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Protist plankton can be divided into three main groups: phytoplankton,
zooplankton, and mixoplankton. In situ methods for studying phytoplankton
and zooplankton are relatively straightforward since they generally target
chlorophyll/photosynthesis or grazing activity, while the integration of both
processes within a single cell makes mixoplankton inherently challenging to
study. As a result, we understand less about mixoplankton physiology and their
role in food webs, biogeochemical cycling, and ecosystems compared to
phytoplankton and zooplankton. In this paper, we posit that by merging
conventional techniques, such as microscopy and physiological data, with
innovative methods like in situ single-cell sorting and omics datasets, in
conjunction with a diverse array of modeling approaches ranging from single-
cell modeling to comprehensive Earth system models, we can propel
mixoplankton research into the forefront of aquatic ecology. We present eight
crucial research questions pertaining to mixoplankton and mixotrophy, and
briefly outline a combination of existing methods and models that can be used
to address each question. Our intent is to encourage more interdisciplinary
research on mixoplankton, thereby expanding the scope of data acquisition and
knowledge accumulation for this understudied yet critical component of
aquatic ecosystems.
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1 Introduction

The planktonic protist community can be divided into three
main functional groups - phytoplankton, zooplankton, and
mixoplankton. The physiology and the biogeochemical and food
web impacts of mixoplankton - protists that combine
photoautotrophy and phagotrophy for growth (Flynn et al, 2019)
- are poorly understood compared to phytoplankton and
zooplankton. Despite the detection of mixoplankton in aquatic
systems as far back as the 1930s (Biecheler, 1936), their
prevalence was not fully appreciated by the larger aquatic science
community until the last decade (Flynn et al., 2013). To complicate
further, the traditional methods used to study plankton
communities in situ often do not distinguish between
mixoplankton and other plankton groups (Millette et al, 2018).
Mixoplankton and phytoplankton are often amalgamated due to
the presence of chloroplasts in both types of organisms. In turn,
estimations of grazing using indirect measurements (e.g., dilution
and prey removal experiments) cannot distinguish between
zooplankton and mixoplankton grazers (Ferreira et al., 2021).

Despite the methodological challenges, empirical evidence
shows that mixoplankton are ubiquitous globally in marine (Leles
et al., 2017; Faure et al, 2019; Mitra et al., 2023a) and freshwater
systems (Saad et al., 2016; Hansson et al., 2019). Pioneering studies
that targeted in situ mixoplankton found that they can contribute to
over 50% of the bacterivory in oligotrophic regions in the ocean
(Unrein et al., 2007; Zubkov and Tarran, 2008) and can be
important protistan predators (Li et al, 2000; Jeong et al., 2010).
These studies support theory on the competitive advantage of
mixoplankton under inorganic nutrient limiting conditions
(Thingstad et al, 1996). Since then, other studies quantified the
abundance of in situ mixoplankton (e.g, Tsai et al., 2011; Vargas
et al, 2012; Gast et al, 2014), revealing new insights into
environmental gradients associated with their abundance and
competitive success (Edwards, 2019). In addition, large-scale
ocean models have made important predictions that
mixoplankton can impact trophic dynamics and carbon cycling
by increasing cell size and carbon export (Ward and Follows, 2016;
Chakraborty et al, 2020). However, we still lack a mechanistic
understanding of the metabolic constraints determining
mixoplankton responses to environmental variation at the cellular
level, which hampers our ability to evaluate the robustness of our
predictions at the ecosystem level. Furthermore, most of these in
situ studies have focused on mixoplankton ingestion of bacterial
prey (Edwards, 2019), despite it being well known that many
mixoplankton consume eukaryotic prey (Jeong et al, 2010).
Overall, while several studies have focused on factors that impact
mixoplankton ingestion rates within controlled experimental
conditions (e.g, Sanders et al., 1989, 2000; Li et al, 2000; Jeong
et al., 2005; Sanders and Gast, 2012; McKie-Krisberg et al., 2015;
Millette et al, 2017; Lim et al., 2019), we know less about in situ
mixoplankton presence and activity. To address these knowledge
gaps, we discuss how we can combine empirical data (from cultured
isolates to in situ bulk community) with different classes of models
(from cells to ecosystems) to investigate various research questions
and advance mixoplankton research. The integration of empirical

Frontiers in Marine Science

10.3389/fmars.2024.1392673

and modeling approaches is a powerful way to boost our
understanding of ecological processes. For example, it can help to
infer the mechanisms behind observed relationships, identify
general principles and develop theory, generate new hypotheses
that can inform new experiments, and make predictions beyond the
environmental conditions covered by the empirical dataset. A
selection of approaches stands out for improving our
understanding of mixoplankton (Box 1). However, our goal is not
to provide extensive methodological details; for detailed
descriptions of methods used to detect phago-mixotrophy see
Beisner et al. (2019) and Wilken et al. (2019). Our objective is to
establish a conceptual framework that encourages interdisciplinary
collaboration in the study of mixoplankton. This will require a
combination of one or more methods that include controlled
laboratory experiments, the development of methods to be
applied in situ, and model development. To that end, we focus on
how we can integrate different modeling approaches to the
empirical methods listed in Box | to answer key research
questions (Table 1).

For this exercise, we identified two example research questions
related to four research priorities described in Figure 1 in Millette
etal. (2023). The research priorities are: i) mixotrophy evolution, i)
traits and trade-offs, iii) ecological biogeography, and iv)
biogeochemistry and trophic transfer. While our examples are by
no means exhaustive or describe the only way this research could be
addressed, they serve as compelling illustrations of the vast potential
that emerges from connecting empirical and theoretical approaches
in the context of mixoplankton research and broader
scientific pursuits.

2 Mixotrophy evolution

Mixoplankton span an immense breadth of phylogenetic and
functional diversity, encompassing neardy every major eukaryotic
supergroup (Stoecker et al., 2009; Selosse et al,, 2017). This diversity
allows us to study the origin and traits of mixoplankton
comparatively and ask how mixotrophy has shaped the evolution
of lineages, and conversely, how ecosystems drive mixoplankton
trait selection and adaptations. Here we highlight some of the
current directions and challenges of research regarding
mixoplankton evolution by focusing on macroevolutionary
(Section 2.1) and microevolutionary (Section 2.2) processes.

2.1 How does phylogenetic ancestry shape
traits and function among mixoplankton?

An open question regarding mixoplankton diversity is how
their unique evolutionary histories have shaped cell metabolism and
physiology of extant protist lineages (Kim and Maruyama, 2014;
Mansour and Anestis, 2021), We are gaining a better mechanistic
understanding of why and how phago-mixotrophy is maintained in
contemporary aquatic systems through insights into the genetic and
cellular integration of photosynthetic symbionts/organelles and
phago-heterotrophic hosts, and by deciphering the cryptic
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TABLE 1 Summary of possible research questions that could be asked within each topic area and the combination of methods that could be used to

address each question.

Topic Question Methods

Evolution How does phylogenetic ancestry shape traits and function | » Flow cytometric single-cell sorting (Gawryluk et al, 2016)
among mixoplankton? » (Meta)genomics, (meta)transcriptomics, and omics-based trophic

models (Alexander et al, 2023)
+ Phylogenetics, growth rates, ingestion rates, photosynthetic rates
(Barbaglia et al., 2024)
How does ecosystem selection alter the expression of + Epigenetics and allele frequency (Weiner and Katz, 2021)
mixotrophic traits and function in diverse populations? + Experimental evolution (Lepori-Bui et al., 2022)
+ Adaptive dynamics models (Troost et al, 2005a)

Traits & Trade-offs What are the trade-off that mixoplankton experience? + Flow cytometric single-cell sorting (Needham et al, 2022)

+ Physiological traits (cell size and rate measurements) and stable
isotope and RNA-SIP (Wilken et al,, 2023)
+ 3D subcellular imaging (Uwizeye et al, 2021)
« R e allocation dels (Berge et al., 2017)

