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SUMMARY

Attention filters sensory inputs to enhance task-relevant information. It is guided by an “attentional template”
that represents the stimulus features that are currently relevant. To understand how the brain learns and uses
templates, we trained monkeys to perform a visual search task that required them to repeatedly learn new
attentional templates. Neural recordings found that templates were represented across the prefrontal and
parietal cortex in a structured manner, such that perceptually neighboring templates had similar neural rep-
resentations. When the task changed, a new attentional template was learned by incrementally shifting the
template toward rewarded features. Finally, we found that attentional templates transformed stimulus fea-
tures into a common value representation that allowed the same decision-making mechanisms to deploy
attention, regardless of the identity of the template. Altogether, our results provide insight into the neural
mechanisms by which the brain learns to control attention and how attention can be flexibly deployed

across tasks.

INTRODUCTION

Cognitive control focuses on the stimuli, thoughts, and actions
that are relevant to the current task. In particular, feature-based
visual attention selects those stimuli that have task-relevant fea-
tures. This is an everyday experience, e.g., we attend to yellow
when hailing a taxicab in New York City. Feature-based attention
is guided by an “attentional template” that contains the set of
stimulus features that are relevant for the current task.'™ Atten-
tional templates are represented in the prefrontal and parietal
cortex®®: these regions are active when attention shifts toward
specific features® " and lesioning (or inactivating) these regions
impairs featural attention.®'2~'¢

As the task changes, so does the information that is relevant.
The brain must flexibly adapt, continuously learning and re-
learning the optimal attentional template for each task. For
example, one’s attentional template for finding taxis must be up-
dated to beige in Berlin and red in Costa Rica. The neural
mechanisms for learning attentional templates are largely un-
known. One hypothesis is that templates are learned through
reinforcement learning. Consistent with this, psychophysical
studies have shown that reward can be used to learn new atten-
tional templates.””"2° Furthermore, rewarded stimuli attract
attention,?*?° and many value-learning studies are thought to
also measure changes in attention toward rewarded stimuli.*®

This makes sense; when learning a new task, rewarded stimuli
or features are likely task-relevant and should be attended. How-
ever, most neurophysiological studies of attention provide the
subjects with the template, and so we do not yet know how re-
wards shape attentional templates during learning.

Once learned, the attentional template influences sensory pro-
cessing in order to select task-relevant stimuli.® This is thought to
occur in a top-down manner, with templates in the prefrontal and
parietal cortex biasing sensory representations across the
brain.?’~** By strengthening the neural representation of task-
relevant features, attentional templates improve discrimination
and influence decisions.®>**° Yet, it remains unclear how atten-
tion rapidly reconfigures sensory processing and decision-mak-
ing as the attentional template flexibly changes between tasks.

To better understand how attentional templates are learned
and flexibly bias decision-making, we trained monkeys to
perform a visual search task that required repeatedly learning
new attentional templates in a continuous stimulus space (color).
Neural recordings in the prefrontal and parietal cortex found
attentional templates were represented in both regions. Tem-
plate representations were structured such that perceptually
similar templates had similar neural representations. When the
behavioral task changed, the attentional template was learned
incrementally: on every trial, the neural representation of the
template shifted toward rewarded features. Finally, we found
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Figure 1. Attentional template learning task and behavior

(A) (Left) Example trial. Randomly colored target stimuli were presented at three locations (randomly chosen out of four possible locations). Monkeys made a
saccade to a target to “choose” it and receive the associated reward. (Right) Reward amount (number of drops; radial axis) varied as a function of the angular

distance in color space between the chosen color and the template.

(B) Example trial sequence. After monkeys reached a learning criterion (see STAR Methods), the template color changed. This switch was uncued.
(C) Reward magnitude (radial axis) associated with a stimulus color (angular axis) changes when template changes.
(D) Sequence of templates for an example session. Template color was pseudo-randomly chosen (see STAR Methods).

(E) Learning curves for monkey B (top, 69 blocks) and monkey S (bottom, 102 blocks). The probability to choose the current best target increased after the
template switch (green), whereas the probability of choosing the target that would have been best for the previous template decreased (pink). Shaded areas
represent SEM. Solid and dashed lines represent the monkey’s and model’s behavior, respectively. Gray dashed line indicates chance.

(F) Mean absolute angular distance between the animal’s estimated template (the color with the highest expected value according to the model) and the true
template color decreased with learning (mean + SEM across blocks in 30 bins of normalized block length).

(G) Examples of expected value distribution during learning. Brighter colors indicate higher expected value, according to the model. Previous and current
templates are indicated with dashed lines. White marker indicates the peak of the expected value function on each trial. After a switch in template, the estimated
template either (top) smoothly drifted toward the current template or (bottom) reset to uniform before reemerging at the new template. Resets (red line) were

triggered by a large RPE, which occurred after a large change in the template color (Figures S1D and S1E). See also Figures S1 and S2.

that the attentional template transformed stimulus representa-
tions into a generalized value representation, allowing the animal
to find the target stimulus, regardless of the stimulus’ color or
the current attentional template. Altogether, our results provide
insight into the neural mechanisms by which the control of
attention can adaptively be learned and flexibly deployed across
tasks.

RESULTS
We trained two monkeys to perform a visual search task, where
they repeatedly learned new attentional templates. On each trial,

the monkeys searched a visual array of three randomly colored
stimuli (Figures 1A and 1B; see STAR Methods for details).
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They selected one stimulus by making an eye movement to it
and then received the associated reward. The amount of reward
associated with each stimulus was inversely proportional to the
angular distance between the color of the stimulus and the tem-
plate color (Figure 1A, right; smaller distance equaled greater
reward). Therefore, on each trial, the animals used their atten-
tional template to search the array of stimuli in order to identify,
and select, the stimulus with the “best” color while ignoring the
two distracting stimuli. Overall, the monkeys performed the task
well, monkey B/S selected the best available stimulus on 65%/
67% of trials.

During each session, the template color changed repeatedly
(Figures 1B-1D). The monkeys were never explicitly instructed
as to the identity of the template color or when it changed.
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Instead, they learned through trial and error, using reward as
feedback to update their internal model of the template. Both
monkeys quickly learned new templates: the proportion of trials
in which the animal chose the best stimulus increased over the
first dozen trials (Figure 1E, solid green; performance was above
chance after 15/7 trials for monkey B/S, p < 0.05, Bonferroni cor-
rected one-sided binomial test). As the animals learned the new
template, they forgot the previous one, reflected in a decreasing
proportion of trials choosing the stimulus closest to the previous
template (Figure 1E, solid pink).

On average, the template was constant for a block of ~100 tri-
als (96 + 53/88 + 50 attempted trials, mean + standard deviation,
for monkey B/S, full range was 30-306 trials). The change in tem-
plate was not cued and occurred when the animal reliably chose
the best available color (performance > 80%/85% for 30
consecutive trials for monkey B/S). This allowed the monkeys
to learn between 5 and 16 different templates per session (see
Figure 1D for an example succession of templates; 8/9 sessions
and 8.6 + 2.7/11.3 + 3.4 templates per session for monkey B/S).
Because the animals learned several templates, a stimulus
feature that was the target on one trial could be a distractor on
another. So, the animal had to use attention to search the array
for the currently best stimulus on each trial.

To model the monkey’s ability to learn an attentional template,
we extended the standard Q-learning reinforcement learning
model to approximate a continuous circular value function®” (Fig-
ure S1A, see STAR Methods for details on validation). In this model,
the attentional template was represented by the expected value of
colors across the color wheel. On each trial, the model selected
the stimulus with the largest expected reward. After receiving
reward feedback, the model updated its estimated value function
such that colors with a positive reward prediction error (+RPE;
i.e., received more reward than expected) incrementally increased
their value, whereas colors with a negative RPE (—RPE; i.e.,
received less reward) incrementally decreased their value (Fig-
ure S1B). In this way, the model captured the monkey’s ability to
represent an attentional template, apply it to the stimulus array,
and update the template based on feedback.

The model fit the monkey’s behavior well (Figure 1E, dashed;
likelihood of chosen stimulus was 0.5826 + 0.2635/0.5858 +
0.2686 for monkey B/S). During learning, the probability that
the animal and model chose the best option was highly corre-
lated (p < 0.001, r(80) = 0.8908/0.8697 for monkey B/S). Similarly,
the model captured the animal’s forgetting the previous template
(p < 0.001, r(80) = 0.8687/0.8403 for monkey B/S). The model
also suggested that monkeys used two different strategies to
learn a new attentional template after a change (Figures S1C-
S1F). Following a small change in the template color (< 7/2),
the animal incrementally updated their template (example shown
in Figure 1G, top). However, following a large change in template
color (>m/2), the model predicted that the animals “reset” their
attentional template to be uniform across colors before re-
learning a new template (Figure 1G, bottom, see STAR
Methods). This model fit behavior better than alternative models
that did not rely on incremental learning (Figures S1G and S1H).
The model also captured how choices were influenced by inter-
actions between stimuli and the animal’s uncertainty about the
template (Figure S2).
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Overall, the animal’s behavior suggests that monkeys incre-
mentally learned an attentional template and then used this tem-
plate to guide their search and their decision to select a stimulus.
With this foundation, we next aimed to understand how atten-
tional templates are represented, updated, and used to guide
decisions in the brain.

Attentional templates were distributed across the
parietal and prefrontal cortex

To understand how attentional templates are represented, we
recorded from the prefrontal cortex, including lateral prefrontal
cortex (LPFC, 492 neurons) and the frontal eye fields (FEF, 231
neurons), and parietal cortex (lateral intraparietal cortex, LIP,
167 neurons; Figure 2A). We leveraged the Q-learning behavioral
model to estimate the animal’s latent representation of the tem-
plate on each trial, taken as the color with the maximum ex-
pected value. Neurons in all three regions varied their activity
as a function of the estimated template (Figures 2B and S3A;
see Figure S3B for schematic of model variables). Across the
population, a significant number of neurons smoothly encoded
the color of the estimated template (Figure S3B; 30.54%/
40.26%/30.08% in LIP/FEF/LPFC, all p < 0.002, permutation
test). Given the structure of the task, this is the simplest way to
represent the attentional template —one merely selects the color
that is closest to the template. It is also consistent with animals
maintaining a single attentional template.’™®

In addition to the estimated template, a subset of neurons
smoothly represented the expected value of individual colors
(Figure S3B; 29.95%/16.02%/24.59% of neurons in LIP/FEF/
LPFC, all p < 0.002; see STAR Methods for details on model
comparison). Such a continuous representation of expected
value could allow one to estimate the expected value of any in-
dividual stimulus and, thus, calculate the RPE. Finally, a small
proportion of neurons encoded the mean value of the trial or
the chosen color (Figure S3B). Here, we focus our analyses on
the representation of the estimated template, as it was the
most strongly represented in all three regions (Figure S3B) and
was the most compact representation of the template.

First, we were interested in understanding how the represen-
tation of the estimated template evolved during learning.
Although all three regions represent the estimated template,
one might expect differences during learning (e.g., early repre-
sentation in LPFC and later representation in LIP). To track the
evolution of template information, we trained a multi-class clas-
sifier to decode the estimated template from the neural popu-
lation. Three linear classifiers were trained to discriminate
one-third of the color wheel from the other two-thirds (Fig-
ure 2C, insets). All three classifiers decoded the estimated tem-
plate on the majority of withheld trials in all three regions (Fig-
ure 2C for LPFC). The output of these classifiers was then
fed into a shallow feedforward neural network to create a
multi-class classifier (see STAR Methods). The multi-class clas-
sifier consistently decoded the template throughout learning in
all three regions (Figure 2D, all p < 0.01, both across and within
progression levels of learning, see STAR Methods). Reflecting
its distributed nature, we did not find any differences in the
timing or magnitude of the encoding of the estimated template
across regions (Figures 2D and 2E).
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Figure 2. Distributed representation of the estimated attentional template in the parietal and frontal cortex

(A) Recording sites.

(B) Example LIP and FEF neurons encoding template. Radial axis is firing rate (mean + SEM, dashed lines) across trials in a —600- to 300-ms window around the
onset of the targets. Angular axis is color of estimated template (bin size = /6, smoothing of three bins).

(C) Neuron responses in LPFC, projected onto the vector normal to the hyperplane for the three classifiers trained to discriminate pink, brown, and blue templates
(same time window as B). Insets show schematic of decoder. Ellipses represent the mean (central dot) and the SEM (shaded) of the projection across 100
bootstraps. Color indicates the estimated template on withheld trials.

