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The reliability of organic molecular crystal structure prediction has improved tremendously in recent years.

Crystal structure predictions for small, mostly rigid molecules are quickly becoming routine. Structure

predictions for larger, highly flexible molecules are more challenging, but their crystal structures can also

now be predicted with increasing rates of success. These advances are ushering in a new era where

crystal structure prediction drives the experimental discovery of new solid forms. After briefly discussing

the computational methods that enable successful crystal structure prediction, this perspective presents

case studies from the literature that demonstrate how state-of-the-art crystal structure prediction can

transform how scientists approach problems involving the organic solid state. Applications to

pharmaceuticals, porous organic materials, photomechanical crystals, organic semi-conductors, and

nuclear magnetic resonance crystallography are included. Finally, efforts to improve our understanding

of which predicted crystal structures can actually be produced experimentally and other outstanding

challenges are discussed.

1 Introduction

Molecular organic crystals occur across many areas of chem-

istry. The majority of small-molecule pharmaceuticals are

administered in crystalline form.1 Molecular crystals are key

components of fertilizers,2,3 pesticides,4,5 and pigments.6 They

can function as eld effect transistors, light-emitting diodes,

and photovoltaic cells.7 Porous organic crystals can perform gas

storage and separations.8 Crystalline order can enable highly-

selective solid-state syntheses,9 while crystalline phase transi-

tions and solid-state chemical reactions create the basis for new

mechanically-responsive “dynamic” materials.10–12

The properties and functions of these crystals, including

color, stability, solubility, carrier mobility, etc., oen depend

strongly on the crystal packing. Notably, about half of all

organic molecules are thought to exhibit polymorphism,13 or

the ability to adopt multiple distinct crystal packing motifs, and

this creates both challenges and opportunities when working

with organic materials. While the crystallization of the “wrong”

polymorph can hinder the bioavailability of a pharmaceutical

and force its recall, for example, the possibility to tailor crystal

packing to achieve desired physical properties is alluring.

Unfortunately, experimental polymorph control can be difficult,

and even seemingly minor changes in the crystallization

conditions or to the molecular structure can alter the crystal

structure signicantly. The choice of solvent system, heat,

pressure, or time can similarly transform a system from one

polymorph to another.

For these reasons, developing new organic materials oen

requires an understanding of the landscape of crystal structures

that can occur for the species of interest. Given the difficulties

in ensuring that all important crystal forms have been discov-

ered experimentally, researchers have long sought the comple-

mentary ability to predict crystal polymorphs theoretically.

Seventy years ago, science ction author Robert Heinlein

dreamed of a future when “mathematical chemists will design

new materials, predict their properties, and tell engineers how
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to make them—without entering the laboratory.”14 Progress

toward this goal remained slow for decades, and in 1998 Mad-

dox famously referred to the difficulty in predicting crystal

structures as “one of the continuing scandals in the physical

sciences.”15 Since then, however, crystal structure prediction

(CSP) has transformed from scandal to reality, and Heinlein's

vision is nally now being realized for organic crystals.

Successful predictions continue to mount in recent Blind

Tests of Crystal Structure Prediction which have been held every

few years since 1999.16–21 The results of the most recent 7th

Blind Test will be published in the near future. The scope of

successful predictions has progressed from small, rigid mole-

cules to larger pharmaceutical-sized molecules with conforma-

tional exibility and/or disorder, and from single-component

crystals to multi-component hydrates, solvates, co-crystals, and

salts. Even the denition of what constitutes a “successful”

crystal structure prediction has evolved to become more strin-

gent over time. In the rst Blind Test, for example, simply

nding the experimental crystal structure during the search

procedure was considered a partial success, even if the energy

model ranked it poorly. Today, a successful CSP is expected to

predict both the structures and the relative stabilities accu-

rately, and sometimes also how those stabilities vary with

temperature and pressure.

Thanks to this progress, the pharmaceutical industry is

rapidly adopting CSP to help de-risk against the unexpected

appearance of new crystal forms or to narrow the search space

of crystal co-formers to be screened experimentally.22–31 CSP has

expanded from a purely academic endeavor to one with

multiple private companies developing soware, creating new

algorithms, and providing contract CSP services. Some larger

pharmaceutical companies have their own internal CSP teams

as well. Beyond pharmaceuticals, CSP is being used to under-

stand or discover new functional organic materials. In all of

these application areas, CSP is helping to solve difficult crystal

structures, anticipating new crystal forms, guiding experi-

mental researchers toward the discovery of those forms, and

enabling rational materials design.23,32–34

This perspective article seeks to highlight what organic CSP

can accomplish today, how it can transform the discovery and

understanding for a broad range of problems in organic mate-

rials, and where major outstanding challenges remain. Section

2 discusses reasons why CSP is such a difficult problem, while

Section 3 provides a high-level overview of the methods

currently used to overcome those challenges. Section 4 presents

a variety of recent case studies that highlight the diverse fron-

tiers of CSP, including examples from pharmaceutical formu-

lation, its incorporation into nuclear magnetic resonance

(NMR) crystallography, the discovery of new, highly porous

organic crystals, the study of photochemical transformations in

the solid state, and efforts towards the rational design of new

materials. Finally, Section 5 discusses several directions in the

eld that will likely prove important in the next few years. For

further reading, readers are also referred to several excellent

earlier reviews that focus on CSP methods and applications in

greater technical detail.22,23,34–44

2 The crystal structure prediction
challenge

The difficulty of crystal structure prediction stems from several

factors (Fig. 1): rst, the search space of potential structures is

massive, including 230 possible space groups, one or more

molecules in the asymmetric unit, and, for many species,

a competition between intramolecular conformational and

intermolecular packing forces. While some of these complex-

ities can reasonably be managed by, for example, constraining

the search to the most common space groups and/or to crystals

with just one molecule in the asymmetric unit, plenty of

experimental crystals lie outside these constraints. Moreover,

the conformational degrees of freedom in many modern active

pharmaceutical ingredients and other highly exible molecules

are harder to circumvent, and they can dramatically increase

the search space and the resulting computational costs of the

structure prediction.

Second, the energy differences separating crystal poly-

morphs are small. Nearly all experimentally-known crystal

polymorphs lie within 10 kJ mol−1 of one another,13,45 and the

energy differences are oen just ∼1–2 kJ mol−1. Those small

energy differences manifest from competitions among the

hydrogen bonding, electrostatics, induction/polarization, and

van der Waals dispersion interactions within and between the

molecules. Achieving kJ mol−1 resolution in modeling these

diverse interactions can be difficult for both force elds and

electronic structure methods, especially for conformational

polymorphs46 whose crystal structures result from the interplay

between changes in intramolecular conformation and the

intermolecular crystal packing.

Third, while CSP oen focuses on predicting 0 K crystal

lattice energies,40 real-world crystal structures are determined

by free energies at nite temperatures and pressures. In smaller

molecules with limited exibility, the differences between

relative lattice energies and relative room-temperature free

energies are usually small (<2 kJ mol−1).45,47 However, the

magnitude of the relative entropic/free energy contributions can

Fig. 1 Organic molecular crystal structure is difficult due to the large

search space of potential structures (blue dots) on the 0 K crystal

energy landscape which are separated by small lattice energy differ-

ences. Moreover, the relative free energies between polymorphs vary

as a function of temperature and pressure, and not all thermody-

namically feasible crystal structures can be readily crystallized

experimentally.
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increase signicantly in large, exible drug-like molecules30,48

and disordered crystals.49,50 Moreover, factors such as thermal

expansion and dynamics can alter the nite-temperature crystal

structures themselves. The magnitude of these effects is

frequently modest, but not always.

Finally, the vast majority of CSP research has focused on the

thermodynamic stability of the crystal, but polymorph crystal-

lization is highly inuenced by kinetics. CSP routinely predicts

far more thermodynamically viable candidate structures than

are ever observed experimentally. There are multiple reasons for

this over-prediction of structures,51 but crystallization kinetics

are one major reason that more candidate polymorphs are not

found experimentally. While there have been important

advances in modeling organic crystal polymorph nucleation

and growth in recent years,52–55 the statistical mechanical

sampling challenges and the need for accurate but computa-

tionally inexpensive potentials represent on-going hurdles to

reliable prediction of crystallization kinetics. Moreover, CSP

routinely focuses on innite crystals, ignoring the surface

energy contributions that depend on the size and shape of the

nite crystallite. Surface energies can be relevant when

considering the stability of nanocrystalline formulations or

polar crystals, for example.56–61 More detailed discussion of

these issues is beyond the scope of this article.

3 Current methods of crystal
structure prediction
3.1 Overview of hierarchical crystal structure prediction

Themost common organic CSP approaches employ hierarchical

stages of structure renement and ranking (Fig. 2). For example,

the rst stage in the hierarchy might employ an inexpensive

force eld potential to screen ∼105–107 (pseudo-)randomly

generated crystal structures, depending on the complexity of the

species and the search space. The second-stage renes the∼103

lowest-energy structures with an intermediate-quality model. In

the third stage, the few hundred most stable structures might

then be rened further and ranked with dispersion-corrected

density functional theory (referred to here as “DFT-D” for

brevity, thoughmany different dispersion-inclusive DFTmodels

are used in practice). Optionally, one might perform nal free-

energy corrections for a handful of the most stable crystal

structures to predict their stabilities at nite temperatures and

pressures. More technical details have been reviewed

elsewhere.22,23,34–43

A number of features factor into a successful crystal structure

prediction. Ensuring a suitably-thorough search of crystal

packing space is crucial. A routine search might focus only on

crystals with a single molecule in the asymmetric unit (Z′ = 1)

and from the ∼15–20 most common space groups that account

for over 90% of observed organic crystals.62 More exhaustive

searches might consider all 230 space groups and/or crystals

with Z′ > 1. Signicant additional complexity is introduced to

the CSP for exible molecules, due to the need to consider

various equilibrium and non-equilibrium intramolecular

conformations, or for multi-component crystals (co-crystals,

solvates, hydrates, etc.), due to the much larger search space.