What are the mechanisms underlying mixotrophy + Experimental evolution (Lepori-Bui et al., 2022)

trade-offs? +  Macromolecular composition and multi-omics (Zhang et al., 2022)
+ Proteome allocation models (Leles and Levine, 2023) and genome-
scale metabolic models (Zufiga et al., 2016)
Biogeography How does mixoplankton presence and activity vary » Historical data (Faure et al, 2019)
across large scale gradients of light, temperature, + Imaging and flow cytometry (Dutkiewicz et al, 2024)
and nutrients? o Omics (Lambert et al., 2022)
+ Fluorescent microscopy (Edwards, 2019)
« 1D and 3D models (Ward and Follows, 2016)

How will the I cycle of mixoplankton p & « Historical data (Stamieszkin et al,, 2024)

and activity respond to a changing climate + BrdU labeled bacteria experiments (Dobbertin da Costa et al,, 2024)
+ Species distribution models (Barton et al., 2016)

Biochemistry & Trophic Transfer How does cellular composition and extracellular + Flow cytometric single-cell sorting (Duhamel et al, 2019)
biochemistry vary as mixoplankton navigate the « Nano-SIMS and x-ray imaging (Twining et al, 2003; Mayali, 2020)
trophic landscape? « Stable- and radio-isotope tracers (Adolf et al., 2006 Terrado

et al.,, 2017)
Are mixoplankton of different prey quality compared to + Flow cytometric single-cell sorting (Duhamel et al, 2019)
phytoplankton and zooplankton? + Culture experiments (Traboni et al., 2020)
+ Compound-specific stable isotope probing (Alcolombri et al, 2022)
» Stoichiometric ratios (C:N, C:P) (Katechakis et al., 2005)
« Fatty acid analyses (Boéchat et al, 2007)

We induded one or two references that highlight how a method has been used to study mixoplankton or, in some cases, study non-mixotrophic plankton.

ancestral genetic signatures of phagotrophy. Such insights have
facilitated a better understanding of both non-constitutive (NCM)
and constitutive (CM) cultures through use of transcriptomics and
proteomics (Hattenrath-Lehmann et al, 2021; Li et al, 2021a;
Koppelle et al., 2022; Johnson et al, 2023). Efforts fomsing on
genetic commonalities among diverse mixoplankton may also
reveal conserved traits retained from early phagotrophic
ancestors, while instances of gene loss/acquisition can shed light
on traits that have enabled the diversification of younger lineages.
Ongoing culture work suggests a mixotrophy continuum, ranging
from mostly photosynthetic groups (e.g., prasinophytes,
haptophytes) to mostly phagotrophic (e.g, dictyochophytes) (Li
et al, 2022; Edwards et al, 2023a), but with a high degree of
variability within lineages and even among species (Calbet et al.,
2011; Wilken et al., 2020).

The various omics approaches serve as powerful tools for
investigating the evolutionary trajectories of protists, the
biochemical underpinnings of mixotrophic behavior, and
potentially even resource allocations between phototrophic and
phagotrophic states. Gene-based models using reference databases
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of protistan genomes or transcriptomes can be leveraged to identify
core metabolic features of phago-mixotrophy in lab cultures (Burns
et al, 2018; Bock et al., 2021; Koppelle et al, 2022) and in field
populations (Lambert et al, 2022; Alexander et al., 2023),
enabling explorations into trophic modes of previously
unexamined lineages. Comparative genomics can be particularly
valuable in examining patterns of plastid gene loss or retention in
lineages of mixoplankton (Dorrell et al, 2019), and transcriptomics
and proteomics can furthermore shed light on the regulation of
genes among closely related mixotrophs differing in trophic abilities
(Lie et al, 2018). However, only a small subset of mixoplankton
have been cultured in the lab, sequenced, and available in reference
annotation databases which models are trained on, limiting our
ability to infer phago-mixotrophy in the field based on sequences.
Single-cell sorting approaches, in which mixotrophic status can be
empirically ascertained and combined with single-cell amplicon,
genomic or transcriptomic sequencing, offers a promising way to
address this issue (Wilken et al, 2019; Needham et al., 2022).
Furthermore, strengthening reference sequence databases with the
inclusion of more cultured representatives and supplementing with
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FIGURE 1

Trait-based framework integrating empirical and modeling approaches to study mixoplankton. Traits measured at the population-level and single-
cell technigues can be applied in situ and/or under controlled experimental conditions to determine mixoplankton attributes (e.g. plastids/
phototrophy, feeding vacuoles/phagotrophy, and cell size) using a variety of methods such as flow cytometry, isotope labeling, 3D cell imaging, and
amics datasets. Empirical analyses can then reveal potential trade-offs between traits measured across different environmental conditions within a
single species. Proteome allocation models can reveal the mechanisms underlying the empirically derived trade-offs by resolving fine-scale cellular
processes. Both proteome models and empirical trade-offs provide critical information to parameterize ecosystem models that can predict
mixoplankton biogeography and biogeochemical impact in the global ocean. Ultimately, models can generate new hypotheses that can be tested in

the lab and/or in situ. Schematic created with BioRender.com.

metagenome assembled genomes (MAGs) derived from the natural
environment (Delmont et al., 2022; Alexander et al,, 2023) could
expand our ability to identify mixoplankton taxa and metabolism.
Once robust phylogenies are constructed, phylogenetic modeling
can help us to infer likely gains and losses of function and
understand how mixotrophic life histories affected rates of
diversification (reviewed in Morlon, 2014).

2.2 How does ecosystem selection alter
the expression of mixotrophic traits and
function in diverse populations?

The richest body of historical research on mixoplankton has been
focused on characterizing traits related to phagotrophy and
photosynthesis and in identifying trophic interactions. The vast
majority of these studies have used rate-based measurements to
document photosynthesis and ingestion, and have helped to provide
a foundational framework for understanding the occurrence of these
traits among mixoplankton. Less well understood, however, are how
mixotrophic behavior differs among diverse eukaryotic lineages, both
as a function of the environment and due to physiological adaptations.
Microevolution is a valuable lens through which to explore phago-
mixotrophy, including epigenetics and other regulatory processes.
Such approaches could deepen our understanding of how external
conditions shape phago-mixotrophy phenotype and may help to
predict mixoplankton functional biology and trophic status. For
instance, how is the ecophysiology of different species related to
epigenetic processes that modulate mixotrophic traits, and how do
these relationships vary with ecosystem type? Such networks between
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resource limitation and trait expression are likely highly diverse and
involve some combination of the above scenarios and would need to
be broadly surveyed across phylogenetic lineages, types of
mixoplankton, and across diverse ecosystems.

While the application of microevolutionary approaches such as
epigenetic mechanisms or documenting the distribution and
frequency of alleles across populations remain in their infancy for
marine microeukaryotes, it may hold promise for understanding
interactions between short-term acclimation and long-term
adaptation strategies of mixoplankton. For example, DNA
modifications and small non-coding RNAs may function as
epigenetic mechanisms promoting diversification and driving
phenotypic plasticity in microbial eukaryotes (Weiner and Katz,
2021), and could facilitate adaptation in response to environmental
pressures. Phenotypic demonstrations of microevolutionary
processes in mixoplankton have recently been documented with
observations of cultures losing their capacity to feed due to long-
term maintenance without prey (Blossom and Hansen, 2021), and in
documenting metabolic and behavioral changes in response to
warming temperatures (Wilken et al, 2013; Ferreira et al, 2022;
Lepori-Bui et al., 2022). Understanding genetic processes that
underlie such regulatory changes are needed, and studies are
underway by using “experimental evolution” approaches for
deciphering molecular dynamics of long-term environmental change.

In recent years an increase in the use of omics, experimental,
and modeling approaches for characterizing mixotrophic
metabolism and trophic modes across resource gradients has
provided a wealth of new insights into mixoplankton physiology
and biogeography. This information will also facilitate progress in
deciphering evolutionary processes that have shaped lineage
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diversity of protistan phago-mixotrophs and can be used to validate
existing theoretical approaches. Historically, adaptive dynamics
models have been used to understand the circumstances under
which mixotrophy is evolutionarily viable. These models simulate
evolution as a series of small mutations in an organism’s
(functional) trait(s) and are used to identify evolutionarily stable
strategies (ESSs) that are robust to invasion by slightly different
strategies (Diekmann, 2003). Such models have been used to
identify environmental conditions under which mixotrophs
should specialize (Troost et al, 2005b, 2005a), to evaluate a
mixotroph’s optimal balance between phagotrophy and
phototrophy as a function of environmental temperature
(Gonzalez et al, 2022), and to understand the adaptiveness of
Kleptoplasty (Brown et al, 2023). These theoretical predictions
can be tested with new data on the distribution (and plasticity) of
mixotrophs in nature, and better constrained by data on the
phylogeny of mixotrophs and their traits.

