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A B S T R A C T

Winter Storm Uri slammed Texas between February 13–17, 2021 and caused widespread power
outages. Understanding the impacts of this catastrophic event on local communities has impor-
tant meaning. In this study, we examine the impacts of this winter storm and its impact dispari-
ties on different population groups over three stages of this disaster: the initial-hit stage, power-
outage stage, and recovery stage. The study focuses on Harris County, Texas which was severely
affected by the winter storm. We leverage home-dwelling time information from anonymized mo-
bile phone location data to study the constrained mobility of people due to the winter storm as a
way to quantify its impacts on local communities. Considering that mobile phone location data
may be affected by the power outages, we further integrate nighttime light (NTL) images into our
analyses to assess disaster impacts during the power-outage stage, and use home-dwelling time to
assess the impacts during the other two stages (i.e., the initial-hit stage and recovery stage). The
results reveal disparate impacts of this winter storm on local communities in the three stages of
this disaster. We also find impact disparities on population groups with different socioeconomic
and demographic backgrounds, especially during the initial-hit stage. These results help us better
understand the impacts of this catastrophic event, and could inform future response and mitiga-
tion efforts in identifying vulnerable communities, allocating resources, and curtailing negative
impacts of similar disasters.

1. Introduction
Between February 13–17, 2021, a severe winter storm, named Uri, slammed Texas with historically low temperatures, heavy

snow, sleet, and freezing rain. This storm brought substantial snowfall and ice accumulation to many parts of the state, and some ar-
eas experienced the coldest conditions in over 30 years [1]. Many power plants and grids in Texas were not prepared to handle the ex-
treme cold; meanwhile, there was a significant increase in the demand for electricity as people rushed to heat their homes [2]. The
massive strain on the Texas power grid made its administrators decide to implement rolling blackouts which were supposed to last
within an hour each time, but the actual power outages experienced by different households ranged from hours to days across the
state [3,4]. Nearly 4.5 million homes in total suffered from power loss in this winter storm [5,6], and various other problems were
caused, such as burst water pipes and shortages of water, food, and heat [7]. At least 246 people died directly or indirectly due to the
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storm, and the total damage was estimated to be over $195 billion [8–10], making Winter Storm Uri the costliest natural disaster in
Texas history. Understanding how local communities were impacted by this catastrophic event can help inform future response and
mitigation efforts in identifying vulnerable communities, allocating resources, and curtailing the negative impacts of similar disas-
ters.

Existing research has used a variety of data and methods to look into the impacts of Winter Storm Uri. Using surveys and inter-
views, researchers have studied the resilience of water infrastructures [11], household preparedness [12], and social disparities in
power and water outages [13,14]. Using nighttime light images, researchers have identified the geographic areas and neighborhoods
that suffered from power outages and analyzed related inequity issues [4,15,16]. Using social media data, researchers have developed
methods to assess damages caused by the winter storm [17], and have examined disaster communications by authorities and their in-
teractions with the public [18,19]. There also exist studies that looked into other aspects of this winter storm, such as its mental
health impacts [20] and infrastructure interdependence [21].

Anonymized mobile phone location data have received increasing attention since the COVID-19 pandemic [22–24], as they pro-
vide a new dimension for studying disrupted human mobility during events like health crises and natural disasters [25,26]. This type
of data is typically collected from GPS-enabled smartphones through opt-in software applications (apps), such as navigation, weather,
and other apps that need to request user locations (e.g., finding nearby restaurants and gas stations) [27,28]. Location data compa-
nies, such as SafeGraph and Advan, sourced these location data from many different apps and aggregated them to areal geographic
units (e.g., census block groups) to obtain aggregated mobility patterns. While the data are anonymous and do not contain identity in-
formation about individual mobile phone users, they reveal important spatial and temporal patterns of human movement behaviors
and visitation to various places, often called points-of-interest (POIs) [29–31]. Given the wide adoption of smartphones [32] and the
constant and passive data collection, anonymized mobile phone location data have facilitated disaster studies on fairly large popula-
tion sizes and in relatively fine temporal resolutions (e.g., impacts on individual days of a disaster).

