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Abstract

Cobaltocenium derivatives have shown great potential as components of anion ex-

change membranes in fuel cells because they exhibit excellent thermal and alkaline

stability under operating conditions, while allowing for high anion mobility. The prop-

erties of the cobaltocenium-anion complexes can be chemically tuned through the sub-

stituent groups on the cyclopentadienyl (Cp) rings of the cation CoCp+
2 . However,

synthesis and characterization of the full range of possible derivatives are very chal-

lenging and time-consuming, and while the computational tools can greatly expedite

this process, full screening of the electronic structure at a high level of theory is still

computationally intensive. Therefore, in this work we consider the machine learning

(ML) modeling as a tool of predicting stability of di-substituted [CoCp2]OH complexes

measured by their bond-dissociation energy (BDE). The relevant process here is the

dissociation of the cobaltocenium-hydroxide complex into fragments [CoCpY
′
]OH and

CpY, where Y and Y
′

each represent one out of 42 substituent groups of experimental
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interest. In agreement with the previous ML study of 120 of mono- and selected di-

substituted species [Wetthasinghe et al. J. Chem. Phys. A (2022) 126], our analysis

of the dataset expanded to all possible di-substituted cobaltoceniums, points to the

highest occupied and lowest unoccupied molecular orbitals, along with the Hirshfeld

charge on the singly-substituted benzene, to be the key features predicting the BDE

of the unseen complexes. Based on examination of the outliers, the acidity of sub-

stituents ((CO)NH2 in our case) is found of special significance for the cobaltocenium

stability and for the model development. Moreover, we demonstrate that upon the

dataset refinement, the conventional ML models are capable of predicting the BDE

close to 1 kcal/mol based on the properties of just the fragments, thereby greatly re-

ducing the total number of species and of the computational time of each calculation.

Such fragment-based ’combinatorial’ approach to the BDE modeling is noteworthy,

since the geometry optimization of complexes in solution is conceptually challenging

and computationally demanding, even when leveraging high-performance computing

resources.

1 Introduction

The Machine Learning (ML) methods addressing problems of high computational complex-

ity, are being rapidly adopted and increasingly employed in computational chemistry1,2, even

though the limits of their applicability are still quite uncertain3,4, and the rational under-

standing of the behavior of systems subjected to ML algorithms is often elusive. Certain

constraints on the accuracy of the ML predictions for real systems come from the approx-

imations inherent to the computational chemistry methods. In particular, driven by high

interest in extended molecular systems and materials, the Density Functional Theory (DFT)

has become a go-to electronic structure method of computing energetic and other properties

of stable molecules – especially when sizable datasets are needed – as its scaling properties

yield an acceptable balance of accuracy and computational cost. However, the transition
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metal (TM) compounds, especially for the first-row TM (in the periodic table), still present

a considerable challenge for the DFT, and the development of the density functionals that

target TM compounds remains an active area of research. A complementary approach is to

use ML to improve the accuracy of DFT5. Nevertheless, the ML has already made significant

contributions to the TM chemistry2. For instance, ML has played a crucial role in predicting

the HOMO-LUMO gap for TM complexes, uncovering structure-property relationships to

aid in the rational design of hetero-bimetallic TM complexes6, predicting relative-energy and

total-energy values for organic and TM-containing molecules7, and even predicting the line-

shape of first-row transition metal K-edge x-ray absorption near-edge structure (XANES)

spectra8 using advanced ML methods, such as multiple linear regression, kernel ridge regres-

sion, and deep learning techniques.

This work is motivated by the experimental interest in the TM-containing cations as

components of anion exchange membranes (AEM) in fuel cells9–11, because these cations

exhibit excellent thermal and alkaline stability under operating conditions, while allowing

for high anion mobility, and because the properties of the cobaltocenium-anion complexes

can be chemically tuned through the substituent groups on the cyclopentadienyl rings (Cp)

of the cation, CoCp+
2

12. However, synthesis and characterization of the full range of possible

derivatives are very challenging and time-consuming, and while the computational tools

can greatly expedite this process, full screening of the electronic structure at a high level

of theory, including the DFT methods, is still computationally intensive. Therefore, we

are interested in ML modeling as a tool of predicting stability of substituted cobaltocenium-

hydroxide complexes, [CoCpY
′
CpY]OH. As a proxy for the cation stability, we use the bond-

dissociation energy (BDE) of [CoCpY
′
CpY]OH dissociating into fragments [CoCpY

′
]OH and

CpY, where Y and Y
′

represent one out of 42 substituent groups of experimental interest.

In Refs13,14, a team of researchers, including these authors, describes the development

of the Neural Networks (NN) models predicting the BDE within 1 kcal/mol error, based

on a dataset of 118 substituted cobaltocenium molecules. Computations of TM molecular
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compounds is challenging due to multiple spin states interfering with the electronic and

geometric convergence, which, along with experimental considerations, explains the small by

ML standards dataset in the study. The chemically-useful accuracy of the ML predictions was

enabled by careful selection of 12-15 input features facilitated by the experimental chemistry

expertise, and by the advanced ML techniques, specifically by the Chemistry-Informed and

Quadratic NN models introduced in Ref.14.