3 Mixotrophy traits and trade-offs

Here we define a trade-off as the advantage of a phenotypic trait
in a given environment that is accompanied by a disadvantage in
the same or different environmental context (Agrawal, 2020). We
focus on three main traits that determine mixotrophy:
photosynthesis, inorganic nutrient uptake, and phagotrophy
(Andersen et al, 2015). Identifying when and why these traits
trade-off is central to understanding the phenotypic and metabolic
responses of mixoplankton to environmental changes. Trade-offs
can arise either across and/or within species considering a range of
environmental conditions. They might, for instance, be amplified by
resource limitation (e.g. nutrient and light scarcity) that restricts
investments into different traits, or might further be shaped by
community ecology (e.g. interactions with competitors and
predators) in cases where resource acquisition and protection
against predation require different optimal traits. Furthermore,
mixotrophic trade-offs can differ among functional types
(constitutive versus non-constitutive mixoplankton). By gaining
new insights into the above, we can better understand how trade-
offs (or the lack thereof) constrain the impact of mixotrophy on
ecological interactions and ecosystem processes, a pressing issue
especially considering future climate scenarios (Figure 1). Here we
address the methods that can be applied to identify mixoplankton
trade-offs (Section 3.1) and the mechanisms underlying such trade-
offs (Section 3.2).

3.1 What are the trade-offs that
mixoplankton experience?

The fundamental constraints on mixotrophic metabolisms will
likely be revealed by investigating key traits related to the three
routes of resource acquisition: photosynthesis, nutrient uptake, and
phagotrophy (Andersen et al, 2015). Although seemingly
straightforward, trade-offs have been hard to characterize (Dolan
and Peérez, 2000; Mitra et al, 2023b). The diverse metabolic
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strategies of mixoplankton complicate the interpretation of trade-
offs, for example, not all mixoplankton can take up inorganic
nutrients or survive in darkness (Schoener and McManus, 2017;
Lie et al., 2018). Methodological challenges also hamper our ability
to quantify these traits. For example, while it is relatively easy to
quantify chlorophyll a content or photochemical yield of
photosystem II (Fv/Fm) as a proxy for investment in light
harvesting capacity, it is less straightforward to quantify the
relative investments in nutrient uptake and phagotrophy.
Furthermore, attempting to tease apart the investments into
different nutrient acquisition modes in the field adds another
layer of difficulty. Here we propose the application of single-cell
techniques in situ (Beisner et al, 2019; Wilken et al.,, 2019) and
traditional physiological measurements obtained in the lab to start
estimating these traits across environmental gradients both within
and across species. While we call for in situ approaches throughout
this paper, we also acknowledge the importance of laboratory-based
work with cultures to advance mixoplankton research. These can
then be used to better inform trait-based models and predict the
large-scale impact of mixotrophy (Figure 1).

Mixoplankton have the metabolic flexibility to modulate the
different resource acquisition modes and thus must trade between
investing in different cellular and metabolic “machinery”. Flow
cytometric methods can potentially provide cell-level detail on an
organism’s investment in photoautotrophy and phagotrophy, while
distinguishing among co-occurring populations in a natural
community (Gonzalez-Gil et al, 1998; Anderson et al, 2017;
Wilken et al., 2019). Specifically, the amount of autofluorescence
from plastids can be compared with the fluorescence of acidic food
vacuoles stained with acidotropic dyes, such as LysoTracker, in both
laboratory and field samples (e.g., Anderson et al, 2017). As
mentioned in Box 1, the latter approach is not free of caveats, but
the promise of effective trait quantification at the single cell level
makes it worth understanding potential biases better (Wilken et al,,
2019). If applied successfully, quantification of traits related to
photoautotrophy and phagotrophy, can be complemented by
those related to nutrient uptake. For example, alkaline
phosphatase activity can be assessed by flow cytometry and might
serve as a proxy for investments into phosphorus acquisition
(Gonzalez-Gil et al, 1998).

Accurate volume measurements of organelles are another way
to quantify traits. In order to switch investments between strategies,
mixoplankton must allocate cellular space for different structures.
Novel techniques such as 3D subcellular imaging can provide
detailed information on the space occupied by plastids and
feeding vacuoles, with the potential to determine the metabolic
flexibility of different processes (Colin et al., 2017; Uwizeye et al,
2021). As an example, these tools can be used to investigate trade-
offs in CMs related to maximizing inorganic nutrient uptake
through larger surface area to volume (SA/V) ratios (to
accommodate nutrient transporters) versus maximizing ingestion
through larger cellular biovolume (smaller SA/V ratios) occupied by
feeding vacuoles. By integrating these measurements with models
based on resource allocation theory, in which the mixoplankton
need to build different structures to optimize the investment of
carbon and nitrogen to different functions (Berge et al,, 2017), it is
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possible to validate model predictions and generate new hypotheses
about mixotrophy trade-offs (Figure 1).

Uptake kinetics have long been used to characterize trade-offs,
especially across species, for both strict autotrophic and
heterotrophic protists (Hansen et al., 1997; Edwards et al., 2012).
In mixoplankton, the matter is complicated by potential
interactions between different resource acquisition pathways. For
example, do mixoplankton with higher photosynthetic rates have
lower affinity for prey uptake? Recent studies provide initial insights
into how these trade-offs play out among nanoplankton (Edwards
et al, 2023a, 2023b; Barbaglia et al, 2024). When performed both
across and within different mixotrophic species, these analyses can
help to reveal the relative roles of intraspecific phenotypic plasticity
on setting mixotrophy trade-offs. So far generating these types of
data relies on experimentation with cultured isolates. However,
stable isotope approaches with high phylogenetic resolution such as
RNA based stable isotope probing (RNA-SIP) allow probing
resource acquisition by mixoplankton directly within natural
communities (Wilken et al., 2023), While RNA-SIP can at best be
semi-quantitative, more targeted approaches such as nanoSIMS or
Chip-SIP (Mayali et al, 2012) are also more quantitative. If
employing isotope sources for both auto- and heterotrophic
metabolism, these might also provide information on trade-offs.
Such datasets can then be targeted to test modeling predictions,
such as the potential correlation between mixotrophic metabolism
and cell size (Chakraborty et al,, 2017). On the other hand, trait
correlations derived from empirical data can be used to inform
mechanistic models; they can be used to define mixotrophic trade-
offs in models that resolve community and ecosystem dynamics at
different scales (Ward and Follows, 2016; Serra-Pompei et al., 2019).
Specifically, if two traits are correlated, it is possible to derive
parameters that describe this relationship and use it to constrain
trait-based models (Figure 1), as it is commonly done for the
allometric relationships resolving resource uptake kinetics for
autotrophs and heterotrophs (Ward and Follows, 2016).

3.2 What are the mechanisms underlying
mixotrophy trade-offs?

Quantification of mixoplankton traits in situ is a first step
toward understanding trade-offs. Observed trait correlations
might not be true trade-offs (a correlation does not equal
causation) or the lack of empirically observed correlations does
not exclude the possibility of a real trade-off. Therefore, if trait
correlations are observed that likely reflect trade-offs, the
mechanistic basis of such trade-offs needs to be understood. Such
underlying mechanisms can be of different kinds. For instance,
resource limitation might cause trade-offs as resources allocated to
one function cannot be used for another. However, even in the
presence of plentiful resources, trade-offs might arise through
biophysical constraints. This includes limited cell volume or cell
surface to accommodate all cellular machineries required for
photosynthesis, phagotrophy and nutrient uptake, and all other
cellular functions. Finally, trade-offs can arise in the interaction
with other spedes, such as competitors, predators, or parasites.
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Trait correlations identified with the methods described in section
3.1 can generate hypotheses about underlying mechanisms, which
will in turn determine the choice of methods required to test them.

