies continuously from sqpe &~ 0 for sparse targets up to sopt ~ 1 (i.e., Brownian
search) as the target density increases. Hence, the value s =1/2 (which corresponds
to stability index a = 2s =1, i.e., so-called inverse square Lévy search) is not distin-
guished from other values of s € (0,1] in the sense that sqp; = 1/2 for only a single
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value of the target density ly/! for each e > 0. To further emphasize this point, observe
that treating lo/l and ¢ as independent variables we deduce lim. o lim; /5,0 Sopt =0,
whereas lim;/;, o lim. 0 Sopt = 1/2. The former follows from noting that (Io/1)>(=9)
is minimized at s =0 for any o/l < 1. To deduce the latter, note first that we must
have lim._,g Sopy > 1/2 since (4.1) implies lim._,q p(s) = +o0 if s <1/2. Next, (4.1)
implies
lim p(s) = —((1o/1)?1=2)/3)(2a,Rs(0)) >0 if s> 1/2,

and therefore limy, ;0 lim. 0 Sopt = 1/2. Since the limiting value of sop depends on
the order in which we take e — 0 and [/ly — 0, we deduce that details of the configu-
ration’s target size and density must be considered to draw quantitative conclusions
about the optimal value sqpt.

5. Discussion. In this paper, we calculated an asymptotic approximation for
the MFHT to a small target in a periodic one-dimensional domain. Our asymptotic
approximation is summarized in Principal Result 1 and reduces the calculation of the
MFHT to that of solving the linear system (2.5b), thereby providing a fast method
for approximating the MFHT when the target size is small. In the special case of a
symmetric configuration, it suffices to consider the case of a single target for which the
system (2.5b) can be solved explicitly (see (1.10)—(1.13) in section 1). Furthermore,
we validated our asymptotics by comparing them to numerical computations of the
MFHT obtained by solving the fractional differential equation (1.9) directly and by
using stochastic simulations.

The asymptotic analysis leading to Principal Result 1 is analogous to that used in
two- and three-dimensional narrow capture/escape problems involving pure diffusion
[65, 16]. This analogy was previously identified in [21, 22] and is a result of the singular
behavior of the fractional free-space Green’s function which is logarithmic when s =
1/2 and algebraic when s < 1/2, mirroring that of the classical free-space Green’s
function in two and three dimensions, respectively. A novel aspect of the asymptotic
analysis presented in this paper is the recognition of a fractional counterpart to the
classical electrified disk problem. This fractional differential equation was solved
by using a fractional Kelvin transform and fractional Poisson kernel for s # 1/2
and by considering a two-dimensional extended problem solvable by complex analysis
methods for s = 1/2. In addition, we determined that when s < 1/2 the MFHT
is spatially constant to leading order, with this observation further allowing us to
conclude that the FHT is exponentially distributed when s <1/2.

The present study joins many prior works which use Lévy flights as simple the-
oretical models to investigate optimal search strategies. Prior works often choose
one-dimensional spatial domains due to their analytical tractability and as models for
search in effectively one-dimensional domains such as in streams, along coastlines, at
forest-meadows, and in other borders [50, 32, 49, 51, 48, 45, 47]. The very interesting
work of Palyulin, Chechkin, and Metzler [50] is perhaps most closely related to our
present study. In [50], the authors consider a one-dimensional, possibly biased Lévy
flight on the entire real line with a single point-like target. A major result of [50] is
that despite the frequent claim that Lévy flights with s = 1/2 are most efficient for
sparse targets, the optimal value of s may range the entire interval between s =1/2
and s =1 and thus include Brownian search (the assumption of a point-like target in
[50] meant that these authors did not consider s < 1/2). Indeed, as the authors of
[50] state, “the main message from this study is that Lévy flight search and its opti-
mization is sensitive to the exact conditions” and “our results show clear limitations
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for the universality of Lévy flight foraging” [50]. Our results agree with these main
points, as the optimal value of s in our study spans the entire interval (0,1] as the
target density lo/l increases from lo/l <e up to ly/l =1 (see Figure 6).