In this work, we analyze an expanded dataset to 903 species, which includes all the Y/Y
′

combinations of the di-substituted cobaltocenium, generated in the automated fashion, and

the focus is shifted to a performance of common ML methods, i.e. Linear Regression15, Deci-

sion Tree16,17, Bagged Tree18,19, K-Nearest Neighbors (KNN)20, Random Forest21, Support

Vector Regression (SVR)22 and Extreme Gradient Boosting (XGBoost)23. The human,

as opposed to the machine, learning is focused on the analysis of the outliers in the ML

predictions, and rationalizing them in terms of underlying chemical properties. Specifically,

according to our analysis, the acidity of protons on the substituent groups and their steric ac-

cessibility during the deprotonation reaction are associated with the unusually high stability

relative to the trends within the dataset captured by the ML modeling.

The paper is organized as follows: the molecular model, electronic structure methods and

the data generation procedure are described in Section 2. The ML models, their analysis and

a discussion of the chemical reasons behind the outliers are presented in Section 3. Section

4 provides a summary and an outlook.

2 Methods and Data generation

2.1 Molecular models and methods

Our main goal is prediction of the bond dissociation energy (BDE) of substituted cobaltoce-

nium [Bis(cyclopentadienyl)cobalt(III)] used as a proxy for the stability of the cobaltocenium

under basic conditions, i.e. the stability of the cobaltocenium/hydroxide complex with re-
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spect to ’splitting’ into Cp-containing fragments in aqueous medium as shown in Fig. 1,

[CoCpY
′
CpY]OH→ [CoCpY

′
]OH + CpY.

The relevant BDE is defined as

BDE = E([CoCpY′]OH) + E(CpY)− E([CoCpY
′
CpY]OH). (1)

Figure 1: Dissociation of [CoCpY
′
CpY]OH into Cp-containing fragments.

We consider all the cobaltocenium species with a single substituent group, labeled Y or

Y
′
, on each of the two cyclopentadienyl (Cp) rings in all combinations of Y and Y

′
. The list of

substituents is comprised of 42 groups shown in Fig. 2. Following Ref.13, the [CoCpY
′
CpY]+

ion is explicitly solvated with the hydroxyl ion OH−, and implicitly solvated within water

using Polarized Continuum Model (PCM), as implemented in Q-Chem24,25. The geometry

optimization and property calculations are performed at the B3LYP-D3/m6-31G** theory

level, which involves the modified 6-31G* basis set for cobalt26, and 6-31G** basis for all

other atoms27. The lowest energy spin states of the [CoCpY
′
CpY]OH, [CoCpY

′
]OH and

CpY are the singlet, quartet, and doublet, respectively. The choice of the electronic struc-

ture method has been previously validated through comparison to several other theoretical

methods and experiments13. In all cases the energies and other molecular descriptors used in

the ML models are computed at the optimized geometries. Because the geometry optimiza-

tion can be problematic for the system with low binding energies, the species with computed
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BDE < 3 kcal/mol are excluded from the dataset. For future reference, let us note here,

that in addition to the set of 42 substituents in Fig. 2, four additional groups have been

considered, namely OH, COOH, NH2 and NHCH3. Instead of forming complexes with the

hydroxide, the corresponding cobaltocenium derivatives got deprotonated during geometry

optimization. These four groups were, therefore, excluded from the ML modeling.

To check the influence of the chosen basis set on the computed energies, we have per-

formed additional calculations for three substituents using 6-311++G(d,p) and G3MP2Large28

sets. The observed energy deviations of 5-15 kcal/mol, summarized in Table S4au, are con-

sistent with the DFT calculations for the transition metal compounds28.

The ML model development in this work is based on the molecular descriptors or features

associated with the properties of just the dissociation fragments for both conceptual and

practical potential considerations. First of all, the lowest energy structure is less ambiguous

and the property calculation is more accurate for the fragments (∼ 20 atoms) compared to

the cobaltocenium/hydroxide complex (∼ 40 atoms), especially, given the multiple binding

sites of the hydroxide. Furthermore, the scaling of the DFT cost with the system size means

that a single point energy calculation on a complex is about 10 times faster than on a

fragment. The most significant potential computational saving though, would be the sheer

number of the complexes (42× 43/2) compared to that of the fragments (42× 2).