To understand trade-offs associated with limited resource
availability, the energetic costs and elemental investments
involved in building cellular structures such as plastids versus
digestive vacuoles should be quantified. A combination of
traditional measurements of macromolecular composition,
stoichiometry, and physiological rates (e.g. growth,
photosynthesis, and ingestion) with the omics toolbox can be
powerful to quantify the biomolecular structures and associated
costs invested into each strategy. For example, proteomic
approaches applied to cultured isolates in the lab can be used to
link changes in strategy following an environmental perturbation to
the respective costs of phenotypic adjustments (Zhang et al,, 2022).
Proteome models work hand-in-hand with the methods mentioned
above allowing for assessment of different proteins, incorporating
energetic, space, and stoichiometric constraints, and optimizing
resource allocation to maximize growth across different
environmental conditions (Molenaar et al., 2009; McCain et al,
2021; Leles and Levine, 2023). Such modeling frameworks can
reveal new trade-offs as well as the mechanisms underpinning
trait trade-offs (Figure 1). In contrast, one might choose a
bottom-up approach in systems biology to simulate whole
systems from (incomplete) genomes. Genome-scale metabolic
models are already applied in the model microalga Chiorella to
predict mixotrophic metabolism during utilization of dissolved
organic carbon (Zuniga et al, 2016) but would require further
development to capture utilization of chemically much more
complex prey organisms.

The optimization of the nutritional balance in mixoplankton
might also be determined by constraints other than resource
availability. These may be specific to certain taxonomic groups
and only become apparent by comparison across species or broader
taxonomic units differing in morphology. An example is the
relationship between flagellar arrangements found in nano-sized
protists and the flow fields they generate, which in turn affect rates
of prey encounter and ingestion (Nielsen and Kierboe, 2021). Such
relationships can be resolved by video-microscopy and particle flow
field analysis. A previous study suggested that flow fields created by
some haptophytes do not support sufficiently high rates of prey
ingestion for growth through feeding alone (Dalger et al, 2017),
making the mixotrophs reliant on photosynthesis. Various
techniques of live microscopy will remain important for
observing the behavior of individual cells and integrating these
observations with models accounting for hydrodynamics at the
relevant scale.

Finally, a trade-off can arise due to direct interference of a trait
with species interactions (e.g. predation defense or competition
ability). Potential examples include prey searching behavior or the
generation of a feeding current that can also attract predators and
thus creates a trade-off between optimizing prey capture and
avoiding predation (Kierboe and Thomas, 2020). There could
also be synergies for instance in mixoplankton that produce
toxins to defend themselves from predators, immobilize their prey
and/or inhibit competitors (Berge et al., 2012; Traboni et al, 2020).
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Assessing such trade-offs requires variation in the presence of
interacting species, so they can best be investigated
experimentally by manipulating i) the availability of prey, ii) the
trophic landscape induding pressure from parasites, viral infection,
or predators, or iii) the presence of competitors for the same prey
particles or dissolved nutrients. Gradually adding complexity to
controlled experiments with forced species interactions should
allow for insight into in situ community conditions and the
external factors that might dictate costs and benefits for a range
of traits.

4 Ecological biogeography
of mixoplankton

Here we address the ecological biogeography of mixoplankton,
i.e. their distributions in modern conditions. The distribution
patterns of mixoplankton across environmental gradients (e.g.
light, nutrients, prey, and temperature) are not well understood.
What is their distribution across spatio-temporal scales and why are
they distributed this way? Answering these questions will help us
understand how the ecological niches of mixoplankton differ from
those of phytoplankton and zooplankton. Changes in community
structure can then be predicted given an environmental
perturbation. This is critical to understand how plankton
communities might shift due to climate change and other
anthropogenic pressures and impact ecosystem functioning. Here,
we propose how to conduct research on the environmental
gradients that result from spatial (latitudinal, Section 4.1) and
temporal (seasonal, Section 4.2) variation.

4.1 How do mixoplankton presence and
activity vary across large scale gradients of
light, temperature, and nutrients?

Ocean basin-scale transects can be used to examine the presence
and activity of mixoplankton across large gradients of light,
temperature and nutrients. Mixoplankton are able to respond to
changing environmental conditions by modulating the
photosynthetic and phagotrophic modes of nutrition (Gonzélez-
Olalla et al,, 2019). When active mixoplankton are a prominent part
of the protist community, a relevant number of organisms are
simultaneously being producers and consumers at the bottom of the
food web. This has the potential to fundamentally alter food web
dynamics by increasing trophic efficiency and the size of organisms
(Sanders, 1991; Ward and Follows, 2016). Latitudinal transects can
thus reveal the ecological niches of mixoplankton, providing new
insights into when the mixoplankton community is more likely to
be functioning as producers or consumers.

There are a few on-going decadal transect studies, such as the
International Global Ship-based Hydrographic Investigations
Program (GO-SHIP; www.go-ship.org) where biological
assessments are now included on some US ship based transects
(Bio-GO-SHIP; www.biogoship.org). Along these basin-scale
transects there are opportunities to monitor and examine the
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presence and abundance of mixoplankton using tools, such as
flow and imaging cytometry at the surface using flowthrough
seawater systems as well as at discrete depths. In addition, the
pilot Bio-GO-SHIP program includes both eukaryotic metagenomic
and transcriptomic data collection and may be analyzed for both
mixotrophic presence and activity through comparative genomics.
By using these transects, insight to the variability of mixoplankton
abundance across different light, temperature and nutrient regimes
can be assessed. Similarly, there are long research expeditions that
collect plankton and molecular data that may be used to assess
mixotrophy, for example, the TARA Oceans Expedition (Faure
et al, 2019; Lambert et al, 2022), the Malaspina Expedition in 2010
as well as other cruises that traverse oceanic basins (e.g. Atlantic
Meridional Transects).

As a part of basin-scale oceanic transects, a combination of
targeted ship-board incubations and observations would be ideal.
The development of routine field-based assays for assessing
mixotrophic activity would be valuable tools in incorporating
oceanic transits using ships involved in both oceanographic
research or commercial shipping. These routine measurements
could involve either periodic sampling or continuous auto-
sampling for incubations coupled with FLP grazing incubations
or isotope probing. Such sampling could be preserved for later
analysis and could include assessment of genetic diversity. When
feasible, incorporating observations that require more immediate
processing, such as cell imaging, flow cytometry, or omics
approaches, would greatly enhance the potential inference and
scope of routine large scale sampling efforts. To conduct basin-
scale transects, several suggestions can be considered. First, it is
beneficial to sample at different depths within a particular location,
as environmental gradients are also associated with depth.
Additionally, it is essential to target traditionally under-sampled
regions across the globe, such as the Indian Ocean, South Atlantic,
South Pacific, and the Southern Ocean, as most data comes from
easily accessible coastal marine or freshwater systems. By focusing
on these areas, which have received relatively less scientific
attention, we can fill critical knowledge gaps into the unique
dynamics and biodiversity of mixoplankton in these ecosystems.

Modeling approaches can also be applied to investigate the
ecological niches of mixoplankton. For example, Edwards (2019)
combined data from studies that targeted in situ mixotrophic
nanoflagellates across the global ocean with a competition model
that described mixotrophs and their specialized autotroph and
heterotroph competitors. However, the dataset compiled was
limited in terms of spatial and temporal coverage and similar
datasets are largely absent for other mixoplankton functional
types. As an alternative, theoretical models that describe different
mixoplankton functional types can be used to run simulations
under idealized scenarios of environmental stress to evaluate
competitive abilities (Leles et al., 2018; Anschiitz and Flynn,
2020), with the drawback of a large number of unconstrained
parameters. Large-scale models that resolve physics such as 1D
(vertical resolution; water column models) and 3D (vertical and
horizontal resolution) models can capture variation in, for example,
temperature and nutrient concentrations that more closely reflect
the real environment. Such models can then be applied to
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investigate the biogeography of mixotrophy at regional (Lin et al.,
2018; Li et al, 2022) and global (Ward and Follows, 2016) scales,
and help guide future empirical research. In addition, they can be
applied to investigate species shifts and their biogeochemical roles
in future climate scenarios (Dutkiewicz et al, 2021). Alternatively,
Species Distribution Models (SDMs) can be powerful tools when
long-term time series are available. However, their predictive skill to
investigate spatial shifts of microbial taxa under future climate
change scenarios was found to be low when applied to data from the
Continuous Plankton Recorder program (Brun et al., 2016), which
emphasizes the need for more targeted surveys.4.2. How will the
seasonal cycle of mixoplankton presence and activity respond to a
changing climate?