Addressing these various complications can substantially

increase the overall computational cost. Within the chosen

search space, random63–65 or low-discrepancy pseudo-random

search approaches66–68 are common in molecular CSP, though

other global search algorithms such as simulated annealing,69

particle-swarm optimization,70–72 basin hopping73 or evolu-

tionary optimization42,74–77 are also used.

The low-cost computational models used in the early stages

of a hierarchical CSP enable broad searching, and the subse-

quent ltering out of poor candidates allows themore expensive

methods to be applied only to the more promising candidates.

Care must be taken to ensure the models used in the early

stages are accurate enough to identify and select the relevant

structures for later-stage renement. For example, conventional

off-the-shelf force elds are oen not reliable enough for CSP.

Section 3.2 will discuss how more customized potentials are

oen used instead.

Much of the current success in CSP stems from the wide-

spread adoption of density functional theory for late-stage

renement and ranking. In the 4th Blind Test of CSP, a DFT-

D-driven approach was the rst to correctly predict the crystal

structures of all the target molecules.78 The development of

accurate, non-empirical, and computationally efficient van der

Waals dispersion corrections for DFT,79 such as D3 and D4,80–82

many-body dispersion (MBD),83–85 and the exchange-hole dipole

Fig. 2 A typical hierarchical crystal structure prediction approach

might (1) generate and rank large numbers of candidate structures with

an inexpensive force field, (2) refine many of the most promising

structures with some method of intermediate accuracy and compu-

tational cost, (3) perform dispersion-corrected DFT refinement on

a few hundred structures, and (4) perhaps end with free energy

calculations on a small number of structures.
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moment (XDM) model,86 has been particularly important.

Generalized gradient approximation (GGA) density functionals

used most frequently for computational expedience,87–92 though

rening the single-point energies with hybrid density func-

tionals improves the results meaningfully.93–98

While many CSP studies nalize their predictions with DFT-D

structures and lattice energies, others proceed further to consider

nite-temperature free energies. Surveys of small molecule crys-

tals have found that vibrational free energy contributions change

polymorph stability orderings for∼10–20% of molecules at room

temperature,45,47 though the differences between lattice energies

and free energies can increase for larger, more complex systems

due to conformational exibility or disorder. For simpler mole-

cules, harmonic, quasi-harmonic, and/or other simplied

anharmonic treatments capture the vibrational free energy

contributions reasonably well. On the other hand, molecular

dynamics-based approaches are potentially superior for

describing more complex crystals, assuming a suitably accurate

potential energy model. Such techniques will be discussed

further in Section 3.2. Overall, the combination of accurate DFT-

D models and (sometimes) vibrational free energy contributions

frequently leads to successful crystal structure predictions, as

demonstrated for many Blind Test targets91,92,94,95,97 and for

examples that will be discussed in Section 4.

In the end, performing a CSP produces a crystal energy

landscape (Fig. 1), which is the set of predicted crystal struc-

tures and their relative lattice energies or free energies. Crystal

energy landscapes at 0 K are oen plotted as lattice energy

versus crystal density, both because van der Waals forces

generally favor more dense crystal packing motifs and because

a scatter plot facilitates visualization of the large number of

predicted structures. In some cases, one may simply wish to

identify the most stable crystal structure(s). However, consid-

eration of the full crystal energy landscape can provide valuable

insights into the crystallization behaviors of a species22,23 or

help elucidate crystal structure–property relationships for

materials design. Before discussing such applications in

Section 4, we discuss several areas where methodological

developments are actively underway.

3.2 Areas of active methodological developments

3.2.1 Improved models for early- and intermediate-stage

structure renement and ranking. In a hierarchical crystal

structure prediction such as Fig. 2, the late-state DFT-D struc-

ture renement and ranking typically consumes a large fraction

of the total computational cost. Because the lower-cost inter-

mediate stage models are generally less reliable than DFT-D, it

is common to carry a relatively large number of structures

forward to the DFT-D renement to reduce the risk that an

important structure is discarded early on (as happened in some

cases during the sixth Blind Test21). Unfortunately, performing

DFT-D renement on many structures is computationally

expensive. Therefore, the total computational cost of the CSP

can potentially be reduced by improving the quality of the early/

intermediate ltering model(s) so that fewer structures need to

be carried forward to the DFT-D stage.

A number of strategies are currently being used to achieve

this. One very successful approach involves parameterizing

tailor-made force elds for each system based on DFT-D

calculations.99 The force elds oen employ fairly standard

functional forms, with terms describing the intramolecular

geometry, short-range intermolecular repulsion, long-range

London dispersion, point-charge or multipolar electrostatics,

and sometimes induction/polarization,

U = Uintra + Urep + Udisp + Ues + Upol (1)

but system-specic parameter tuning achieves higher accuracy

than could typically be obtained with off-the-shelf force elds.

Multiple force elds can be tted to different subsets of data to

predict and score structures independently, thereby potentially

increasing the extent of the crystal packing space searched and

providing insight into the uncertainties in the models.72 More-

over, as the CSP proceeds, the force elds can be reparame-

terized iteratively based on the results of DFT-D structure

renement as well as monomer/dimer quantum mechanical

benchmarks (Fig. 3).72 Iterating the force eld parameterization

toward self-consistency with DFT-D helps ensure the search is

performed with near-DFT-D quality. This iterative process also

produces a more robust force eld that can be used to evaluate

nite-temperature free energy corrections.48 Machine learning

potentials represent a natural extension of this idea.44,100,101

Low-cost semi-empirical methods are similarly promising

for intermediate renement of crystal structures and lattice

energies.102–109 These can be further combined with D-ML, in

which an ML model is trained to correct a simpler model up

toward the quality of a more expensive one. Species-specic D-

ML models have been used in CSP to correct semi-empirical

density functional tight binding (DFTB) toward the accuracy

of hybrid functional DFT-D,110,111 or to correct GGA functionals

up to hybrid functional DFT-D or correlated wave function

methods.112,113

Finally, ab initio force elds tted to symmetry-adapted

perturbation theory (SAPT)114,115 have also improved consider-

ably. SAPT calculations naturally decompose the different types

of intermolecular interactions (electrostatics, exchange-

repulsion, etc.), which can be used to help ensure physically-

sensible parameter ts in the potentials. Successful SAPT

potentials could already be found in the literature 15 years

ago,116–120 but the algorithms and protocols have now matured

to enable highly-automated tting for organic molecules with

modest conformational exibility.121,122 A recent study123 of

een organic molecules found that this approach placed the

experimental structure within the top 10–20 structures (and

oen in top 5). Subsequent DFT-D renement of the top 20

structures generated by these potentials for each species ranked

the experimental structure as the most stable one in every case.

Thus, these potentials are very accurate on their own and can

provide an excellent short-list of candidate structures for

subsequent renement with fully quantum mechanical

approaches. The biggest outstanding question is how efficiently

these tting algorithms can be generalized to highly exible

molecules

© 2023 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2023, 14, 13290–13312 | 13293
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3.2.2 Addressing DFT delocalization error in crystal struc-

ture prediction. Many CSP successes rely on dispersion-

corrected DFT functionals. Commonly-used GGA and hybrid

density functionals balance accuracy and computational cost

and usually enable reliable renement and ranking of hundreds

of crystal structure candidates. However, approximate density

functionals generally suffer from delocalization error (a.k.a.

many-body self-interaction error),124,125 which manifests as

a spurious tendency to prefer overly delocalized electron

densities. Delocalization error leads to systematic errors such as

the underestimation of band gaps, underestimation of chem-

ical reaction barriers, erroneous spin state energy differences,

over-estimation of hydrogen bond strengths, and problematic

conformational energies.

The impacts of delocalization error in CSP were rst high-

lighted by Johnson and co-workers in the context of reanalyzing

the conformational energies in candidate structures for Blind

Test molecule X,92 the lattice energies of halogen bonded crys-

tals,127 and, most dramatically, by showing how it could spon-

taneously convert neutral acid-base co-crystals to their charged

salt forms.128 The present author's group has since found many

more examples where DFT delocalization error signicantly

impacts the relative stabilities for polymorphs of small mole-

cules,126,129,130 pharmaceuticals,126 rubrene organic semi-

conductor materials,131 and photochromic materials.132–137 All

of these systems have crystal structures which differ in the

extent of p conjugation, either due to changes in the intra-

molecular conformation (conformational polymorphism) or

chemical reactions that convert sp2-hybridized atoms to sp3-

hybridized ones (e.g. cycloaddition reactions). Fig. 4 shows how

DFT delocalization error over-stabilizes the more planar

conformations of the ROY molecule,126,138,139 the impacts of

which will be discussed further in Section 4.3.

Delocalization error is particularly pronounced in GGA

functionals such as PBE. Hybrid functionals such as PBE0 help

mitigate the impacts of delocalization error,96,97 though the

necessary amount of exact exchange needed can vary.97,126

Because the impacts of delocalization error on conformational

energies are intramolecular in nature,126,140 an alternative

strategy can be to perform a simple conformational energy

correction,

~Ecrystal = E
DFT
crystal − E

DFT
intra + E

High
intra (2)

that computes the DFT crystal energy EDFTcrystal and replaces the

DFT-D intramolecular energy EDFTintra with one computed using

a more advanced model that is free of delocalization error,

EHigh
intra, such as correlated wave function methods126 advanced

density functionals, or even density-corrected DFT.141

3.2.3 Improved treatment of nite-temperature free ener-

gies. Switching the focus from 0 K lattice energies (E) to nite-

temperature Gibbs (G) or Helmholtz (F) free-energies,

G(T,P) = E + Fvib(T) + PV (3)

can be important for making real-world predictions about the

most stable polymorphs, polymorph phase transitions, the

Fig. 3 Some CSP procedures involve iterative cycles of force field fitting, structure prediction, and DFT-D structure refinement until the force

field and DFT-D crystal energy landscapes are suitably consistent. Adapted with permission from ref. 48. Copyright 2020 American Chemical

Society.