(D) Classification accuracy of the estimated template in (top) LIP, (middle) FEF, and (bottom) LPFC, for each third of the block, computed on withheld trials. Multi-
class classifier was either trained (left half) across all or (right half) within each progression level in the block. Violin plot*®: central white dot is the median, thick
vertical gray bar represents the 25" to 75™ quartile, and area represents the kernel density estimate of the data. *p < 0.01, ***p < 0.001.

(E) Template representations are stable within a trial in (top) LIP (146 neurons), (middle) FEF (216 neurons), and (bottom) LPFC (475 neurons). Left: time course of
response of neural population, projected into subspace of the second, third, and fourth principal component. Color indicates estimated template. Gray triangle
indicates onset of targets. Green triangle indicates approximate time of response. (Right) classification accuracy of the estimated template in 300 ms windows
either trained on the average activity in the full window (same as D and E) or trained for each window separately (100 bootstraps, mean and 95% confidence
interval). Bar thickness above the data indicates significance level: thin, p < 0.01 uncorrected; moderate, p < 0.05 Bonferroni corrected across time (13 time
points); and thick, p < 0.01 Bonferroni corrected. See also Figure S3.

The representation of the estimated template was stable dur-
ing the trial. Plotting the neural activity in a low-dimensional
space showed that temporal dynamics within the trial were
largely independent from the estimated template representation
in the LPFC and FEF (Figure 2E, left column, and S3D). Consis-
tent with this, classifiers trained to decode the estimated tem-
plate during one time point of the trial (e.g., during the fixation
period) could decode estimated template representations later

4 Cell 187, 1-14, March 14, 2024

in the trial (e.g., during response) in the FEF and LPFC (Fig-
ure S3E). In the LIP, the coding of the estimated template was
more dynamic, and the decoding accuracy increased specif-
ically before and around the onset of the targets (Figure 2E, right
column, and S3E). However, in all three regions, classifiers
trained on neural activity averaged over the trial’s entire time
period could decode the estimated template at any individual
time period (Figure 2E, right column, all p < 0.01; differences
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(A) Representation of estimated templates in neural population. The population response to six template colors (independent bins, marker indicates color) into a
two-dimensional space (defined by multidimensional scaling). LIP, 133 neurons; FEF, 216 neurons; LPFC, 459 neurons.
(B) Schematic of decoding approach. Violin plot shows mean Z scored circular distance between the neural and behavioral estimated template on withheld trials

for each session. **p < 0.001.
(C) Schematic of properties of a structured representation.

(D) Circular mean neural and behavioral estimated template across blocks, color is that of the mean behavioral estimated template (r = 0.3015, p < 0.001, 171
templates). Thick dashed line indicates the circular correlation; as the line lies below the diagonal, this suggests a bias in templates, possibly due to biases in color

perception and/or memory.*®

(E) Histogram of the circular distances between mean neural and behavioral estimated templates across blocks (r = 0.1092, p < 0.001, 14,535 pairs). See also

Figure S4.

between training across and within each time period were all
p > 0.15). This suggests that dynamics in neural activity during
the trial were orthogonal to the representation of the template
(except for in the LIP, Figure 2E).

Together, our results suggest that attentional templates were
stably represented across the frontal and parietal cortex, even
as the animal learned (and relearned) new attentional templates.
The stability of the representation may be important for allowing
the template to guide attention on every trial. Next, we were
interested in understanding the geometry of the template
representation.

Neural representation of attentional templates was
structured

As with many sensory features, neurons in the sensory cortex
that are selective to color tend to have smooth tuning curves, re-
sponding similarly to similar colors.*® At the level of the neural
population, this smoothness creates a structured geometry
such that perceptually similar colors are represented in similar
ways in the brain.*>*" However, it is unknown whether control
representations have similar structure.

Structured template representations could facilitate general-
ization, allowing for interpolation of new templates.’® An alter-
native hypothesis is that cognitive control representations are
high dimensional*® and so a unique neural representation is
learned for each attentional template (regardless of perceptual
similarity). Unique representations may be easier to learn, as
template representations are not constrained and high-dimen-
sional representations would avoid interference between
templates.**

To begin to understand how template representations related
to one another, we projected the neural representation of six
different template colors in the prefrontal and parietal cortex
into a reduced dimensional space (Figure 3A). Qualitatively, tem-
plate representations reflected the semantic order of color

space, suggesting that templates were represented in a struc-
tured manner in the prefrontal and parietal cortex.

To quantify the structure, we revised the template classifier
used above to predict the angle of the estimated template along
the color wheel (Figure 3B, see STAR Methods for details). Ses-
sion-specific classifiers were trained on the activity of simulta-
neously recorded neurons from all three regions (increasing sta-
tistical power). We then applied the classifier to the first 35 trials
of a new template color (all withheld from training) to test two
predictions of a structured representation (Figure 3C).

First, if the neural representation of the template is structured,
then it should match the behavioral template (which was struc-
tured by construct). Indeed, the neurally estimated template
was correlated with the estimate of the behavioral model
(r(5,838) = 0.1788, p < 0.001, circular correlation) and the dis-
tance between the neural and behavioral template was signifi-
cantly less than expected by chance (Figure S4A, average abso-
lute circular distance = 1.2662, p < 0.001, permutation test). This
effect was consistent across sessions (Figure 3B; t(16) =
—4.7694, p < 0.001, one-sided t test across sessions). Further-
more, the neutrally estimated color was correlated with the
behaviorally estimated color across the spectrum of different
templates (Figure 3D, r(171) = 0.3015, p < 0.001, circular corre-
lation across blocks; Figure S4B, absolute circular distance =
1.1419, p < 0.001, permutation test). Finally, consistent with
the neural template reflecting structure in the behavioral tem-
plate, the decoding error of the neural model increased when
the animal was uncertain about the attentional template (i.e.,
when the expected value function became more uniform, losing
structure, Figures S4D and S4E).

Second, a structured neural representation should capture the
semantic relationship between templates—templates close in
perceptual space should also be close in neural space (Fig-
ure 3C, lower). Consistent with this, the distance between pairs
of neutrally estimated templates predicted the distance between
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Figure 4. Neural attentional templates are incrementally updated in the structured space
(A) (Left, top) Schematic of predicted change in template toward chosen color following a positive reward prediction error (+RPE). (Left, bottom) Circular mean of
behavioral and neural updates toward the chosen color across sessions (all on withheld trials). (Right) Same as left, but for —RPEs, where the estimated template

moves away from the chosen color.

(B) Circular mean of neural update toward the chosen color (+ SEM) after +RPE as a function of the size of the behavioral update (865, 268, and 170 trials in each
bin). Inset shows violin plot of mean Z scored distance between the neural and the behavioral update toward the chosen color across validation trials for each

session.

(C) (Top row) mean (left) behavioral and (middle) neural update magnitude (+ SEM) as a function of magnitude of +RPE (10 bins, smoothing of 4 bins) across all
validation trials following +RPE. (Right) Violin plot of mean Pearson correlation between the update magnitude and the magnitude of +RPE across validation trials
for each session. (Bottom row) same as top row, but for absolute distance between the estimated template before the update (i.e., at n-1) and the chosen color.

For all panels, *p < 0.05, **p < 0.01, **p < 0.001. See also Figure S4.

behaviorally estimated templates (Figure 3E; see Figure S4F for
all pairs; r(14,535) = 0.1092, p < 0.001, circular correlation; Fig-
ure S4C, absolute circular distance = 1.4267, p < 0.001, permu-
tation test).

Overall, our results suggest that frontoparietal cortex repre-
sents the monkeys’ internal model of the current attentional tem-
plate in a structured fashion, with perceptually related templates
represented in similar ways. Next, we were interested in under-
standing how the neural representation of the attentional tem-
plate was learned.

Attentional templates in the frontal and parietal cortex
were learned through incremental updates

Previous work has found that the brain uses a variety of experi-
ence-driven (unsupervised),’® predictive (semi-supervised),*’
and reward-driven (supervised),*®*° mechanisms to learn neural
representations for perception and action. However, relatively lit-
tle is known about how representations controlling attention are
learned.

The animal’s behavior suggests that templates may be learned
using reinforcement learning in a continuous space (Figure 1E). If
true, then this makes several predictions about how the attentional
template should change in response to feedback. First, when the
animal receives a reward that is higher than expected (+RPE),
then the template representation should shift to be more similar
to the chosen color. This effect was observed in the animals’
behavior across all trials (circular mean behavioral update was to-
ward the chosen color; t(2,945) = 15.0389, p < 0.001, one-sided
t test). This effect was also consistent across individual sessions
(Figure 4A; t(16) = 15.8923, p < 0.001, one-sided t test). A similar
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effect was seen in the neural representation of the template (circu-
lar mean neural update was toward the chosen color; t(2,945) =
4.2168, p < 0.001, one-sided t test). Again, this effect was consis-
tent across sessions (Figure 4A; t(16) = 3.2355, p = 0.0026, one-
sided t test). Furthermore, the behavioral update predicted the
neural update (p = 0.014, by permutation test on absolute circular
distance), an effect that was consistent across sessions (Figure 4B,
t(16) = —3.3410, p = 0.0021, one-sided t test).

A second prediction is that, if the neural representation of the
template followed a reward-driven update rule, then the change
in the representation should be larger when (1) the animal
received a greater magnitude +RPE and (2) the distance be-
tween the previous template and the (rewarded) chosen color
was greater. As predicted, the behavioral update depended on
the +RPE magnitude (Figure 4C, top left; r(2,945) = 0.3676,
p < 0.001, one-sided Pearson correlation), an effect that was
consistent across sessions (Figure 4C, top right; t(16)
17.0713, p < 0.001, one-sided t test on correlation coefficients).
Although weaker, a similar effect was seen for neural updates:
the overall effect was trending (Figure 4C, top-middle;
r(2,945) = 0.0243, p = 0.0939, one-sided Pearson correlation)
but the effect was consistent on individual sessions (Figure 4C,
top right; t(16) = 2.2864, p = 0.0181, one-sided t test). Second,
as predicted, the update magnitude was related to the distance
between the template and chosen color for both behavioral and
neural updates (Figure 4C, bottom; behavioral: r(2,945) = 0.2941,
p < 0.001; neural: r(2,945) = 0.1422, p < 0.001, one-sided Pear-
son correlation). Again, these effects were consistent across
sessions (Figure 4C, bottom right; behavioral: t(16) = 10.3213,
p < 0.001; neural: t(16) = 7.1118, p < 0.001, one-sided t test).
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Finally, in accordance with the template update being influ-
enced by both +RPEs and the distance between template
and chosen color, the greatest changes in template representa-
tions were observed after a reset, when learning was greatest
(Figure S4G).

For negative RPEs (—RPE), the behavioral model showed a
small shift in the template away from the chosen color (Figure 4A;
1(2,669) = 14.3303, p < 0.001; across sessions: t(16) = 7.4167,
p < 0.001, one-sided t test; effect was ~10x smaller
than +RPE). Interestingly, we did not observe this in the neural
data (1(2,669) = —2.1542, p = 0.9843; across sessions: (16) =
0.3715, p = 0.3576, one-sided t test). And, unlike +RPEs, the
magnitude of the update in the neural template was not related
to —RPE magnitude nor distance between template and chosen
color (Figure S4H). We do not think that the lack of update
following a —RPE was because the learning rate was different:
models that included different learning rates for +RPE and
—RPE did not fit the behavior better than the simpler model
with one learning rate (ABayesian information criterion [BIC] =
467/406 for monkey B/S, see STAR Methods).

Altogether, these results suggest the representation of the
estimated template in the frontoparietal cortex was learned
through incremental updates following each trial. By repeatedly
shifting the template toward stimuli with +RPEs, the template
could evolve toward the optimal template color for that block
of trials.

The prefrontal and parietal cortex represented the value
of individual stimuli in a way that generalized across
templates

Our task requires combining the attentional template with sen-
sory information to decide which stimulus to select. There are
two hypotheses for how templates could guide decisions. First,
in a “decision modulation” model, the decision boundary
changes for each template, rotating to optimally discriminate
stimuli close/far from the template boundary (i.e., those with
high/low value; Figure 5A, left). The decision boundary could
be learned incrementally, similar to the template, or chosen
from a set of pre-determined decision boundaries.’® Alterna-
tively, in a “generalized value” model, the attentional template
acts on sensory representations to transform them into generic
“value” signals (Figure 5A, right). This would require re-mapping
stimulus responses for every template (e.g., both “pink” when
the template is “red” and “teal” when it is “blue” are high value),
but would have the advantage of only needing one, stable deci-

Cell

sion boundary.®'™>® Several lines of evidence support the sec-
ond hypothesis.

