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Abstract

Cobaltocenium derivatives have shown great potential as components of anion ex-
change membranes in fuel cells because they exhibit excellent thermal and alkaline
stability under operating conditions, while allowing for high anion mobility. The prop-
erties of the cobaltocenium-anion complexes can be chemically tuned through the sub-
stituent groups on the cyclopentadienyl (Cp) rings of the cation Con;. However,
synthesis and characterization of the full range of possible derivatives are very chal-
lenging and time-consuming, and while the computational tools can greatly expedite
this process, full screening of the electronic structure at a high level of theory is still
computationally intensive. Therefore, in this work we consider the machine learning
(ML) modeling as a tool of predicting stability of di-substituted [CoCp2]OH complexes
measured by their bond-dissociation energy (BDE). The relevant process here is the
dissociation of the cobaltocenium-hydroxide complex into fragments [CoCpY']OH and

CpY, where Y and Y each represent one out of 42 substituent groups of experimental



interest. In agreement with the previous ML study of 120 of mono- and selected di-
substituted species [Wetthasinghe et al. J. Chem. Phys. A (2022) 126], our analysis
of the dataset expanded to all possible di-substituted cobaltoceniums, points to the
highest occupied and lowest unoccupied molecular orbitals, along with the Hirshfeld
charge on the singly-substituted benzene, to be the key features predicting the BDE
of the unseen complexes. Based on examination of the outliers, the acidity of sub-
stituents ((CO)NHy in our case) is found of special significance for the cobaltocenium
stability and for the model development. Moreover, we demonstrate that upon the
dataset refinement, the conventional ML models are capable of predicting the BDE
close to 1 kcal/mol based on the properties of just the fragments, thereby greatly re-
ducing the total number of species and of the computational time of each calculation.
Such fragment-based ’combinatorial’ approach to the BDE modeling is noteworthy,
since the geometry optimization of complexes in solution is conceptually challenging
and computationally demanding, even when leveraging high-performance computing

resources.

1 Introduction

The Machine Learning (ML) methods addressing problems of high computational complex-
ity, are being rapidly adopted and increasingly employed in computational chemistry 2, even

though the limits of their applicability are still quite uncertain3+*

, and the rational under-
standing of the behavior of systems subjected to ML algorithms is often elusive. Certain
constraints on the accuracy of the ML predictions for real systems come from the approx-
imations inherent to the computational chemistry methods. In particular, driven by high
interest in extended molecular systems and materials, the Density Functional Theory (DFT)
has become a go-to electronic structure method of computing energetic and other properties

of stable molecules — especially when sizable datasets are needed — as its scaling properties

yield an acceptable balance of accuracy and computational cost. However, the transition



metal (TM) compounds, especially for the first-row TM (in the periodic table), still present
a considerable challenge for the DFT, and the development of the density functionals that
target TM compounds remains an active area of research. A complementary approach is to
use ML to improve the accuracy of DFT?. Nevertheless, the ML has already made significant
contributions to the TM chemistry?. For instance, ML has played a crucial role in predicting
the HOMO-LUMO gap for TM complexes, uncovering structure-property relationships to
aid in the rational design of hetero-bimetallic TM complexes®, predicting relative-energy and
total-energy values for organic and TM-containing molecules”, and even predicting the line-
shape of first-row transition metal K-edge x-ray absorption near-edge structure (XANES)
spectra® using advanced ML methods, such as multiple linear regression, kernel ridge regres-
sion, and deep learning techniques.

This work is motivated by the experimental interest in the TM-containing cations as

911 bhecause these cations

components of anion exchange membranes (AEM) in fuel cells
exhibit excellent thermal and alkaline stability under operating conditions, while allowing
for high anion mobility, and because the properties of the cobaltocenium-anion complexes
can be chemically tuned through the substituent groups on the cyclopentadienyl rings (Cp)
of the cation, CoCpj 2. However, synthesis and characterization of the full range of possible
derivatives are very challenging and time-consuming, and while the computational tools
can greatly expedite this process, full screening of the electronic structure at a high level
of theory, including the DFT methods, is still computationally intensive. Therefore, we
are interested in ML modeling as a tool of predicting stability of substituted cobaltocenium-
hydroxide complexes, [CoCpY CpY]OH. As a proxy for the cation stability, we use the bond-
dissociation energy (BDE) of [CoCpY CpY]OH dissociating into fragments [CoCpY']OH and
CpY, where Y and Y’ represent one out of 42 substituent groups of experimental interest.
In Refs'®!4 a team of researchers, including these authors, describes the development

of the Neural Networks (NN) models predicting the BDE within 1 kcal/mol error, based

on a dataset of 118 substituted cobaltocenium molecules. Computations of TM molecular



compounds is challenging due to multiple spin states interfering with the electronic and
geometric convergence, which, along with experimental considerations, explains the small by
ML standards dataset in the study. The chemically-useful accuracy of the ML predictions was
enabled by careful selection of 12-15 input features facilitated by the experimental chemistry
expertise, and by the advanced ML techniques, specifically by the Chemistry-Informed and
Quadratic NN models introduced in Ref.!4.

