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INTRODUCTION

Understanding the synergistic impacts of multiple anthro-
pogenic global change stressors on natural systems is a key
challenge facing the field of ecology (Van Moorsel
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Abstract

Anthropogenic climate change has increased the frequency of drought,
wildfire, and invasions of non-native species. Although high-severity fires
linked to drought can inhibit recovery of native vegetation in forested ecosystems,
it remains unclear how drought impacts the recovery of other plant communities
following wildfire. We leveraged an existing rainfall manipulation experiment to
test the hypothesis that reduced precipitation, fuel load, and fire severity convert
plant community composition from native shrubs to invasive grasses in a
Southern California coastal sage scrub system. We measured community compo-
sition before and after the 2020 Silverado wildfire in plots with three rainfall treat-
ments. Drought reduced fuel load and vegetation cover, which reduced fire
severity. Native shrubs had greater prefire cover in added water plots compared to
reduced water plots. Native cover was lower and invasive cover was higher in
postfire reduced water plots compared to postfire added and ambient water plots.
Our results demonstrate the importance of fuel load on fire severity and plant
community composition on an ecosystem scale. Management should focus on
reducing fire frequency and removing invasive species to maintain the resilience
of coastal sage scrub communities facing drought. In these communities, con-
trolled burns are not recommended as they promote invasive plants.

KEYWORDS

coastal sage scrub, drought legacy, Eriogonum fasciculatum, feedbacks, global climate
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et al., 2023). Climate change is driving more frequent and
intense drought and wildfires, and these drivers may inter-
act with species invasions to dramatically alter ecosystems.
While experimental studies have evaluated the effects of
drought, wildfire, and invasion of non-native species on
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natural systems, the complexity of multiple interacting
effects is less understood and is typically studied through
large-scale modeling efforts (De Kort et al., 2018; Franklin
et al., 2016). Studies of these three stressors demonstrate
varying interactions from positive to negative
(Erskine-Ogden et al., 2016; Stevens et al., 2018; Wigginton
et al., 2020). Experimental studies of multiple global change
stressors are needed to anticipate interacting impacts.

Periods of drought lead to a reduction in fuel load,
which is generally thought to decrease fire severity
(Batllori et al., 2013; Garcia-Llamas et al., 2020). Here,
fire severity is defined as the impact of fire on organic
matter, as opposed to fire intensity, which is the energy
released by fire (Keeley, 2009). Drought can also increase
fire severity through increased evaporative demand and
decreased fuel moisture (Huang et al.,, 2020; McEvoy
et al., 2020). In forested systems, fire severity influences
postfire vegetation recovery, such that more severe burns
cause higher mortality of trees and a greater likelihood of
vegetation-type conversion to non-native dominated
systems (Coop et al., 2020; Landesmann et al., 2021).
Invasive plants establish in areas disturbed by wildfire
because they are typically ruderals that quickly colonize
bare ground (Hess et al., 2019; Jauni et al., 2015).

Our study was conducted in coastal sage scrub (CSS), a
shrub-dominated community of Southern California that
is a biodiversity hotspot and a vulnerable system impor-
tant to preserve and restore (Myers et al., 2000). CSS has
been heavily impacted by urbanization and fragmentation,
is home to many threatened and endangered species, and
provides important recreational opportunities for millions
of people in the region (Riordan & Rundel, 2009). While
severe fires are harmful to forest systems, in fire-adapted
systems of Southern California, severe wildfire can limit the
spread of invasive species and promote native plants with
adaptations to crown-sprout or germinate from seed after
fires (Schlau, 2022). Invasives are less impacted by
low-intensity fires (Keeley et al., 2008), and the cover of
native shrubs that germinate from seed following fire is pos-
itively  correlated  with  fire  severity  (Keeley,
Fotheringham, & Baer-Keeley, 2005).