Researchers have already leveraged anonymized mobile phone location data to study the impacts of Winter Storm Uri. Lee et al.
[33] used data from the company Mapbox to study changes in a Mapbox-defined human activity index, and used data from another
company SafeGraph to study changes in visitation patterns to two types of POIs, i.e., grocery stores and restaurants, in Harris County,
Texas. Chen et al. [34] also used anonymized mobile phone location data from SafeGraph to reveal the changes in visitations to all
POIs during the winter storm focusing on the same geographic area of Harris County. While these previous studies have shed valuable
insights, they quantified the disrupted human mobility patterns from a business perspective, i.e., how visits to different POIs, such as
grocery stores and restaurants, were affected by the winter storm. This study aims to investigate human responses to winter storms
from a residential perspective through the increase of home-dwelling time during the winter storm derived from mobile phone loca-
tion data. Home-dwelling time was used by researchers previously to study stay-at-home behaviors during the COVID-19 pandemic
[35,36]; however, it has been rarely used so far in winter storm research to directly investigate the constrained mobility of residents
due to heavy snow.

While home-dwelling time provides useful information for examining the disrupted life of people from a residential perspective,
the data may contain an increased level of uncertainty during the power outages triggered by the winter storm. It was reported that
many households experienced power outages ranging from a few hours to several days across Texas [2,3]. While typical smartphones
can last over several hours, they are unlikely to continuously work for several days; as a result, mobile phone location data during the
power-outage period may involve a higher level of uncertainty. With this consideration, we make use of nighttime light (NTL) remote
sensing images by learning from the literature [4,16,37,38] to assess the impacts of the winter storm during the power outages.

The objective of this study is twofold. First, we propose to integrate home-dwelling time data with NTL image data to assess the
impacts of Winter Storm Uri over three stages: the initial-hit stage, power-outage stage, and recovery stage. Details about the delin-
eation of these three stages are introduced in Section 2. Second, we investigate two research questions (RQs): RQ1: What were the im-
pacts of Winter Storm Uri on different communities in the three stages of this disaster? RQ2: Were there significant differences in the impacts of
this winter storm on population groups with different socioeconomic and demographic backgrounds? The remainder of this paper proceeds
as follows. Section 2 describes the study area, time period, and datasets used in this study. Section 3 presents our methods for assess-
ing the impacts of the winter storm on different communities and for examining impact disparities among different population
groups. Section 4 reports the obtained analysis results, and Section 5 discusses the results and their implications. Finally, Section 6
concludes this work.

2. Study area and data
2.1. Study area and time period

The study area of this work is Harris County, Texas, which contains the city of Houston and was severely affected by Winter Storm
Uri [39,40]. Following the literature [4,16,33], we use census tract as the geographic unit of our investigation, which provides a fairly
high spatial resolution for the analysis. Census tracts are used to approximate communities in this study, and we quantify the impacts
of the winter storm on different census tracts as a way to assess its impacts on different communities across the study area. Fig. 1
shows the boundaries of Harris County and the studied census tracts.

For the time period of this study, we examine three stages of this winter storm, which are: initial-hit stage (February 13–14),
power-outage stage (February 15–18), and recovery stage (February 19–28). These three stages are determined based on the overall
duration of the winter storm in Harris County as documented by NOAA [41] and the county-level power outage data obtained from
PowerOutage.us. Fig. 2 shows the percentages of households with power outages in Harris County in February 2021. As can be seen,
most power outages occurred between February 15–18, and these days are considered as the power-outage stage. The average per-
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Fig. 1. The boundaries of Harris County and the studied census tracts.

Fig. 2. The percentage of households with power outages in Harris County in February 2021 based on data from PowerOutage.us.

centage of power outages in this stage is 17.00%, and the highest percentage is 19.24% on February 16. These high percentages of
power outages can be partially attributed to the characteristics of the Texas power system. Texas operates its own power grid sepa-
rated from the rest of the country. Within this grid, some areas are even more isolated or have fewer connections to other power
sources, making them vulnerable to outages when local power generation is disrupted. Meanwhile, areas with older or less robust
power transmission and distribution systems were more susceptible to damages from ice and snow, and infrastructure failures in these
areas can lead to prolonged outages during extreme cold conditions.