In this work, we analyze an expanded dataset to 903 species, which includes all the Y/ Y’
combinations of the di-substituted cobaltocenium, generated in the automated fashion, and
the focus is shifted to a performance of common ML methods, i.e. Linear Regression'®, Deci-
sion Tree!'®7 Bagged Tree!®! K-Nearest Neighbors (KNN)?’, Random Forest?!, Support
Vector Regression (SVR)?? and Extreme Gradient Boosting (XGBoost)?*. The human,
as opposed to the machine, learning is focused on the analysis of the outliers in the ML
predictions, and rationalizing them in terms of underlying chemical properties. Specifically,
according to our analysis, the acidity of protons on the substituent groups and their steric ac-
cessibility during the deprotonation reaction are associated with the unusually high stability
relative to the trends within the dataset captured by the ML modeling.

The paper is organized as follows: the molecular model, electronic structure methods and
the data generation procedure are described in Section 2. The ML models, their analysis and
a discussion of the chemical reasons behind the outliers are presented in Section 3. Section

4 provides a summary and an outlook.

2 Methods and Data generation

2.1 Molecular models and methods

Our main goal is prediction of the bond dissociation energy (BDE) of substituted cobaltoce-
nium [Bis(cyclopentadienyl)cobalt(III)] used as a proxy for the stability of the cobaltocenium

under basic conditions, i.e. the stability of the cobaltocenium/hydroxide complex with re-



spect to ’splitting’ into Cp-containing fragments in aqueous medium as shown in Fig. 1,

[CoCpY CpY]OH— [CoCpY']OH + CpY.

The relevant BDE is defined as

BDE = E([CoCpY'|OH) 4+ E(CpY) — E([CoCpY CpY]OH). (1)

\ Y'
/@ ot OH Y
Y

[CoCpY’CpY]OH [CoCpY’]OH CpY

Figure 1: Dissociation of [CoCpY CpY]OH into Cp-containing fragments.

We consider all the cobaltocenium species with a single substituent group, labeled Y or
Y’, on each of the two cyclopentadienyl (Cp) rings in all combinations of Y and Y'. The list of
substituents is comprised of 42 groups shown in Fig. 2. Following Ref.!3, the [ConY/CpY]Jr
ion is explicitly solvated with the hydroxyl ion OH™, and implicitly solvated within water
using Polarized Continuum Model (PCM), as implemented in Q-Chem?*?°. The geometry
optimization and property calculations are performed at the B3LYP-D3/m6-31G** theory
level, which involves the modified 6-31G* basis set for cobalt?®, and 6-31G** basis for all
other atoms?”. The lowest energy spin states of the [CoCpY CpY]OH, [CoCpY']OH and
CpY are the singlet, quartet, and doublet, respectively. The choice of the electronic struc-
ture method has been previously validated through comparison to several other theoretical
methods and experiments®?. In all cases the energies and other molecular descriptors used in
the ML models are computed at the optimized geometries. Because the geometry optimiza-

tion can be problematic for the system with low binding energies, the species with computed



BDE < 3 kcal/mol are excluded from the dataset. For future reference, let us note here,
that in addition to the set of 42 substituents in Fig. 2, four additional groups have been
considered, namely OH, COOH, NH, and NHCHj;. Instead of forming complexes with the
hydroxide, the corresponding cobaltocenium derivatives got deprotonated during geometry
optimization. These four groups were, therefore, excluded from the ML modeling.

To check the influence of the chosen basis set on the computed energies, we have per-
formed additional calculations for three substituents using 6-311++G(d,p) and G3MP2Large?®
sets. The observed energy deviations of 5-15 kcal /mol, summarized in Table S4*", are con-
sistent with the DFT calculations for the transition metal compounds?®.

The ML model development in this work is based on the molecular descriptors or features
associated with the properties of just the dissociation fragments for both conceptual and
practical potential considerations. First of all, the lowest energy structure is less ambiguous
and the property calculation is more accurate for the fragments (~ 20 atoms) compared to
the cobaltocenium /hydroxide complex (~ 40 atoms), especially, given the multiple binding
sites of the hydroxide. Furthermore, the scaling of the DFT cost with the system size means
that a single point energy calculation on a complex is about 10 times faster than on a
fragment. The most significant potential computational saving though, would be the sheer

number of the complexes (42 x 43/2) compared to that of the fragments (42 x 2).