Some invasive species are generalists that can thrive
in a range of weather conditions (LaForgia et al., 2020;
Qian & Ricklefs, 2006). Non-native species may outcompete
natives under drought if their traits enable them to grow
faster than natives in dry conditions (Duell et al., 2021;
Kimball, Gremer, et al., 2014). Extreme drought may lead
to invasion by suppressing native cover and opening up
bare ground for non-natives to invade (Diez et al., 2012).
In Southern California shrublands, drought-induced
shrub mortality can lead to the invasion of herbaceous
non-natives (Jacobsen & Pratt, 2018). However, the influ-
ence of drought on invasion is uncertain, as natives in

arid and semiarid regions have adaptations to tolerate or
avoid drought, such as deep roots and drought-deciduous
habits for shrubs or long-lived seed banks for annuals,
that can give them an advantage over some herbaceous
non-native species during occasional dry periods
(Kimball et al., 2018; Puritty et al., 2019). Drought
occurring in the years immediately following wildfire can
limit native regrowth and promote invasion due to incr-
eased bare ground (Keeley, Baer-Keeley, & Fotheringham,
2005; Oleary & Westman, 1988).

We tested for interactions between rainfall history
and wildfire in Southern California at the Loma Ridge
Global Change Experiment (hereafter: Loma Ridge), a
whole-ecosystem precipitation manipulation that was
established in 2007. That same year, the entire experi-
ment burned in the wind-driven Santiago Fire. In the
first 4 years after the fire, reduced water plots exhibited
greater non-native herbaceous cover and lower native
shrub cover than added water and ambient plots
(Kimball, Goulden, et al., 2014). Other studies have
tested how altered precipitation affects community
composition and ecosystem processes at Loma Ridge
(Allison et al.,, 2013; Finks et al.,, 2021; Kimball
et al.,, 2016; Malik et al., 2020; Martiny et al., 2017;
Matulich et al., 2015; Matulich & Martiny, 2015; Potts
et al., 2012). On 26 October 2020, Loma Ridge burned
again in the 5419-ha Silverado Fire, a wind-driven con-
flagration similar in behavior to the 2007 Santiago Fire.

In this study, we leveraged ongoing rainfall manipula-
tions, vegetation data sets, and the Silverado Fire at Loma
Ridge to test the impact of prefire drought on postfire recov-
ery. While greater fire severity damages native forested eco-
systems, shrub-dominated systems such as chaparral and
CSS can recover following low-frequency, high-severity fire
but are threatened by conversion to non-native systems
with increasing fire frequency and drought (Pratt, 2022).
We addressed the following hypothesis: Fuel load and burn
severity decrease with drought, leading to higher invasion
after a fire (Batllori et al, 2013; Keeley et al., 2008;
Malanson & Westman, 1991) (Figure 1A). Our study pro-
vides a rare opportunity to test the influence of pre-fire pre-
cipitation, fuel load, and fire severity on postfire community
composition at the ecosystem scale.

METHODS

The Loma Ridge experiment consists of eight replicate
experimental blocks established in CSS and grassland
communities. Each experimental block includes six plots,
with each plot randomly assigned to a unique water
(reduced water, ambient, and added water) and nitrogen
(ambient or added nitrogen) manipulation treatment.
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FIGURE 1 (A) Hypothesized relationships between prefire precipitation, fuel load, fire severity, and vegetation type in coastal sage scrub.
Dotted lines indicate feedbacks. Actual precipitation values are provided in Appendix S1: Figure S1. (B) Photograph of one of the reduced water
plots before the Silverado Fire. (C) Photograph of an added water plot before the fire with many shrubs. (D) Photograph of a reduced water plot
after the fire, in which some of the shrub skeletons have small branches and even some leaves remaining. (E) Photograph of an added water plot
1 month after the fire showing shrubs with only a few large branches remaining. Illustration and photographs by Sarah Kimball.

The climate is Mediterranean (dry summers and wet win-
ters) with a mean annual temperature of 17°C, mean
annual precipitation of 325 mm, and mean relative
humidity of 58% (Barbour et al., 2023). Mean annual pre-
cipitation at the site during the rainfall manipulation
(2007-2022) was 268 mm (Appendix S1: Figure S1). The
drought involved an approximately 40% reduction in pre-
cipitation, achieved by covering plots with plastic during
large storms, reducing mean annual precipitation to
153 mm. Water was funneled into storage tanks and later
pumped on water addition plots via irrigation lines,
resulting in an ~25% increase in water received (mean
annual precipitation increased to 336 mm). In this study,
we focused on the precipitation manipulations in CSS and
only collected data on ambient nitrogen plots from the
reduced water, ambient, and added water treatments within
that community (Figure 1B-E).