2.2. Data
Home-dwelling time from anonymized mobile phone location data. The anonymized mobile phone location data used in this work

were obtained from the company SafeGraph which has been widely used in existing research [22,33–35]. The whole SafeGraph
dataset was collected from about 45 million mobile phones in the US, which cover over 10% of the total US population [42]. In this
study, we use such data to study the constrained mobility of people due to the winter storm. SafeGraph creates the home-dwelling
time data through two steps: (1) estimating mobile phone users’ general home neighborhoods based on their nighttime locations in
the past six weeks; (2) calculating the average time that users spend at their homes throughout a day within each block group [43].
The original data were at the census block group (CBG) level. In this study, we aggregate the data to the census tract level using
weighted average of the data from the corresponding CBGs within a census tract. More details about data processing are provided
in the Methods section.

Nighttime light images. For NTL images, we use VIIRS/NPP Gap-Filled Lunar BRDF-Adjusted NTL images (VNP46A2) from NASA
Black Marble as suggested in the literature [4,16,37,44,45]. These NTL images were collected from the Visible Infrared Imaging Ra-
diometer Suite (VIIRS) sensor onboard the Suomi National Polar-Orbiting Partnership (NPP) satellite. They provide high-quality mea-
surements of visible and near-infrared light from the ground with a temporal resolution of daily and a spatial resolution of 500 m
[46]. We aggregate NTL image data to census tracts using a weighted average approach.

Socioeconomic and demographic data. We use the socioeconomic and demographic data from the American Community Survey
(ACS) from the US Census Bureau to study the potentially disparate impacts of the winter storm on different population groups.
Specifically, we collected four socioeconomic and demographic variables previously identified as robust indicators of disaster re-
silience in the literature: (1) median household income [25,33], (2) percentage of majority group (non-Hispanic and non-Black)
[25,33], (3) median house value [47,48], and (4) percentage of households having vehicles [47,49]. Based on each attribute, we cat-
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egorize populations into five different groups by percentile, i.e., Q1 (0%–20%), Q2 (20%–40%), Q3 (40%–60%), Q4 (60%–80%),
and Q5 (80%–100%). These population groups allow us to examine the potentially disparate impacts of the winter storm based on
each of the four attributes. All socioeconomic and demographic data are prepared at the census tract level.

3. Methods
3.1. Overview of the study design

This research aims to answer two research questions: RQ1: What were the impacts of Winter Storm Uri on different communities in the
three stages of this disaster? RQ2: Were there significant differences in the impacts of this winter storm on population groups with different so-
cioeconomic and demographic backgrounds? To answer these two RQs, we design our research as Fig. 3 to examine these three stages in
a sequence. For each stage, we perform impact assessment followed by a disparity analysis. We use home-dwelling time from
anonymized mobile phone location data to assess impacts of the winter storm in the initial-hit stage and the recovery stage, and we
use NTL images to assess its impacts in the power-outage stage. For disparity analyses, we integrate the obtained impact assessment
results with socioeconomic and demographic variables to study the impact differences across various population groups. In the fol-
lowing, we provide more details about the used methods for data processing and analysis.

3.2. Impact assessment via home-dwelling time
We assess the impacts of Winter Storm Uri in the initial-hit stage and recovery stage using home-dwelling time from anonymized

mobile phone location data. The original data from SafeGraph provide median home-dwelling time of mobile devices residing in a
CBG on a daily basis. To obtain census tract level data, we first aggregate the original data from the CBG level to census tract level us-
ing a weighted average approach which is summarized in Equation (1):

hj =

n∑

i=1

Di hi

n∑

i=1

Di

, (1)

where hj is the estimated home-dwelling time for census tract j; n is the number of CBGs within census tract j; Di is the number of mo-
bile devices residing in CBGi; hi is the median home-dwelling time of CBGi from the original data. To further increase the robustness of
our analysis, we remove those census tracts that have fewer than 20 devices to reduce the potential bias that may be introduced by the
small numbers of devices in those census tracts. In total, 5 census tracts are removed and 781 census tracts are included in our analy-
sis.

Fig. 3. An overview of the study design.
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With home-dwelling time estimated for each census tract on each day, we establish home-dwelling time baselines for the analyzed
census tracts using their home-dwelling time between January 4 and February 7, 2021 (a total of five weeks). Such a baseline allows a
comparison between the stay-at-home time during the winter storm and the normal period without major external disruptions. Con-
sidering that the daily home-dwelling time may vary across the week (e.g., people tend to stay home longer on weekends than week-
days), we calculate the median stay-at-home duration for each day of the week for every census tract. Therefore, each census tract has
seven baselines of home-dwelling time representing each day of the week.