2.2 Data generation

The computational procedure was automated using bash and Python scripting. Generation
of the initial structures for the geometry optimization of the complexes is illustrated in
Fig. 3. As a ’template’ structure we use the optimized geometry of the unsubstituted
[CoCp2]OH complex, resulting in a symmetric orientation of the Cp rings sketched. As
follows from Ref.!?, the lowest energy arrangement of two substituents (one per Cp) is
the trans configuration, i.e. positions C1 and C2 as shown Fig. 3(a,c). First, the basic

structure of the complex is created by placing Co at the origin of the Cartesian system of



coordinates, and rotating the CoCp, unit to have the average position of the Cp rings in the
xy-plane. Then, the hydroxide is placed along the y-axis with the oxygen atom separated
from the cobalt atom by 4.0 A as shown in Fig 3(a). Next, one H-atom of a Cp ring is
replaced with a substituent group Y, and the geometry of Y is optimized while keeping the
remaining atomic positions frozen. The resulting coordinates of the substituent atoms are
used to generate the initial geometries for all di-substituted species, as illustrated in Fig.
3(c). Finally, the prepared script running through the list of 42 substituents produces *.xyz
files of initial geometries of 903 complexes. The input files for the full geometry optimization
are prepared by combining the structure files with the Q-Chem job specification block using
another Python code. Then, the geometry optimization calculations are submitted to a high
performance computer in a serial manner using a bash script. Calculations for two fragments
with 42 substituents each are setup and executed in a similar manner. The output files are
parsed for error messages, and those jobs are examined and resubmitted manually. We
encountered errors in only 6 derivatives. A sample Q-Chem input file with all user-specified
parameters is provided (Table S1-S3).

Once the optimization calculations are completed, the data used in the ML analysis are
extracted from the output files to an excel sheet using the developed python script. The
following features, which have been previously identified as the most relevant to the BDE

4 are collected:

prediction?
(i) energy of [CoCpY CpY]OH;
(ii) HOMO energy (Enono) of [CoCpY CpY]OH;
(iii) LUMO energy (Eryao) of [CoCpY CpY]OH;
(iv) energy of [CoCpY']JOH fragment;

(v) energy of CpY fragment;

(vi) Exowmo of [CoCpY'JOH fragment;
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Figure 2: The substituent groups (denoted as Y or Y’ throughout) used in chemical modifi-
cation of the cobaltocenium [CoCpY CpY]*.

1

(vii) Eryao of [CoCpY']OH fragment;
(viii) Fyomo of CpY fragment;
(ix) Erumo of CpY fragment.

These are augmented by the features derived from the calculations on the substituent groups
described in previous work !3:

(x) sum of the Hirshfeld charges on CgHjy from the electronic structure of CeH5Y':

(xi) sum of the Hirshfeld charges on CgHj from the electronic structure of C¢HsY.
The last two features are introduced as a measure of the electron donating/withdrawing
character of the substituents: a hydrogen atom in the aromatic system is replaced by a
substituent Y, which leads to redistribution of electrons on the ring quantified by the electron
population analysis. We use specifically the Hirshfeld charge, rather than Mulliken or Lowdin
charges, because the former is less basis set dependent?. The BDE of a complex is computed

from Eq. (1) using features (i), (iv) and (v). The ML modeling of the BDE is based on the
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Figure 3: The procedure of generating initial geometries of [CoCpY CpY]OH. (a) Co of the
unsubstituted complex is placed at the origin of the Cartesian coordinates and OH is aligned
with y-axis. (b) H-atom on C1 is replaced with the substituent Y. (¢) H-atom on C2 is
replaced with Y whose positions were reflected with respect to the origin.

features (v)-(xi) that are the HOMO and LUMO energies of the fragments. The computed
dataset is available through the Open Science Framework?®’. Before proceeding with the
ML analysis, the species characterized by the BDE below 3 kcal/mol are removed from the
dataset, as being below the DFT accuracy, which reduces the dataset size from 903 to 873
molecules. Figure S2 illustrates the distribution of each feature after removing the initial

outliers.