First, the value of the stimulus chosen by the animal was
represented in a stable manner that generalized across tem-
plates. A classifier trained to discriminate between chosen
stimuli with high and low expected values performed signifi-
cantly above chance in all three regions (Figure S5A; this con-
trols for movements). Critically, the same classifier performed
above chance on trials with a different attentional template
(Figure 5B). In fact, the classifier performed equally well on
the template it was trained on and when tested on different
templates (difference was not significantly different from
zero, p = 0.24, uncorrected, for all three regions, permutation
test). Projecting attentional template and value representations
into the same subspace reveals how this is the case: template
information and value are represented independently from one
another (Figure S5G). Similar results were found when control-
ling for potentially confounding variables, such as reward (Fig-
ure 5C; measured with split-half reliability,’* see STAR
Methods for details). Chosen value representation occurred
immediately after the presentation of the stimuli and preceded
the reward representation (Figure 5C, p = 0.001 in FEF and
p = 0.044 in LPFC, effect in LIP was weaker, p = 0.065, all
Bonferroni corrected).

Second, in support of the generalized value model, the colors
of the stimuli were not encoded in any of our recorded regions.
Decoders trained on the neural population failed to decode the
color of the stimulus at any location (Figure S5B) and failed to
decode the color of the selected stimulus (Figure S5C, control-
ling for the estimated template color). This is consistent with
very few or no individual neurons representing the color of the
chosen stimulus (Figures S3B and S3C). In line with a re-map-
ping of the sensory representation for each attentional template,
we found a weak representation of the chosen color within each
template (Figure 5D; p = 0.03 Bonferroni corrected in the LIP, and
trending in the FEF and LPFC, p = 0.02/p = 0.03 uncorrected, see
STAR Methods for details). But these decoders did not gener-
alize to different templates (Figure 5D, p > 0.42 uncorrected
for all three regions; decoding was worse than within the same
template, p = 0.018 Bonferroni corrected in the LIP, p = 0.007
and p = 0.016 in FEF and LPFC, uncorrected). If anything,
when comparing across templates, color decoding was below
chance, as would be expected if the chosen color re-mapped
when the template changed (as predicted by the generalized
value model).

Figure 5. Re-mapping stimuli to support a generalized decision-making process across templates

(A) Schematic of two hypotheses for how the attentional template supports decisions: (1) animals learn template-specific decision boundaries or (2) templates
transform sensory information into a generalized value signal, allowing for a fixed decision readout.

(B) Classification accuracy (with 95% confidence interval) of the chosen value over time (median split within each session) for (top) LIP, (middle) FEF, and (bottom)
LPFC. Computed on withheld trials from the same template color bin as the training trials (within, solid line) or in a different template color bin (across, dashed line).
Chance level was 1/2 (gray dashed line).

(C) Time course of the mean split-half reliability (with 95% confidence interval) of the chosen value (colored by area) and reward (green) regressors computed
across all locations. Bars indicate significance of chosen value and reward, and their difference (black): thin, p < 0.05; moderate, p < 0.01; and thick, p < 0.05;
Bonferroni corrected (22 time points).

(D) Same as (B), but for classifiers trained to decode the chosen color (balanced for the estimated template, 2 bins).

(E) Same as (B), but for decoding choice at the top contralateral location. For (B, D, and E), bar thickness indicates significance level: thin, p < 0.01; moderate, p <
0.05 Bonferroni corrected; and thick, p < 0.01 Bonferroni corrected. Bonferroni correction was across time (27/27/23 time points for B, ,D and E) and locations (4
locations for E). See also Figure S5.
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Finally, we tested whether a “decision” classifier, trained to
discriminate whether a stimulus was chosen at each location,
generalized across attentional templates. The animal’s decision
was strongly encoded in all three regions (Figures S5D and S3F).
Consistent with a static decision boundary, classifiers general-
ized across templates. In fact, classifiers performed equally
well on withheld trials from the same template and other tem-
plates (Figure 5E; difference was not significantly different from
zero, p > 0.2232, uncorrected, for all three regions; see Fig-
ure S5E for all locations). It is important to note that these deci-
sion classifiers likely integrate both the decision process and the
execution of the movement. Although movements may be ex-
pected to generalize across templates, the fact that we observed
generalization at all time periods, including at the earliest mo-
ments before the saccade, suggests that the decision-making
process also generalizes.

Altogether, these results are consistent with the hypothesis
that the attentional template transforms sensory inputs into a
generalized value representation in the prefrontal and parietal
cortex. Generalized value representations could allow the
same neural circuitry to decide which stimulus to select, regard-
less of the attentional template. This avoids the need to learn
bespoke decision circuitry for each template and allows the brain
to flexibly control attention in many different tasks.®' =%

Value representations transform from location-specific
to global

Lastly, we wanted to understand how value representations sup-
port decisions and learning. Decisions involve comparing the
value of stimuli across locations in order to identify, and select,
the stimulus with the greatest expected value. This requires a
“local” representation of the stimulus’ value at each location.
However, learning the attentional template should be agnostic
to the location of the stimulus and, thus, requires a “global” rep-
resentation of value. To understand how value was represented,
we fit a generalized linear model (GLM) to quantify the encoding
of the value of chosen and unchosen stimuli “locally” (at each
location) and “globally” (across locations; all comparisons
used split-half reliability,>* see STAR Methods). Our analyses re-
vealed that value representations were dynamic, initially local to
each location before evolving into a global representation.

Immediately after stimulus presentation, value was repre-
sented in a location-specific manner. Value representations
were initially restricted to the contralateral hemifield in the
LPFC (Figures 6A and 6B; a similar, but weaker, effect in the
FEF and LIP, Figures S6A and S6B). In fact, there was almost
no encoding of the value of unchosen ipsilateral stimuli in any re-
gion (Figures 6B and S6B-S6D; similar results were found when
considering the receptive field of neurons, Figures S6E-S6G).
Further reflecting a localized representation, the neural repre-
sentations of the value of chosen stimuli were more similar for
locations that were closer together in physical space
(Figures 6C and S6H-S6L, measured as the correlation in beta
weights, permutation test).

If these initial, location-specific representations of value pro-
vide the input to the decision-making process, then they should
precede the decision itself. Consistent with this, the values of
chosen and unchosen stimuli were represented in a similar

¢ CellP’ress

manner in the LPFC, reflecting the fact that location-specific
value preceded the decision (measured as a correlation of beta
weights, p = 0.0341, permutation test, Bonferroni corrected,;
200 ms window centered on 150 ms after the onset of the tar-
gets, see STAR Methods). Similar, but weaker, results were
seen in the LIP and FEF (p = 0.094/0.0598, uncorrected).

After a delay, the LPFC represented the value of the chosen
stimulus, regardless of location (Figure 6A). This suggests that
the value of the chosen stimulus was initially local but evolved
into a global representation that generalized across locations.
Consistent with this, the local representation of value slightly pre-
ceded the global representation (local: first significant ~50 ms in
the LPFC, Figure 6A; global: 250 ms, Figure 5C; all Bonferroni
corrected). Furthermore, the initial local representation of the
value of the contralateral stimuli transformed over time, until it
was aligned with the global representation (Figure 6D, measured
as correlation in GLM beta weights; significant when the global
representation emerges, 100/150/150 ms after the onset of the
targets in LIP/FEF/LPFC, permutation test). This alignment was
seen across locations, such that the global representation en-
coded the value of the chosen stimulus at all locations
(Figures S6H-S6L).

Altogether, Figures 5 and 6 show that the attentional template
transformed each stimulus into a local representation of the
value at that location. This local representation is necessary for
decision-making processes to determine where to move one’s
eyes. Over time, the local representation transformed into a
global, location-agnostic representation (particularly in the
LPFC, Figure 6), possibly to support learning.

DISCUSSION

Attention selects task-relevant sensory information for process-
ing and for action.® It is guided by an attentional template that
represents the set of stimulus features that are currently rele-
vant.” ™ Here, we sought to understand how the brain learns
attentional templates and then uses them to influence sensory
processing and drive decision-making. To this end, we trained
two monkeys to perform a visual search task that required
them to repeatedly learn new attentional templates (Figure 1).
In brief, we found that the current attentional template was rep-
resented in a distributed fashion across the prefrontal and pari-
etal cortex (Figure 2). Template representations were structured,
with related templates (nearby in the color wheel) represented in
a similar manner (Figure 3). During visual search, the template
acted on sensory representations such that the feature of the
stimulus was converted into a value representation (Figure 5).
Value representations generalized across templates, allowing
the same decision process to be used across all templates (Fig-
ure 5). To facilitate the decision of where to look, the value of
each stimulus was represented in a topographic manner, with in-
dependent local value representations at each stimulus location
(Figure 6). Once a stimulus was chosen, its local value trans-
formed into a global representation shared across all locations
(Figure 6), which could allow the brain to calculate a global
reward prediction error. Finally, we found that the global reward
prediction error was used to update the attentional template,
such that attention shifted toward rewarded features (Figure 4).
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Figure 6. Value representations transformed from location-specific to global over time

(A) Time course of the mean split-half reliability (with 95% confidence interval) of the chosen value at contralateral locations (contra) and ipsilateral locations (ipsi,
dashed line) for LPFC. Bars indicate significance of each hemifield (yellow) and their difference (black).

(B) Same as (A), but for unchosen value.

(C) (Top) Schematic of distance index. (Bottom) Violin plot: mean area under the curve of the representation reliability (distance index = 0) or alignment across
locations across the whole time period (22 time points, Figure S5E) for LPFC. Distribution across bootstraps. *p < 0.05, *p < 0.01, **p < 0.001 all Bonferroni
corrected (6 pairs). See Figure S6G or LIP, and FEF and Figure S6L for the “early” time window alignment.

(D) Same as (A), but for the correlation between the contralateral chosen value representation (shown in A and Figure S5A) and the global chosen value rep-
resentation (shown in Figure 5C) for LIP, FEF, and LPFC. Upper bars (alignment to global) indicate the significance of the correlation disattenuation between the
two vectors. Lower bars (local reliability > alignment to global) indicate whether the correlation between the two vectors is significantly lower than the local chosen
value reliability.

(E) Summary of results and putative sequence of task operations. Colored rectangles reflect involvement of a brain region in an operation (LPFC: yellow; FEF: red;
LIP: blue). For all panels, bar thickness indicates significance level: thin, p < 0.01; moderate, p < 0.05 Bonferroni corrected across time (22 time points); and
thick, p < 0.01 Bonferroni corrected. See also Figure S6.

Altogether, our results provide a broad understanding of how
attentional templates are learned and how they are used to guide
eye movements in the frontal and parietal cortex (Figure 6E).

Attentional templates are represented in a structured
manner across the frontal and parietal cortex

Attentional templates were represented in a distributed network,
suggesting that attention emerges from the dynamic interaction
between the prefrontal and parietal cortex.”®>° We found some
evidence that the LPFC may play a leading role in featural atten-

10 Cell 187, 1-14, March 14, 2024

tion: the representation of the value of unchosen stimuli was
stronger in the LPFC than FEF (Figure S6C, p = 0.0041 Bonfer-
roni corrected, permutation test, see STAR Methods for details)
and peaked earlier in the LPFC and LIP than the FEF (Figure S6D,
LIP: p =0.0217, LPFC: p = 0.0355, permutation test, see STAR
Methods for details). Future work is needed to causally test
this hypothesis —inactivating the LPFC impairs a monkey’s abil-
ity to choose a target based on feature-based attention,®°° but it
is unknown whether similar effects occur when inactivating pari-
etal regions.
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Our results suggest that the neural representation of atten-
tional templates were structured, with perceptually similar colors
represented by similar patterns of neural activity (Figure 3).
Structured template representations may have several advan-
tages. First, by matching the structure of sensory representa-
tions, moving through the space of control representations
would have a smoothly varying effect on sensory representa-
tions. For example, a neuron encoding a red template, which
biases red representations in the sensory cortex, would have a
graded response to pink and purple. Second, structured repre-
sentations could facilitate learning. When template representa-
tions vary smoothly, then updating the value of a single color
should have a graded effect on nearby colors. Third, it could
allow for generalization to new templates through interpolation.
For example, a new “rose” template could be inferred to lie be-
tween red and pink. One cost of a structured template is that, for
a given feature, the brain may be limited to a single attentional
template, a constraint suggested by psychophysical studies®®
(but see Hollingworth and Beck®”).