Next, we quantify changes in home-dwelling time during the initial-hit stage and the recovery stage of the winter storm by com-
paring the observed home-dwelling time during these two stages with the baselines under normal situations. Equation (2) is used to
calculate the changes in home-dwelling time in percentages:

cjd =

hjd − bjw

bjw

× 100, (2)

Where cjd refers to the percentage change of home-dwelling time of census tract j on day d; hjd is the home-dwelling time of census
tract j on day d; bjw is the baseline home-dwelling time of census tract j on the weekday w corresponding to day d. For example, if day d
is Saturday, February 13, 2021, bjw will be the baseline of census tract j on Saturday. With the percentage changes of home-dwelling
time calculated, we then average these change values for each census tract in the initial-hit stage and the recovery stage respectively
to quantify the impacts of the winter storm in these two stages.

3.3. Impact assessment via nighttime light images
While changes in home-dwelling time allow us to directly examine the constrained mobility of residents due to the winter storm,

mobile phone location data can be affected by the widespread power outages during the winter storm. To address this limitation, we
use NTL images to assess the impacts of the winter storm during the power-outage stage. Our analysis largely follows the work by
NASA Earth Observatory [50] and the literature [4] which compared the NTL image on February 16 (during the power outage period)
with the NTL image on February 7 (during normal time). Meanwhile, we also verify the selection of images on these two dates by ex-
amining the Mandatory Quality Flag data from the VNP46N2 NTL images covering the study area. Mandatory Quality Flag data con-
tain important data quality information for each pixel of the NTL images. It has four types of values indicating the quality of pixels:
value ‘00’ represents high quality persistent nighttime lights; value ‘01’ represents high quality ephemeral nighttime lights; value
‘02’ represents poor-quality (outlier, potential cloud contamination or other issues); and value ‘255’ represents no retrieval. A closer
examination of the quality values of NTL images between February 15 and February 18 reveals that the percentage of high quality
pixels (quality values of ‘00’ or ‘01’) in each of these four days are 0.02% (February 15), 99.04% (February 16), 0.00% (February 17),
and 0.03% (February 18), respectively. This suggests that only the NTL image on February 16 is satisfactory for examining the im-
pacts, since NTL images on the other days are largely affected by clouds and other issues. Similarly, we check the quality values of
NTL images before the winter storm between February 1 and February 12, and find that the image on February 7 has the highest per-
centage of high quality pixels (99.85%). Thus, we select NTL images on February 7 (for normal time) and February 16 (for power out-
ages) to assess the impacts of the winter storm.

To quantify NTL changes at the census tract level, we first mosaic the images covering the study area on February 7 and February
16 respectively using the software ArcGIS Pro. We then aggregate NTL radiance values from the NTL image pixels to census tracts us-
ing weighted average (weighted by the areas of NTL pixels that are counted within each census tract). With NTL values obtained at
the census tract level, we calculate the percentage of light loss for each census tract using Equation (3):

lj =
pj − oj

pj

× 100, (3)

where lj is the percentage of light loss of census tract j; pj is the NTL radiance value of census tract j on February 7 (i.e., baseline value
during normal time); and oj is the NTL radiance value of census tract j on February 16 (i.e., power outage time). It is worth noting that
the NTL images on these two dates were obtained around 1:00 a.m. Central Standard Time [4,16,50]. Thus, they reflect a snapshot of
the power outages at that time, and do not reflect power outages at other times (e.g., power outages during the daytime). Neverthe-
less, NTL images allow us to assess the winter storm's impacts at the time of capture.

3.4. Disparity analysis via Kruskal-Wallis test and Dunn's test
With impacts assessed for the initial-hit stage, power-outage stage, and recovery stage, we examine the potential disparities in the

impacts across different population groups. As described previously, we select four socioeconomic and demographic attributes, and
identify five population groups for each attribute based on percentiles. We group the obtained impact metrics to each of the five popu-
lation groups for each attribute, and use Kruskal-Wallis test and Dunn's test to examine the significance of the difference among the
five population groups.