3 Results and discussion

3.1 The machine learning models

Now let us turn to the ML model development and analysis. Seven ML regression models
have been constructed: 80% of randomly selected data was used for training the models while
remaining 20% was used for testing. Since the energy and charge features have different units,

the data were normalized prior to modeling according to the following relation,

original
normalized __ i — M (2)

)
¢ o

X
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where z; , T} , i and o are, respectively, the original value, the normalized value,

mean and standard deviation of a chemical property, calculated for i*" derivative. The follow-
ing models have been considered: Linear Regression!®, Decision Tree!%!”, Bagged Tree!8:!?,
KNN?2° Random Forest?!, SVR?? and XGBoost??, as implemented in scikit-learn library

in Python3!. Once the models have been trained, their accuracy is assessed from the root

mean squared error (RMSE) and from the Pearson’s Correlation coefficient (R? Score). As

Table 1: Performance of machine learning models with their default parameters

Model Train R? Score | Test R? Score T@ég&gﬁ?ﬁ T(leqi;lP/{nl\i[oSl];j
Linear Regression 0.4598 0.4003 4.8570 5.1703
Decision Tree 1.0000 0.5010 0.0000 4.7163
Bagged Tree 0.9686 0.7585 1.1718 3.2806
KNN 0.7000 0.4287 3.6200 5.0462
Random Forest 0.9821 0.7951 0.8845 3.0223
SVR 0.4793 0.3785 4.7688 5.2633
XGBoost 0.9050 0.8440 2.0366 2.6366

seen from Table 1 listing both measures, in all cases the test R? scores are significantly lower
than the train R? scores. Thus, all models suffer from overfitting, as confirmed by large test
RMSE scores relative to the train RMSE. We also note that based on the test scores XG-
Boost, Random Forest and Bagged Tree perform the best, and we select these three out of
seven models for further optimization via tuning hyperparameters and conducting five-fold
cross validation. The default and optimized model parameters are given in Table S5.

The performance of optimized models is summarized in Table 2 and illustrated in Fig.
S3. Clearly, XGBoost, characterised by the highest R? and lowest RMSE test scores, is the
best performing model. Yet, even after the model parameter optimization, the test scores
are lower than the train scores. To identify the reason and reduce overfitting, let us examine
the outliers. From the test results in Fig. S1 showing predicted vs actual BDE for each
model, it is easy to notice that the points deviating from the trend line tend to have high
actual BDEs, BDE > 30 kcal/mol. These outlier species, responsible for the lowering of test

scores relative to the train scores, call for further investigation.

10



Table 2: Summary of optimized model performance

Model Train R? Score | Test R? Score T(rsézlfgt/i%]a T(le{iglf/{nhilil)ﬂ
XGBoost 0.9663 0.8809 1.2237 2.2252
Random Forest 0.9819 0.8230 0.8971 2.7135
Bagged Tree 0.9821 0.8251 0.8935 2.6970

3.2 The outlier analysis

First, the outliers common to all three optimized models were identified by calculating the
error defined as € = | BDE(actual) - BDE(predicted) | where € > 3 kcal/mol. Out of the top

8 outliers, shown in Table 3 and in Fig. S4, five contain amide group (CO)NH,.

Table 3: The substituent groups in [CoCpY']JOH and CpY fragments for the top eight outliers
common to the three optimized models. The error in kcal /mol is averaged over these models.

Substituent Groups Error
Y’ Y (kcal/mol)
(CO)NH, P(CHjs), 14.6233
(CO)NH, Ph 14.0758
(CO)NH, p-PhOCH; 13.6500
(CO)NH, (CO)CHj 7.5766
op-Ph(CHjs)s | op-Ph(CHs)s | 6.3572
(CO)NH, S(CHj) 5.9637
N(CH3)s NCsHyg 4.5597
m-PhCF3 p-PhCl 3.9388

Therefore, we separate out all 42 amide derivatives from the dataset and reanalyze the
data distribution with respect to each input feature. The results are shown in Fig. S5 with
the corresponding values for the amide derivatives (magenta) overlaid over the distribution
for each feature. The (CO)NH, derivatives do not appear as clear outliers within the fea-
ture distributions, which means that at a different molecular property is associated with the
outliers, and this feature should be included into the analysis. Thus, we have considered six
additional properties, not included in the ML models disucssed so far: the energy of the com-
plexes, [CoCpYCpY']OH, and of the fragments, [CoCpY']JOH and CpY, the HOMO/LUMO

energies of the complex, and the BDE itself. The distributions of the outliers relative to these
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properties are shown in Fig. S6. It is evident that most of the (CO)NH, derivatives appear
as significant outliers in the distribution of the HOMO energy of the complex. Closer exam-
ination of the BDE dependence on the HOMO energy of the substituted complexes, shown
in Fig. 4, reveals that the amide derivatives data can be grouped into two clusters — a larger
cluster containing (CO)NH; derivatives with BDE > 20 kcal/mol and E(HOMO) < —0.21
hartree, and a smaller one with lower BDE values (< 20 kcal/mol) and higher HOMO energy
values Epgono > —0.20 hartree. In summary, this analysis has shown that most (33 out
of 42) of the (CO)NH; derivatives appear as outliers, and that this trend is observed only
in the HOMO energy of the complex, which was not used as an input feature to the ML

models.