Future work is needed to understand how structure emerges.
Structure could have been acquired during training, either
because rewards were graded for nearby colors or as the ani-
mals learned the general “meta” structure of the task.>®°° Alter-
natively, structured organization could have been inherited from
the sensory cortex. Even when passed through random connec-
tions, neural representations maintain their local topography.**
Consistent with structure being innate, spatial representations
are structured, even when animals are first learning a working
memory task.®’

Attentional templates can be incrementally learned
through reward-driven reinforcement learning
Psychophysical studies have shown the importance of rewards
in shaping attentional templates.’”?®> Reward modulates the
representation of stimuli throughout the brain, including in the
prefrontal and parietal cortex,?” and can lead to sharpening of
tuning responses in the visual cortex (similar to attention).®?
Our work builds on this foundation to study the neural mecha-
nisms by which reward can shape attentional templates. Both
behavioral modeling and neural results suggest that the brain
uses reinforcement learning to update the internal model of the
attentional template (Figure 4). These results are consistent
with the large body of work showing reward learning can modu-
late the value of individual (discrete) representations,® including
updating the belief about the current task.*>**5° Our work ex-
tends this to the continuous domain and provides insight into
how new control representations could be learned.

Future work is needed to detail the mechanisms of learning.
Learning the value of individual stimuli is thought to rely on the
representation of reward prediction error in dopaminergic neu-
rons.®®®” Given the strong dopaminergic innervation of the pre-
frontal cortex, a similar mechanism may act to update control of
internal and cognitive states.®®

Creating a “priority map” for a generalized decision-
making process

Despite being the task-relevant sensory feature, the color of
stimuli was not represented in the prefrontal or parietal cortex
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during our task (Figures S3B, S3C, 5D, S5B, and S5C). This is
not because these regions are not sensitive to color: stimulus
color information has previously been found in all three re-
gions.""**°7"2 |nstead, featural attention re-mapped sensory in-
formation into a value representation that generalized across
templates. In this way, the prefrontal and parietal cortex repre-
sented a priority map of the visual scene.

Priority maps capture the priority of each stimulus in the visual
field.*"*~"® This map can then be used to guide attention and de-
cisions—in our task, the monkey simply selects the stimulus with
the highest priority. These maps often reflect bottom-up,
external characteristics of stimuli (e.g., size, brightness, etc.).
Indeed, previous work has found priority maps of visually salient
stimuli are represented in both the parietal and prefrontal cor-
tex.”>"® However, as is the case in our task, priority maps can
also integrate top-down, goal-directed attention to specific
stimulus features.® Our results show how attention integrates
the current attentional template with sensory drive to form a
map of the value of stimuli in the contralateral hemifield of the vi-
sual array. This map is then used to guide visual search and
make a decision as to where to saccade in the visual scene (a
form of overt attention). Importantly, because attention mapped
sensory stimuli into a common value representation, the same
priority map could be used to make decisions for all attentional
templates.

Future work is needed to understand the mechanisms that
generate a map of stimulus value. One hypothesis is that atten-
tion selectively increases the response of neurons representing
stimuli matching the attentional template.”®’® By summing the
activity of the neural population representing each location in
space (across features), one could estimate how closely the
stimulus at each location matched the attentional template
(i.e., that location’s value). This would result in a priority map.
Winner-take-all dynamics between locations on the priority
map could select the location with the greatest priority, driving
attention (overt or covert) to that location.”®

A common framework for attention, reward learning,
and value-based decision-making

Attention, reward-learning, and value-based decision-making
are closely interwoven cognitive operations. Our task requires
top-down, selective attention as the animals must use the tem-
plate to perform a covert visual search for a matching stimulus
while filtering out distractors (both hallmarks of attention). How-
ever, the task also requires value-based decision-making, as
the animals must use reward outcomes to update their internal
representation of the attentional template. Although these con-
cepts have largely been studied independently, our results
show that integrating these concepts can deepen our under-
standing of both attention and decision-making. In our task,
the mechanisms supporting learning attentional templates par-
allel the reinforcement learning mechanisms observed in
simpler associative learning. Furthermore, our results show
how value-based representations can allow the brain to gener-
alize decision-making across a variety of attentional templates.
These results suggest that attention and value-based decision-
making may be overlapping, with a shared set of neural
mechanisms.
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Beyond attention, implication for learning new tasks
Attention is one form of cognitive control: the control of sensory
processing. Our results may extend to other forms of cognitive
control. For example, we found attentional templates are struc-
tured such that semantically related tasks are represented in
similar ways in the neural population. However, perception is
not alone in being structured; previous work has shown that
memories, spatial layouts, cognitive maps, and conceptual
knowledge are also represented in a structured manner.*"76-8°
Given this, cognitive control may be structured in other domains.
This suggests that there may be one or more continuous “task
spaces” in which smoothly changing the activity in the neural
population may allow the brain to navigate through semantically
related cognitive control states. As noted above, this could allow
one to generalize to new situations by interpolating within the
task space.

In addition, our results suggest that cognitive control can be
learned through reinforcement learning, providing neural evi-
dence for incremental learning of tasks.®® Such a mechanism
could learn cognitive control representations de novo, without
any relationship to other tasks. However, if task representations
exist within a continuous task space, then incremental learning
could move cognitive control states through this space in order
to flexibly adapt to a changing environment. This could be com-
bined with other mechanisms for learning cognitive control. For
example, when in a new situation, one might use contextual
cues to recall a generally appropriate task representation from
previous, similar experiences (e.g., searching for a particular co-
lor car when looking for a cab). Incremental learning could then
optimize the task representation for the current situation.

Limitations of the study

Although our study provides insight into the learning and use of
attentional templates, it has several limitations. First, although
our behavioral model captured much of the monkey’s behavior,
it was not perfect. For instance, the model could not account for
the update in the neural template following —RPEs. Future work
is needed to test whether this is because —RPEs had a small ef-
fect that may be hard to detect or whether a different mechanism
responds to —RPEs (e.g., exploration).® Furthermore, although
the behavioral model suggests that the previously chosen color
influenced choices, we did not find correlates of this representa-
tion in prefrontal or parietal neurons. In addition, future work is
needed to understand how choices emerge from the interaction
of several processes (e.g., top-down attention, episodic mem-
ory, biases, etc.) and how these processes are computed by
the brain. Finally, our trial-by-trial estimate of the neural esti-
mated template was noisier than our behavioral estimate (Fig-
ure 3). This may reflect a limited number of neurons and/or trials
recorded on each day. Recent methodological advancements in
simultaneously recording large numbers of neurons are likely to
improve our ability to uncover trial-by-trial dynamics.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Non-human primates
All experiments were conducted with two adult male rhesus macaques (monkey B, 13 kg, and monkey S, 9 kg).

METHOD DETAILS

Ethics
All experimental procedures were approved by the Princeton University Institutional Animal Care and Use Committee and were in
accordance with the policies and procedures of the National Institutes of Health.

Task and behavior

Stimuli were presented on a Dell U2413 LCD monitor positioned at a viewing distance of 58 cm. The monitor was calibrated using an

X-Rite i1Display Pro colorimeter to ensure accurate color rendering. The task consisted in choosing one of three colored targets on a

screen. These three colors were randomly selected from 100 evenly spaced points along an isoluminant circle in CIELAB color wheel.
The amount of reward R (in number of liquid drops) that a target was worth depended on the distance between its color 6 (in radian)

and the template in the color wheel. The value function was a von-mises (normalized circular gaussian) of fixed concentration « that

was set to 2.5:

ex.cos(ﬁ — template)

R(O) = Rnae=—5 05

(Equation 1)
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Where I, (k) is the modified Bessel function of the first kind of order 0, such that the distribution sums to unity:

2mlo(k) = / el dp (Equation 2)

R was the reward size (number of drops) and was rounded to the nearest unit. The maximum size of the reward R, was fixed for
monkey S (6 drops) and increased on each block for monkey B (12 drops + 1 drop for each completed block). The template color was
fixed during a block such that subjects could learn it by trial and error, by choosing a color, receiving a feedback (reward size) and
updating the expected value for each color. The template color was randomly selected at the start of each block. To increase the
likelihood of sampling from all colors during a session, we temporarily penalized the colors near already selected colors during
the selection process such that they were less likely to be selected again.

At the start of each trial, the monkeys fixated a central cross on the screen (distance to screen was approximately 65cm, screen
diagonal was 68.58cm). After a delay of 350+50ms, three colored disks (of radius 1.5 visual degrees) appeared in three out of four
possible locations (45, 135, 225, and 315 degrees from vertical with a 5 visual degrees eccentricity). The colors were separated by at
least /6 rad on the color wheel. Monkeys had 2000ms to select a target by making a saccade to it and maintaining fixation for at least
50ms. After 100ms, monkeys received the reward size (number of drops) associated with the chosen target. Only the chosen target
stayed on screen while the reward was delivered. After 350/500ms for monkey B/S, a new trial started. If monkeys broke fixation
before the onset of the targets or if they did not make a direct saccade to a stimulus, the screen changed color and a time-out of
200/500ms for monkey B/S was added to the inter-trial interval. In 20/5% of trials for monkey B/S, the size of one of the targets
was bigger (radius was increase to 2.25 visual degrees) or smaller (radius was decreased to 0.75 visual degrees) for the duration
of the display. This was random and did not predict reward or target location.

The template color was constant for a block of trials, allowing the monkey to learn and use the attentional template. The block (and
the template color) would change when the monkey chose the target with the highest reward (i.e., the ‘best’ target) on 80/85% of 30
consecutive trials for monkey B/S. These template switches were uncued; the monkey could only detect the change through reward
feedback. Blocks lasted between 80 and 575 trials (monkey B: 69 blocks, 138.2 + 56.8 trials per block, monkey S: 102 blocks, 199.4 +
114.1 trials per block). This was longer than the time it took monkeys to learn the template because it includes trials when the monkey
broke fixation or did not make a direct saccade. To ensure a certain number of trials for data analysis, all blocks had at least 35 at-
tempted trials before switching.

Behavioral model

We modelled the animal’s choice using a Q-learning model with function approximation.®” As in standard reinforcement learning
models, the subject’s goal is to estimate the expected value v of each color ¢ in order to choose the best available color on each trial.
Here, the state space is very large (100 colors) but continuous and structured according to the color wheel, so subjects can generalize
what they learn about a color to the nearby colors (those that are closest in the color wheel). Hence, the expected value function can
be represented not as a table (a value for each color) where each color is independent from the others, but as a parametrized function
of N weight vectors with N being much less than the number of colors. In our case, the state space is represented by N equally distant
radial basis functions x; that are von-mises functions of concentration x and centered on y; (with u,= 0 rad):

ex.cos(ﬁ — )

xi(0) = 27ly (k)

(Equation 3)

where I, is described in Equation 2. The parameter k controls the degree of generalization during learning, the smaller «, the more
generalization. The expected value function v at trial n is a linear function of the weights w; and the radial basis functions x;:

v(8,n) = XN:W;(n).x,-(G) (Equation 4)
i=1

The weights were initialized at 0 at the start of the session. After receiving an amount of reward R for choosing the color f¢posen, all
the weights w; are updated according the learning rate «, the reward prediction error (RPE) and the distance between their centers y;
and 0chosen:

w;(n + 1) = wi(n) + a.RPE(t). Xi(fchosen) (Equation 5)
Where:
RPE(”) = R(echosemn) - V(achosenyn) (Equation 6)

In this frame, the expected value function can be estimated for all colors at each trial.
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We tested two variants of this model. In the No Reset model, the update follows Equation 5, and the uncued template switches are
not detected. In the Reset model, the weights w; can be reset to uniform (all zeros) before doing the update. This occurred after a
surprising event, when the absolute value of the RPE is above a threshold. The reset fraction kyeset Was:

1

kreset(n) = 1+eﬁ,ese,_(\RPE(n)\7Reset threshold(n))

(Equation 7)
where B,eset Was set to 10% such that kjese; Was 0 or 1. Consecutive resets were penalized by increasing the Reset threshold based
on the number of trials since the last reset (# trials since last reset). The smaller the volatility parameter, the greater the penalization:

B Reset threshold,
" tanh(volatility .4 trials since last reset(n))

Reset threshold (n) (Equation 8)

For this second model the full update rule was:
Wi(n + 1) = (1 - kreset)~(Wi(n) + a~RPE(n)-X/(0chosen)) +kreset~R(0chosemn)~Xi(ﬂchosen) (Equation 9)

At each trial n, we computed the expected value EV of each option § by adding potential biases for the location of the option
(Location(l) = 1 at the location of the option and 0 otherwise), whether the size of the option was bigger or smaller than the standard
size (Size(s) = 1 if the option was smaller (s=1) or bigger (s=2) and 0 otherwise), the proximity to a preferred colored 6,,.rand the prox-
imity to the previously chosen color fprev chosen:

4 2
EV(6,n) = v(6,n) + location bias,.Location(l) + size biass.Size(s) + pref color bias.(m — |d(6, 6
(O.n) = V(o) + 3 ! VDY s Size(s) +p (= 00,50 £ ation 10)

+prev color bias.(m — |d(0, Opres chosen)|)

Where d is the angular distance:
d(6,60) = mod(f — 6y + m,27) — = (Equation 11)

We added these biases to capture non-value learning processes such as: choosing a specific location regardless of the stimulus
presents (location biases), being influenced by irrelevant but salient features (size of the stimulus) and repeating the same choice
(choosing the option closest to the previous selected color) regardless of the reward. The choice probability P for each target
;was computed using the softmax rule:

eEv(o,-) /ﬁ
P(6) = S EE— (Equation 12)

S eEV(6)/8

i=1

6 was set to 0.3 for both monkeys.