The seasonal cycle of phytoplankton and zooplankton has been
well studied across aquatic systems and climate regimes for decades,
particularly through long-term monitoring stations that collect
plankton data alongside other environmental factors. However,
mixoplankton have largely been an overlooked part of the
plankton community, limiting our ability to understand drivers of
plankton temporal patterns and further predict community
response to climate change (Schneider et al, 2021). One way to
address this research gap is through reanalyzing long-term
monitoring of plankton microscopy and imaging data. Species/
genera within these datasets can be classified as mixoplankton
(including different types such as CMs and NCMs) based on
previous experimental evidence for mixotrophy in peer-reviewed
literature (Mitra et al, 2023a). An ideal dataset to analyze the
seasonal cycle of mixoplankton is one with enough data to account
for intra- and inter-annual variability in a given location to discern
the average annual cycle and allow for statistical analysis of
environmental conditions associated with variability. While long-
term monitoring datasets with plankton taxa data are not common,
many exist that would allow for reanalysis of mixoplankton
abundance. Examples of these long-term monitoring locations
include: Martha’s Vineyard Coastal Observation (Hunter-Cevera
et al, 2016), the L4 station in the Western English Channel
(Widdicombe et al, 2010), the Narragansett Bay Long-Term
Plankton Time Series in Rhode Island (Smayda, 1998), Helgoland
Roads in the North Sea (Wiltshire et al., 2010), German Long-Term
Ecosystem Research Network site Lake Miiggelsee (Gsell et al,
2016), and multiple locations through the French national
phytoplankton monitoring network (Hernandez Farinas et al,
2015). Furthermore, NSF Long Term Ecological Research (LTER)
sites such as Northeast U.S. Shelf (Fowler et al,, 2020) and Northern
Gulf of Alaska (Batten et al,, 2018) collect phytoplankton data that
could be recategorized as mixoplankton. One major drawback to
simply reclassifying taxa in datasets as mixoplankton is that there is
no confirmation that a specific species or genus is a mixoplankton at
alocation or that it was actively engaging in mixotrophy at the time
of collection. This could lead to an overestimate of mixoplankton
abundance and proportion.

Despite these drawbacks, historic records contain a plethora of
data that can be used to rapidly expand our understanding of
mixoplankton spatiotemporal distribution and associated
environmental determinants. Finding a way to constrain what
species/genera in a given dataset are mixoplankton and under
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what conditions or time of year they are most likely utilizing
mixotrophy (vs. strict photoautotrophy or strict phagotrophy)
would likely improve the accuracy of any abundance estimations.
One approach that might be used to help identify mixoplankton
within previously collected samples is BrdU labeled prey
experiments. Repeated BrdU labeled bacteria experiments can
help to develop a list of known mixoplankton taxa in a region
where a long-term dataset exists and help identify at what time of
the year or under what conditions these taxa are actively engaging in
mixotrophy (Dobbertin da Costa et al.,, 2024). On its own, this data
could expand our understanding of mixoplankton’s biogeography,
however, when combined with historical datasets, this data can
exponentially expand our estimations of active mixoplankton’s
temporal and spatial variability. Another possible approach is a
combination of flow and imaging cytometry in combination with
FLP grazing incubations or isotope probing, as described in
section 4.1.

Despite being able to revisit long-term time series and identify
mixoplankton species, we cannot retrieve information on the
relative contributions of photosynthesis and phagotrophy to their
metabolism; presence of a known mixoplankton does not indicate
the importance of both nutrient acquisition modes. Mathematical
models that resolve carbon and nutrient fluxes and mechanistically
represent plankton growth based on environmental conditions can
provide insights into the potential metabolic strategy of
mixoplankton over the seasonal cycle (Berge et al, 2017; Ghyoot
et al, 2017; Leles et al, 2021). These models can be compared
against mixoplankton biomass and other environmental variables
derived from long-term time series datasets and, in turn, we can
analyze the emergent metabolic strategy obtained from the
simulations. For example, phagotrophy was found to be
important for mixoplankton within the nanoplankton size
spectrum during summer due to nutrient limitation but also
during winter due to carbon limitation (Leles et al, 2021). It is
noteworthy that, although a powerful tool, models are limited by
our current understanding of mixoplankton trade-offs (see section
3). It is thus imperative that new datasets are generated to quantify
modern in situ seasonal cycles of mixotrophs simultaneously
engaging in phototrophy and phagotrophy and their associated
environmental conditions. This would be a challenging endeavor
that requires some combination of methods, such as uptake of
fluorescent particles, LysoTracker and flow cytometry, stable
isotopes, and molecular techniques (Anschutz et al, 2024).
However, if activity cycles can be quantified at the same locations
as long-term monitoring datasets, then it could be possible to
hindcast activity using environmental and presence data.

Once the annual cycle of mixoplankton presence and/or activity
are better understood, mathematical or statistical modeling can be
used to investigate how mixoplankton will respond to climate
induced shifts in the environment. Species distribution models
(SDMs) can be used in combination with outputs from Earth
System Models (ESMs; e.g., sea surface temperature, mixed layer
depth, pH, chlorophyll, PAR, etc.) to evaluate shifts in the
environmental envelope of mixotrophic taxa (sensu Barton et al.,
2016). While SDMs are powerful for evaluating changes to the
suitable habitat/environment for individual taxa, they are unable to
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simulate feedbacks between plankton groups and ocean
biogeochemistry. In this case, mathematical models that simulate
nutrient fluxes and the mechanisms driving plankton growth can be
applied instead (see section 5.2).

5 Biogeochemistry and trophic
transfer of mixoplankton

Mixoplankton simultaneously contribute to both primary and
secondary production in aquatic food webs. However, the impact of
mixotrophy on in situ carbon and nutrient cyding has not been
widely studied. The contributions of photosynthesis versus
phagotrophy to mixoplankton biomolecules and resulting
elemental fluxes are poorly constrained as most laboratory studies
do not track the phototrophic versus phagotrophic sources of
biomass or the intracellular/extracellular fate of consumed
carbon, other macronutrients, and trace metals. This limits our
capacity to develop and parameterize mechanistic models that aim
to predict how mixoplankton and mixotrophy impact carbon and
nutrient fluxes at larger scales in aquatic systems, particularly as
prey themselves. For example, it is predicted that mixoplankton
may rely disproportionately on phagotrophy relative to
phototrophy under climate change scenarios that include
extended periods of stratification and nutrient limitation (Wilken
et al,, 2013; Gonzalez et al.,, 2022, p. 202; Lepori-Bui et al., 2022;
Wieczynski et al, 2023). If mixoplankton begin to favor one
nutrient mode over another due to climate change, then we need
to understand how this will impact nutrient cycling and transfer of
nutrients to lower and higher trophic levels. This section poses two
foundational biogeochemical questions regarding the intra- and
extracellular elemental fate of ingested particles and primary
photosynthates (section 5.1), and the transfer of these elements to
higher trophic levels (section 5.2). Tackling these questions with
combined and/or new emerging methods will improve our
understanding of energy and food web structures and help
constrain fluxes of elements through, and export from, aquatic
systems. Currently, methods to address the biogeochemistry and
trophic transfer of mixoplankton are largely laboratory based.
While studies with cultures are necessary and useful to
understand inter-and intraspecific variability in mixoplankton,
below we emphasize how we can start addressing these questions
for the in situ mixoplankton community.

5.1 How does intra- and extracellular
biochemical composition vary as
mixoplankton navigate the

trophic landscape?