Fig. 4 Delocalization error in GGA and hybrid functionals such as PBE

and PBE0 leads to over-stabilization of more planar conformations of

the ROYmolecular relative to those with a dihedral angle closer to 90°,

as compared to high-level coupled cluster benchmarks.126 This

impacts the predicted crystal energy landscape, as will be discussed in

Section 4.3.
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formation of hydrates as a function of humidity, etc. The

simplest approximation for these effects involves computing

the static harmonic Helmholtz vibrational free energy contri-

butions Fvib via lattice dynamics.

The quasi-harmonic approximation142,143 renes the treat-

ment further by approximating how the phonons and Fvib
contributions change as a function of unit cell volume, which is

especially important for the low-frequency modes.144 The quasi-

harmonic approximation enables predicting the temperature-

dependent thermal expansion of the crystal lattice up to

moderate temperatures, leading to improved-quality

structures,145–147 thermochemical properties,148–151

spectroscopy,152–154 and even polymorph phase

diagrams.152,155,156

Lattice dynamics calculations are considerably more expen-

sive than computing the energy, particularly due to the need to

capture phonon dispersion. For this reason, they are typically

computed with relatively inexpensive DFT-D functionals. A

multi-level approach that combines a higher-level treatment of

the phonons in the crystallographic unit cell with a lower-cost

treatment in the supercell can reduce the costs further.157,158

Although the quasi-harmonic approximation improves the

description of lower-frequency modes, it does not address

anharmonicities in the higher-frequency modes that are

insensitive to the lattice parameters.144 One simple approach for

those phonon modes employs a 1-D anharmonic model to

improve the description of each individual mode.94,95 Vibra-

tional self-consistent eld calculations can capture anharmo-

nicity more fully,159,160 albeit at signicantly higher

computational cost.

Alternatively, molecular dynamics (MD) techniques can

improve upon these static lattice dynamics approaches. MD

simulations naturally capture anharmonicities.144Moreover, the

nite-temperature dynamics will sometimes sample multiple

minima on the potential energy surface, capturing contribu-

tions which would be missed entirely by (quasi-)harmonic

models.161,162MD approaches are also inherently better-suited to

describing dynamically disordered crystals.

One successful MD approach employs a pseudo-supercritical

path approach to relate the free energies of the crystal poly-

morphs to that of an Einstein crystal reference state.49,163,164 For

example, a CSP study of the polymorphs of drug candidate oxa-

bispidine found that the form A was several kJ mol−1 less stable

than form B, contrary to experimental observations. However,

applying this free energy correction approach on top of the 0 K

lattice energy predictions demonstrated enantiotropic relation-

ship, with form A becoming the thermodynamically preferred

form near ambient temperature (Fig. 5).30 Beyond classical

molecular dynamics, path integral studies have shown that

nuclear quantum effects can also be important for determining

the relative polymorph stabilities in aspirin165 and ices.166

The biggest challenge with MD approaches is the need for

extensive sampling, which means that ab initioMD simulations

are extraordinarily expensive computationally—e.g. ∼2 million

central processing unit (CPU) hours for paracetamol.165 There-

fore, inexpensive energy potentials must be used in practice. As

noted before, standard force elds will frequently lack the

requisite accuracy needed for CSP applications. However, good-

quality tailored force elds and machine learning potentials

being tted as part of the search process (as described above)

can also be used for the free energy simulations.48,101 Re-

weighting strategies that map from a low-cost free energy

simulation to a higher-level one with only moderate sampling at

the high level are also possible.163,164

MD free energy approaches have benets beyond simply pre-

dicting polymorph stabilities. Molecular crystal free energy

landscapes tend to be smoother than lattice energy ones, with

multiple lattice energy minima separated by small barriers coa-

lescing into a single free energy well at nite temperatures. This

feature enables reducing the number of predicted structures on

a crystal energy landscape or even searching for crystal structures

directly on the free energy landscape (see Section 4.9).

4 Selected applications at the
frontiers of crystal structure prediction

Having discussed some of the model features that lead to

successful crystal structure prediction, we now focus on case

studies that demonstrate the range and capabilities of present-

day CSP. These examples were chosen to highlight the diverse

ways in which CSP can complement experiment across a broad

range of organic materials, rather than aiming for a compre-

hensive review of the literature.

4.1 Pharmaceutical solid-form screening: rotigotine and

galunisertib

Choosing a suitable solid form for manufacturing is an

important step in pharmaceutical formulation. Researchers

Fig. 5 Free energy calculations on experimentally-known forms A and

B of oxabispidine and several other predicted polymorphs find that

form A only becomes the most stable form near room temperature.

Adapted with permission from ref. 30. Copyright 2021 American

Chemical Society.
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desire crystals with suitable solubility proles, mechanical

properties, and stability. They want to avoid the surprise, late-

stage appearance of new polymorphs with undesirable proper-

ties, such as those which necessitated the recall and reformu-

lation of ritonavir167,168 and rotigotine.169,170 The risks are

signicant: it has been estimated that the most stable crystal

form has not yet been discovered experimentally for some ∼15–

45% of small-molecule pharmaceuticals.28 By providing

a detailed understanding of the crystal energy landscape, CSP

can complement experimental solid-form screening and help

manage the risks of late-appearing polymorphs in pharmaceu-

tical development.22,23,171

Consider two examples: rotigotine and galunisertib. Trans-

dermal rotigotine patches are used to treat Parkinson's disease

and restless leg syndrome. In 2008, the unexpected appearance

of snowake-like and highly insoluble crystals of a new crystal

polymorph (form II) on the patches led to a major recall and

restrictions on the drug in Europe, and its complete withdrawal

from the U.S. market.170 It took four years to reformulate the

patches and return them to the U.S. market.169

Although CSP techniques were less mature in 2008, recent

work by Mortazavi et al.172 demonstrates how modern-day CSP

techniques could have anticipated form II rotigotine. Starting

from only the 2-D molecular structure of rotigotine, they

employed a mixture of tailor-made force elds (tted against

DFT-D calculations), dispersion-corrected DFT, and harmonic

vibrational enthalpy/free energy contributions to predict the

most stable crystal structures of rotigotine, including both

forms I and II (Fig. 6a). Their models indicate that form II is

7.6 kJ mol−1 more stable than form I, in exceptional agreement

with the 7.5 kJ mol−1 measured experimentally (such excellent

agreement probably reects some fortuitous error cancellation).

Today, a CSP prediction of a new polymorph that was so much

more stable than the known form would warrant signicant

concern and would motivate further experimental screening

efforts. Moreover, the higher packing density predicted for form

II also would suggest that high-pressure experiments might

facilitate its crystallization. In fact, similar CSP insights moti-

vated the high-pressure crystallization experiments that

discovered new polymorphs of dalcetrapib27 and iproniazid,171

as will be discussed in Section 4.9.

Overall, rotigotine has a sparse crystal energy landscape,

with only two predicted crystal structures other than forms I

and II in the low-energy (10 kJ mol−1) region. One of those has

stability intermediate between forms I and II. This putative

“form III” has never been observed experimentally, and perhaps

further investigations are warranted.

Whereas the CSP of rotigotine was performed long aer its

behavior was understood experimentally, CSP was directly

integrated into the solid-form screening process for galuni-

sertib.26 This drug candidate for metastatic malignant cancer173

has a complicated solid-form landscape: ten neat polymorphs

and over 50 crystalline solvates have been discovered to-date. Its

propensity for solvate formation complicated the experimental

search for neat polymorphs, and a CSP was performed to

identify any potentially important missing forms. The CSP

revealed hundreds of potential crystal structures in the

10 kJ mol−1 energy window (Fig. 6b). Such densely populated

crystal energy landscapes are unfortunately more typical for

pharmaceuticals than the sparser rotigotine one.

The initial CSP for galunisertib predicted seven of the ten of

the polymorphs eventually found experimentally, but it missed

the remaining three due to search constraints that had been

imposed to expedite the CSP. As crystal forms lying outside the

initial CSP search space were discovered experimentally,

a second, broader CSP was performed using techniques very

similar to those for rotigotine. This second landscape success-

fully predicted all experimentally-discovered polymorphs.

The galunisertib CSPs helped solve the crystal structures of

forms VII and VIII. Experimental difficulties obtaining pure

crystals of these forms complicated the powder X-ray diffraction

patterns, but the structures were eventually solved using

Fig. 6 Predicted crystal energy landscapes for (a) rotigotine172 and (b)

galunisertib.26 Red points indicate experimentally-observed poly-

morphs. For rotigotine, a pair of static structures was identified for

each of forms I and II which correspond to the two possible confor-

mations of the disordered thiophene ring. The structures labeled “form

III” for rotigotine and “GM” for galunisertib have not yet been found

experimentally.
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comparisons against simulated powder diffraction patterns

computed on candidate CSP structures. On the other hand,

both CSPs predict that the most stable “global minimum”

crystal structure has not yet been found experimentally, despite

extensive efforts. This unrealized global minimum structure

highlights two potential issues in CSP which will be discussed

later: when are the accuracy limitations of widely-used DFT-D

models problematic (Section 4.3)? When are predicted crystal

structures actually crystallizable (Section 4.9)?