2.2 Data generation

The computational procedure was automated using bash and Python scripting. Generation

of the initial structures for the geometry optimization of the complexes is illustrated in

Fig. 3. As a ’template’ structure we use the optimized geometry of the unsubstituted

[CoCp2]OH complex, resulting in a symmetric orientation of the Cp rings sketched. As

follows from Ref.13, the lowest energy arrangement of two substituents (one per Cp) is

the trans configuration, i.e. positions C1 and C2 as shown Fig. 3(a,c). First, the basic

structure of the complex is created by placing Co at the origin of the Cartesian system of
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coordinates, and rotating the CoCp2 unit to have the average position of the Cp rings in the

xy-plane. Then, the hydroxide is placed along the y-axis with the oxygen atom separated

from the cobalt atom by 4.0 Å as shown in Fig 3(a). Next, one H-atom of a Cp ring is

replaced with a substituent group Y, and the geometry of Y is optimized while keeping the

remaining atomic positions frozen. The resulting coordinates of the substituent atoms are

used to generate the initial geometries for all di-substituted species, as illustrated in Fig.

3(c). Finally, the prepared script running through the list of 42 substituents produces *.xyz

files of initial geometries of 903 complexes. The input files for the full geometry optimization

are prepared by combining the structure files with the Q-Chem job specification block using

another Python code. Then, the geometry optimization calculations are submitted to a high

performance computer in a serial manner using a bash script. Calculations for two fragments

with 42 substituents each are setup and executed in a similar manner. The output files are

parsed for error messages, and those jobs are examined and resubmitted manually. We

encountered errors in only 6 derivatives. A sample Q-Chem input file with all user-specified

parameters is provided (Table S1-S3).

Once the optimization calculations are completed, the data used in the ML analysis are

extracted from the output files to an excel sheet using the developed python script. The

following features, which have been previously identified as the most relevant to the BDE

prediction14 are collected:

(i) energy of [CoCpY
′
CpY]OH;

(ii) HOMO energy (EHOMO) of [CoCpY
′
CpY]OH;

(iii) LUMO energy (ELUMO) of [CoCpY
′
CpY]OH;

(iv) energy of [CoCpY
′
]OH fragment;

(v) energy of CpY fragment;

(vi) EHOMO of [CoCpY
′
]OH fragment;
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Figure 2: The substituent groups (denoted as Y or Y
′

throughout) used in chemical modifi-
cation of the cobaltocenium [CoCpY

′
CpY]+.

(vii) ELUMO of [CoCpY
′
]OH fragment;

(viii) EHOMO of CpY fragment;

(ix) ELUMO of CpY fragment.

These are augmented by the features derived from the calculations on the substituent groups

described in previous work13:

(x) sum of the Hirshfeld charges on C6H5 from the electronic structure of C6H5Y
′
;

(xi) sum of the Hirshfeld charges on C6H5 from the electronic structure of C6H5Y.

The last two features are introduced as a measure of the electron donating/withdrawing

character of the substituents: a hydrogen atom in the aromatic system is replaced by a

substituent Y, which leads to redistribution of electrons on the ring quantified by the electron

population analysis. We use specifically the Hirshfeld charge, rather than Mulliken or Löwdin

charges, because the former is less basis set dependent29. The BDE of a complex is computed

from Eq. (1) using features (i), (iv) and (v). The ML modeling of the BDE is based on the
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(a) (b) (c)

Figure 3: The procedure of generating initial geometries of [CoCpY
′
CpY]OH. (a) Co of the

unsubstituted complex is placed at the origin of the Cartesian coordinates and OH is aligned
with y-axis. (b) H-atom on C1 is replaced with the substituent Y. (c) H-atom on C2 is
replaced with Y

′
whose positions were reflected with respect to the origin.

features (v)-(xi) that are the HOMO and LUMO energies of the fragments. The computed

dataset is available through the Open Science Framework30. Before proceeding with the

ML analysis, the species characterized by the BDE below 3 kcal/mol are removed from the

dataset, as being below the DFT accuracy, which reduces the dataset size from 903 to 873

molecules. Figure S2 illustrates the distribution of each feature after removing the initial

outliers.

3 Results and discussion

3.1 The machine learning models

Now let us turn to the ML model development and analysis. Seven ML regression models

have been constructed: 80% of randomly selected data was used for training the models while

remaining 20% was used for testing. Since the energy and charge features have different units,

the data were normalized prior to modeling according to the following relation,

xnormalized
i =

xoriginali − µ
σ

, (2)
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where xoriginali , xnormalized
i , µ and σ are, respectively, the original value, the normalized value,

mean and standard deviation of a chemical property, calculated for ith derivative. The follow-

ing models have been considered: Linear Regression15, Decision Tree16,17, Bagged Tree18,19,

KNN20, Random Forest21, SVR22 and XGBoost23, as implemented in scikit-learn library

in Python31. Once the models have been trained, their accuracy is assessed from the root

mean squared error (RMSE) and from the Pearson’s Correlation coefficient (R2 Score). As

Table 1: Performance of machine learning models with their default parameters

Model Train R2 Score Test R2 Score
Train RMSE Test RMSE
(kcal/mol) (kcal/mol)

Linear Regression 0.4598 0.4003 4.8570 5.1703
Decision Tree 1.0000 0.5010 0.0000 4.7163
Bagged Tree 0.9686 0.7585 1.1718 3.2806
KNN 0.7000 0.4287 3.6200 5.0462
Random Forest 0.9821 0.7951 0.8845 3.0223
SVR 0.4793 0.3785 4.7688 5.2633
XGBoost 0.9050 0.8440 2.0366 2.6366

seen from Table 1 listing both measures, in all cases the test R2 scores are significantly lower

than the train R2 scores. Thus, all models suffer from overfitting, as confirmed by large test

RMSE scores relative to the train RMSE. We also note that based on the test scores XG-

Boost, Random Forest and Bagged Tree perform the best, and we select these three out of

seven models for further optimization via tuning hyperparameters and conducting five-fold

cross validation. The default and optimized model parameters are given in Table S5.