Kruskal–Wallis test is a non-parametric statistical method for testing whether there exists a significant difference among multiple
groups. The null hypothesis is that the median values of all groups are equal, and the alternative is that at least one group's median is
different from the median of at least another group. In our study, the Kruskal–Wallis test can determine whether there exists at least
one group, from Q1 to Q5, that experienced significantly different impacts from the winter storm than at least another group. While
the Kruskal–Wallis test detects the presence of such differences, it does not identify the groups that are significantly different. Thus,
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we further utilize Dunn's test when the result of Kruskal–Wallis test is significant. By applying the Dunn's test to possible group pairs,
we can identify the population groups experiencing significantly different impacts and can obtain a fine-grained understanding of the
impact disparities based on the four socioeconomic and demographic attributes. We use the scipy package in Python to implement
Kruskal–Wallis test and scikit posthocs package in Python to implement Dunn's test, and the significance level is set as 0.05.

4. Results
4.1. An overview of the home-dwelling time changes and power outages caused by Winter Storm Uri across the three stages

We first provide an overview of the impacts of Winter Storm Uri obtained through our analyses, in Fig. 4. The blue lines represent
the percentage changes of home-dwelling time of the 781 individual census tracts in the study area, and the red line highlights the av-
erage percentage change of all census tracts. As can be seen, most census tracts had increased home-dwelling time during the initial-
hit stage of the winter storm, especially on February 14. During the power-outage stage between February 15 and 18, the home-
dwelling time change pattern became unclear suggesting the impacts of the power outages on mobile phone location data. In fact, the
blue lines of home-dwelling time exhibit a fragmented appearance resembling a “broken rope” during this stage, while the shapes of
the rope (i.e., the overall home-dwelling patterns) look much clearer in the other two stages. Thus, we resort to NTL images to assess
winter storm impacts during the power-outage stage. During the recovery stage, most census tracts gradually returned to their normal
home-dwelling time.

4.2. Impacts and disparities in the initial-hit stage
The impacts of the winter storm in the initial-hit stage are quantified based on home-dwelling time changes, which are visualized

in Fig. 5. A visual examination of the figure suggests that many census tracts in the central area of the county (i.e., the city of Houston)
have larger increases in home-dwelling time compared with census tracts in the peripheral areas of the county. To further quantify
the spatial pattern, we leverage the global Moran's I index which measures the overall spatial autocorrelation in the data. The value of
global Moran's I ranges between [−1,1], with negative values close to −1 indicating a strong negative spatial autocorrelation (i.e., dif-
ferent values tend to cluster together), and positive values close to 1 indicating a strong positive spatial autocorrelation (i.e., similar
values tend to cluster together). Here, the global Moran's I index is 0.033 (p = 0.083), suggesting no significant spatial autocorrela-
tion in the home-dwelling time changes. We also perform the local Moran's I analysis to see if any local clusters can be identified, and
the result is reported in Supplementary Fig. S1. No significant local cluster is identified by the local Moran's I in this initial-hit stage.
The mean and median home-dwelling time changes of all census tracts are 11.34% and 8.98%, respectively, suggesting an overall in-
crease of home-dwelling time during this stage compared with that under normal situations. Nearly half (43.66%) of the examined
census tracts have seen a home-dwelling time increase of over 10%, and 8.07% of the census tracts experienced an increase exceeding
30%.

Fig. 4. An overview of the impacts of Winter Storm Uri on Harris County over the three stages.
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Fig. 5. Impacts of the winter storm in the initial-hit stage quantified by the average percentage changes of home-dwelling time of census tracts.

Next, we look into the impacts of the winter storm in the initial-hit stage on different population groups. Fig. 6 shows the home-
dwelling time changes among the five population groups (Q1 to Q5) characterized by four attributes (data of each attribute are dis-
played as a subfigure). Different colors in the figure represent different population groups, i.e., Q1 (0%–20%), Q2 (20%–40%), Q3
(40%–60%), Q4 (60%–80%), and Q5 (80%–100%). In addition, p values from the Kruskal-Wallis tests are provided at the top of each
subfigure. As can be seen, there exist statistically significant differences among the five groups defined by all four attributes, with p
values less than 0.05. We can also visually observe from the figure that those population groups with lower median household in-
come, lower percentage of non-Hispanic and non-Black (i.e., higher percentages of minority population), lower median house value,
and fewer vehicles have larger increases in their home-dwelling time and thus higher extents of constrained mobility. The median in-
creases of the Q1 groups across the four attributes are all higher than 10%. By contrast, the median home-dwelling changes of Q2-Q5
groups are lower than 10%, although all groups have increased their home-dwelling time overall.