A key parameter that needs further investigation is the extent to
which phagocytized prey are assimilated by CMs into lipid, nucleic
acid, protein, or carbohydrate biomass for growth versus egested,
expelled, or respired. Quantifying the amount of carbon fixed
through photoautotrophy compared to the carbon assimilated
from prey would improve the accuracy of carbon flux predictions
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in modeling (Ward and Follows, 2016). Similarly, for NCMs, what
percentage of assimilated carbon originates from acquired plastid
photosynthetic activity versus ingested particles? Figure 2 illustrates
possible intracellular and extracellular fates of consumed prey, and
the potential impacts these fluxes might have on surrounding
organisms. For example, variability in the mixoplankton
exometabolome across different trophic conditions may influence
surrounding bacteria and archaea dependent on dissolved organic
matter, and other nearby phytoplankton that are competing for
nutrients. Furthermore, mixoplankton likely present different
intracellular biochemistry compared to phytoplankton which may
impact fitness of zooplankton feeding on them (Traboni et al.,, 2020,
2021), see section 5.2. Importantly, such biochemical parameters
are likely different for CMs versus NCMs and across different
environmental conditions such as light regimes (Fischer
et al., 2022).

New and emerging methods induding high-energy imaging,
labeling, and cell-sorting, will allow scientists to track the fate of
ingested particles in order to understand the impact of mixotrophy
on small-scale chemical changes to large-scale carbon and nutrient
cycling. To illuminate the small-scale cellular impacts of
mixotrophy, methods that quantify and locate intracellular
elemental composition (including C, N, P), such as single-cell
stable isotope probing using nanoSIMS (Mayali, 2020), energy
dispersive X-ray microanalysis (Norland et al, 1995; Segura-
Noguera et al, 2012, 2016) and synchrotron-based X-ray
fluorescence microprobe (Twining et al., 2003) could provide
insight about the effect of mixotrophic metabolism on
mixoplankton stoichiometry. Meanwhile, quantifying the mass
balance and stoichiometry of extracellular protist egesta is
challenging (e.g., Nagata, 1996) but is needed to track the fate of
ingested prey. In culture, stable and radioisotope tracer methods
can track elements from labeled prey to cellular and extracellular
material. In the field, the contributions of mixoplankton to the
complex extracellular dissolved matter pool is much more
challenging and would require isolation of protist species by flow
cytometry or microscopy for both intracellular and extracellular
analyses. To identify mixotrophic cells, the operator would have to
target cells based on their size, chlorophyll fluorescence, and the
presence of a vacuole (via vacuole staining). While the presence of
ingested prey could also be used to identify mixotrophs (based on
FLP also analyzed for their elemental composition), the
contribution of prey to the mixotroph’s elemental composition
would be difficult to tease apart in field samples.

Stable isotope probing of biomolecules or single cells is an
emerging tool that can help track the activity of specific microbes in
complex environments (Alcolombri et al, 2022). For example,
Terrado et al. (2017) quantified mixotrophic carbon and nitrogen
acquisition in Ochromonas sp. strain BG-1 by single-cell stable
isotope probing using nanoSIMS. Applied to natural environments,
such approaches can help estimate carbon and nutrient fluxes in
food webs. Future applications would improve our understanding
of the role of mixotrophy in elemental fluxes along the continuum
of mixotrophic strategies. However, it is important to acknowledge
that these methods are time intensive, expensive and require
specialized instrumentation and trained personnel making them
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Following the fate of ingested particles and photosynthate products. On the left: a constitutive mixoplankton (CM) with ingested particles, arrows
indicate possible fates of carbon (blue), nitrogen (red), phosphorus (purple), and trace metals (black dashed line) flux to cellular biomass or
extracellular organic and inorganic material. On the right a non-constitutive mixoplankton (NCM) with stolen chloroplast. The NCM depicted
represents either a generalist or plastidic specialist NCM that acquires chloroplasts via kieptoplasty (Mitra et al, 2016). Endosymbiotic NCMs would
have algae living in their cell that were providing photosynthate products (Mitra et al, 2016). There is currently almost no data on the contribution of
both nutrient modes to cellular compounds. However, the limited analyses available suggests that the contribution from each nutrient mode would
vary widely between species and environmental conditions for CMs and NCMs (Adolf et al, 2006; Terrado et al, 2017; Jeong et al, 2021). Green
arrows indicate possible fates of photosynthates including cellular biomass such as plastidic-specific products like fatty acids and essential amino
acids, or extracellular fate of any photosynthates used for cellular maintenance that are respired to inorganic carbon, or egestion/expulsion of
plastid-produced organic carbon. In both cases CMs and NCMs engaged in mixotrophy have different contributions to the inorganic and arganic
dissolved pools compared to plankton not actively phagocytizing prey, with implications for the surrounding microbial community. Identifying and
quantifying the relative fluxes of each pathway to track the fate of carbon and nutrients originating from ingested particles is the goal of section 5.1
Section 5.2 focuses on the impacts of active mixoplankton on surrounding zooplankton, if mixoplankton are better (or worse) prey particles than

heterotrophic or autotrophic plankton.

unsuitable for studies conducted over global scales. Therefore,
future advancements in methodology should prioritize enhancing
quantification accuracy at the community level across larger scales.

Method advancement is needed to overcome challenges
associated with moving from controlled laboratory culture studies
to in situ assessments of the intra- and extracellular biochemistry of
mixed communities that engage in a variety of trophic modes.
Complications could arise in natural abundance isotope
measurements and stoichiometry assessments during attempts to
attribute heterotrophic metabolism to phagotrophy if a
mixoplankton is simultaneously incorporating significant
amounts of dissolved carbon through osmotrophy (Godrijan
et al, 2020, 2022), which can also alter the biochemistry (Cecchin
et al, 2018) and isotope composition (Estep and Hoering, 1981;
Zhang et al,, 2009; Cormier et al,, 2022). Additionally, it is
important to note that the methods discussed here require a
sample concentration step, whereby microorganisms are typically
collected on a filter membrane, or retained by it to prepare
concentrated liquid samples for flow cytometry cell sorting of
low-abundance samples (Berthelot et al, 2019, 2021; Duhamel
et al, 2019). A major issue is that an unknown, but likely large,
fraction of protists are fragile, and cells can rupture even when using
gentle filtration with either vacuum, syringe or peristaltic pumps.
This creates a significant bias when trying to determine important
parameters in the likely majority of mixotrophs in both laboratory
and field studies. Methodological improvements are therefore
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needed to overcome this issue, which would open exdting new
applications, especially in field studies where cell abundances are
relatively low.

5.2 Are mixoplankton of different prey
quality compared to phytoplankton
and zooplankton?

It is hypothesized that the combined use of photosynthesis and
phagotrophy will enhance trophic transfer efficiency of carbon and
nutrients and bolster secondary production (Ward and Follows,
2016; Moorthi et al., 2017). However, the value (or detriment) of
mixoplankton to higher trophic levels in the aquatic food web
remains to be extensively tested (but see Traboni et al., 2020, 2021),
and the nutritional quality of mixoplankton is debated (Traboni
et al, 20215 Vad et al, 2021). Mixoplankton are theorized to be of
superior food quality because they maintain more stable
intracellular C:N:P ratios compared to phytoplankton despite
environmental variability (Katechakis et al., 2005 Moorthi et al.,
2017) and synthesize essential fatty acids and sterols at a higher
concentration than strict heterotrophs (Boéchat et al, 2007). The
stability of mixoplankton as a food source is complicated by
variability in trophic plasticity (see section 3) and innate ability to
produce chloroplasts (Mitra et al., 2016). Therefore, the biochemical
composition of mixoplankton taxa, and thus viability as a food
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BOX1 QOverview of methods