4.2 Addressing the further complexities in pharmaceutical

crystal structure prediction

Withmounting numbers of successful polymorph predictions for

neat pharmaceuticals, CSP techniques are increasingly being

applied to more complicated aspects of pharmaceutical formu-

lation,23 including disorder and multi-component hydrates,

solvates, and co-crystals. Cases such as the experimental cancer

drug gandotinib,25 with its multiple hydrates, disorder, and

difficulties crystallizing various forms exemplify the real-world

complexities of pharmaceutical solid-form landscapes.

Consider rst disorder, which is present in ∼20–25% of

crystal structures.50 Static disorder results from molecules

adopting a statistical distribution of different congurations or

orientations in the lattice, while dynamic disorder is associated

with the nite-temperature motions of molecules in the crystal.

The distinction between the two types of disorder is not always

sharp, however, and it can even vary with temperature.174 Both

types of disorder can stabilize a crystal structure entropically.

Typical CSP protocols neglect disorder, though the prediction of

multiple closely-related crystal structures with similar lattice

energies can be suggestive of a greater likelihood for disorder to

occur in the experimental crystal structures.175–177

To obtain more quantitative results, disorder needs to incor-

porated into the models. Dynamic disorder can potentially be

described via molecular dynamics simulations,49,161,175 for

example, while a symmetry-adapted ensemble model which

includes weighted energy contributions from all the congura-

tionally unique structures is oen used to treat crystals with static

disorder.178 Such descriptions are considerably more computa-

tionally demanding than conventional static structure models,

unfortunately. A symmetry-adapted ensemble for a system with N

disordered sites having two possible states each requires evalu-

ating the energy for 2N possible congurations, though symmetry

reduces the number of unique congurations in practice.

Accounting for the effects of disorder can be important. A

CSP study on the antihistamine medication loratadine,50 for

example, found multiple crystal structures corresponding to

different components of the disorder. The initial landscape

suggested that form I was relatively high in energy compared to

other predicted forms. Form I became themost stable form only

aer it was modeled with a symmetry-adapted ensemble.

Similarly, the initial predicted crystal energy landscape of gan-

dotinib suggested that the most stable crystal polymorph had

not yet been found experimentally. However, accounting for the

disorder in form I made it isoenergetic to the predicted global

minimum structure.25

Multi-component crystals are also extremely common in

pharmaceuticals. Incorporation of water or other solvent

molecules into a molecular crystal structure occurs frequently.

In other cases, the active pharmaceutical ingredient (API) is

deliberately crystallized as a salt (e.g. with hydrochloride) or

with inactive co-formers to improve their solid form properties.

CSP of multi-component systems can be considerably more

difficult than single-component systems. Predicting when the

co-crystal is thermodynamically preferred can be done pretty

reliably.179–181 On the other hand, the presence of multiple

species increases the crystal packing search space consider-

ably,182 especially when multiple potential stoichiometries need

to be considered.183–185

Despite these challenges, clear progress is being made. A

number of successful hydrate predictions have been per-

formed,187,188 including ones that predicted the correct stoichi-

ometries.185 The use of free energy calculations to compare the

stabilities of different co-crystal stoichiometries has also been

demonstrated.31 Data-driven algorithms can identify plausible

locations for water molecules within an anhydrous crystal struc-

ture, enabling a high-throughput screen of potential hydrates

from an existing CSP landscape.189 Separately, Dybeck et al.

impressively demonstrated that with the help of one experi-

mentally determined co-existence point, the phase boundary

between anhydrate and hydrate forms could be predicted as

a function of temperature and relative humidity to within 10%

relative humidity of experiment (Fig. 7).186 An example of co-

crystal stoichiometry prediction was also included in the recent

7th Blind Test, with results to be published soon.

For an example of a successful CSP applied to a multi-

component salt crystal, consider the recent studies of the sleep-

related drug candidate B5.190 Whereas the neutral form of B5

has just one important crystal form,190 understanding the solid-

form landscape of its hydrochloride salt B5HCl proved much

more difficult.177 Extraordinary experimental effort was required

to uncover two neat polymorphs of B5HCl, a dihydrate, and 11

alcohol solvates of B5HCl. The concurrent CSP study made

Fig. 7 Predicted phase-boundary between hydrate and anhydrate

forms of three drugs as a function of temperature and relative

humidity. They show nearly quantitative agreement between theory

(red lines) and experimentally-derived coexistence points.186

© 2023 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2023, 14, 13290–13312 | 13297

Perspective Chemical Science



several contributions to the eventual understanding: It high-

lighted the stability of form I, which helped explain its insolu-

bility in various solvents and the difficulties in producing other

crystal forms experimentally. It showed that the experimental

forms discovered included examples of all major packing motifs

found on the computational landscape, suggesting that the

experimental screen was suitably complete. Moreover, the large

number of closely related crystal structures on the computed

landscape also pointed to the likelihood of disorder, especially

for one particular conformation of the B5H+ molecule. This hel-

ped rationalize the experimentally-observed disorder and diffi-

culty in growing crystals that were suitable for diffraction.

Finally, a typical solid-form screen might consider multiple

different possible co-formers, potentially multiplying the

number of CSPs that may need to be performed. Sugden and co-

workers recently demonstrated one clever approach for

simplifying this task.191 Their standard CSP approach employs

pre-tted local approximate potentials to describe important

intramolecular conformational exibility in their

molecules,192–194 and generating those models from quantum

mechanical calculations requires non-trivial effort. However, by

creating a library of these conformational energy models for

commonly-used co-former species in advance, they can quickly

run a CSP for a given API with a whole suite of potential co-

formers. Aer tting the local approximate models for the

new API, they can run a CSP to screen each API + co-former

combination in just ∼2–3 days on a moderately sized cluster.

Testing on three different drug molecules found that these

relatively fast CSPs proved sufficiently accurate to rule out co-

former candidates that were unlikely to form co-crystals exper-

imentally, even if additional effort might be to rene the

predictions for the most promising co-formers.

4.3 ROY and the impacts of DFT delocalization error

While CSP is increasingly successful, factors such as DFT

delocalization error can still lead to incorrect predictions. The

ROY molecule, so named for its vibrant red, orange, and yellow

crystals,195 is a classic example of polymorphism and holds the

current world record with 12 fully-characterized

polymorphs,196–204 plus a thirteenth incompletely characterized

form.139,205 Several ROY polymorphs were discovered/solved in

the past few years.200–204Despite the importance of this system to

the eld of polymorphism, predicted crystal energy landscapes

of ROY were highly inconsistent with experimental polymorph

stabilities rankings139,200,206 until very recently. The conforma-

tional exibility of the ROY molecule (Fig. 8) is the primary

factor behind ROY's colors207–210 and its propensity for poly-

morphism, but it also caused problems for CSP. As shown in

Fig. 4, DFT delocalization error over-stabilizes the orange and

red polymorphs, which have more planar intramolecular

conformations exhibiting extended p conjugation, relative to

the yellow polymorphs with their nearly perpendicular confor-

mations that localize p electron density onto each ring.126,138–140

These systematic biases found for GGA and hybrid density

functionals140 can be larger than the total experimental energy

range spanned by the polymorphs.195

Fortunately, correcting the ROY intramolecular conforma-

tional energy contribution to the lattice energy using correlated

wave function methods126,211 or density-corrected DFT141 dramat-

ically improves the crystal energy rankings relative to experi-

ment.129 As shown in Fig. 8, the resulting landscape reveals that

the nine of the twelve lowest-energy candidate structures on the

ROY landscape have already been crystallized experimentally.

The four higher-energy forms (including the proposed-but-

unconrmed structure of the RPL polymorph139) are known to

be metastable and/or were difficult to crystallize, suggesting that

their less stable lattice energies are plausible. Interestingly, the

calculations also suggest that the rank #15 structure on the

landscape becomes the most stable form at high-pressure. While

previous experimental high-pressure studies have not discovered

any new polymorphs,210,212 this prediction suggests further efforts

to produce high-pressure forms may be worthwhile.

Overall, the ROY system highlights how, despite many

successful DFT-driven structure predictions, there are cases

where the most frequently-used DFT-D functionals are inade-

quate. Similar problematic DFT delocalization error issues

occur with conventional DFT functionals for the anti-cancer

drugs galunisertib (Section 4.1) and axitinib,126 the photome-

chanical materials discussed in Section 4.5, and a number of

other examples mentioned in Section 3. Fortunately, these

errors can be overcome through intramolecular energy correc-

tions of the sort used for ROY or the selection of a suitable

density functional.97

4.4 Discovery of new porous organic materials

Porous materials are useful for gas storage and separations, but

rationally designing porous organic crystals is difficult. Beyond

the usual difficulty in intuiting the relationship between

Fig. 8 After addressing the DFT delocalization error issues, the pre-

dicted crystal energy landscape of ROY shows that the lowest-energy

polymorphs have already been discovered experimentally (red).

Interestingly, the hypothetical rank #15 structure in blue is predicted to

become the most stable structure near 10 GPa. Figure adapted from

ref. 129.
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molecular structure and crystal packing, porous organic crystals

are exceptional because they counter the general thermody-

namic preference toward dense crystal packing motifs.

However, Pulido et al.213 demonstrated how CSP and energy-

structure–function maps could be used to drive experimental

discovery of new porous organic crystals. They began by per-

forming CSP on a series of candidate molecular building blocks.

As expected, the lowest-energy structures were densely packed

and non-porous. However, they identied several interesting

“spikes” higher on the crystal energy landscape which corre-

sponded to unusually stable porous structures (Fig. 9). While

these porous structures lay tens of kJ mol−1 above the global

minimum—much too energetically unstable to crystallize on

their own—the authors recognized that these putative porous

structures would be dramatically stabilized by guest solvent

molecules adsorbed within the pores.