Given the significant results of the Kruskal-Wallis tests, we further perform the Dunn's test to identify the specific group pairs
whose home-dwelling time changes are different. The results are shown in Fig. 7. As can be seen, the home-dwelling time change of
Q1 is significantly different from those of Q3, Q4, and Q5 based on median household income, % non-Hispanic and non-Black, and %
households having vehicles. Group Q1 is also significantly different from groups Q2, Q3, Q5 based on median house value. Overall, these
results suggest that the winter storm had a higher extent of disruption on the mobility behaviors of the most vulnerable population
groups (i.e., the Q1 groups defined by the four attributes) than the other population groups during the initial-hit stage.

4.3. Impacts and disparities in the power-outage stage
For the power-outage stage, we use light loss derived from NTL images as an indicator of power outage to assess the impacts of the

winter storm. Fig. 8 shows the impacts at the census tract level. A visual examination of the figure suggests that the census tracts that
have major power loss (above 40%) are clustered in the central, western, northeast, and southern areas of Harris County. By further
calculating the global Moran's I index for the light loss, we obtain an index value of 0.585 (p < 0.001). This result confirms our visual
observation that there exists a significant and positive spatial autocorrelation in light loss, indicating that census tracts that have high
light losses tend to cluster together. The result of the local Moran's I analysis, reported in Supplementary Fig. S2, also shows multiple
major local clusters with high light losses. These results can be attributed to the rotating power outages enforced during the winter
storm, as documented by Ferman et al. [3] and Miller [2]. Specifically, census tracts located within the same power outage zones
would experience simultaneous power disruptions. The mean and median light losses of all census tracts in this power-outage stage
are 2.37% and 3.76%, respectively. While these percentage changes are smaller than the percentage changes in the initial-hit stage
(i.e., 11.34% and 8.98%), a direct comparison is not appropriate due to the use of different data types. However, impacts obtained
from NTL images in this stage allow us to compare across different census tracts and different population groups.



International Journal of Disaster Risk Reduction 103 (2024) 104339

8

R.Z. Zhou et al.

Fig. 6. Average percentage changes of home-dwelling time in the initial-hit stage on different population groups (*p-value<0.05; **p-value<0.01; ***p-value
<0.001).

Next, we examine impact disparity across the five population groups defined by the four socioeconomic and demographic attrib-
utes. The Kruskal-Wallis tests shown in Fig. 9 suggest that there exists significantly different light loss among the groups defined by
the attributes median household income (upper left) and median house value (lower left), with p values smaller than 0.05. We can see
that the Q5 groups, i.e., census tracts with high median household income and high median house value, experienced comparatively
higher light losses (a loss of 12.93% and 12.20% respectively). Kruskal-Wallis tests are insignificant for the population groups based
on the other two attributes, suggesting no significant difference in the light loss experienced by the population groups defined by the
other two attributes.

We further perform the Dunn's test on the population groups defined based on median household income and median house value (in
which Kruskal-Wallis tests are significant) to identify the specific group pairs that have significantly different light losses. The results
are shown in Fig. 10. As can be seen, group Q5 has significantly different light loss compared with Q2 and Q3 based on median house-
hold income, and the group Q4 also has significantly different light loss compared with Q3. For the groups defined by median house
value, groups Q5 and Q2 have significantly different light loss compared with group Q1. Note that the light loss is calculated based on
NTL images on February 16th at about 1:00 a.m. compared with images on February 7th at around the same time; thus, it provides a
snapshot of the light changes at that specific time and does not represent the light loss of the entire power-outage stage.
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Fig. 7. Dunn's test results for population group pairs in the initial-hit stage (*p-value<0.05; **p-value<0.01; ***p-value<0.001).

Fig. 8. Impacts of the winter storm in the power-outage stage quantified by light loss of census tracts derived from NTL images.