The performance of optimized models is summarized in Table 2 and illustrated in Fig.

S3. Clearly, XGBoost, characterised by the highest R2 and lowest RMSE test scores, is the

best performing model. Yet, even after the model parameter optimization, the test scores

are lower than the train scores. To identify the reason and reduce overfitting, let us examine

the outliers. From the test results in Fig. S1 showing predicted vs actual BDE for each

model, it is easy to notice that the points deviating from the trend line tend to have high

actual BDEs, BDE > 30 kcal/mol. These outlier species, responsible for the lowering of test

scores relative to the train scores, call for further investigation.
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Table 2: Summary of optimized model performance

Model Train R2 Score Test R2 Score
Train RMSE Test RMSE
(kcal/mol) (kcal/mol)

XGBoost 0.9663 0.8809 1.2237 2.2252
Random Forest 0.9819 0.8230 0.8971 2.7135
Bagged Tree 0.9821 0.8251 0.8935 2.6970

3.2 The outlier analysis

First, the outliers common to all three optimized models were identified by calculating the

error defined as ε = | BDE(actual) - BDE(predicted) | where ε > 3 kcal/mol. Out of the top

8 outliers, shown in Table 3 and in Fig. S4, five contain amide group (CO)NH2.

Table 3: The substituent groups in [CoCpY
′
]OH and CpY fragments for the top eight outliers

common to the three optimized models. The error in kcal/mol is averaged over these models.

Substituent Groups Error

Y
′

Y (kcal/mol)
(CO)NH2 P(CH3)2 14.6233
(CO)NH2 Ph 14.0758
(CO)NH2 p-PhOCH3 13.6500
(CO)NH2 (CO)CH3 7.5766

op-Ph(CH3)3 op-Ph(CH3)3 6.3572
(CO)NH2 S(CH3) 5.9637
N(CH3)3 NC5H10 4.5597
m-PhCF3 p-PhCl 3.9388

Therefore, we separate out all 42 amide derivatives from the dataset and reanalyze the

data distribution with respect to each input feature. The results are shown in Fig. S5 with

the corresponding values for the amide derivatives (magenta) overlaid over the distribution

for each feature. The (CO)NH2 derivatives do not appear as clear outliers within the fea-

ture distributions, which means that at a different molecular property is associated with the

outliers, and this feature should be included into the analysis. Thus, we have considered six

additional properties, not included in the ML models disucssed so far: the energy of the com-

plexes, [CoCpYCpY
′
]OH, and of the fragments, [CoCpY

′
]OH and CpY, the HOMO/LUMO

energies of the complex, and the BDE itself. The distributions of the outliers relative to these
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properties are shown in Fig. S6. It is evident that most of the (CO)NH2 derivatives appear

as significant outliers in the distribution of the HOMO energy of the complex. Closer exam-

ination of the BDE dependence on the HOMO energy of the substituted complexes, shown

in Fig. 4, reveals that the amide derivatives data can be grouped into two clusters – a larger

cluster containing (CO)NH2 derivatives with BDE > 20 kcal/mol and E(HOMO) < −0.21

hartree, and a smaller one with lower BDE values (< 20 kcal/mol) and higher HOMO energy

values EHOMO > −0.20 hartree. In summary, this analysis has shown that most (33 out

of 42) of the (CO)NH2 derivatives appear as outliers, and that this trend is observed only

in the HOMO energy of the complex, which was not used as an input feature to the ML

models.

Figure 4: The outlier analysis: BDE vs HOMO energy of the complex. The blue shaded
area indicates 95% confidence interval.

In order to confirm that the relatively poor performance of the ML models is attributable

to the (CO)NH2 derivatives, they are removed from the dataset, which is then reanalyzed
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following the same procedure as described above. First, the models were evaluated with the

default parameters and then with the optimized parameters. Table S6 shows the default and

the optimized parameters for the models when the refined data set is used.

The performance of the three selected ML models with the refined data is presented in Fig.

S7 and the summary is provided in Table 4. Both train and test R2 scores are significantly

improvement in all three ML models after the removal of (CO)NH2 outliers from the data

set. The best preforming model, i.e. optimized XGBoost, gives prediction accuracy for

unseen data of 96%, with the RMSE of 1 kcal/mol. This indicates that aside from (CO)NH2

outliers, the implemented ML models themselves do not exhibit any problems. Next, we

propose a chemical explanation for the appearance of (CO)NH2 derivatives as outliers.