Next, they computationally characterized the “function” of

every structure on their predicted crystal energy landscapes—

their methane storage capacity and their potential for hydro-

carbon separations. From this combined understanding of

a molecule's propensity to form porous structures and the

resulting functional properties, they identied the molecule T2

(Fig. 9) as a promising candidate for new experimental crystal-

lization screening studies. They discovered three new porous

polymorphs of T2 in addition to a previously known one. The

new g form of this molecule set a record for ultra-high-surface-

area organic materials (3425 m2 g−1). The experiments

conrmed several predicted properties of these crystals,

including surface area, gas storage capacities, and some gas

separation properties. In select cases, however, adsorption of

larger molecules during the gas separation testing induced

experimental phase transitions that would have been difficult to

anticipate computationally. Nevertheless, this study highlights

how structure prediction and energy–structure–function maps

can drive experimental discovery.214 Subsequent applications of

these or similar concepts to porous materials8,215–217 and organic

semi-conductors218–221 have further conrmed the role of CSP in

the design and discovery of new organic materials.

While CSP oen strives to accurately predict the most stable

crystal structure using high-quality energy models, such detail

is not always required to establish useful design principles for

organic materials. Following on work that showed how the

combined efforts of computation and experiments could lead to

the rapid discovery of new porous organic cage materials for gas

separation and storage applications,222,223 Wolpert and Jelfs

demonstrated that a simple coarse-grained model could give

meaningful insights into how porous organic cage molecules

pack in the solid state.224 Rather than perform traditional,

expensive CSP on each new large organic cage molecule, their

simplied model represents the cages as octahedra with

“patches” on each face that distinguish between whether they

contain either an arene group or an open pore. Aer expressing

the intermolecular interactions between patches via a simple

model Hamiltonian, they explored the types of packing motifs

that were preferred across a range of interaction parameter

strengths. They developed a general understanding for how the

chemical features of the cage molecules translate into the

resulting crystal packing. Moreover, they can determine the key

patch parameter values using just gas-phase dimer DFT-D

calculations, and then predict the preferred crystal packing

for a given species. The simplicity of this approach makes it

highly amenable to high-throughput screening. Coarse-grained

approaches like this can signicantly narrow the molecular

search space for new functional materials before performing

more detailed CSP studies or experiments.

4.5 Establishing design principles for organic

photomechanical engines

In organic photomechanical crystals, solid-state photochemical

reactions can induce elongation, compression, twisting,

bending, jumping, cracking, splitting, and other deformations

of the crystal.10–12 Particular interest lies in harnessing these

structural transformations to do mechanical work, such as for

light-driven actuators225–230 or locomotion.231,232 Designing such

materials requires understanding how molecular structure

translates to crystal structure, how the crystal deforms due to

the solid-state chemical reaction, and what anisotropic work is

performed by that deformation. Characterizing these trans-

formations experimentally is frequently challenging, since the

solid-state chemical reactions may be incomplete, may be

carried out in nanocrystals instead of bulk single crystals, and

oen produce short-lived and highly metastable polymorphs.

These systems therefore represent an excellent opportunity

for rst-principles structure prediction techniques. Until

recently, the use of CSP in understanding solid-state reactions

has been rare.233 We have now shown how CSP can be used as

Fig. 9 Crystal energy landscape for the molecule T2, color coded by

the methane storage capacity. The a–d polymorphs represent

particularly stable porous crystals that have been crystallized experi-

mentally. T2-g set a record for the highest surface area among porous

organic molecular crystals. Adapted with permission from ref. 213.

Copyright 2017 Springer Nature.
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part of a strategy to predict or even design large photome-

chanical responses.135 The approach starts by predicting the

crystal structures of the reactants and products (Fig. 10a).

However, the bigger challenge lies in determining which of the

many predicted product crystal structures is relevant. Because

the solid-state reaction generates the product molecules within

the crystal packing of the reactant, the product polymorph is

typically thermodynamically metastable and oen lies outside

the typical ∼10 kJ mol−1 energy window associated with viable

polymorph crystallization. Since CSP normally focuses on

identifying the most stable crystal form(s), we instead apply

topochemical principles to predict the solid-state trans-

formation (Fig. 10b) and to identify the correct structure on the

crystal energy landscape (Fig. 10a).

Once the structural transformations are known, the amount

of work performed can be predicted. In the spirit of gas heat

engines, we dened an idealized photomechanical engine

cycle135 that enables computing the maximum work potentially

performed by a given solid-state reaction (Fig. 10c). The engine

model assumes the reaction occurs quickly and completely,

thereby generating the product within the unit cell parameters

of the reactant. Relaxation the crystal relieves the internal

stress, deforms the crystal, and performs work.

Studies of solid-state [4 + 4] anthracene photo-

dimerization135,136 and diarylethene ring opening and closing137

have revealed a number of important insights and design

principles for organic photomechanical materials. First, the

unique combination of high elastic modulus and large strains

means that photomechanical organic crystals exhibit excep-

tional theoretical work densities up to at least 200 MJ m−3. If

these could be realized experimentally, they would be several

orders of magnitude larger than the work densities of elasto-

mers or inorganic piezoelectrics. Second, the crystal packing

proves crucial: for one diarylethene derivative studied, the

maximum anisotropic work density differs 40-fold between two

crystal forms. Based on the modest number of cases studied

thus far, the range of work capacities across different poly-

morphs is broader than the range found for different

photochromic species/reactions. This suggests that researchers

should increase their emphasis on crystal engineering in

selecting their target photochrome, especially since packing has

a much larger impact on the mechanical response than do

minor photochrome modications (e.g. halogenation).136

Parallel alignments of the molecules in the crystal generally

produce the especially large anisotropic deformations and work

densities. Finally, the research has identied how the “memory”

of the reactant crystal packing throughout the photochemical

engine transformations biases them to produce greater work in

the forward stroke direction than in the reverse one, enabling

net work to be accomplished.

The need to understand solid-state chemical reactions

extends beyond photomechanical systems. For example, solid-

state photochemical degradation is a signicant issue for

pharmaceuticals, and crystal packing impacts photostability.234

Alternatively, crystal packing can be used to perform solid-state

photochemical synthesis with precise stereochemistry and

quantitative yields.235–237 Solid-state oxidations, reductions,

isomerizations, bonds formations/cleavages, and many other

reactions are also possible.238 Inducing solid-state reactions via

mechanical grinding or milling (mechanochemistry) creates

further synthetic possibilities.239,240 CSP can help engineer

crystal packing motifs that either facilitate or inhibit solid-state

reactions.

4.6 Rational design of organic semi-conductors

The ultimate promise of structure prediction lies in the

complete rational design of new materials, starting from the

molecular building blocks. Because the relationships between

molecular structure and materials properties frequently cannot

be intuited a priori, this rational design will likely require high-

throughput crystal structure prediction to map these relation-

ships across many candidate species.

True CSP-driven rational design of organic materials is still

in its infancy, but Cheng et al. provided an intriguing peek at

the future possibilities with their evolutionary exploration of

Fig. 10 (a) CSP for the 9-methyl anthracene monomer reactant (blue) and photodimer product (red). The experimental monomer (solid blue)

photochemically transforms to the solid-state reacted dimer (SSRD) polymorph, which differs from the solution-grown dimer (SGD) polymorph

obtained from solution-phase crystallization. (b) Scheme showing the solid-state topochemical [4 + 4] photodimerization. (c) The photome-

chanical engine cycle involves fast photodimerization/dissociation reactions (Steps 1 & 3) followed by structural relaxations (Steps 2 & 4) which

perform work. Figure adapted from ref. 135.
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organic semiconductor materials.220 Building on earlier work

that had manually examined small numbers of species,218,219

they searched a chemical space of ∼68 000 aza-substituted

pentacene isomers with (nearly) arbitrary connections

between the ve aromatic rings. Predicting crystal structures for

every one of these molecules would be utterly impractical.

Instead, they rst screened candidate species using simple

molecular-based tness functions optimized via an evolu-

tionary algorithm.

Next, crystal structure prediction was performed on the most

promising molecular structures. In any medium- or high-

throughput scenario, the models used to predict crystal struc-

tures will likely sacrice some accuracy to achieve faster

throughput. As a result, the predicted global minimum crystal

structure for each species is less likely to correspond to the

actual experimental crystal structures. To compensate, they

evaluated the performance of each species by computing both

the electron mobility of the most stable structure and a Boltz-

mann-weighted mean/standard deviation electron mobility

across all low-energy candidate crystal structures. This latter

metric identies species whose crystal structures have consis-

tently good mobilities, rather than those that happen to have

a high mobility for one particular polymorph which may or may

not occur experimentally.

In the end, the strong dependence of mobility on crystal

packing meant that many candidates exhibited overlapping

landscape-averaged mobilities and deviations (Fig. 11). On the

other hand, the best candidate identied here proved to have

only a single, low-energy structure which also had high

mobility, thereby providing condence that the predicted global

minimum structure would likely match experiment. Overall, the

evolutionary algorithm search identied candidates with good

landscape-average and global minimummobilities. The species

identied by the evolutionary algorithm compared fairly well

against several species that had previously been identied by

human experts241 who used a mixture of computation and

chemical intuition. Moving forward, incorporating solid-state

properties directly into the molecular design search, rather

than at the end, will likely to prove important for design of

materials whose properties are very sensitive to crystal packing.