4.4. Impacts and disparities in the recovery stage
The impacts of the winter storm in the recovery stage are assessed using percentage changes in home-dwelling time, given that

power is mostly restored during this stage (as shown in the power-outage data in Fig. 2). The obtained impacts are provided in Fig. 11.
Overall, most of the census tracts (84.51%) only have minor increases in home-dwelling time. The mean and median home-dwelling
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Fig. 9. Light loss from NTL images in the power-outage stage on different population groups (*p-value<0.05; **p-value<0.01; ***p-value<0.001).

Fig. 10. Dunn's test results for population group pairs in the power-outage stage based on median household income and median house value (*p-value<0.05; **p-value
<0.01; ***p-value<0.001).
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Fig. 11. Impacts of the winter storm in the recovery stage quantified by the average percentage changes of home-dwelling time of census tracts.

time changes are 3.04% and 1.52%, respectively. These changes are much smaller than the home-dwelling time changes in the initial-
hit stage (i.e., 11.34% and 8.98%), suggesting that the life of people is gradually returning to normal, and the constrained human mo-
bility is being relieved. A visual examination of the map does not identify a clear spatial pattern in the home-dwelling time changes.
The global Moran's I index is 0.022 (p = 0.240), indicating no significant spatial autocorrelation. No significant local cluster is identi-
fied by the local Moran's I analysis in this recovery stage, as shown in Supplementary Fig. S3.

Next, we examine impact disparity across different population groups in this stage. The data visualization and Kruskal-Wallis test
results are shown in Fig. 12. The results of the Kruskal-Wallis tests suggest no significant discrepancy in the home-dwelling time
changes of different population groups based on all four attributes (p values are all larger than 0.05), indicating that no group has a
significantly different home-dwelling time change than other groups during the recovery stage. Visual interpretation suggests that
there are slight rises in median home-dwelling time for all population groups compared with their normal home-dwelling time. How-
ever, the increases are overall similar across different groups. Given the insignificant results from the Kruskal-Wallis tests, we do not
further perform Dunn's tests.

5. Discussion
The results of our analyses have revealed the impacts of Winter Storm Uri, in the forms of changed home-dwelling time and power

outages, over three stages and its impact disparities on different population groups. To answer RQ1: What were the impacts of Winter
Storm Uri on different communities in the three stages of this disaster, our study has found that there was a relatively large increase of
home-dwelling time (an average increase of 11.34%) among the studied census tracts in the initial-hit stage; there was an average
light loss of 2.37% based on NTL images (the percentage change based on NTL cannot be directly compared with the percentage
change based on home-dwelling time); and there was a relatively small increase of home-dwelling time (an average increase of
3.04%) in the recovery stage. From a spatial perspective, census tracts in the central area of Harris County (i.e., within or close to the
City of Houston) had higher increases in home-dwelling time than census tracts in the peripheral areas in the initial-hit stage and the
recovery stage; during the power-outage stage, census tracts in both central and peripheral areas suffered from major power loss,
demonstrating significant spatial clustering patterns likely related to the rolling blackouts implemented in this winter storm. To an-
swer RQ2: Were there significant differences in the impacts of this winter storm on population groups with different socioeconomic and demo-
graphic backgrounds, our study has improved our understanding of impact disparities across the three stages based on the analyzed so-
cioeconomic and demographic attributes. In the initial-hit stage, population groups in Q1 (i.e., the most vulnerable population
groups) in terms of median household income, percentage of non-Hispanic and non-Black population, median house value, and per-
centage of households having vehicles suffered from higher extents of constrained mobility than most other population groups. In the
power-outage stage, population groups in Q5 in median household income and median house value were affected by higher extents of
light loss based on a snapshot of NTL images on February 16th at around 1:00 a.m. This result suggests that the rotating power out-
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Fig. 12. Average percentage changes of home-dwelling time in the recovery stage on different population groups (*p-value<0.05; **p-value<0.01; ***p-value
<0.001).

ages were likely intended to be fair, although communities with older power grids and less robust power infrastructures could be af-
fected more for the entire power-outage stage. In the recovery stage, no significant disparity was observed across the different popula-
tion groups based on the four studied socioeconomic and demographic attributes.