Table 4: Summary of optimized model performance for refined data set

Model Train R2 Score Test R2 Score
Train RMSE Test RMSE
(kcal/mol) (kcal/mol)

XGBoost 0.9928 0.9623 0.4860 1.0104
Random Forest 0.9908 0.9411 0.5495 1.2639
Bagged Tree 0.9908 0.9406 0.5503 1.2685

3.3 Chemistry of amide outliers

At the start of the project, in addition to the 42 substituent groups (Fig. 2), we have also

considered OH, COOH, NH2, and NHCH3 groups. However, the geometry optimizations in

PCM did not yield a coordinated cobaltocenium-hydroxide complex, because the hydroxide

deprotonated those substituents. Thus, a reasonable assumption is that the outlier behavior

of compounds with (CO)NH2 derivatives is also related to the acidity of amide protons.

Acidity, or ease of detachment of a proton from the molecule, is related to the degree of

polarization of its chemical bond, and thus can be correlated with the partial charge on the

hydrogen in a protonated molecule. To validate this hypothesis, we calculated the Mulliken

charge on H atoms of substituent groups, Y, attached to the mono-substituted complex,

[CoCpCpY]OH after the partial optimization of the Y positions while the remaining atoms
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fixed in space. Selected substituents from the dataset and several known acidic substituents

were analyzed. Additionally, we have done the Hirshfeld charge analysis on H atoms of the

same substituent groups attached to a benzene ring. The results are summarized in Fig. S8.

In the case of known acidic substituents, the Mulliken charge ranges between 0.31 and

0.39, while the Hirshfeld charge falls within the range of 0.12 to 0.22. Among all the tested

groups, the H atoms attached to N atoms of (CO)NH2 and (CO)NHCH3 exhibit charges

within this range. Out of these two substituent types, (CO)NH2 demonstrates the high-

est charges among its H atoms. To expand the analysis to all substituent groups with H

atoms, we calculated the deprotonation ability using benzene (C6H6) as the probe. The

deprotonation ability is defined as follows:

Deprotonation ability = E(C6H5Y )− E(C6H5[Y −H]−) (3)

where E(C6H5Y ) is the energy of benzene substituted with Y and E(C6H5[Y − H]−) rep-

resents the energy of deprotonated version of C6H5Y . To reduce the computational cost,

only C6H6 probe has been considered. It is important to note that acidity is inversely pro-

portional to the deprotonation ability. The calculated deprotonation abilities are displayed

in Fig. 5, where they are arranged from the least to the greatest acidity. The formamide

group (CO)NH2 shows the highest acidity among the substituent groups considered, while

the N-methylacetamide group (CO)NHCH3 shows the second highest acidity. Reexamin-

ing the optimized geometries of these compounds demonstrates the proximity of OH− to a

formamide hydrogen, as opposed to solvation of the CoCp+
2 core. To determine if this is

an artefact of the PCM model, we have also performed geometry optimizations for a few

(CO)NH2 derivatives in the gas phase, and the same behavior was still observed. Therefore,

it has been confirmed that the trapping of the OH− anion around the (CO)NH2 group is

attributed to the presence of acidic hydrogen atom. Interestingly, despite the high acidity

of (CO)NHCH3, steric hindrance by the methyl CH3 group prevents the association of OH−
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with amide hydrogens. This explains why N-methylacetamide does not pose a problem to

the ML model. Therefore, we recommend to evaluate the acidity of new substituent groups

using deprotonation ability calculation or Mulliken/Hirshfeld charge analysis, to ensure ap-

plicability of the ML models investigated in the current work.

Figure 5: Deprotonation ability on substituent (Y) of C6H5Y computed in PCM at B3LYP-
D3/6-31G** theory level.

4 Conclusion

In this project we have developed a machine learning model to predict the stability of di-

substituted [CoCp2]OH derivatives based on the BDE of their dissociation into [CoCpY
′
]OH

and CpY fragments. To accomplish this, we have computed a large dataset of these deriva-

tives by automating the process of generating and submitting input files to a high-performance

cluster, and of extracting the relevant data for property calculations from the output files

using python scripts. According to the previous work, we observed that the computational

time for the simulations of complexes was significantly higher compared to its fragments.

Therefore, the main objective of this project was to create a machine learning model that
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utilizes fragment properties to provide predictions with high accuracy and reduced compu-

tational time.