Appendix A. Additional considerations for the numerical discretization
of the periodic fractional Laplacian. To numerically implement (3.3), we choose
weights w,, (n € Z) that are based on linear interpolants. Specifically, we define (see
section 3.1 of [26])

OS 1—2s
(A1) F) = s@s - SFYE
—Cslog|tl, s=1/2,

where Cj is given by (1.5) and in terms of which the weights are given by

(A2) e 135 - P @ - FO), ol

W | F(n+1) —2F(n) + F(n—1), |n|>2.

We use the explicit form of the weights to numerically speed up the evaluation
of the infinite sums appearing in the definition of W, in (3.2). For sufficiently large

n € Z, we have
Cs 1
o i (140 (3) )

so that for any fixed o € Z and any sufficiently large integer k> 1 we have

Cy o \2
Wo—kM + WotkM = 2251 [l T2s (1+O ((k]\/[) >> .

Choosing a sufficiently large integer K > 1, we obtain
(A.3)
K

Wo’ =Wy + Z (wako + wo’+kM)
k=1

Cs

0.2

M3K2+25

where ((z,q) := Y .o o(n+ ¢q) 7 is the Hurwitz zeta function which can be quickly
computed by standard numerical libraries. This formula for the weights W, (o € Z)
provides a good approximation for W, for moderately sized K, thereby reducing
computational costs.

Appendix B. Derivation of fractional equations for FHT moments. Let
p(y,t|z,u) denote the conditional probability density that X (t) =y given that X (u) =
z for 0 < u <t. Since X is a Markov process, its density satisfies the Chapman-—
Kolmogorov equation [52],

(B.1) p(y,t]z,0) = /p(y,t|m,u)p(w,u|z,0)dx for any 0 <u <t.

Differentiating (B.1) with respect to the intermediate time u and using the forward
Fokker—Planck equation in (1.4) yields

0 0
0= [ plo:thes) goplaulz,0)de+ [ (o, ulz.0) Sop(yitia,) da

, 0
:—DS/p(y,t|x,u)(—Az)ép(:L‘,u|z,0)dx—|—/p(a:,u|z,0)%p(y,t|x7u) dz,
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where —(—A;)® denotes the fractional Laplacian acting on x. Since the fractional
Laplacian is self-adjoint, we then obtain

Oz/p(w,UIz,O) <§Lp(y7t|w,U) —Ds(—Ax)sp(y,tlaf,U)> dz.

Taking u — 0 and using that p(z,0]2,0) = 6(z — x) and Zp(y, t|v,u) = —5p(y,t —
u|z,0) yields the backward Fokker-Planck (or backward Kolmogorov) equation,

(B2) (y,t|:r 0) Ds(_Aw)Sp(:%t'x?O)'

0
o’

The survival probability of the FHT 7 conditioned that X (0) =z can be written
in terms of the density,

P(r>t|X(0)=2)= [ plytlz,0)dy
Now, the mth moment of any nonnegative random variable T is [20]
(e} oo
E[T™] :/ P(T™ > a) da:/ mt™ (T > t) dt,
0 0
where the final equality follows from changing variables. Therefore,

vm(z) =E[r™] X (0) / mt™" 1/p(y,t|x,0)dydt.

Taking the fractional Laplacian with respect to z, using (B.2), and integrating by
parts yields

DA unle) = [ et [yt 0) dys
0 ot
(B.3) = (mtm1 /p(y,t|a:,()) dy) ‘0
—m/ m— 1)t 2/p(y,t|w,0)dydt.

If m =1, then the integral term in (B.3) vanishes and we obtain the fractional equation
n (1.9). If m > 1, then the boundary terms vanish and we obtain (2.22). The result
that v,, satisfies the boundary conditions in (1.9) is immediate.
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