Our study complements the existing literature on Winter Storm Uri in two aspects. First, we provide a residential perspective for
understanding the impacts of the winter storm. While mobile phone location data have already been used in previous research on
Winter Storm Uri [33,34], existing studies generally take a business perspective by examining how visits to different POIs, such as
restaurants, grocery stores, and shopping centers, are disrupted by the winter storm. Our work directly assesses the constrained mo-
bility of residents due to the winter storm by examining home-dwelling time changes, and therefore provides a complementary per-
spective on how the normal mobility of residents was disrupted. Considering that home-dwelling time data can be affected by the
power outages, we integrate NTL images into our study and utilize NTL images to fill the gap of the home-dwelling time data. Second,
our study reveals the impacts of Winter Storm Uri and its impact disparities over three stages of this disaster. Existing research has ei-
ther examined the winter storm as one whole time period or focused on only a few important days of the storm [4,33,34]. Our study,
therefore, provides results with a finer temporal granularity and helps understand the different impact disparities over the three
stages of the winter storm.

This study has potential implications for emergency management policies and future disaster research. The revealed disparate im-
pacts of the winter storm on different population groups could inform emergency management policies by pinpointing the communi-
ties severely affected by the storm, identifying vulnerable population groups, and improving the allocation of emergency resources.
This study, along with other existing research on Winter Storm Uri [4,33,34], also further highlights the limitations of the current
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Texas power grid under extreme cold conditions, and could inform future efforts and policies on improving power generation, power
distribution, and other aspects of the power infrastructures. For future disaster research, this study provides a methodological frame-
work on integrating mobile phone location data and nighttime light images, which can be used in future research to investigate the
multifaceted impacts triggered by a disaster. As one of the early studies taking a residential perspective to examine human responses
to winter storms, this work also generates baseline information that can be compared with in future studies regarding the impacts of
disasters on the mobility of residents and the subsequent recovery process.

Several limitations are worth noting. First, the impact assessment during the power-outage stage is based on the NTL images on
February 16 at about 1:00 a.m., and does not reflect the electricity disruption of the entire power-outage stage. NTL images on the
other days of the power-outage stage cannot be used unfortunately, due to insufficient data quality caused by clouds and other noise
issues. While our analysis based on NTL images on February 16 does provide a snapshot of the impacts of the winter storm, a more
comprehensive assessment could be conducted when more detailed power-outage data become available. We note that the power out-
age data obtained from PowerOutage.us is at the county level and are not detailed enough for examining power outages of spatial
units smaller than counties (e.g., census tracts in this study). Second, while we use mobile phone location data only during the initial-
hit and recovery stages when power was available for most households, it is possible that some mobile phones might not recover
quickly after the power outages. These mobile phones could have some effects on the analysis results in the recovery stage and could
be further investigated. Third, our impact disparity analyses are based on four socioeconomic and demographic attributes only, i.e.,
median household income, percentage of non-Hispanic and non-Black population, median house value, and percentage of households having
vehicles. These four attributes have been widely adopted in previous research to study vulnerable populations under the context of
natural disasters [25,33,47,49]. Nevertheless, other attributes, such as percentage of elderly population and percentage of households
with children, could also be investigated to further understand the impact disparities across different population groups. The same
methodological framework and statistical tests used in this research could also be utilized to study these other socioeconomic and de-
mographic attributes in future.

6. Conclusions
The 2021 Texas winter storm, or Winter Storm Uri, was a catastrophic event that severely impacted the lives of millions of people.

This study examines the impacts of this winter storm and its impact disparities in three stages of this disaster: the initial-hit stage,
power-outage stage, and recovery stage. We leverage home-dwelling time information from anonymized mobile phone location data
to study the constrained mobility of people due to the winter storm in the initial-hit stage and the recovery stage. Considering that
mobile phone location data may be affected by power outages, we further integrate NTL images into our analyses to assess the im-
pacts during the power-outage stage. We investigate the impact disparities of this winter storm on different population groups by four
socioeconomic and demographic attributes using statistical tests. Our analysis results provide detailed information about the impacts
of this winter storm on different census tracts in Harris County over the three stages. We also find disparate impacts of this winter
storm on different population groups, especially on vulnerable population groups during the initial-hit stage. Overall, this work offers
a residential perspective at a fine temporal granularity for improved understanding of the disparate impacts caused by Winter Storm
Uri on local communities.
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