Behavioral model fit and selection

The No Reset model had 10 parameters and the Reset model had 12 parameters. Parameters were first fit using the Bayesian Adap-
tive Search (BADS) toolbox to get a first estimate of the parameters (https://github.com/lacerbi/bads). These parameters were used
for the initialization of the fit with the Variational Bayes Monte-Carlo (VBMC) toolbox (https://github.com/lacerbi/vbmc).2” VBMC is an
approximate inference method to fit and evaluate computational models. Specifically, it computes the approximate lower bound of
the log model evidence (or log Bayes factor) for model comparison. We fit the models by first initializing the parameters using the
BADS estimates (see Table S1). If the solution did not converge then we performed additional runs that were initialized using the pos-
terior estimated on the previous run. All solutions converged.

Parameters were estimated by sampling the posterior distribution 3.10° times.

We fit a series of models with N varying from 3 to 8 radial basis functions and compared them using the Bayesian Information
Criterion (BIC) and the lower bound of the log model evidence. Both statistics reached an asymptote for N=6 for both
monkeys (see Figure S1F) so this model was selected. Allowing for resets in the template improved the model’s accuracy (monkey
B: ABIC=73, N=9,536 trials, monkey S: ABIC=895, N=20,338 trials; with 6 radial basis functions; Figure S1F) and so resets were
included in the model. Unfortunately, the number of resets was too few to reliably identify reset related neural responses (113 reset
events corresponding to 0.4% of trials across both monkeys). Table S2 contains the estimated parameters for each monkey.

Critically, in this formulation of the model, the learning rate can trade off with the concentration of the radial basis functions (k) as
relates to the height of the radial basis function (which has an area under the curve of 1) and a higher « will correspond to a lower
learning rate. This was observed in the posterior likelihood of the parameters which are negatively correlated. This means that we
cannot identify the value of each parameter independently.
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On each trial, the ‘estimated template’ was computed as the color with highest value:

estimated template (t) = argmax o _. . (v(0,1)). (Equation 13)
The entropy of the template was computed by transforming the value function in a strictly positive probability distribution:

vV — min(V)+l
N (Equation 14)

PV =
Ji- _W<V(0) —min(V)+%> a8

Where V is the value function and N is the number of possible colors (values of 4, 100).

entropy = — / PV(6).log(PV(6))de (Equation 15)
0=—m

The biases (including for the previous chosen color) had only a marginal effect on choices. They drove the behavior when the values
of the options were low, allowing exploration, but did not drive learning. Indeed, a model with only the biases ('no value’) could not
capture learning (Figures S1G and S1H, dark blue). In contrast, removing all biases had little effect on learning (‘value only’, Fig-
ure S1G, dark green) but decreased the quality of the fit (Figure S1H, dark green). Removing just the bias for the previous chosen
color (but keeping other biases) had little effect on learning (‘no bias prev color’, Figure S1G) or the estimated attentional template

(template for the Reset and ‘no bias prev color’ models were highly correlated, r=0.98/0.996, p < 0.001 for monkey B/S).

Comparison with alternative behavioral models
We compared the Reset model to two alternative models that did not include a template. First, in a ‘win-stay lose-forget’ (WSLF)
model, subjects chose colors that were closest to the previously rewarded color. In other words, the animal’s attentional template
was simply the previously rewarded color. After choosing a stimulus, if the received reward was above a fitted threshold then the
chosen color would become the attentional template (‘stay’). If the received reward was below the threshold, then all values were
set to 0 and the animal did not have an attentional template (‘forget’). The model included the same biases as the Reset model
described above, except for the bias for the previous chosen color (as it was redundant, 8 parameters).

Second, a ‘win-stay lose-shift’ (WSLS) model was identical to the WSLF model with the exception that, after a below-threshold
reward, the attentional template was taken to be the color that was opposite on the color wheel to the previously chosen color (‘shift’).

Both the WSLF and WSLS models propose a different mechanism for the template update, which is non-incremental and indepen-
dent of the reward prediction error. Neither model fit monkeys’ behavior well (Figure S1G) and both models had a higher BIC than the
selected Reset model (with 6 radial basis functions, see above, Figure S1H). This supports the conclusion that monkeys integrated
information incrementally over trials to construct the attentional template.

Finally, we test a model with two learning rates, one for positive and one for negative reward prediction errors, was an extension of
model with a reset and so it had 13 parameters. It was fitted as described above with 6 radial basis functions. Models with one and
two learning rates were compared using BIC.

Validation of model fits

We validated our fitting and model selection procedure by generating choices based on the No Reset, Reset and WSLF models using
trial conditions from both monkeys (i.e., the true template and the colors and locations of the stimuli, N=29,874 trials). In these
models, the agent selects a target based on its value with the same softmax noise that was used for the animals’ models’ fit. We
varied three parameters: the radial basis function concentration, the learning rate, and the reset threshold (or reward threshold for
WSLF; see Table S3 for complete list of parameters and see Figure S1l top left for overall accuracy of No Reset and Reset models).
For the reset threshold we tested values that matched the number of trials when a reset is detected in the monkey’s behavior (0.4% of
trials overall for a reset threshold of 0.5, Figure S11 top right, thus matching our ability to detect resets in the model). For each model
and set of parameters, we generated 10 sequences of choices that differed from one another only due to noise in the target selection
process with the softmax. This led to a total of 140 generated sequences of choices.

We then fit the No Reset, Reset and WSLF models to the choices generated by each of the three generative models (thus fitting 420
models). We found that in all cases the model with the lowest BIC was the generative model, reflecting the fact that our model fitting
accurately recovered the underlying model (all ABIC>14, Figure S1l bottom left, WSLF models are not shown in the figure but, all
ABIC>621 compared to No Reset and Reset models). Additionally, we could correctly identify the reset threshold, particularly for
the 0.5 value which best matched the statistics of the monkeys’ behavioral data fit (Figure S1I bottom right, green dots compared
to the gray dotted line representing the proportion of resets in the data). When fitting the generative No Reset models with Reset
models, the reset threshold was set to a high value reflecting how unlikely reset events were (Figure S1l bottom right, grey dots).

The goal of the behavioral models was to estimate the latent attentional template of the animal, as this formed the basis for the
neural analyses. Therefore, we tested the ability of the fitting procedure to recover the generative attentional template. Across all
Reset models, we recovered the estimated attentional template with high accuracy (circular correlation, reset threshold 0.3: all
r>0.93, p < 0.001, black dots; reset threshold 0.5: all r>0.96, p<0.001, green dots; Figure S1J). This was also the case for the No reset
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models (all r>.94, p<0.001, grey dots, Figure S1J). This suggests that our model fitting procedure identified the template accurately
across a range of parameters.

Finally, as noted above, because the learning rate and radial basis function concentration can trade-off, they are not uniquely
recovered (although their ratio was recovered, particularly for models that match the statistics of monkeys’ behavior, Figure S1K,
top left, green dots). However, fitting recovered the values of the biases (Figure S1K) and the preferred color (median absolute circular
error = 0.10 rad, standard deviation = 0.09 rad).

Overall, our fitting procedure was able to recover the correct generative model, attentional templates, and parameters across all
tested models.

Evaluation of the effect of value on choice behavior

To evaluate how the model-derived value of the options on screen affected choices, we used generalized logistic regressions (Matlab
function ‘fitglm’, all regressors were z-scored). First, we looked at the effect of the value of the best (closest to the template), second
best and worst options on accuracy (choosing the best option, not according to the behavioral model but the closest to the true tem-
plate). In both monkeys, the greater the value of the best option, the highest the accuracy (all p<0.001), while the greater the values of
the second best and worst option, the worst the accuracy (all p<0.001). We observed the same pattern when looking at the model’s
probability to choose the true best option (using a linear regression, all p<0.001), which indicates that the model captures this feature
of the decision-making process.

Second, we looked at the interaction between the distance to the estimated template of the best and second-best options (that had
the greatest influence on the behavior) and the uncertainty about the template, captured by the entropy of the value function (Equa-
tion 15). Here, we used as regressor 1 - normalized absolute value of the distance, such that it would be equal to 1 if the target was the
template and 0 if the target was at a distance of =t from the template. We found that the closer the best target was to the template the
greater the accuracy, but that this effect decreased with uncertainty (p<0.001). Furthermore, as noted above, the closer the second-
best target was to the template the lower the animal’s accuracy, but this effect also decreased with uncertainty (p<0.001). Addition-
ally, we found that the uncertainty generally decreased the accuracy and that when both the best and second-best were close to the
template, accuracy decreased (all p<0.001). Again, we observed the same pattern when looking at the model’s probability to choose
the true best option (using a linear regression, all p<0.001), which indicates that the also model captures this feature of the decision-
making process.

Altogether, these results are consistent with the animal’s deliberating between stimuli based on their template-driven value.

Electrophysiological recordings and signal processing

Animals were implanted with a titanium headpost to immobilize the head and with two titanium chambers to provide access to the
brain. The chambers were positioned using 3D models of the brain and skull obtained from structural MRI scans. Chambers were
placed to allow for electrophysiological recording from LPFC, FEF (frontal chamber) and LIP (parietal chamber).

Epoxy coded tungsten electrodes (FHC Inc, Bowdoin, ME) were used for both recording and micro-stimulation. Electrodes were
lowered using a custom-built micro-drive assembly that lowered electrodes in pairs from a single screw. Recordings were acute; up
to 60 electrodes were lowered through intact dura at the beginning of each recording session and allowed to settle for 2-3 hours
before recording. This enabled stable isolation of single units over the session. Broadband activity (sampling frequency = 30 kHz)
was recorded from each electrode (Blackrock Microsystems, Salt Lake City, UT). We performed 8 recording sessions in Monkey
B and 9 sessions in Monkey S.

Based on MRI scans, we identified electrodes that were likely to be located in the FEF for each monkey and confirmed our iden-
tification using electrical micro-stimulation. Based on previous work, we defined FEF sites as those for which electrical stimulation
elicited a saccadic eye movement.®® Electrical stimulation was delivered in 200ms trains of anodal-leading bi-phasic pulses with a
width of 400us and an inter-pulse frequency of 330Hz. For monkey B, we found 4 sites that responded to electrical stimulation by
evoking a saccade with a stereotyped eye movement vector at <100Ma (reliability of the stimulation was: 83% at 50 Ma, 67% at
50Ma, 50% at 100Ma, and 25% at 100Ma). For monkey S, we found 5 sites that responded to electrical stimulation (reliability of
the stimulation was 67% at 50Ma, 57% at 50Ma 28% at 50Ma, 43% at 100Ma, 67% at 100Ma). Sites anterior and lateral to the
FEF were labelled as LPFC.

Before the start of each session, monkeys performed a delayed match to sample task during which a target was presented for
125+25ms in 8 possible locations around a central fixation cross. After a delay, monkeys were instructed to saccade to the location
of the sample. At the start of the session, this delay was short but rapidly increased to reach up to 650ms for monkey B and 600ms for
monkey S. We identified pairs of electrodes located in LIP using the following criterion. We filtered the signal using a 4-pole 300-
3000Hz band-pass Butterworth filter. We set the threshold for the detection of a spike by multiplying an estimate of the standard
deviation of the background noise o, by a factor 8 that we varied between 1.8 and 5%*

_ . x| .
g, = median (—0. 6745 (Equation 16)

Time points at which the signal x crossed this threshold with a negative slope were identified as putative spiking events. Repeated
threshold crossings within 32 samples (1.0667ms) were excluded. A channel was considered to be in LIP if there was a significant
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modulation of the spike rate during the delay (calculated by counting the total number of spikes during the delay) by the location of the
remembered location of the sample in correct trials. We selected the value of g (= 2.2) that maximized the number of LIP channels
detected using this method. Both electrodes in a pair were considered in LIP if at least one electrode reached this criterion.