Grazing Assays with Fluorescent Tracers

The use of fluorescently labeled tracer particles (fluorescently labeled prey or fluorescent mic ) as surrogates for particulate prey is one of the earliest
described techniques to quantify ingestion rates by mixoplankton and provide direct comparisons with heterotrophic forms in situ (Bird and Kalff, 1986; McManus and
Fuhrman, 1986; Sherr et al,, 1987; Rublee and Gallegos, 1989). When paired with epifluorescence microscopy or flow cytometry (Unrein et al,, 2007; Waibel et al, 2019),
researchers can quantify the uptake of fluorescently labeled tracers over time to estimate ingestion rates. It is also possible to identify putative mixotrophs in combination
with catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH, Unrein et al, 2007; Simek et al, 2022). Accuracy of this method relies on having some
prerequisite understanding of mixotroph physiology and behavior, as interpretation of results assumes that (1) tracer particles are ingested at the same rate as native prey
and (2) mixotrophic organisms graze on prey items at equal rates during the diel period Applying fluorescently labeled tracer particles is highly repeatable and requires
minimal sample handling, allowing for multiple experimental incubations that can target a variety of size classes along a spatiotemporal gradient. However, issues with
prey selectivity against inert or heat-killed varieties put limitations on the use of fluorescently labeled tracers, and it is unclear how methodological choices such as
preservative influence final grazing assessments. Efforts to use live labeling of prey items may overcome discrimination against tracers (Boenigk et al,, 2002; Bock et al,,
2021; Li et al., 2021b). Yet, few other techniques allow for direct visualization of ingestion in situ and provide quantification of ingestion rates in combination with more
high-throughput techniques (Gast et al,, 2014) while preserving comparison with landmark studies in the field.
Flow Cytometry

Flow cytometry has emerged as an efficient and rapidly evolving technique for studying mixoplankton in their natural envi There are us types of flow
cytometers available, including imaging and non-imaging systems, all of which can be used to investigate mixoplankton. Non-imaging flow cytometry, based on optical
properties, enables the determination of abundance, size, and functional groups of plankton communities. By incorporating fluorescent probes and tracers, such as
LysoTracker Green, active mixoplankton communities can be rapidly identified by chlorophyll autofluorescence and their acidic food vacuoles (Rose et al., 2004; Anderson
et al, 2017). However, challenges exist, such as misidentifying herbivorous heterotrophs as mixotrophic and staining of acidic cell compartments alongside food vacuoles
in non-phagotrophic protists. As a result, caution is advised when interpreting acidotropic stain data in the field until further ground truthing is conducted in the
laboratory with a variety of cultures under different conditions. To overcome these limitations, ¢ I ary techniques like fluorescently labeled prey incubations and
FISH (Massana et al, 2009; Grujcic et al, 2018) can be employed to determine grazing rates and trophic interactions, respectively. On the other hand, traditional flow
cytometry with imaging capabilities (i.e. Imaging FlowCytobot: McLane Research Laboratories, and FlowCam: Yokogawa Fluid Imaging Technologies) can be used to
identify mixoplankton present based on morphology and estimate their abundance due to these instr * high ta ic resolution (Sieracki et al, 1998; Olson and
Sosik, 2007). Hi , these techniques are limited to morphotypes that are closely linked to a priori knowledge of trophic strategy. Flow cytometric cell sorting further
advances the study of in situ mixoplankton by enabling the identification and sorting of active mixotrophs for downstream molecular characterization or measurement of
cell activity and physiology (Lin and Glibert, 2019). Despite the cost and specialized equipment associated with flow cytometry, it remains one of the few methods capable
of rapid and high-throughput characterization of in situ mixotrophic communities. The future of these methods depends on improved accessibility of instrumentation and
the integration of techniques that both identify and directly measure mixotrophic activity.
Omics and Molecular Methods

Methodological advancements in the application of omics techniques to studying eukaryotic plankton have led to a wide range of techniq
the acclimation and adaptation of diverse protists to environmental conditions via changes in their genomes, transcriptomes, pre and metabol While the
molecular machinery required for photosynthesis is evolutionarily conserved and well-studied (Fost and Bullerjahn, 1994; Nymark et al,, 2009; Cardol etal,, 2011), far less
is known about the proteins involved in phagotrophy, although recent efforts have begun to catalog the collection of genes associated to phagotrophy (Liu et al, 2016;
Labarre et al, 2019). This complicates the identification of an organism that is utilizing both photosynthesis and phagotrophy using molecular tools. Nevertheless,
comparative genomics approaches have been successful in predicting the potential for both phototrophy and phagotrophy from genome sequences, allowing for the
identification of mixoplankton (Burmns et al, 2015, 2018). First insights into shifts in metabolic strategies and trophic modes of mixoplankton in resp to changing
environmental conditions were gained from transcri of cultured mixoplankton (Liu et al, 2015; Lie et al, 2018). Much more can be learned in the future by
targeting a broader range of functionally distinct species, including analyses of the proteome and metabolome to understand investments in enzymatic machinery as well as

gh ongoing develop of genetic tools for a wide diversity of

protistan groups (Faktorova et al., 2020), which will strengthen our ability to discern changes in physiology and behavior as a function of trophic mode and environmental
conditions. Although the application of omics techniques to probe in situ mixotrophic activities remains challenging, research studies have produced promising results.
These include detection of changing metabolic investments made by dinofl across environmental gradients using a combination of meta-
transcriptomics and -proteomics techniques (Cohen et al, 2021), as well as the application of machine learning techniques to recognize transcriptional patterns
characteristic of mixotrophic lifestyles (Lambert et al,, 2022), The interpretation of such environmental datasets relies on comparison to carefully controlled laboratory
experiments with cultured organisms. In contrast, combining single-cell g ics (Yoon et al,, 2011) and transcriptomics (Kolisko et al., 2014; Kuand Sebe-Pedros, 2019)
with techniques providing physiological information on the same cells (such as flow cytometry; see e.g., Gawryluk et al, 2016; Needham et al,, 2022) could allow assessment
of uncultured mixoplankton directly in the wild

In addition to the development of omics techniques, DNA-based probes can be used to identify photosynthetic organisms that are actively grazing in natural
e rities. For ple, bromodeoxyuridine (BrdU) labeled bacteria offers a way to taxonomically identify mixoplankton that are actively ingesting bacteria within a
water sample (Fay etal, 2013). BrdU is a nucleotide analogue to thymidine and can be used to label bacterial DNA. When labeled prey are eaten, BrdU is transferred to the
grazer genomic DNA via digestion, assimilation, and replication. Any organism that incorporates BrdU (ingests bacteria) and has chloroplasts (capable of
photosynthesizing) is identified as a mixoplankton. While the BrdU method itself cannot provide absolute abundance data, the abundance of taxa identified as
mixoplankton via BrdU experiments can be determined for any taxa that were also identified in corresponding microscopy samples (Millette et al, 2021; Dobbertin da
Costa etal, 2024). The limited application of BrdU labeled prey to date has used labeled bacteria (Fay el al., 2013; Gast et al,, 2018; Millette et al,, 2021; Dobbertin da Costa
et al,, 2024). However, eukaryotic prey could be labeled with BrdU as well in order to target mixoplankton, but this approach will need testing before application to
in situ samples.
Isotopes

Mixoplankton metabolism can be studied using '*C-labeled dissolved inorganic carbon (DIC) to measure photosynthesis and using radiolabeled preys (in particular
using prey incubated with the amino acids *H-leucine and **S-methionine) to estimate bacterivory in natural samples (Zubkov and Tarran, 2008; Hartmann et al,, 2012;
Duhamel et al, 2019). One advantage of these methods is that radiotracers can be added in low concentration without disturbing the system. However, using radioactive
material can be logistically challenging, and radiolabeled prey approaches likely underestimate feeding rates by mixoplankton since results are based on an average for all
plastidic protists sorted based on their size (Duhamel et al, 2019). Radiotracer incubations combined with cell sorting by flow cytometry have also been used to quantify
prey ingestion rates as well as carbon and phosphorus assimilation rates in natural ¢ ities of pig d protists, which include strictly photoautotrophic plankton
and mixoplankton (Jardillier et al., 2010; Grob et al, 2011; Hartmann et al, 2011; Rii et al, 2016b, 2016a; Duhamel et al., 2019). Such an approach would need to be
combined with fluorescently-labeled prey (FLP) incubations to target mixotrophs. Alternatively, stable isotope probing (Alcolombri et al, 2022) of lipids (Wegener et al,,
2016), DNA (Orsi et al., 2018), RNA (Frias-Lopez et al., 2009; Wilken et al,, 2023), and single cells (Terrado et al., 2017) is emerging as a useful tool to track microbe
interactions in the environment. Additions of stable isotopes in water sample incubations (e.g, '°N, °C, "0, *H in the form of fully or partially labeled substrates and/or
prey) can also help identify food preferences, fate of prey, and even the location of ingested particles and elements inside the mixoplankton. Flow cytometric cell sorting of
plastidic protists in incubations with various stable isotope labeled molecules (Berthelot et al,, 2019, 2021) and FLP followed by nanoSIMS (nanoscale secondary ion mass
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spectrometry) could be used to quantify carbon and nitrogen fluxes in mixoplankton. New directions include taking advantage of bulk and compound-specific natural
bundance isotope composition via "N and "C trophic enrichment (e.g, Yun et al., 2022) and *H metabolism response to heterotrophy in prokaryotes (Zhang et al., 2009)