. e -CONH: derivatives

BDE (kcal/mol)
8 B

-
o

-
[a=]

-0.22 -0.21 -0.20 -0.19 -0.18
EHOMO([CoCpY'CpY]OH) (Eh)

Figure 4: The outlier analysis: BDE vs HOMO energy of the complex. The blue shaded

area indicates 95% confidence interval.

In order to confirm that the relatively poor performance of the ML models is attributable

to the (CO)NHy derivatives, they are removed from the dataset, which is then reanalyzed
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following the same procedure as described above. First, the models were evaluated with the
default parameters and then with the optimized parameters. Table S6 shows the default and
the optimized parameters for the models when the refined data set is used.

The performance of the three selected ML models with the refined data is presented in Fig.
S7 and the summary is provided in Table 4. Both train and test R? scores are significantly
improvement in all three ML models after the removal of (CO)NH, outliers from the data
set. The best preforming model, i.e. optimized XGBoost, gives prediction accuracy for
unseen data of 96%, with the RMSE of 1 kcal/mol. This indicates that aside from (CO)NH,
outliers, the implemented ML models themselves do not exhibit any problems. Next, we

propose a chemical explanation for the appearance of (CO)NH; derivatives as outliers.

Table 4: Summary of optimized model performance for refined data set

Train RMSE | Test RMSE

Model Train R? Score | Test R? Score (keal /mol) (keal /mol)
XGBoost 0.9928 0.9623 0.4860 1.0104
Random Forest 0.9908 0.9411 0.5495 1.2639
Bagged Tree 0.9908 0.9406 0.5503 1.2685

3.3 Chemistry of amide outliers

At the start of the project, in addition to the 42 substituent groups (Fig. 2), we have also
considered OH, COOH, NHy, and NHCHj groups. However, the geometry optimizations in
PCM did not yield a coordinated cobaltocenium-hydroxide complex, because the hydroxide
deprotonated those substituents. Thus, a reasonable assumption is that the outlier behavior
of compounds with (CO)NH, derivatives is also related to the acidity of amide protons.
Acidity, or ease of detachment of a proton from the molecule, is related to the degree of
polarization of its chemical bond, and thus can be correlated with the partial charge on the
hydrogen in a protonated molecule. To validate this hypothesis, we calculated the Mulliken
charge on H atoms of substituent groups, Y, attached to the mono-substituted complex,

[CoCpCpY]OH after the partial optimization of the Y positions while the remaining atoms
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fixed in space. Selected substituents from the dataset and several known acidic substituents
were analyzed. Additionally, we have done the Hirshfeld charge analysis on H atoms of the
same substituent groups attached to a benzene ring. The results are summarized in Fig. S8.

In the case of known acidic substituents, the Mulliken charge ranges between 0.31 and
0.39, while the Hirshfeld charge falls within the range of 0.12 to 0.22. Among all the tested
groups, the H atoms attached to N atoms of (CO)NH; and (CO)NHCH; exhibit charges
within this range. Out of these two substituent types, (CO)NH, demonstrates the high-
est charges among its H atoms. To expand the analysis to all substituent groups with H
atoms, we calculated the deprotonation ability using benzene (CgHg) as the probe. The

deprotonation ability is defined as follows:

Deprotonation ability = E(C¢HsY) — E(CeHs[Y — H|™) (3)

where F(CgH5Y') is the energy of benzene substituted with Y and E(CsHs[Y — H]|™) rep-
resents the energy of deprotonated version of CgH5Y. To reduce the computational cost,
only CgHg probe has been considered. It is important to note that acidity is inversely pro-
portional to the deprotonation ability. The calculated deprotonation abilities are displayed
in Fig. 5, where they are arranged from the least to the greatest acidity. The formamide
group (CO)NH; shows the highest acidity among the substituent groups considered, while
the N-methylacetamide group (CO)NHCH; shows the second highest acidity. Reexamin-
ing the optimized geometries of these compounds demonstrates the proximity of OH™ to a
formamide hydrogen, as opposed to solvation of the CoCps core. To determine if this is
an artefact of the PCM model, we have also performed geometry optimizations for a few
(CO)NH,; derivatives in the gas phase, and the same behavior was still observed. Therefore,
it has been confirmed that the trapping of the OH™ anion around the (CO)NH; group is
attributed to the presence of acidic hydrogen atom. Interestingly, despite the high acidity