Here, we use plant community composition data col-
lected in April of 2020 (the spring immediately before the
Silverado wildfire) and April 2021 (after the wildfire but
before the rainfall manipulation had been reestablished)
to determine how prefire water manipulations influenced
plant biomass (Appendix S1: Section S1: Biomass: Methods
and results), fire severity (Appendix S1: Section S2: Fire
severity: Methods and results), and resulting plant commu-
nity composition. To measure plant community composi-
tion, each plot was divided into three 4 X 4-m quadrats,
within which all species were identified and percentage
cover was visually estimated. For all shrubs, separate cover
values were recorded for crown sprouting individuals, dead
shrubs, and seedlings. Overlapping plants meant that plant

cover could total >100%. Ground cover values (bare ground,
thatch, litter, cryptobiotic crust, rock, or moss) were sepa-
rately estimated so that they totaled 100%.

Data were analyzed by mixed model ANOVAs using the
nlme package in R (Pinheiro et al., 2021). If necessary, vari-
ables were In-transformed so that residuals were approxi-
mately normally distributed. Cover of vegetation was
analyzed with two-way ANOVAs to test the effects of water
treatment (reduced, ambient, or added), fire (before or after
fire), and the treatment-by-fire interaction on total plant
cover, native shrub cover, native forb cover, non-native grass
cover, non-native forb cover, and litter and thatch cover. Plot
was included as a random factor in the analyses.

RESULTS

Experimental drought led to reduced prefire biomass
(Appendix S1: Section S1: Biomass: Methods and results)
and lower fire severity (Appendix S1: Section S2: Fire
severity: Methods and results). Shrubs were taller, had
more terminal branches that tended to have a smaller
diameter, and had a greater proportion of branches with
singed leaves in the reduced water plots compared to
ambient and added water plots, consistent with decreased
fire severity (Appendix S1: Section S2: Fire severity:
Methods and results). The cover of vegetation in experi-
mental plots varied before versus after fires and with water
manipulation treatment (reduced, ambient, or added
water), such that native and non-native plants responded
to fire and water treatment differently (Figure 2A,B,
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FIGURE 2 Interaction plots demonstrating influence of fire (before and after fire, shown in turquoise and orange) and water treatment
on (A) total native plant cover, (B) total non-native plant cover, (C) native shrub cover, (D) non-native grass cover, (E) native forb cover,

(F) non-native forb cover, and (G) litter and thatch cover. Results from mixed-model two-way ANOVAs testing the effects of water treatment
(reduced, ambient, or added), fire (before or after fire) and the treatment-by-fire interaction are included such that factors with low p-values
are listed: ***p < 0.0001, **p < 0.01, *p < 0.05, and no * indicates p < 0.07. Plot was included as a random factor in the analyses. Native and
non-native forb cover, non-native grass cover, and cover of litter and thatch were In-transformed prior to analysis so that residuals were
approximately normally distributed.
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Appendix S1: Table S1). Native shrubs, which make up
the majority of biomass in CSS due to their large stature,
had prefire absolute cover values averaging 75% in added
water plots compared to 20% reduced water plots
(Figure 2C). Postfire shrub cover was very low in all plots.
Fire caused shrub cover to drop from 75% to 20% in added
water plots, from 60% to 10% in ambient plots, and from
20% to 10% in reduced water plots (Figure 2C). Native
forbs had a combined cover of only ~5% before fire that
jumped after the fire to an average of 42% in the added
water plots, 15% in ambient plots, and 10% in reduced
water plots (Figure 2E).

The response of non-native plants was in the opposite
direction, such that non-natives had the highest cover in
postfire, reduced water plots (Figure 2B). Non-native
grasses had the highest cover in reduced water plots
(40%) compared to added and ambient water plots (from
2% to 15%), both before and after wildfire (Figure 2D).
Non-native forbs were more influenced by fire than water
treatment and had the highest cover in postfire plots
(Figure 2F). Ground cover of litter and thatch was
between 40% and 80% in all water treatments before the
fire (Figure 2G). After fire, there was almost no litter and
thatch in added and reduced water plots but around 15%
ground cover of litter and thatch that remained in
reduced water plots, consistent with lower fire severity
and a thicker pre-fire thatch layer (Figure 2G).