Separately, a CSP study correctly predicted the experimental

crystal structure for chiral [6]helicene and rationalized the

preference for the enantiopure crystal over the racemate.221

Aer this study demonstrated good but crystal packing-

dependent semi-conducting properties, a follow-up CSP study

then examined the impact of derivatizing [6]helicenemolecules.

Dimer screening was used to investigate over 1300 substituted

helicenes, aer which CSP was performed on the most prom-

ising candidates. In the end, they identied a set of derivatives

which had predicted electron mobilities three times that of

a previously characterized helicene.242

4.7 NMR crystallography

The combination of crystal structure prediction with spectro-

scopic experiments can be particularly helpful in solving chal-

lenging crystal structures. One can frequently identify the

experimental crystal structure by predicting candidate crystal

structures, simulating the relevant spectroscopic observables

for each one, and comparing the results with experiment. While

this general idea has been applied to various spectroscopic

characterization experiments, including powder X-ray

diffraction,243–247 Raman spectroscopy153,248,249 and trans-

mission electron microscopy,250 nuclear magnetic resonance

(NMR) crystallography represents the most widely-used

combination.39,251,252

The combination of CSP, DFT chemical shi prediction, and

solid-state NMR has been applied to many different pharma-

ceuticals and pharmacologically active compounds.253–262 One

appealing feature of these approaches is that the spectroscopic

observables provide a second metric for assessing candidate

structures that is “orthogonal” to the lattice energy typically

used in CSP. NMR crystallography can frequently solve the

experimental crystal structure even when that structure is not

the most stable one predicted by the CSP. Unsurprisingly,

models which predict chemical shis more accurately263–266

enhance the discrimination between correct and incorrect

structural assignments in NMR crystallography.267 Further

synergies between experiment and computation are also

possible in NMR crystallography. For example, structural

constraints inferred from the NMR experiments can accelerate

the structure determination by reducing the size of the CSP

search space.258

Machine learning models for predicting chemical shis268–284

promise to accelerate NMR crystallography even further. The

traditional NMR crystallography protocol involves rst predict-

ing a set of candidate crystal structures, computing the NMR

spectra for each one, and comparing them against experiment,

Fig. 11 Predicted electron mobilities for various organic semi-con-

ducting material candidates discovered through an evolutionary

search.220 Red dots indicate the mobility for the most stable predicted

structure of each species, while blue dots/error bars indicate the

landscape-averaged mean mobility and standard deviation for the

ensemble of low-energy structures. Three molecules with the highest

landscape-averaged mobilities are shown.
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all of which can require substantial computational effort.

Recently, however, Balodis et al. demonstrated how NMR crys-

tallography can directly rene the crystal structure against the

experimental solid-state NMR spectrum.261 The authors used

Monte Carlo techniques to optimize an objective function

which combined a weighted mixture of the structure's lattice

energy and the error between its computed chemical shis and

experiment. These quantities can be evaluated inexpensively by

using density functional tight binding (DFTB) for the energies

and the machine-learning ShiML model for the chemical

shis.272,273 Minimizing this objective function successfully

produced the correct structures for several difficult crystals,

despite the “moderate” accuracies of DFTB and ShiML

compared to DFT.

The ability to rene crystal structures directly from NMR will

be especially benecial for large, highly exible molecules, for

which traditional crystal structure prediction can be very

expensive. For example, Balodis et al. solved the crystal struc-

ture of ampicillin (Fig. 12),261 despite the molecule adopting

a high-energy intramolecular conformation in the solid-state

that could easily be missed in a typical CSP search protocol.

Separately, the rapid chemical shi prediction enabled by

ShiML also facilitated the structural characterization of

amorphous drug candidate AZD5718.260 Advances like these are

likely to signicantly increase the effectiveness of NMR crys-

tallography over the next few years.

4.8 Predicting solubility and mechanical properties

As crystal structure prediction becomes more routine, the focus

will increasingly shi to computing the chemical and physical

properties of the predicted crystals. In many cases, these proper-

ties will depend sensitively on the 3-D structure, making it

important to account for the impacts of nite temperature on

crystal structure and stability.40 Examples of computing properties

related to gas separation and storage, photomechanical response,

semi-conducting, and spectroscopy have already been discussed.

Here, two more relevant properties are briey discussed.

First, the solubility of organic speciesmatters inmany chemical

applications, but it is especially signicant in the pharmaceutical

industry, where a large fraction of drugs in development suffer

from low solubility. Because experimental measurements of solu-

bility are time-consuming and resource-intensive, there has been

considerable interest in predicting solubilities computationally.

The eld has frequently relied on informatics-driven approaches,

including recent machine-learning efforts.286–289 Although such

models can be very effective, they typically omit explicit solid-state

contributions and therefore cannot account for how changes in

crystal packing will impact solubility, for example.

There are on-going efforts to develop accurate physics-based

models which could overcome this limitation. While some

approaches simulate the solid–liquid coexistence directly,290 the

more common approach employs a thermodynamic cycle that

expresses the Gibbs free energy of dissolution from the free

energies of sublimation and solvation,

DGdiss = DGsub + DGsolv = −RT ln(S0Vm) (4)

The dissolution free energy can then be related to the solu-

bility S0 via the temperature T, molar volume of the crystal Vm,

and the ideal gas constant R. The sublimation free energy can be

computed from periodic DFT calculations on the crystal lattice

(and either approximating291,292 or explicitly computing the

phonon contributions293) orMD simulations.294 The solvation free

energy can be computed inexpensively via an implicit solvent

model292 or more elaborately with explicit MD simulations. While

developments in this space continue apace, increasing reliance

on higher-quality quantummechanical models in computing the

free energy contributions is bringing the errors to accuracies that

are already approaching the best informatics models.

Predicting relative solubility difference between two crystal

forms is arguably easier, since that requires only the free energy

difference between the two solid forms, avoiding the need to

compute solvation free energies. For the drug rotigotine, for

example, Mortazavi et al. predicted an 8.3-fold difference in

solubility between the two polymorphs with DFT-D, in excellent

agreement with the 8.1-fold difference measured

experimentally.172

Second, knowledge of the mechanical properties of a mate-

rial provides valuable insights into its durability and potential

applications.295 Predicting the elastic constants enables one to

screen materials in silico or to link features of the crystal

packing to its mechanical response properties. For example,

elastic constant predictions can be used to rationalize differ-

ences in how pharmaceuticals behave under tableting condi-

tions. They helped explain the better tableting properties of

paracetamol form II296 and several co-crystals297 compared to

form I, of oxalic acid dihydrate over anhydrous oxalic acid,298

and of co-crystals of celecoxib.299 They showed that form II

aspirin is mechanically stable,300 contrary to an earlier sugges-

tion based on nano-indentation experiments that did not fully

characterize the anisotropy of the crystal. Elastic calculations

also helped conrm and rationalize the surprisingly large

Young's moduli of amino acid crystals301 and a nucleic acid-

based supramolecular assembly,302 and they gave insights into

the negative linear compressibility in several organic acids.303

See a recent review for additional details.295

Fig. 12 Overlay of the ampicillin crystal structures determined from X-

ray diffraction experiments285 (blue) and the direct NMR crystallog-

raphy solution (red) which employed a combination of DFTB energies

and ShiftML chemical shifts.261
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Early force-eld predictions demonstrated the ability to

compute elastic constants within ∼40–50% of experiment,304

with the neglect of thermal expansion of the crystal being

a signicant source of error. The accuracy with which these

properties is predicted can be improved using quantum

mechanical treatments and by accounting for thermal expan-

sion (since mechanical properties are sensitive to molar

volume). For example, the combination of accurate electronic

structure methods and the quasi-harmonic approximation143,305

enables quantitative prediction of the mechanical properties of

simple compounds such as carbon dioxide147 or deutero-

ammonia.93 Such techniques are also quite effective in organic

compounds such as urea,145 organic semi-conductors,306 and

energetic materials.307 While DFT-D has become the most

commonly-used approach, good-quality elastic constants can be

obtained at lower computational cost. Spackman et al.308

curated a large data set of experimental elastic constants,

demonstrated good consistency between experiment and the

semi-empirical s-HF-3c model, and they even identied several

suspicious experimental measurements based on large

discrepancies between the experimental and computed results.