of (CO)NHCHj3, steric hindrance by the methyl CHg group prevents the association of OH™
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with amide hydrogens. This explains why N-methylacetamide does not pose a problem to
the ML model. Therefore, we recommend to evaluate the acidity of new substituent groups
using deprotonation ability calculation or Mulliken /Hirshfeld charge analysis, to ensure ap-

plicability of the ML models investigated in the current work.
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Figure 5: Deprotonation ability on substituent (Y) of C¢HsY computed in PCM at B3LYP-
D3/6-31G** theory level.

4 Conclusion

In this project we have developed a machine learning model to predict the stability of di-
substituted [CoCpy] OH derivatives based on the BDE of their dissociation into [CoCpY'|OH
and CpY fragments. To accomplish this, we have computed a large dataset of these deriva-
tives by automating the process of generating and submitting input files to a high-performance
cluster, and of extracting the relevant data for property calculations from the output files
using python scripts. According to the previous work, we observed that the computational
time for the simulations of complexes was significantly higher compared to its fragments.

Therefore, the main objective of this project was to create a machine learning model that
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utilizes fragment properties to provide predictions with high accuracy and reduced compu-
tational time.

After testing several standard machine learning models, three models were selected for
further optimizations based on the evaluation scores. However, optimizing the parameters of
models did not resolve overfitting noticed with the default model parameters. Therefore, the
data set was further investigated for unusual behavioral patterns. After carefully examining
the outliers shared by all three optimized machine learning models, we have discovered that
the substitution of amide (CO)NH; group in one of the Cp ring caused a significant deviation
of the predicted BDE value from the corresponding actual BDE value. Surprisingly, the same
species did not manifest themselves as outliers in the input features. To gain deeper under-
standing, as the next step, the energy values defining the actual BDEs and HOMO/LUMO
energies of the complexes were examined. This analysis revealed that the amide substituted
complexes appeared as outliers in HOMO energy of the complexes. Based on data in Fig. 4,
the majority of (CO)NH, derivatives have higher BDE values with lower HOMO energies,
which implies that (CO)NH; stabilizes the cobaltocenium /hydroxide complex by acting as
the electron withdrawing group. However, this observation appears to contradict our previ-
ous work and experimental results, which showed that the electron-donating groups stabilize
[CoCps)OH derivatives. Consequently, we conducted further analysis to understand why
(CO)NH,; derivatives exhibited such different behavior.

Based on the challenges we encountered at the beginning of the project, we hypothesized
that the acidity might influence this distinct behavior. To investigate this, we performed
Mulliken /Hirshfeld charge analysis and calculated the deprotonation ability of the H atom
in the substituent groups. The results indicated that amide is the most acidic group among
the 42 substituent groups. This acidity leads to the trapping of OH™ anions around the H
atom of the substituent, preventing their interaction with the CoCpj cation. This behavior
explains why (CO)NH; derivatives exhibited unique characteristics. Also, this suggests a

substituent deprotonation is a possible degradation pathway for the AEM. Consequently,
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we re-optimized the machine learning models by excluding (CO)NH, derivatives from the
dataset, achieving the highest accuracy with the XGBoost model, which demonstrated 96 %
performance for unseen data with the accuracy of 1 kcal/mol.

The modified and optimized XGBoost model we developed can be employed to predict
the stability of [CoCps]OH derivatives containing less acidic substituent groups compared to
(CO)NHjy. Therefore, we recommend performing deprotonation ability calculation or Hirsh-
feld charge analysis of the substituted benzene prior to utilizing the machine learning model.
If the calculated deprotonation ability or Hirshfeld charge exceeds the level of (CO)NH,,
the model may not accurately predict the stability for that specific substituent group. Our
optimized machine learning model is recommended for predicting the stability of less acidic

derivatives of [CoCp,]OH compared to (CO)NH,.

5 Supporting Information

Table S1. Sample input file for geometry optimization of [CoCp,]OH.

Table S2. Sample input file for geometry optimization of [CoCp]OH.

Table S3. Sample input file for geometry optimization of Cp fragment.

Table S4. Basis sets investigation.

Table S5. Default and new parameters after optimization for the complete dataset.

Table S6. Default and new parameters after optimization for refined data set.

Figure S1. The train and test results for the optimized ML models.

Figure S2. The distribution of each input features. The bins show the distribution as a
histogram plot while the line indicates the kernel density estimate (KDE) plot.