After testing several standard machine learning models, three models were selected for

further optimizations based on the evaluation scores. However, optimizing the parameters of

models did not resolve overfitting noticed with the default model parameters. Therefore, the

data set was further investigated for unusual behavioral patterns. After carefully examining

the outliers shared by all three optimized machine learning models, we have discovered that

the substitution of amide (CO)NH2 group in one of the Cp ring caused a significant deviation

of the predicted BDE value from the corresponding actual BDE value. Surprisingly, the same

species did not manifest themselves as outliers in the input features. To gain deeper under-

standing, as the next step, the energy values defining the actual BDEs and HOMO/LUMO

energies of the complexes were examined. This analysis revealed that the amide substituted

complexes appeared as outliers in HOMO energy of the complexes. Based on data in Fig. 4,

the majority of (CO)NH2 derivatives have higher BDE values with lower HOMO energies,

which implies that (CO)NH2 stabilizes the cobaltocenium/hydroxide complex by acting as

the electron withdrawing group. However, this observation appears to contradict our previ-

ous work and experimental results, which showed that the electron-donating groups stabilize

[CoCp2]OH derivatives. Consequently, we conducted further analysis to understand why

(CO)NH2 derivatives exhibited such different behavior.

Based on the challenges we encountered at the beginning of the project, we hypothesized

that the acidity might influence this distinct behavior. To investigate this, we performed

Mulliken/Hirshfeld charge analysis and calculated the deprotonation ability of the H atom

in the substituent groups. The results indicated that amide is the most acidic group among

the 42 substituent groups. This acidity leads to the trapping of OH− anions around the H

atom of the substituent, preventing their interaction with the CoCp+
2 cation. This behavior

explains why (CO)NH2 derivatives exhibited unique characteristics. Also, this suggests a

substituent deprotonation is a possible degradation pathway for the AEM. Consequently,
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we re-optimized the machine learning models by excluding (CO)NH2 derivatives from the

dataset, achieving the highest accuracy with the XGBoost model, which demonstrated 96 %

performance for unseen data with the accuracy of 1 kcal/mol.

The modified and optimized XGBoost model we developed can be employed to predict

the stability of [CoCp2]OH derivatives containing less acidic substituent groups compared to

(CO)NH2. Therefore, we recommend performing deprotonation ability calculation or Hirsh-

feld charge analysis of the substituted benzene prior to utilizing the machine learning model.

If the calculated deprotonation ability or Hirshfeld charge exceeds the level of (CO)NH2,

the model may not accurately predict the stability for that specific substituent group. Our

optimized machine learning model is recommended for predicting the stability of less acidic

derivatives of [CoCp2]OH compared to (CO)NH2.

5 Supporting Information

Table S1. Sample input file for geometry optimization of [CoCp2]OH.

Table S2. Sample input file for geometry optimization of [CoCp]OH.

Table S3. Sample input file for geometry optimization of Cp fragment.

Table S4. Basis sets investigation.

Table S5. Default and new parameters after optimization for the complete dataset.

Table S6. Default and new parameters after optimization for refined data set.

Figure S1. The train and test results for the optimized ML models.

Figure S2. The distribution of each input features. The bins show the distribution as a

histogram plot while the line indicates the kernel density estimate (KDE) plot.

Figure S3. (a) Evaluation of optimized models with R2 Scores, (b) Evaluation of optimized

models with RMSE.

Figure S4. Actual and predicted BDE for top 8 outliers.

Figure S5. Distribution of (CO)NH2 derivatives over input features. The blue bins show the
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distribution of all derivatives as a histogram plot and blue line indicates its KDE plot. The

magenta colored bins show the distribution of (CO)NH2 derivatives as a histogram plot.

Figure S6. Distribution of (CO)NH2 derivatives over additional features. The blue bins show

the distribution of all derivatives as a histogram plot and blue line indicates its KDE plot.

The magenta colored bins show the distribution of (CO)NH2 derivatives as a histogram plot.

Figure S7. The train and test results of the optimized models for the refined dataset.

Figure S8. The Mulliken charge on H of the Y-group of [CoCpHCpY]OH, and the Hirshfeld

charge on H on the Y-group of C6H5Y. The examined H-atom is highlighted with red in

chemical structures. The values highlighted with red has the highest charge on H atoms

which imply high acidity levels.

6 Acknowledgment

This material is based upon work supported by the U.S. Department of Energy, Office of

Science, Office of Basic Energy Sciences Separation Science program under Award Number

DE-SC0020272. Additional support comes from the National Science Foundation of U.S.A.

CHE-1955768. We acknowledge computational resources of the ACCESS (Advanced Cy-

berinfrastructure Coordination Ecosystem: Services & Support) program available through

allocation TG-DMR110037.

References

(1) Badillo, S.; Banfai, B.; Birzele, F.; Davydov, I. I.; Hutchinson, L.; Kam-Thong, T.;

Siebourg-Polster, J.; Steiert, B.; Zhang, J. D. An Introduction to Machine Learning.

Clin. Pharmacol. Ther. 2020, 107, 871–885.

(2) Nandy, A.; Duan, C.; Taylor, M. G.; Liu, F.; Steeves, A. H.; Kulik, H. J. Computational

18



discovery of transition-metal complexes: from high-throughput screening to machine

learning. Chem. Rev. 2021, 121, 9927–10000, PMID: 34260198.