4.9 Can the predicted structures actually be crystallized?

The computational prediction of a new polymorph can some-

times drive its subsequent experimental discovery, as exempli-

ed in the case of the cholesteryl ester transfer protein inhibitor

drug Dalcetrapib.27 CSP on this drug correctly predicted the

experimentally known form A and B polymorphs, which are

closely related via a reversible temperature-dependent order-

disorder phase transition. Interestingly, however, it also pre-

dicted another experimentally-unknown packing motif that lay

very close in energy to form B. Motivated by lattice energy

calculations that predicted this new structure to become more

stable at pressures above ∼0.2 GPa, high-pressure crystalliza-

tion experiments led to the discovery of a new form C. In the

end, this new polymorph proved unstable at ambient condi-

tions and is therefore unlikely to impact the pharmaceutical

formulation. In this manner, CSP played an important role in

managing the solid-form risks for this drug. Similarly, analysis

of the CSP landscape and calculations of the free energies as

a function of temperature and pressure led to the experimental

discovery of a high-pressure polymorph of iproniazid.171

In a third example of CSP driving discovery, a study of the

crystal energy landscapes of structurally-similar tolfenamic

acid, mefanamic acid, and ufenamic acid identied many

thermodynamically plausible isostructural crystal forms. Based

on this analysis, the authors successfully templated two new

thermodynamically metastable polymorphs of tolfenamic acid

using crystals and solid solutions of the other species.309 Tem-

plating experiments informed by knowledge of predicted poly-

morphs similarly led to the discovery of new polymorphs of

carbamazepine310 and cyheptamide,311 along with a new co-

crystal of caffeine and benzoic acid.312

These cases all represent success stories for CSP, but there

are counter-examples. The CSP-predicted global minimum

energy crystal structure of galunisertib has never been found

experimentally, despite years of effort.26 This is probably due to

a combination of poor crystallization kinetics stemming from

its very unfavorable intramolecular conformation26 and the fact

that it is not actually the most stable structure (rather, it was

articially stabilized in the CSP by DFT delocalization error).126

More generally, identifying which putative CSP structures are

likely to be crystallizable proves a major challenge. CSP usually

predicts far more candidate crystal structures than are ever

realized experimentally.51 For some of these structures, that

simply means that the proper crystallization experiment has not

yet been performed. More oen, however, it reects the limi-

tations of CSP approaches, such as the focus on thermodynamic

stability instead if kinetic crystallizability, the fact that many

distinct lattice energy minima coalesce into a single free-energy

basin at nite temperatures, and errors in the predicted ener-

gies (e.g. due to delocalization error biases). See ref. 51 for

further discussion. Additional challenges in assessing synthe-

sizablity and the challenges associated with theory-driven

discovery of materials are discussed extensively in two recent

reviews by Jelfs and co-workers.32,33

To improve our understanding of which predicted poly-

morphs will be experimentally relevant, on-going research

efforts focus on reducing the number of crystal structures on

the crystal energy landscape, on strategies for identifying crys-

tals that are likely to be crystallizable, and on predicting the

thermodynamic conditions under which different polymorphs

are most likely to form. In 2005, Raiteri et al. demonstrated that

metadynamics simulations dramatically simplied a benzene

crystal energy landscape containing tens of lattice energy

minima down to just a handful of structures on the free energy

surface, most of which have been observed experimentally.313

The discarded structures are either labile, converting to

different forms at nite temperature, or they correspond to

different static structure representations from the same

dynamic ensemble. Metadynamics has similarly been applied to

reduce the crystal energy landscape of pigment red 179 (ref. 314)

and, with less success, to 5-uorouracil.315 Metadynamics and

other enhanced sampling methods have proved effective for

searching crystal energy landscapes directly,313–322 avoiding the

need for post-hoc landscape reduction.

Recent efforts to systematize landscape reduction via

a combination of MD, structure clustering, and metadynamics

reduced the numbers of structures on the urea, succinic acid,

and ibuprofen landscapes by ∼65–90%.323,324 The ibuprofen

study is particularly impressive (Fig. 13), as its landscape con-

taining 555 crystal structures is representative of the complexity

of many real-world systems. Achieving this reduction has

required signicant efforts toward developing automated

approaches for ngerprinting, simulating, and clustering the

large numbers of structures involved.

The combination of CSP and metadynamics also helped

rationalize the discrepant crystallization behaviors of two “sul-

owers.” Experimentally, the original sulower molecule crys-

tallizes readily, while the structurally-related persulferated

coronene forms only an amorphous solid.325 Using molecular

dynamics and metadynamics, Sugden et al. demonstrated that

while sulower has a number of stable low-energy crystal forms
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(including the experimental crystal), all 20 of the lowest struc-

tures of persulferated coronene became disordered in the

dynamics simulations, consistent with its amorphous behavior

experimentally.326

A promising new, even simpler approach for landscape

reduction based on the threshold method was demonstrated by

Butler and Day.327 They coarsely estimate the energy barriers

and structural relationships between predicted polymorphs via

Monte Carlo moves that translate or rotate molecules and/or

deform the unit cell parameter, accepting only moves that

stay below a given energy threshold. In this manner, the

approach identies structures that can interconvert within

a chosen energy threshold.328 A 5 kJ mol−1 threshold reduced

the number of structures on the crystal landscape by ∼65–99%

for several small organics.327

Landscape reduction does not guarantee that the remaining

predicted crystal structures will be crystallizable. The under-

standing and modeling of nucleation and growth kinetics that

leads to the crystallization of specic polymorphs remains

difficult,329 though progress is being made.52–55 Instead,

heuristic models are oen used to identify crystal forms that are

likely to crystallize. As noted in discussing galunisertib,

conformational strain of the molecules in either the gas phase

or appropriate solvents is sometimes considered as a factor in

the crystallizabiliy of predicted polymorphs.26,46,330,331 Montis

et al. estabilished a relationship between low surface roughness

(rugosity) and crystallizability that can be used to infer the

relative likelihood of crystallizing various polymorphs on the

crystal energy landscape.332 In systems such as ROY, some of the

less-stable polymorphs observed experimentally are among the

smoothest, suggesting that kinetics favors their formation. In

contrast, several other pharmaceutical polymorphs that have

been difficult to produce have both higher energies and high

rugocities, suggesting that both thermodynamics and kinetics

hinder crystallization. The data-driven generalized convex hull

approach of Anelli et al. is another promising strategy for

exploring which crystal structures might be experimentally

synthesizable.333

Finally, while predicting crystallization kinetics remains

difficult, there has been progress in predicting the thermody-

namic conditions under which a given polymorph will be

preferred—i.e. polymorph phase diagrams. At pressures greater

than ∼10–20 GPa, where factors such as thermal expansion

become less signicant, phase diagrams can be oen be pre-

dicted with good accuracy.152,334–338 However, the situation is

more difficult closer to ambient conditions, since the predicted

phase transition temperatures can be extremely sensitive to

small errors in the computed free energies.339 Despite these

challenges, quite accurate temperature-dependent phase

diagrams have been predicted for systems such as ice,338 carbon

dioxide,336,337 methanol,155 and resorcinol.156 Polymorph phase

transition temperatures have also been predicted for more

complicated drug species.30,48 However, one should bear in

mind how important fortuitous error cancellation is in pre-

dicting phase boundaries. For example, a 1 kJ mol−1 error in the

relative free energies between a and b methanol alters the

predicted ambient-pressure phase-transition temperature by

more than 200 K!155

In the end, even if current CSP techniques cannot perfectly

determine which crystal forms will be realized experimentally,

they remain useful for assessing the polymorphic “risk” for

a given species.28,171 This is particularly valuable for the phar-

maceutical industry, as exemplied in the studies on galuni-

sertib,26 gandotinib,25 hydrates,340 and salts177 discussed earlier.

5 Future outlook

Given the rapid developments in CSP over the last 5–10 years, it

is interesting to speculate where new advances will occur over

the next several years. First, it is likely that there will be

increasing emphasis on using nite-temperature free energies

instead of 0 K lattice energies for the nal rankings. This is

already routinely being done in the pharmaceutical industry,

where compute budgets are typically larger than in academia,

and it is sometimes done in academic studies as well. Rapid

improvements in machine learning potentials will likely also

Fig. 13 Elimination of (a) lattice energy minima that are labile or

effectively equivalent at (b) finite temperatures using molecular

dynamics, clustering, and enhanced sampling techniques reduces the

number of predicted ibuprofen crystal structures by 65%.

Figure adapted from ref. 323.
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increase the accuracy with which those free energy simulations

can be performed by enabling dynamics-based approaches to be

used on potentials that approach quantum mechanical accu-

racy.44,101 Improved understanding of how the strengths and

weaknesses of widely-used DFT-D methods (e.g. delocalization

and other systematic errors) impact crystal energetics will make

it easier to identify when crystal energy rankings are likely to be

problematic.

Second, interpretation of the crystal energy landscape will

continue to gain in importance. Rapid developments in crystal

energy landscape reduction are likely continue apace. Methods

such as meta-dynamics or the threshold algorithm hopefully

become much more widespread and routine. Once again,

accurate, inexpensive potential energy models and structure

clustering strategies based on ML should further improve the

performance of these techniques.44 Improved uncertainty

quantication for the computed structure energetics will also

help users better assess the risks of predicted polymorphs on

the landscape.

Third, it is not unusual for a high-accuracy crystal structure

prediction to cost one million CPU hours per species at present.

Entering the era of CSP-driven rational design will place

a greater emphasis on performing “reasonably reliable” CSPs

that have orders of magnitude lower computational cost, such

that candidate materials can be screened en masse. Such

approaches could mean learning to extract useful information

from imperfect crystal energy landscapes (as in the organic

semi-conductor design study discussed in Section 4.6), devel-

oping new intermediate ranking and renement models (a.k.a.

surrogate models43) that more effectively lter structures to

reduce the number of nal structures for which DFT-D calcu-

lations are needed, or even adopting entirely new data-driven

topological approaches for generating short-lists of candidate

structures quickly, without extensive hierarchical ltering

algorithms.44,341,342

Fourth, beyond merely predicting structures, rational design

efforts will increase the emphasis on computing functional

properties of the putative crystals. Examples for gas storage and

separations, organic semi-conducting properties, and photo-

mechanical responses were already mentioned above. Feng and

co-workers recently computed the photoluminescence proper-

ties of ROY and co-crystals of 9-acetylanthracene to understand

the interplay of intra- and intermolecular interactions.208

Improved ability to predict pharmaceutical solubilties (Section

4.8) or to assess the photostability of candidate formulations

(Section 4.5) would be very useful as well.

Fih, as the applicability of CSP expands, there is also a clear

need for the development of more user-friendly soware tools to

democratize access to CSP. Current CSP is still almost exclu-

sively performed by specialists. In academic research environ-

ments, CSP oen relies on a disjointed collection of soware

packages and home-built scripts for passing structures between

them and processing the results. CSP tools developed in

industry are more user-friendly, though those companies oen

cater more to larger budgets and computing capabilities of

pharmaceutical companies than to smaller-scale academic

research groups. Moreover, new method developments from

different groups are not always widely/publicly available in the

short-term. Of course, radical reductions in computational cost

will also be needed to enable truly widespread use of CSP by

non-expert practitioners.