Electrophysiological signals for the main task were filtered offline using a 4-pole 300Hz high-pass Butterworth filter. The spike
detection threshold for all recordings was set equal to —4c, (Equation 16). Repeated threshold crossings within 32 samples
(1.0667ms) were excluded. Waveforms around each putative spike time were extracted and were manually sorted into single units,
multi-unit activity, or noise using Plexon Offline Sorter (Plexon). The experimenter was blind to trials during all steps of preprocessing
and spike sorting.

Single neuron sensitivity to the factors of the task and model selection
To estimate the sensitivity of single neurons to the factors of interest, we used a 10-fold cross validation procedure (Figure S3B). We
fit the z-scored firing rates with the model representing the factors of interest using the Matlab function ‘fmincon’ with the default
algorithm ‘interior-point’ that enables to solve a constrained minimization problem. To understand how neurons encoded task-rele-
vant information, we fit four competing models for each individual neuron:

Estimated template model:

ex.cos(estimated template (t) — 6p)

27lo (k)

FR(t) = Bo + Bestimated template * +€; (Equation 17)
Where I,is defined in Equation 2, estimated template is defined in Equation 13 and e; is the residual. We used the same model for
the true template model (Figures S3F and S3G).
Expected value model:

™ ex.cos(ﬂ — o)

FR(t) = 60 + 6EV' ./; V(ﬁ, t) Wd0+et (Equation 18)

™

Where v(8,n) is the value of the option color 6 at trial n defined at Equation 4.
Mean value model (equivalent to Equation 18 with a « close to 0):

FR(t) = o+ Bmean value'mean(v(07 t)) +6¢ (Equation 19)

Chosen color model:
eK-C°S<‘9chosen(t) — o)

27lo (k)

We used the following constraints: 8y € [— 10 10], Bmoger € [— 10 10], 6y € [— 27 27] and « = 10 with p € [— 2.5 2.5] and checked
that all solutions converged. We computed the explained variance (R?) of the model on the validation trials. We only included neurons
with more than 500 trials in our analysis. A neuron was considered significantly sensitive to the factor of interest in the model if the
mean R? across validation sets was positive. Models were mutually exclusive such that if a neuron was significantly sensitive to
several factors, the winning model was the one with the highest mean R®. Except for the mean value model, all three other models
assume that neurons have a smooth circular tuning for the variable they represent.

To estimate the significance of the proportion of neurons for each mutually exclusive model, we randomized the trial condition
labels (500 shuffles) and computed the proportion of significant neurons for each model. We then compared the proportion of neu-
rons for each model to this null distribution.

FR(t) = Bo + Bohosen color- +€; (Equation 20)

Pseudo-population decoding and cross-template generalization

To understand how the neural population represented the task, we combined neurons recorded during different sessions to create
100 independent pseudo-populations of N neurons for our regions of interest. N was the minimum number of neurons across regions
that had at least 60 trials for each condition (some populations had more). For each pseudo-population, the activity matrix was a
concatenation of the activity of N neurons (randomly selected with replacement) in m randomly selected trials in each condition.
N and m were the same for all regions and across all time points and locations (when relevant) but specific to each analysis (estimated
template, choice, chosen value, target color and chosen color).

For the estimated template (Figures 2C-2E), the true template (Figure S3G), stimulus color (Figure S5B) analyses, we trained three
classifiers: one for each color bin to discriminate the pseudo-population response at each time point, such that each classifier hy-
perplane separated the ‘in color bin’ vs. ‘out of color bin’ (with a randomly subsampled equal number of trials for each of the two
other bins). For the estimated template and true template analyses, trials were balanced across progression in the block (1/3, 2/3,
3/3), yielding 9 conditions with an equal number of trials (‘pink’, ’brown’ and ‘blue’ templates x 3 levels of progression in the block).
In our task, the location and color of the stimuli was random, such that by design, there was no relationship between the stimulus
color and value at a location and the color of the template. For the stimulus color analysis, trials were balanced across
chosen and unchosen stimuli (Figure S5B), yielding 6 conditions with an equal number of trials (‘pink’, ’brown’ and ‘blue’ stimulus
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color x chosen and unchosen). For the choice (Figures 5E, S5D, and S5E), chosen color (Figures 5D and S5C) and chosen value
(Figures 5B and S5A), we trained one classifier. For the choice and chosen value analyses, trials were balanced across estimated
template color with three bins, yielding 6 conditions with an equal number of trials (chosen/unchosen or low/high chosen value (me-
dian split) x ‘pink’, ’brown’ and ‘blue’ templates). For the choice analysis, we used the same number of trials for all locations. For the
chosen color analysis, trials were balanced across estimated template color but with only two bins, yielding 4 conditions with an equal
number of trials (‘pink’ and ‘green’ chosen color x ‘pink’ and ‘green’ templates). Note that chosen color and chosen value tended to
be correlated when the template and chosen color bins were the same (e.g., pink chosen colors tend to have a high value when pink is
the template), while they tended to be inversely correlated when the bins were different (e.g., pink chosen colors tend to have a low
value when green is the template). For the choice location for each display analyses (Figure S5F), we trained three classifiers (one for
each location), yielding 3 conditions with an equal number of trials. We used the same number of trials for all four displays. In all cases,
a subset (20%) of trials were withheld for validation, again balanced across conditions.

For all analyses, we used the same number of neurons and trials for all three regions. For the estimated template analysis
(Figures 2C-2E), the pseudo-population was made of 100 neurons, and decoders were trained/tested on 80/20% of 61 trials per pro-
gression level (three levels) and estimated template color bin (three bins). For the chosen value analysis (Figure 5B), the pseudo pop-
ulation was made of 110 neurons, and the decoders were trained/tested on 80/20% on 128 trials per estimated template bin, three
bins (with a balanced number of low/high chosen value trials). For the chosen color (Figure 5D), it was made of 133 neurons, trained/
tested on 80/20% of 160 trials per estimated template bin, two bins (with a balanced number of trials for each chosen color bin
(2 bins)). For the choice analysis at each location (Figure 5E), we used 90 neurons and the decoders were trained/tested on
80/20% on 120 trials per estimated template bin, three bins (with a balanced number of chosen and unchosen trials).

The goal of the cross-template generalization analysis (Figure 5) was to establish whether the neurons in each region represented
the value of the chosen stimulus or the color of the (chosen) stimulus in a manner that generalized across templates. First, for the
chosen value, we tested whether a decoder trained across three template colors (with an equal number of trials for each bin of color)
could decode the chosen value. It could (Figure S5A). This suggests there is a common representation of the chosen value across
templates. We also tested whether a chosen value decoder trained on one template color generalized to other template colors. Again,
it could (Figure 5B). Finally, we showed that neurons specifically represented the chosen value by fitting a parametric linear model
trained on all template colors that controls for the reward (Figure 5C). All analyses show chosen value is represented in a stable
manner across template colors.

Second, for the color of the stimulus, we tested whether the neurons represented the color of the stimulus at a given location (using
the exact same decoding method as for the template color). Stimulus color could not be decoded (Figure S5B). Second, we tested
whether the chosen color was represented when controlling for the template color (as the two are correlated) and again found that it
was not the case (Figure S5C). This was true for both the population (using a binary classifier) and for individual neurons (Figures S3B
and S3C). As we could decode template color using a binary classifier (Figure S5C), we do not think the inability to decode color re-
flects a limitation of the decoding approach. Finally, we found chosen color could be decoded within a template (Figure 5D). Indeed,
within a template, the chosen color is highly correlated with the value, and so value representations can be used to decode ‘color’.
Again, this result is consistent with a generalized value representation. We also found that the choice decoder generalized across
templates (Figure 5E), in line with a fixed read-out for the decision-making process across templates.

We used a standard linear support vector machine (SVM) classifier fit with the Matlab function ‘fitcsvm’ with the default solver
‘Sequential Minimal Optimization’. To minimize overfitting of the classifiers, fitcsvm uses the L1 norm for regularization (with box
constraint as hyperparameter) and a kernel scaling parameter. The hyperparameters were set to minimize the 10-fold cross-valida-
tion loss. We used the default optimizer (‘bayesopt’) and the acquisition function ‘expected-improvement-plus’ that prevents the
over-exploitation of one region of the parameter landscape. The projection of the trial input (the vector of the firing rates of the N neu-
rons) onto the hyperplane defined the degree to which this trial is in or out of the class also called the score. We transformed this score
in the posterior probability to belong to the class using the Matlab function ‘fitPosterior’.

The estimated template (Figures 2C-2E), the true template (Figure S3G), and stimulus color (Figure S5B) analyses used three
(or four) classifiers and so we used two ways of calculating the overall classification accuracy. First, we took the class with the
maximum posterior probability as the class for a particular trial. Second, we trained a feedforward, fully connected neural network
for classification (function ‘fitcnet’ in MATLAB with default settings) on the posterior probability across all three classes (withholding
validation trials). The latter method tended to improve the classification accuracy and could account for distortions in the represen-
tation of the color wheel, so we report the results of this method. Classification accuracy was taken as the probability for a trial to be
correctly classified on validation trials (chance level was 1/3 or 1/4). For all other analysis, that had only one classifier, we used the
direct output of the SVM classification. Here as well, classification accuracy was taken as accuracy on validation trials (chance level
was 1/2). For the choice location classifier (Figure S5F), we took the class with the maximum posterior probability as the class for a
particular trial.

One concern might be that drift in neural responses over time lead to artifactual template information. To ensure this was not the
case, templates were randomly chosen over time. Furthermore, when decoding the estimated template, there were on average 3.5/
3.7/3.6 blocks of template in each bin for LIP/FEF/LPFC. However, a few neurons included only a template from 1 block in a bin of the
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estimated template. Removing these neurons (i.e., the same analysis shown in Figure 2D ‘across’), ensuring all bins included at least
two different blocks of time, did not affect the decoding accuracy.

Statistical significance was estimated with one-sided z-tests against chance level (1/3 or 1/2 for one classifier) with a Bonferroni
correction for multiple comparison for time series.

p = 1 — normcdf C%) (Equation 21)
y

Where y is the sample mean, g, is its standard deviation, uis the hypothesized population mean and ‘normcdf’ is the function that
returns the cumulative distribution of the standard normal distribution (computed with the Matlab function ‘normcdf’). Note that we
used a z-test rather than a t-test because the sample size is defined arbitrarily by the number of bootstraps.

Cross-template generalization was assessed by training the SVM classifier using trials from one color bin of the estimated template
and computing the classification accuracy either on validation trials from the same estimated template bin (‘within’) or from the other
template bins (‘across’) (Figures 5 and S5). Statistical significance was estimated with paired one-sided z tests (‘within-across’)
against 0 using the mean and standard deviation of the bootstrap distributions (Equation 21) and with a Bonferroni correction for mul-
tiple comparison for time series.

Principal component analysis

For the Principal Component Analysis in Figure 2 (PCA; Figures 2E and S3D), trials were sorted into 3 estimated template color bins
and 20 time points (200ms windows centered on the onset of the targets), yielding 60 total conditions. The activity matrix X was the
mean population activity (across trials) for each condition and each neuron. The principal components of this matrix were identified by
decomposing the covariance matrix C of X using the Matlab function ‘pca’:

C = PDPT (Equation 22)

where each column of P is an eigenvector and D is a diagonal matrix of corresponding eigenvalues of C. The first 4 eigenvectors (in
decreasing order of variance explained) respectively explained 95% / 89% / 90% of the variance in LIP/FEF/LPFC. We constructed a
reduced 3-dimensional space using the first, second and fourth eigenvectors (Figure 2E) or the first three eigenvectors (Figure S3D)
and projected the population activity vector for a given condition into this reduced dimensionality space. The percent explained vari-
ance and effective dimensionality were estimated with 100 bootstraps, by drawing with replacement from the 146 /216 / 475 neurons
in LIP/FEF/LPFC. The effective dimensionality was computed as:

2
M
(Zi:17i)
]
Zi:1“/i2

dim = (Equation 23)

With M=59 as the degrees of freedom.