(3) Korolev, V.; Mitrofanov, A.; Korotcov, A.; Tkachenko, V. Graph Convolutional Neural

Networks as “General-Purpose” Property Predictors: The Universality and Limits of

Applicability. J. Chem. Inf. Model. 2020, 60, 22–28, PMID: 31860296.

(4) Duan, C.; Janet, J. P.; Liu, F.; Nandy, A.; Kulik, H. J. Learning from Failure: Pre-

dicting Electronic Structure Calculation Outcomes with Machine Learning Models. J.

Chem. Theory Comput. 2019, 15, 2331–2345, PMID: 30860839.

(5) Ahneman, D. T.; Estrada, J. G.; Lin, S.; Dreher, S. D.; Doyle, A. G. Predicting reaction

performance in C-N cross-coupling using machine learning. Science 2018, 360, 186–190.

(6) Taylor, M. G.; Nandy, A.; Lu, C. C.; Kulik, H. J. Deciphering Cryptic Behavior in

Bimetallic Transition-Metal Complexes with Machine Learning. J. Phys. Chem. Lett.

2021, 12, 9812–9820, PMID: 34597514.

(7) Husch, T.; Sun, J.; Cheng, L.; Lee, S. J. R.; Miller, I., Thomas F. Improved accuracy

and transferability of molecular-orbital-based machine learning: Organics, transition-

metal complexes, non-covalent interactions, and transition states. J. Chem. Phys. 2021,

154, 064108.

(8) Rankine, C. D.; Penfold, T. J. Accurate, affordable, and generalizable machine learning

simulations of transition metal x-ray absorption spectra using the XANESNET deep

neural network. J. Chem. Phys. 2022, 156, 164102.
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Supplemental Information: Stability Trends in Di-Substituted

Cobaltocenium Based on the Analysis of the Machine

Learning Models

by Shehani T. Wetthasinghe, Sophya V. Garashchuk, Vitaly A. Rassolov

Table S1: Sample input file for geometry optimization of [CoCp2]OH.

$molecule

0 1

C 0.95704 -1.66305 -0.7215

C 0.97269 -1.66015 0.70764

C -0.38164 -1.64429 1.16373

C -1.23354 -1.63982 0.01686

C -0.40674 -1.64938 -1.14809

H 1.8241 -1.6266 -1.36722

H 1.85367 -1.62061 1.33409

H -0.70486 -1.59301 2.19478

H -0.75234 -1.60227 -2.17207

Co 0.00000 0.00000 0.00000

C -0.95705 1.66305 0.72148

C -0.97269 1.66015 -0.70764

C 0.38164 1.64429 -1.16374

C 1.23353 1.63982 -0.01687

C 0.40673 1.64939 1.14808

H -1.8241 1.6266 1.36721

H -1.85367 1.6206 -1.3341

H 0.70486 1.59301 -2.19479

S1



H 0.75234 1.60227 2.17206

O 0.00000 0.00000 4.00000

H 0.00000 0.00000 4.97596

#insert substituent1

#insert substituent2

$end

$rem

MEM TOTAL 20000

MEM STATIC 5000

METHOD B3LYP

DFT D D3 ZERO

BASIS GEN !use m631g* for Co

PURECART 11

SYMMETRY IGNORE 1

unrestricted FALSE

SCF GUESS SAD

JOBTYPE OPT

MAX SCF CYCLES 2000

SCF CONVERGENCE 7

GEOM OPT MAX CYCLES 500

SOLVENT METHOD PCM !include H2O solvent

$end

$pcm

Theory CPCM

Method SWIG

S2



Solver Inversion

HeavyPoints 194

HPoints 194

Radii read

vdwScale 1.2

$end

$solvent

Dielectric 78.39

$end

$van der waals

1

1 1.2

6 1.92

7 1.55

8 1.52

9 1.5138

15 1.8657

16 1.8153

17 1.782

27 2

35 1.8855

$end

$basis

#modified 6-31G* basis set

S3



Co 0

S 6 1.00

66148.99 0.00175979

9933.077 0.01348162

2262.816 0.06649342

637.9154 0.2307939

204.4122 0.4792919

69.82538 0.3514097

SP 6 1.00

1378.841 0.00237628 0.00397149

328.2694 0.0316745 0.03108174

106.0946 0.1262888 0.1357439

39.83275 -0.02584552 0.3476827

16.18622 -0.6183491 0.462634

6.667788 -0.4567008 0.2051632

SP 6 1.00

54.52355 -0.003993 -0.00729077

18.29783 0.07409663 -0.02926027

7.867348 0.2542 0.0656415

3.340534 -0.2921657 0.4000652

1.393756 -0.7318703 0.4950236

0.551326 -0.2040784 0.175824

SP 3 1.00

2.151947 0.05379843 -0.2165496

0.811063 0.2759971 0.1240488

0.121017 -1.129692 0.9724064

SP 1 1.00
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0.043037 1 1

D 3 1.00

21.33427761 0.10682753

5.57681943 0.426687871

1.598512718 0.669867704

D 1 1.00

0.399532909 1

F 1 1.00

0.8 1

****

H 0

6-31g**

****

C 0

6-31g**

****

O 0

6-31g**

****

F 0

6-31g**

****

N 0

6-31g**

****

S 0

6-31g**
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****

P 0

6-31g**

****

Cl 0

6-31g**

****

Br 0

6-31g**

****

$end

Table S2: Sample input file for geometry optimization of [CoCp]OH.