6 Conclusions

In conclusion, crystal structure prediction has advanced

dramatically to the point where experimental crystal structures

can be predicted successfully much more oen than not.

Applications of CSP have moved on from small-molecule

benchmarks to real-world pharmaceutical formulations and

functional organic materials. New frontiers are opening in areas

such as the ability to use CSP to rationally design new materials

with targetted properties or to model solid state chemical

transformations. Identifying which predicted crystal structures

can be made experimentally has been challenging, though good

progress is being made there as well. Heinlein's dream of

theory-driven materials design is quickly becoming reality, even

if it is a couple decades late.
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9 T. Frǐsčić and L. R. MacGillivray, Z. Kristallogr., 2005, 220,

351–363.

10 P. Naumov, S. Chizhik, M. K. Panda, N. K. Nath and

E. Boldyreva, Chem. Rev., 2015, 115, 12440–12490.

© 2023 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2023, 14, 13290–13312 | 13305

Perspective Chemical Science



11 P. Naumov, D. P. Karothu, E. Ahmed, L. Catalano,

P. Commins, J. Mahmoud Halabi, M. B. Al-Handawi and

L. Li, J. Am. Chem. Soc., 2020, 142, 13256–13272.

12 W. M. Awad, D. W. Davies, D. Kitagawa, J. Mahmoud

Halabi, M. B. Al-Handawi, I. Tahir, F. Tong, G. Campillo-

Alvarado, A. G. Shtukenberg, T. Alkhidir, Y. Hagiwara,

M. Almehairbi, L. Lan, S. Hasebe, D. P. Karothu,

S. Mohamed, H. Koshima, S. Kobatake, Y. Diao,

R. Chandrasekar, H. Zhang, C. C. Sun, C. Bardeen,

R. O. Al-Kaysi, B. Kahr and P. Naumov, Chem. Soc. Rev.,

2023, 52, 3098–3169.

13 A. J. Cruz-Cabeza, S. M. Reutzel-Edens and J. Bernstein,

Chem. Soc. Rev., 2015, 44, 8619–8635.

14 R. A. Heinlein, Where To?, in Expanded Universe, Ace Science

Fiction, New York, 1980, p. 348.

15 J. Maddox, Nature, 1988, 335, 201.

16 J. P. M. Lommerse, W. D. S. Motherwell, H. L. Ammon,

J. D. Dunitz, A. Gavezzotti, D. W. M. Hofmann,

F. J. J. Leusen, W. T. M. Mooij, S. L. Price, B. Schweizer,

M. U. Schmidt, B. P. van Eijck, P. Verwer and

D. E. Williams, Acta. Crystallogr. B., 2000, 56, 697–714.

17 W. D. S. Motherwell, H. L. Ammon, J. D. Dunitz,

A. Dzyabchenko, P. Erk, A. Gavezzotti, D. W. M. Hofmann,

F. J. J. Leusen, J. P. M. Lommerse, W. T. M. Mooij,

S. L. Price, H. A. Scheraga, B. Schweizer, M. U. Schmidt,

B. P. van Eijck, P. Verwer and D. E. Williams, Acta.

Crystallogr. B., 2002, 58, 647–661.

18 G. M. Day, W. D. S. Motherwell, H. L. Ammon,

S. X. M. Boerrigter, R. G. Della Valle, E. Venuti,

A. Dzyabchenko, J. D. Dunitz, B. Schweizer, B. P. van

Eijck, P. Erk, J. C. Facelli, V. E. Bazterra, M. B. Ferraro,

D. W. M. Hofmann, F. J. J. Leusen, C. Liang,

C. C. Pantelides, P. G. Karamertzanis, S. L. Price,

T. C. Lewis, H. Nowell, A. Torrisi, H. A. Scheraga,

Y. A. Arnautova, M. U. Schmidt and P. Verwer, Acta.

Crystallogr. B., 2005, 61, 511–527.

19 G. M. Day, T. G. Cooper, A. J. Cruz-Cabeza, K. E. Hejczyk,

H. L. Ammon, S. X. M. Boerrigter, J. S. Tan, R. G. Della

Valle, E. Venuti, J. Jose, S. R. Gadre, G. R. Desiraju,

T. S. Thakur, B. P. van Eijck, J. C. Facelli, V. E. Bazterra,

M. B. Ferraro, D. W. M. Hofmann, M. A. Neumann,

F. J. J. Leusen, J. Kendrick, S. L. Price, A. J. Misquitta,

P. G. Karamertzanis, G. W. A. Welch, H. A. Scheraga,

Y. A. Arnautova, M. U. Schmidt, J. van de Streek,

A. K. Wolf and B. Schweizer, Acta. Crystallogr. B., 2009, 65,

107–125.

20 D. A. Bardwell, C. S. Adjiman, Y. A. Arnautova,

E. Bartashevich, S. X. M. Boerrigter, D. E. Braun,

A. J. Cruz-Cabeza, G. M. Day, R. G. Della Valle,

G. R. Desiraju, B. P. van Eijck, J. C. Facelli, M. B. Ferraro,

D. Grillo, M. Habgood, D. W. M. Hofmann, F. Hofmann,

K. V. J. Jose, P. G. Karamertzanis, A. V. Kazantsev,

J. Kendrick, L. N. Kuleshova, F. J. J. Leusen, A. V. Maleev,

A. J. Misquitta, S. Mohamed, R. J. Needs, M. A. Neumann,

D. Nikylov, A. M. Orendt, R. Pal, C. C. Pantelides,

C. J. Pickard, L. S. Price, S. L. Price, H. A. Scheraga, J. van

de Streek, T. S. Thakur, S. Tiwari, E. Venuti and

I. K. Zhitkov, Acta. Crystallogr. B., 2011, 67, 535–551.

21 A. M. Reilly, R. I. Cooper, C. S. Adjiman, S. Bhattacharya,

A. D. Boese, J. G. Brandenburg, P. J. Bygrave, R. Bylsma,

J. E. Campbell, R. Car, D. H. Case, R. Chadha, J. C. Cole,

K. Cosburn, H. M. Cuppen, F. Curtis, G. M. Day,

R. A. DiStasio Jr, A. Dzyabchenko, B. P. van Eijck,

D. M. Elking, J. A. van den Ende, J. C. Facelli,

M. B. Ferraro, L. Fusti-Molnar, C.-A. Gatsiou, T. S. Gee,

R. de Gelder, L. M. Ghiringhelli, H. Goto, S. Grimme,

R. Guo, D. W. M. Hofmann, J. Hoja, R. K. Hylton,

L. Iuzzolino, W. Jankiewicz, D. T. de Jong, J. Kendrick,

N. J. J. de Klerk, H.-Y. Ko, L. N. Kuleshova, X. Li,

S. Lohani, F. J. J. Leusen, A. M. Lund, J. Lv, Y. Ma,

N. Marom, A. E. Masunov, P. McCabe, D. P. McMahon,

H. Meekes, M. P. Metz, A. J. Misquitta, S. Mohamed,

B. Monserrat, R. J. Needs, M. A. Neumann, J. Nyman,

S. Obata, H. Oberhofer, A. R. Oganov, A. M. Orendt,

G. I. Pagola, C. C. Pantelides, C. J. Pickard, R. Podeszwa,

L. S. Price, S. L. Price, A. Pulido, M. G. Read, K. Reuter,

E. Schneider, C. Schober, G. P. Shields, P. Singh,

I. J. Sugden, K. Szalewicz, C. R. Taylor, A. Tkatchenko,

M. E. Tuckerman, F. Vacarro, M. Vasileiadis, A. Vazquez-

Mayagoitia, L. Vogt, Y. Wang, R. E. Watson, G. A. de Wijs,

J. Yang, Q. Zhu and C. R. Groom, Acta. Crystallogr. B.,

2016, 72, 439–459.

22 S. L. Price and S. M. Reutzel-Edens, Drug Discovery Today,

2016, 21, 912–923.

23 S. L. Price, D. E. Braun and S. M. Reutzel-Edens, Chem.

Commun., 2016, 52, 7065–7077.

24 J. Nyman and S. M. Reutzel-Edens, Faraday Discuss., 2018,

211, 459–476.

25 D. E. Braun, J. A. McMahon, R. M. Bhardwaj, J. Nyman,

M. A. Neumann, J. Van De Streek and S. M. Reutzel-

Edens, Cryst. Growth Des., 2019, 19, 2947–2962.

26 R. M. Bhardwaj, J. A. McMahon, J. Nyman, L. S. Price,

S. Konar, I. D. H. Oswald, C. R. Pulham, S. L. Price and

S. M. Reutzel-Edens, J. Am. Chem. Soc., 2019, 141, 13887–

13897.

27 M. A. Neumann, J. van de Streek, F. P. A. Fabbiani,

P. Hidber and O. Grassmann, Nat. Commun., 2015, 6, 7793.

28 M. A. Neumann and J. van de Streek, Faraday Discuss., 2018,

211, 441–458.

29 G. Sun, Y. Jin, S. Li, Z. Yang, B. Shi, C. Chang and

Y. A. Abramov, J. Phys. Chem. Lett., 2020, 11, 8832–8838.

30 G. Sun, X. Liu, Y. A. Abramov, S. O. Nilsson Lill, C. Chang,

V. Burger and A. Broo, Cryst. Growth Des., 2021, 21, 1972–

1983.

31 Y. A. Abramov, L. Iuzzolino, Y. Jin, G. York, C.-h. Chen,

C. S. Shultz, Z. Yang, C. Chang, B. Shi, T. Zhou,

C. Greenwell, S. Sekharan and A. Y. Lee, Mol.

Pharmaceutics, 2023, 20, 3380–3392.
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