DISCUSSION

In our rainfall manipulation experiment, CSS plots
receiving less water prior to the 2020 Silverado wildfire
had lower native shrub cover and lower biomass, which
in turn led to lower fire severity that maintained high
non-native cover and low native herbaceous cover
(Figure 1). Before fire, reduced water plots contained less
fuel and burned at a lower severity, providing important
ecosystem-scale confirmation of modeling efforts to relate
precipitation and fuel load to fire severity (Kane
et al, 2015; Parks et al, 2018). Lower fire
severity associated with drought also maintained high
cover of invasive annual species, which could lead to
vegetation-type conversion (Cox & Allen, 2008b; Keeley
et al., 2008).

In Southern California, increased fire severity has
been linked to decreased cover of invasive species and
increased cover of herbaceous natives that germinate
from seed after the fire (Keeley et al., 2008), something
that we also found in our experimental plots. The native
forbs have seeds that withstand high-severity fires, while
the non-native forbs are negatively impacted by
high-severity wildfire (Cox & Allen, 2008a; Schlau, 2022).

In our study, the only plots that contained litter and
thatch on the ground after fire were the reduced water
plots, consistent with lower-severity fire and lower
temperatures experienced by the seed bank. Non-native
forb cover was greatest in the postfire plots that were
under drought before the fire and that burned at lower
severity. The cover of non-native grasses was also greater
in the reduced water plots after a fire. These plots had
higher non-native grass cover before the 2020 Silverado
fire, so the higher cover of non-natives in reduced water
plots was likely due to water treatment altering succes-
sion after the 2007 Santiago wildfire (Kimball, Goulden,
et al., 2014) in addition to lower-severity burning during
the 2020 Silverado wildfire. Feedbacks between invasive
species and fire severity have been documented in other
systems as well (Blackhall et al., 2017; Tiribelli
et al., 2018).

From a management perspective, these data indicate
the importance of reducing fire frequency to promote the
growth of native shrubs and increase fuel load. High fuel
loads were linked to high native shrub cover and
higher-severity fires, which in turn promoted higher
native forb diversity and lower non-native cover. Less fre-
quent fires that allow fuels to build up will improve the
long-term persistence of the CSS community (Eliason &
Allen, 1997). Prescribed burning is recommended to
reduce fuel load and fire severity in forest systems
(Knapp et al., 2005) but should not be used in CSS sys-
tems (Keeley, 2002). Our results support other studies
indicating that controlled burns in CSS reduce fuel load,
lead to lower-severity fires, and increase non-native, inva-
sive species (Keeley, 2002; Keeley, Baer-Keeley, &
Fotheringham, 2005).

Postfire control of invasive plant species may be the
optimal management strategy to thwart continued inva-
sion. In CSS systems, including at our study site, fires are
occurring at a higher frequency than they have histori-
cally (Talluto & Suding, 2008; Wells et al., 2004) due to
increases in anthropogenic ignitions. With this higher
fire frequency, native plants are unable to build up a seed
bank or biomass in between fires (Syphard et al., 2007;
Wells et al., 2004). Local land stewards cannot prevent
drought and high winds, so the increased ignition
sources result in more frequent fires. Postfire invasion
control is likely the only possible option to mitigate the
effects of drought combined with high fire frequency
(Schlau, 2022). On a national and global scale, a reduc-
tion of anthropogenic CO, emissions and related temper-
ature increases would reduce the frequency and severity
of drought (Dong et al., 2019; Williams et al., 2019).

In conclusion, three global change stressors (extreme
drought, high-frequency wildfire, and invasive species)
had a compounding influence on plant community
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composition. Experimental drought shifted plant commu-
nity composition toward non-native annual dominance
while reducing plant biomass and fire severity. In con-
trast, increased precipitation led to more native shrubs
and fewer invasive grasses. More water also led to more
fuel build-up because more native shrub cover means
more biomass (Figure 1). The higher biomass of native
shrubs led to greater fire severity. After a fire, native
shrubs continued to dominate with water addition,
whereas non-native dominance was maintained with
drought. Our results demonstrate the importance of fuel
load and fire severity to plant community composition on
an ecosystem scale. To maintain resilient CSS communi-
ties, management strategies should focus on reducing fire
frequency and controlling non-native species after fires
occur.
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