Figure S3. (a) Evaluation of optimized models with R? Scores, (b) Evaluation of optimized
models with RMSE.

Figure S4. Actual and predicted BDE for top 8 outliers.

Figure S5. Distribution of (CO)NH; derivatives over input features. The blue bins show the
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distribution of all derivatives as a histogram plot and blue line indicates its KDE plot. The
magenta colored bins show the distribution of (CO)NH, derivatives as a histogram plot.
Figure S6. Distribution of (CO)NH; derivatives over additional features. The blue bins show
the distribution of all derivatives as a histogram plot and blue line indicates its KDE plot.
The magenta colored bins show the distribution of (CO)NH; derivatives as a histogram plot.
Figure S7. The train and test results of the optimized models for the refined dataset.
Figure S8. The Mulliken charge on H of the Y-group of [CoCpHCpY]OH, and the Hirshfeld
charge on H on the Y-group of CgH5Y. The examined H-atom is highlighted with red in
chemical structures. The values highlighted with red has the highest charge on H atoms

which imply high acidity levels.
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Supplemental Information: Stability Trends in Di-Substituted
Cobaltocenium Based on the Analysis of the Machine
Learning Models

by Shehani T. Wetthasinghe, Sophya V. Garashchuk, Vitaly A. Rassolov

Table S1: Sample input file for geometry optimization of [CoCp,]OH.

$molecule

01

C 0.95704 -1.66305 -0.7215
C 0.97269 -1.66015 0.70764
C -0.38164 -1.64429 1.16373
C -1.23354 -1.63982 0.01686
C -0.40674 -1.64938 -1.14809
H 1.8241 -1.6266 -1.36722
H 1.85367 -1.62061 1.33409
H -0.70486 -1.59301 2.19478
H -0.75234 -1.60227 -2.17207
Co 0.00000 0.00000 0.00000
C -0.95705 1.66305 0.72148
C -0.97269 1.66015 -0.70764
C 0.38164 1.64429 -1.16374
C 1.23353 1.63982 -0.01687
C 0.40673 1.64939 1.14808
H -1.8241 1.6266 1.36721
H -1.85367 1.6206 -1.3341
H 0.70486 1.59301 -2.19479
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H
O
H
#insert substituentl

#insert substituent2

$end

$rem

MEM_TOTAL

MEM _STATIC
METHOD

DFT_D

BASIS

PURECART
SYMMETRY _IGNORE
unrestricted
SCF_GUESS
JOBTYPE
MAX_SCF_CYCLES
SCF_CONVERGENCE
GEOM_OPT_MAX _CYCLES
SOLVENT_METHOD
$end

$pcm
Theory
Method

0.75234 1.60227

0.00000 0.00000

0.00000 0.00000

20000

5000

B3LYP

D3_ZERO

GEN luse m631g* for Co
11

1

FALSE

SAD

OPT

2000

7

500

PCM linclude H20 solvent

CPCM
SWIG

S2

2.17206
4.00000
4.97596



Solver Inversion

HeavyPoints 194
HPoints 194
Radii read
vdwScale 1.2
$end

$solvent

Dielectric 78.39
$end

$van_der_waals

1

1 1.2

6 1.92

7 1.55

8 1.52

9 1.5138
15 1.8657
16 1.8153
17 1.782
27 2

35 1.8855
$end

$basis

#modified 6-31G* basis set



Co 0
S61.00

SP 6 1.00

SP 6 1.00

SP 3 1.00

SP 1 1.00

66148.99
9933.077
2262.816
637.9154
204.4122
69.82538

1378.841
328.2694
106.0946
39.83275
16.18622
6.667788

54.52355
18.29783
7.867348
3.340534
1.393756
0.551326

2.151947
0.811063
0.121017

S4

0.00175979
0.01348162
0.06649342
0.2307939
0.4792919
0.3514097

0.00237628
0.0316745
0.1262888
-0.02584552
-0.6183491
-0.4567008

-0.003993
0.07409663
0.2542
-0.2921657
-0.7318703
-0.2040784

0.05379843
0.2759971
-1.129692

0.00397149
0.03108174
0.1357439
0.3476827
0.462634
0.2051632

-0.00729077
-0.02926027
0.0656415
0.4000652
0.4950236
0.175824

-0.2165496
0.1240488
0.9724064



D 3 1.00

D 1 1.00

F11.00

kkkk

HO
6-31g**
ok gk
Co
6-31g**
Kok gk
00
6-31g**
*okokok
FO
6-31g**
Kok Kok

N O
6-31g™**
Kok Kok
SO
6-31g**

0.043037

21.33427761

5.57681943

1.598512718

0.399532909

0.8

S5

0.10682753
0.426687871
0.669867704



Kokosksk

PO
6-31g™**
Kok koK
Cl0
6-31g**
Kok koK
Br 0
6-31g**

kKK

$end

Table S2: Sample input file for geometry optimization of [CoCp|OH.