Forthe PCA in Figure S5 (Figure S5G), trials were sorted into 3 estimated template color bins, 2 bins for chosen color value (median
split) and 25 time points (200ms windows centered on the onset of the targets and starting at -400ms), yielding 150 total conditions.
Here, we removed the influence of time by subtracting the average activity across condition for each time point and neuron. The first 3
eigenvectors (in decreasing order of variance explained) respectively explained 68/74/60% of the variance in LIP/FEF/LPFC.

Multidimensional scaling analysis

For the Multidimensional scaling Analysis in Figure 4, trials were sorted into 6 estimated template color bins. The activity matrix X was
the mean population activity (across trials) for each bin and for each neuron in a -600 to 300ms window centered on targets onset.
First, we used the Matlab function ‘pdist’ to obtain the dissimilarity matrix of X, the pair-wise Euclidean distance between the esti-
mated template bins in the N dimensional space, N being the number of neurons. Then we used the Matlab function ‘mdscale’ to
recreate the data in 2 dimensions.

Trial-by-trial estimated template decoding using population decoding

We used a decoding approach to estimate the trial-by-trial neural representation of the estimated template. These analyses were
done independently for each session, on simultaneously recorded neurons. For each block, we isolated the first 35 trials of the block
and labelled them as validation trials that we did not use to train the classifiers nor the neural network. We trained three classifiers, one
for each color bin, on balanced trials across color bins as above. Then, we trained a feedforward, fully connected neural network that
took the posterior probability of each classifier as input and output the predicted cosine and sine of the estimated template (using the
Matlab function ‘feedforwardnet’; two layer network; hidden layer of size 10 using the relu activation function, ‘poslin’ in Matlab;
output layer of size 2 with a linear activation function). Thus, on each trial n, we could estimate the color #(n) of the neural estimated
template. Note, while the relative angular distance between colors is defined by color space, the absolute angular value of the color
wheel was arbitrarily chosen such that ‘red’ was defined as 0. Decoding accuracy was calculated on validation trials by calculating
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the circular distance (Equation 11) between the estimated template (from the behavioral model) and neurally predicted estimated
template.

The update was computed such that it should always be positive if it was i) toward the chosen color for a positive RPE and ii) away
from the chosen color for a negative RPE:

Update (n) = sign(RPE(n — 1)).sign(d(ET(n — 1),CC(n — 1))).d(ET(n — 1),ET(n)). (Equation 24)

Where d is the angular distance (Equation 11) and sign is the function that takes the value 1 if its argument is positive and -1 if it is
negative. ET is the estimated template (either from the behavioral model or decoded from the neural population) and CC is the chosen
color. We tested whether this update and the circular mean across updates in a session tended to be positive (using a T-test), which
would indicate that the update tended to be in the direction predicted by the model.

Significance of the decoding was assessed by comparing the observed mean circular distance between the decoded and esti-
mated template to what would be expected by chance. Chance distributions were estimated using a permutation approach (random-
izing the template condition labels 1000 times and calculating the null distribution of the mean circular distance). For each session,
the z-score of the observed difference was estimated by subtracting the mean of the null distribution and normalizing by the standard
deviation of the null distribution. The resulting distribution of z-scored mean circular distances across sessions was then tested
against 0 (Figures 3B/S4B and 3D/S4B). We used the same approach to test for significance of the distances of the distance between
two estimated templates and two decoded templates (Figure 3D/S4C) and the distance between the update toward from the chosen
color after positive reward prediction errors between the estimated and behavioral templates (Figure 4B). We used the same
approach across all trials (Figure S4A). In this case, the p-value was computed by directly comparing the raw observed difference
to the null distribution. Circular correlations were computed using the MATLAB circular statistics (RRID:SCR_016651) toolbox.

As noted in the legend for Figure 3D, we observed a slight bias in the neural decoding of the color template which is reflected in the
fact that the correlation between the neural and behavioral templates (shown in the thick dashed line) lies below the identity line
(i.e., slope < 1). This bias reflects the fact that, in our task, behaviorally estimated attentional templates were slightly biased towards
certain colors (indicated as ‘pi’ in Figure 3D). While this could be due to random chance, it could also reflect biases in the represen-
tation of color. Previous work has shown behavior is biased towards certain colors, both in perception® and in working memory.*° As
our task involves both perceiving colors and maintaining an attentional template for color in working memory, these biases could
influence monkey’s behavior in our task. The neurally estimated template matches the behavioral templates, leading to the bias
observed in Figure 3D. Re-running the analysis on a subset of behavioral templates, such that the distribution of behavioral templates
was more uniform, reduced the bias in the neural templates. Importantly, this did not change our results — the same degree of circular
correlation between the neural and behavioral templates was observed (r = 0.3, p<0.001).

Generalized multiple linear regressions and representation alignments

For the generalized linear regressions used in Figures 5, 6 and S6, we used the Matlab function “fitglm’. To remove any carry-over
effect from previous trial, we removed the baseline firing rate (taken between -600ms and -300ms from targets onset) from the firing
rate in each 200ms window. The firing rates were z-scored for each window.

For the ‘global’ regression, we used all trials (Figures 5, 6, and S6). The regressors were the reward magnitude, the value of the
chosen stimulus, and the value of the unchosen stimulus with the highest value, both on the current trial and the previous trial.
We also included the mean value of the current trial (taken as the mean value across all presented stimuli). For the ‘local’ value,
the regressors were whether the stimulus was chosen, its value on chosen trials (0 otherwise), and its value on unchosen trials
(0 otherwise). We only considered neurons where more than 500 trials were recorded, and with a firing rate that had enough variance
to fit all the regressors.

At each time point, we defined the representation of a task factor (reward, chosen value and unchosen value) as the vector of the
regression weights for this factor across neurons. We concatenated the distribution for the contralateral options (top right and bottom
right on the screen) and the ipsilateral options (top left and bottom left on the screen) such that the distribution at each time point was
2 x N, with N as the number of neurons. The alignment r of these representations was taken as the Pearson correlation between the
vectors (calculated using the Matlab function ‘corr’):

Iy = M (Equation 25)
Ox0y

Wherecov is the covariance and ¢ is the standard deviation. X and Y are the regressors estimated for each neuron on two different
halves of the session. We performed 10 random splits of our sessions and estimated the mean correlation between the representa-
tions between the two sessions halves. To estimate the variability, we ran 5000 bootstraps, sampling N (global) or 2 x N neurons
(local, the dimension of the vector, as above a concatenation of the two contralateral locations) with replacement.

We used a similar method to compare locations ‘in’ and ‘out’ of the receptive field. To estimate whether a location on the screen
was ‘in’ the receptive field, we took advantage of the fact that we only presented stimuli in 3 of the 4 locations, so we could look if the
presence or absence of a stimulus at a given location affected the firing rate of neurons. To do so, we used 4 independent linear
models (fitted using ‘fitglm’, the ‘stim on’ regressor and an intercept) and assumed that a location was in the receptive field of a
neuron if there was a significant modulation by the stimulus presence (p<0.005 for the ‘stim on’ regressor, in a 50 — 250ms from target
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onset, note that several locations could be in a neuron’s receptive field). We then concatenated the distribution for the ‘in’ options and
the ‘out’ options (subsampled to match the number of ‘in’ options).

We first estimated the split-half reliability of the representations by comparing the representation of the same factors computed in
the two halves of the session (Figures 5C, 6A-6D and S6A-S6E). This gives us access to the maximal alignment that could be found
between the representations. Statistical significance was estimated using a paired one-sided ztest against 0 with a Bonferroni
correction for multiple comparisons across time. Comparison between strengths of reliability was estimated with a paired two-tailed
z-test against 0.

p = 2.(1 - normcdf(‘%')) (Equation 26)
y

With the same variables as defined in Equation 21.

When looking at the alignment between two different representations (either two different regressors or the same regressors at
different locations), we only compared the representation in two different halves of the session such that the same trials were never
used to compute the compared representations (Figures 6C, 6D, S6E, and S6G). To estimate the degree of alignment between rep-
resentations, we computed the correlation disattenuation®;

v = __Txy (Equation 27)

vV "x,xz-r\/,y2

Where ry y is the split-half correlation between the representation of the factors X and Y defined in Equation 25, rx x and ry y are the
split-half reliability of the representations X and Y respectively defined above. Statistical dissimilarly was estimated using a one-sided
ztest against 0 with a Bonferroni correction for multiple comparisons across time points (22 time points).

To estimate the overall alignment across locations, we computed the area under the curve of the representation reliability (distance
index = 0) or alignment across locations over time (22 time points, Figure S6E) and over bootstraps (Figures 6C and S6G). We also
looked at the ‘early’ period (Figure S6L, up to 300ms from target onset in Figure S6H). Statistical significance was estimated using a
paired one-sided z-test (assuming that smaller distances would be more similar) against 0 with a Bonferroni correction for multiple
comparisons (6 pairs).

To compute the z-scored explained variance of the chosen value representation across locations we used the split-half procedure
described above. We estimated the chosen value regressor in one half of the session (either for the same of another location) and
computed the R? of the regression in the other half of the session. We performed 250 shuffles of the chosen value label across trials
and z-scored the R2 with the shuffled R? distribution for each neuron. Statistical significance was estimated using a one-sided z-test
against 0 across neurons. To estimate the overall explained variance across locations (Figure S6F), we computed the area under the
curve of the explained variance across time (22 time points, Figure S6H) across neurons. Statistical significance was estimated using
a paired one-sided z-test (assuming that smaller distances would be more similar) against 0 with a Bonferroni correction for multiple
comparisons (6 pairs).

The peak of the unchosen value representation was computed by finding the time point at which the unchosen value reliability was
maximal for each bootstrap. Statistical comparison between brain regions was estimated using a two-sample two-tailed z-test.

X —

62 .02
050,

<I

p = 2.1 — normcdf (Equation 28)

With the same variables as defined in Equation 21.
QUANTIFICATION AND STATISTICAL ANALYSIS
All data were presented as means + SEM, unless otherwise indicated. The statistical analyses performed were indicated in the main
text and detailed in methods. Statistical comparisons were analyzed in Matlab (Mathworks), and included parametric statistics, cir-

cular statistics, and non-parametric, permutation-based statistics, as detailed in STAR Methods. Unless otherwise indicated, all sta-
tistics were corrected for multiple comparisons. Figures were prepared with Matlab.
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Figure S1. Extended behavioral analysis and model validation, related to Figure 1

(A) Example value function. On each trial, the value function is computed by combining the weights (left) and the radial basis functions (middle) centered on equally
distanced colors to calculate the value function across colors (right).

(B) Example update of the value function. After a positive reward prediction error (RPE), here 0.8 (a very large RPE), the model weights on the radial basis functions
increase as a function of their distance to the chosen color (here green). This leads to an increased updated value function for colors closer to the chosen color.
(C) Mean accuracy in the first 35 trials after a template switch for the subjects (left) and the model (right). The accuracy is greater when the previous and current
templates are closer. Dot color and shape indicate whether a switch was detected in the model, this tends to occur for larger template switches. The model also
captured the relationship between the magnitude of the change of template color and the monkey’s performance (r = —0.5455, p < 0.001 for the data and
r=—0.6943, p <0.001 for the model, 61 template switches/r = —0.2744, p = 0.0078 for the data and r = —0.5740, p < 0.001, 93 template switches, for monkey B/S)
(D) Histogram of when resets are detected after the template switch for monkey B (top) and monkey S (bottom).

(E) Histogram of how many resets were detected per bin of magnitude of template switch (absolute value of the angular distance between the previous and
current templates).

(F) Bayesian information criterion (BIC) of the “reset” and “no reset” models for 3 to 8 radial basis functions.

(G) Learning curves for monkey B (top, 69 blocks) and monkey S (bottom, 102 blocks). The colored lines represent the model’s mean probability of choosing the
true best target. Only models with a value function derived from the Q-learning with function approximation (shades of green) could capture learning. WSLF, win-
stay lose-forget; WSLS, win-stay lose-shift. See STAR Methods for details of models. Because there are 3 targets, chance level is 1/3.

(H) BIC of the models compared with the win-stay lose-forget model.

(l) Validation of fitting procedure. Top left: overall model accuracy for the generative model (full dots) and the recovered model (empty dots) across various
parameters (model #) and sampling (10 samples for each model, variability is due to the softmax noise in the target selection). Top right: log proportion of trials with
a reset. Models with a reset threshold of 0.5 (green dots) best approximate the proportion of reset events in the data (gray dotted line). The model recovery
approximates well the number of resets detected (compare full and empty dots for each model). Bottom left: model recovery: BIC was estimated for each
generative model and is lowest for the correct generative model. Bottom right: the fitting procedure recovers the reset threshold. It has a very high value when the
generative model is a no reset model because very few or no resets are detected.