$molecule

0 4

#insert xyz coordinates of [CoCp]OH.

$end

$rem

MEM TOTAL 20000

MEM STATIC 5000

METHOD B3LYP

DFT D D3 ZERO

BASIS GEN !use m631g* for Co

PURECART 11

SYMMETRY IGNORE 1

UNRESTRICTED TRUE
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SCF GUESS sad

JOBTYPE OPT

MAX SCF CYCLES 2000

SCF CONVERGENCE 7

GEOM OPT MAX CYCLES 500

SOLVENT METHOD PCM !include H2O solvent

$end

$pcm

Theory CPCM

Method SWIG

Solver Inversion

HeavyPoints 194

HPoints 194

Radii read

vdwScale 1.2

$end

$solvent

Dielectric 78.39

$end

$van der waals

1

1 1.2

6 1.92

7 1.55
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8 1.52

9 1.5138

15 1.8657

16 1.8153

17 1.782

27 2

35 1.8855

$end

$basis

Co 0

# insert modified 6-31G* as shown in S1

****

H 0

6-31g**

****

C 0

6-31g**

****

O 0

6-31g**

****

F 0

6-31g**

****

N 0

6-31g**
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****

S 0

6-31g**

****

P 0

6-31g**

****

Cl 0

6-31g**

****

Br 0

6-31g**

****

$end
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Table S3: Sample input file for geometry optimization of Cp fragment

$molecule

0 2

#insert xy coordinates for Cp fragment

$end

$rem

MEM TOTAL 20000

MEM STATIC 5000

METHOD B3LYP

DFT D D3 ZERO

BASIS 6-31g**

SYMMETRY IGNORE 1

UNRESTRICTED TRUE

SCF GUESS sad

JOBTYPE opt

MAX SCF CYCLES 1000

SCF CONVERGENCE 7

GEOM OPT MAX CYCLES 1000

SOLVENT METHOD PCM !include H2O solvent

$end

$pcm

Theory CPCM

Method SWIG

Solver Inversion

HeavyPoints 194
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HPoints 194

Radii read

vdwScale 1.2

$end

$solvent

Dielectric 78.39

$end

$van der waals

1

1 1.2

6 1.92

7 1.55

8 1.52

9 1.5138

15 1.8657

16 1.8153

17 1.782

35 1.8855

$end
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Table S5: Default and new parameters after optimization for the complete dataset.

Model Default Parameter Optimized Parameter
XGBoost n estimators = 100 n estimators = 125

learning rate = 0.300000012 learning rate = 0.27
max depth = 6 max depth = 3

Random Forest n estimators = 100 n estimators = 125
Bagged Tree n estimators = 10 n estimators = 125

Table S6: Default and new parameters after optimization for refined data set

Model Default Parameter Optimized Parameters
XGBoost n estimators = 100 n estimators = 125

learning rate = 0.300000012 learning rate = 0.20
max depth = 6 max depth = 4

Random Forest n estimators = 100 n estimators = 99
Bagged Tree n estimators = 10 n estimators = 99
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Figure S1: The train and test results for the optimized ML models.
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Figure S2: The distribution of each input features. The bins show the distribution as a
histogram plot while the line indicates the kernel density estimate (KDE) plot.
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(a) fig:R2

(b) RMSE

Figure S3: (a) Evaluation of optimized models with R2 Scores, (b) Evaluation of optimized
models with RMSE
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Figure S4: Actual and predicted BDE for top 8 outliers
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Figure S5: Distribution of (CO)NH2 derivatives over input features. The blue bins show the
distribution of all derivatives as a histogram plot and blue line indicates its KDE plot. The
magenta colored bins show the distribution of (CO)NH2 derivatives as a histogram plot.

S18



Figure S6: Distribution of (CO)NH2 derivatives over additional features. The blue bins show
the distribution of all derivatives as a histogram plot and blue line indicates its KDE plot.
The magenta colored bins show the distribution of (CO)NH2 derivatives as a histogram plot.
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Figure S7: The train and test results of the optimized models for the refined dataset.
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Figure S8: The Mulliken charge on H of the Y-group of [CoCpHCpY]OH, and the Hirshfeld
charge on H on the Y-group of C6H5Y. The examined H-atom is highlighted with red in
chemical structures. The values highlighted with red has the highest charge on H atoms
which imply high acidity levels.
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