$molecule
04

#insert xyz coordinates of [CoCp]OH.

$end

$rem

MEM_TOTAL 20000

MEM_STATIC 5000

METHOD B3LYP

DFT_D D3_ZERO

BASIS GEN luse m631g* for Co
PURECART 11

SYMMETRY _IGNORE 1

UNRESTRICTED TRUE
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SCF_GUESS

JOBTYPE
MAX_SCF_CYCLES
SCF_CONVERGENCE
GEOM_OPT_MAX_CYCLES
SOLVENT_METHOD

$end

$pcm
Theory
Method
Solver
HeavyPoints
HPoints
Radii
vdwScale

$end

$solvent
Dielectric

$end

$van_der_waals
1
1
6

sad
OPT
2000

200
PCM

CPCM
SWIG
Inversion
194

194

read

1.2

78.39

1.2
1.92
1.55

S7

linclude H20O solvent



8 1.52

9 1.5138
15 1.8657
16 1.8153
17 1.782
27 2

35 1.8855
$end

$basis

Co 0

# insert modified 6-31G* as shown in S1
kskokk
HO
6-31g**
kokosksk
Co
6-31g**
Kotk
00
6-31g**
Kokokok
FO
6-31g**
Koxkok

N O
6-31g**

S8



kokokosk

SO
6-31g**
Koxokok
PO
6-31g**
Koxokok
Cl0
6-31g**
kokoskosk
Br 0
6-31g**

kR

$end
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Table S3: Sample input file for geometry optimization of Cp fragment

$molecule

02

#insert xy coordinates for Cp fragment

$end

$rem

MEM_TOTAL
MEM_STATIC
METHOD

DFT_D

BASIS

SYMMETRY _IGNORE
UNRESTRICTED
SCF_GUESS
JOBTYPE

MAX _SCF_CYCLES
SCF_CONVERGENCE
GEOM_OPT_MAX_CYCLES
SOLVENT_METHOD
$end

$pcm
Theory
Method
Solver

HeavyPoints

20000
5000
B3LYP
D3_ZERO
6-31g**

1

TRUE
sad

opt

1000

7

1000
PCM linclude H20 solvent

CPCM
SWIG
Inversion

194

S10



HPoints
Radii
vdwScale

$end

$solvent
Dielectric

$end

$van_der_waals

1

co N O

15
16
17
35
$end

194
read

1.2

78.39

1.2
1.92
1.55
1.52
1.5138
1.8657
1.8153
1.782
1.8855
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Table S5: Default and new parameters after optimization for the complete dataset.

Model

Default Parameter

Optimized Parameter

XGBoost

n_estimators = 100
learning_rate = 0.300000012
max_depth = 6

n_estimators = 125
learning rate = 0.27
max_depth = 3

Random Forest

n_estimators = 100

n_estimators = 125

Bagged Tree

n_estimators = 10

n_estimators = 125

Table S6: Default and new parameters after optimization for refined data set

Model

Default Parameter

Optimized Parameters

XGBoost

n_estimators = 100
learning_rate = 0.300000012
max_depth = 6

n_estimators = 125
learning_rate = 0.20
max_depth = 4

Random Forest

n_estimators = 100

n_estimators = 99

Bagged Tree

n_estimators = 10

n_estimators = 99
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Figure S1: The train and test results for the optimized ML models.
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Figure S5: Distribution of (CO)NH; derivatives over input features. The blue bins show the

distribution of all derivatives as a histogram plot and blue line indicates its KDE plot. The
magenta colored bins show the distribution of (CO)NH;, derivatives as a histogram plot.
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Figure S6: Distribution of (CO)NH, derivatives over additional features. The blue bins show

the distribution of all derivatives as a histogram plot and blue line indicates its KDE plot.
The magenta colored bins show the distribution of (CO)NH; derivatives as a histogram plot.
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Figure S7: The train and test results of the optimized models for the refined dataset.
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Figure S8: The Mulliken charge on H of the Y-group of [CoCpHCpY]OH, and the Hirshfeld
charge on H on the Y-group of CqgH5Y. The examined H-atom is highlighted with red in

The values highlighted with red has the highest charge on H atoms

which imply high acidity levels.

chemical structures.
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