(J) Estimated template recovery (circular correlation between the generative and fitted estimated attentional template, all p < 0.001).

(K) Parameter recovery for the ratio between the learning rate and the exponential of the radial basis concentration (k) (top left), the three fitted location biases per
model (top right), the stim size biases (bottom left), and the previous chosen color and preferred color biases (bottom right).
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Figure S2. Choice behavior is captured by the model, related to Figure 1

(A) Examples of evolution of the expected value function (as in Figure 1G), chosen colors (white open squares) and unchosen colors (gray open squares) on each
trial. The estimated template is indicated with a white full marker on each trial. The brighter the color, the higher the expected value according to the model.
Previous and current templates are indicated with dashed lines. Chosen colors cluster around high values close to the estimated templates.

(B) Top: logistic regression weights of the value of the best, second-best, and worst option on accuracy. Bottom: linear regressions weights of the value of the
best, second-best, and worst option on model derived probability to choose the true best option (equivalent of accuracy). Intercepts are not shown. All regressors

were Z scored. Error bars represent standard error.

(C) Same as (B), but with the reversed normalized distance of the best and second-best option to the estimated template, the expected value entropy, and their

interactions.
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Figure S3. Extended analysis of the estimated attentional template representation, related to Figure 2

(A) Firing rate over time for three example, simultaneously recorded, neurons for three different bins of estimated template color (z scored over the full session).
The “tuning” of the neuron was maintained over time in the trial.

(B) Top panel shows an example trial showing the difference between the estimated template (orange), the chosen color (green), the expected value function
(black), and the mean value (dashed black). Bottom panel shows the proportion of significant neurons for the 4 mutually exclusive models: estimated template
(ET), expected value (EV), mean value (MV), and chosen color (CC). Models were fit to 167/231/492 neurons in LIP/FEF/LPFC in a —600- to 300-ms window
around the onset of the targets. The estimated template best explained neural activity in the largest group of neurons in all three regions (30.54/40.26/30.08% in
LIP/FEF/LPFC, all p < 0.002, permutation test), although the expected value distribution was also well represented (29.95/16.02/24.59% of neurons in LIP/FEF/
LPFC, all p < 0.002). Mean value and chosen color were comparatively less represented in all three regions (MV: 1.20%/0.92%/3.25% in LIP/FEF/LPFC, p =
0.008/0.0978/0.002, and CC: 0/1.73/0.23% in LIP/FEF/LPFC, p = 0.6447/0.01/0.1138). See STAR Methods for details on model comparison.

(C) Proportion of neurons significantly encoding the four mutually exclusive models in each region over time, relative to the onset of the targets (300 ms windows,
as in Figure 2D).

(D) Top panel shows percent explained variance by the first 10 principal components (100 bootstraps, mean and 95% confidence interval). Inset shows the
effective dimensionality (100 bootstraps, mean and standard error to the mean). Bottom panels show neural activity in all three regions projected into a reduced
dimensionality space consisting of the first three principle components (PCs, in decreasing order of explained variance). LIP, 146 neurons; FEF, 216 neurons;
LPFC, 475 neurons. The gray triangle represents the onset of the targets, and the green triangle represents the approximate time of response (200 ms after the
onset of the targets). The projection along the 4™ PC shows the separation of the three estimated templates’ color in a triangle shape with a linear effect of time.
The projection in the first 3 PCs leads to a more cyclic effect of time.

(E) Cross-temporal decoding of the attentional template (as in Figure 2F, trained across all progression levels). x axis corresponds to time window used to train
classifier, and y axis corresponds to the time window used for testing the classifier (on withheld trials). Color code indicates classification accuracy of template,
and lines indicate significance level (z test on 100 bootstraps). Triangles represent the approximate time of fixation (black), targets onset (gray), and
response (green).

(F) Proportion of neurons significantly sensitive to the true attentional template (i.e., the color used by the behavioral task). Thus, the representation of the template
did not depend on the behavioral model.

(G) True template classification accuracy for each third of the block, estimated on withheld trials (as in Figure 2D, left half, 113 neurons per region, trained/tested
on 80%/20% of 76 trials per progression level [three levels] and estimated template color bin [three bins]). Violin plot: central white dot is the median, thick vertical
gray bar represents the 25™ to 75" quartile, and area represents the kernel density estimate of the data.

(H) Same as Figure 2D, left half, but with bins rotated by /3, 120 neurons per region, trained/tested on 80%/20% of 62 trials per progression level (three levels)
and estimated template color bin (three bins).

(I) Same as Figure 2D, left half, but with 4 bins, 49 neurons per region, trained/tested on 80%/20% of 61 neurons. For all panels, *p < 0.05, *p < 0.01,
**p < 0.001.
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Figure S4. Extended analysis of the structured and incremental nature of the estimated template representation, related to Figures 3 and 4
(A) Results of the permutation test on the trial-by-trial decoding accuracy for all trials. Gray bars represent the histogram of the shuffled mean circular distance
between the neural and behavioral templates (1,000 shuffles, the smaller the distance, the better the decoding accuracy), and red line represent the true mean
circular distance between the neural and behavioral templates across all trials.

(B) Same as (A), but for the decoding accuracy across blocks (related to Figure 3D).

(legend continued on next page)
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(C) Same as (A), but for the mean circular distance of the inter-color distance between two neural templates and two behavioral templates (related to Figure 3E).
(D) Entropy of attentional template over trials, relative to template switch. Each line is a series of trials after the template switch (171 blocks). Entropy is often low
before monkeys realize the template has changed.

(E) Decoding error measured as absolute circular distance between neural and behavioral estimated templates (+ SEM) for each bin of entropy (see STAR
Methods, 10 bins, smoothing of 4 bins, all withheld trials). Violin plot shows mean Pearson correlation between the decoding error and the template entropy
across validation trials for each session. The greater the attentional entropy, and therefore the uncertainty about the estimated template, the greater the decoding
error (r(5,838) = 0.0954, p < 0.001, one-sided Pearson correlation). This effect was consistent across sessions (t(16) = 2.4996, p = 0.0118, one-sided t test).
(F) Scatter plot of circular distance between mean neural and behavioral estimated templates (r = 0.1092, p < 0.001, 14,535 pairs, permutation test on the circular
distance). G) Mean absolute angular distance between neural estimated template at trial n and n+1 over trials, relative to the reset (mean across blocks, + SEM,
111 blocks). The update magnitude decreased after the reset (GLM with factor trial after the reset, f = —0.019+0.007, t(1,108) = —2.6863, p = 0.007). H) Left: mean
Z scored distance between the neural and the behavioral update away from the chosen color on withheld trials, following a negative RPE. Black dots are individual
sessions, central white dot is the median, horizontal black bar is the mean, thick vertical gray bar represents the 25" to 75" quartile, and area represents the
kernel density estimate of the data. Middle: mean Pearson correlation between the update magnitude and the RPE magnitude on withheld trials. Right: same as
middle but for absolute distance between the estimated template before the update (at n-1) and the chosen color. For all panels, ***p < 0.001.
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Figure S5. Extended analysis of stimuli re-mapping to support decision-making across templates, related to Figure 5

(A) Time course of classification accuracy of chosen value (with 95% confidence interval; 110 neurons, trained/tested on 80%/20% of 128 trials per estimated
template bin, 3 bins). Chance level was 1/2. For all panels, bar thickness indicates significance level: p < 0.01, p < 0.05 Bonferroni corrected (27 time points), and
p < 0.01 Bonferroni corrected.

(B) Time course of stimulus color classification accuracy of stimulus color (with 95% confidence interval). Computed on withheld trials for each time point
(115 neurons, trained/tested on 80%/20% of 128 trials per stimulus color bin, 3 bins; split between chosen and unchosen stimuli). Chance level was 1/3. P > 0.23
for all three regions.

(C) Time course of classification accuracy of chosen color (left) and estimated template color (right; both with 95% confidence interval; 133 neurons, 80 trials per
chosen color and estimated template bin, 2 bins for each). The chosen color could not be decoded when we balanced the estimated template color (all p > 0.28),
whereas the estimated template could be decoded when we balanced the chosen color (p < 0.009 in all three regions, although this did not survive Bonferroni
correction. For this panel, bar thickness indicates significance level: p < 0.05, p < 0.01, and p < 0.05 Bonferroni corrected across time (27 time points).

(D) Time course of classification accuracy of choice (with 95% confidence interval; on withheld trials; 90 neurons, trained/tested on 80%/20% of 120 trials per
estimated template bin, 3 bins). Chance level was1/2. Bar thickness indicates significance level: p < 0.01, p < 0.05 Bonferroni corrected (23 time points and 4
locations), and p < 0.01 Bonferroni corrected.

(E) Same as (D) but computed on withheld trials with the same estimated template color as the training trials (solid line) or with a different estimated template color
bin (dashed line).

(F) Time course of classification accuracy of choice location in the four possible displays (3 targets were presented in the 4 possible locations on each trial) (with
95% confidence interval; on withheld trials; 105 neurons, trained/tested on 62 trials per estimated template bin, 3 bins). Chance level was 1/3. Bar thickness
indicates significance level: p < 0.01, p < 0.05 Bonferroni corrected (23 time points and 4 displays), and p < 0.01 Bonferroni corrected.

(G) Neural activity in all three regions projected into a reduced dimensionality space consisting of the first three eigenvectors (in decreasing order of explained
variance). LIP, 145 neurons; FEF, 212 neurons; LPFC, 474 neurons.
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Figure S6. Extended analysis of value representations over time, related to Figure 6

(A) Time course of the mean split-half reliability (with 95% confidence interval) of the chosen value regressors for the two contralateral locations (contra) and the
two ipsilateral locations (ipsi, dashed line) for LIP (top) and FEF (bottom) (see Figure 6A for LPFC). Bars indicate the significance of the split-half reliability (blue/red)
and the difference in reliability strengths between the two regressors (black).

(B) Same as (A) for the unchosen value for LIP and FEF (see Figure 6B for LPFC).

(C) Same as (A) for the unchosen value regressor in the contralateral locations for LIP, FEF, and LPFC. Bars indicate the significance of the split-half reliability and
the difference in reliability strengths between FEF and LPFC (orange). There was no difference between FEF and LIP (p > 0.0324) and LIP and LPFC (p > 0.0102).
(D) Violin plot: time point at which the unchosen value reliability was maximal across bootstraps. Central white dot is the median, horizontal bar is the mean, thick
vertical gray bar represents the 25™ to 75" quartile, and area represents the kernel density estimate of the data. Statistical significance was estimated using a
two-sample two-tail z test. *p < 0.05.

(E) Percent neurons with a firing rate modulated by the presence or absence of a stimulus at each location, “in” receptive field, note that a neuron can have several
locations in its receptive field.

(F) Same as (A), but comparing locations “in” receptive field and “out” of the receptive field (defined in E). We subsampled the locations “out” of receptive field to
match the “in” receptive field.

(G) Same as (B) for “in” and “out” of receptive field.

(H) Time course of the correlation of chosen value regressors within a location (i.e., split-half reliability, distance index = 0) or across locations (distance in-
dexes > 0; see STAR Methods for details). Shown for LIP (left), FEF (middle), and LPFC (right). Shaded region shows 95% confidence interval. Bars indicate the
significance of the split-half reliability (distance index = 0) and the correlation disattenuation between chosen value vectors.

(I) Same as (H), but for the Z scored explained variance of the chosen value regressor (see STAR Methods for details).

(J) Bootstrapped distribution of the mean area under the curve of the correlation of chosen value regressors within a location (split-half reliability, distance index =
0) or across locations (distance index > 0). Taken for all (22) time points shown in (H). Shown for LIP (left) and FEF (right). Central white dot is the median, horizontal
bar is the mean, thick vertical gray bar represents the 25" to 75" quartile, and area represents the kernel density estimate of the data. Statistical significance was
estimated using a paired one-sided z test (assuming that smaller distances would be more similar) using the reliability or the correlation disattenuation against 0.
*p < 0.05, *p < 0.01, **p < 0.001 Bonferroni corrected (6 pairs).

(K) Mean area under the curve of the Z scored explained variance of the chosen value regressor (shown in |, see STAR Methods for details).

(L) Same as (J) but limited to time points up to 300 ms after the onset of the stimuli in (H) (12 time points).
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