and eukaryotes (Maloney et al., 2024), Early experiments have indicated that *H/'H ratios of algal biomass (Estep and Hoering, 1981) and specific lipids (Cormier et al,,
2022) are sensitive to shifts from autotrophy to osmo-heterotrophy as well as shifts in bacteria capable of photoheterotrophy (Zhang et al., 2009). Tests are needed to
determine if and how phago-mixetrophy influences the composition of the natural abundance of stable isotopes in bi and biomolecules. Most of these methodsare
best suited for constitutive mixotrophs (CMs), since measuring mixotrophy by non-constitutive (NCM) species involves assessment of their photosynthesis rates and this
is complicated in bulk, in situ conditions due to the potential for ingesting photosynthetic prey that have also taken up radio- or stable isotope-labeled dissolved inorganic
C. Limitations include restricted access to specialized instruments, such as cell sorters and nanoSIMS at certain institutions, challenges in selecting prey and dyes for
preparing FLP due to potential food preferences exhibited by mixotrophs, as well as potential prey egestion since samples need to be preserved (Bock et al., 2021).
Analysis of Historical Data

Historical, long-term datasets can allow for large-scale analyses with high spatial and/or temporal coverage. As such, there have been recent efforts to estimate
mixoplankton abundance, presence, or proportion in publicly available plankton microscopy and sequence datasets. For these analyses, taxa are classified as mixoplankton
based on experimental evidence for mixotrophy, i.e., if a taxon in the selected dataset has been previously reported as a phago-mixotroph in peer-reviewed literature. This
approach allows for a rapid estimation of mixoplankton abundance/presence and proportions in a large number of samples. Datasets with associated environmental data
are preferable so that conditions associated with temporal and spatial variability in potential mixoplankton can be explored. Applications of this approach include
reanalysis of the Continuous Plankton Recorder (CPR) observations in the North Atlantic (Barton et al, 2013; Stamieszkin et al, 2024), the Ocean Biogeographic
Information System database for the global oceans (Leles et al, 2017, 201%; Mitra et al., 2023a), Rijkswaterstaat monitoring program in the southern North Sea (Schneider
etal,, 2020), and the TARA Oceans dataset for the global oceans (Faure et al,, 2019). However, this method is only as reliable as the available data on known mixoplankton.
In many cases we do not know with certainty which taxa are mixoplankton within a given dataset, especially species within the nanoplankton size spectrum that lack
defining morphological characteristics. In addition, it is uncertain whether a known mixoplankton species was actively engaging in both nutrition modes at a given time
and location. As a result, this approach can either underestimate or imate their “true” abundance, resulting instead in a “potential” estimation of mixoplankton
abundance (Stamieszkin et al, 2024). Methods such as fluorescent-labeled prey, LysoTracker, or BrdU-labeled prey have the potential to identify active mixoplankton in
situ (Fay etal,, 2013; Millette et al,, 2021; Dobbertin da Costa et al, 2024), providing critical new information to re-analyze historical long-term datasets. However, in order
for this to be attempted, scientists must first properly assign active mixoplankton as such. This will require a substantial commitment and effort in any region, but the
potential to recontextualize vast amounts of historical data, and potentially provide comparisons across regions or temporal scales within a single region, is worth the effort.
Mathematical Modeling

While empirical approaches are critical for generation of new datasets, mathematical and statistical models provide powerful tools for inference. These models can
integrate empirical data (including observational and experimental datasets, and field- and laboratory-based work) into predictive frameworks that can be used to
interpolate and extrapolate from existing empirical measurements. Already in mixotrophy research, various models have been used to serve a number of purposes: (1)
statistical — identifying connections between pieces of data (e.g., linking mixotrophic ki 1 conditions (Faure et al, 2019, p. 201)); (2) explanatory -
testing mechanistic hypotheses (e.g., predicting coexistence between mixoplankton and specialized taxa (Crane and Grover, 2010; Moeller et al,, 2019)); (3) predictive -
extrapolating from existing data to understand future trends (e.g., HABs (Li et al,, 2022) and the carbon cycle (Mitra etal, 2014; Ward and Follows, 2016; Dutkiewicz et al.,
2021)); and (4) hypothesis generating — using existing data to make predictions that can be validated empirically (e.g, identifying trade-offs via optimal resource allocation,
Ward et al, 2011; Berge et al,, 2017). Because of the breadth of modelers and their tools, throughout this paper, we provide specific examples of how models can be used, in
tandem with empirical methods, to address each of the research questions we highlight.

Lo envire
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source, likely differs across the various mixoplankton functional
groups and environmental gradients (see section 4). Though it
remains difficult to estimate the relative contribution of
photosynthesis versus phagotrophy to intracellular budgets, it is
likely that trophic transitions between nutritional modes are
accompanied by changes in the fatty acid and sterol signature of
mixoplankton (Calderini et al,, 2022). This is likely to be especially
complex in NCMs that have varying capacities for acquired
photoautotrophy (Johnson, 20115 Leles et al, 2017).

While protist nutritional value has been considered in relation
to grazer health and productivity (Jonasdottir, 1994; Jonasdottir
et al,, 2002), baseline biochemical and stoichiometric profiles for
mixoplankton taxa in relation to trophic strategy are lacking (Ma
et al, 2022). It is necessary to start categorizing the C:N:P ratios,
fatty acid, and sterol compositions of mixoplankton functional
groups under different environmental conditions so we can begin
to propery understand their quality as prey items and nutrient
stability under abiotic and biotic stress (e.g., nutrient, light, and prey
limitation). Traditional approaches to understanding predator-prey
relationships, such as trophic markers (fatty acid composition,
natural abundance amino acid '*N/**N ratios) and stable isotope
probing can be employed to explore how mixotrophic ingestion
processes can transform prey nutrients, but interpretation of results
will also require basal profiles of said prey items (e.g., heterotrophic
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bacteria, phytoplankton) across varying environmental conditions.
The nutritional quality of mixoplankton can be deduced by
elemental analysis and stable isotope probing has been used to
assess the nutritional profile of phytoplankton (Grosse et al, 2017).
However, as described in 5.1, applying this approach in situ will
require isolation and concentration of mixoplankton.

A more complete understanding of the nutritional quality of
mixoplankton requires in situ studies that assess a combination of
life history traits of micro- and meso-zooplankton grazers in
response to varying prey items. Most studies offer mixotrophic
prey in comparison to strict nutritional specialists (Jonasdottir,
1994; Jonasdottir et al., 2002; Jones et al., 2002). We suggest future
work that quantifies fecundity (e.g. egg production, hatching
success) and growth efficiency of zooplankton predators in
conjunction with a single prey species in monoculture reared in
conditions along the mixotrophic spectrum or varying proportions
of phagotrophy and photoautotrophy ratios (Traboni et al, 2021).
Given the potential for toxicity (Hiltunen et al, 2012; Tang et al,
2020) or inedibility (Vad et al., 2020) among mixoplankton, we also
see a need for prey-preference assays (as in Castellani et al, 2008;
Parrish etal, 2012), but focused on mixoplankton and their varying
nutritional value as prey. Advances in flow cytometric sorting and
imaging allow for discrimination between potential mixotrophic
prey items in situ, which could allow for studies of prey selection in
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mixed assemblages, though the biochemical composition of
mixoplankton as prey is largely understudied.

As new data become available on mixoplankton palatability,
biochemistry, and trophic transfer efficiency, they can be used to
parameterize ecosystem models. These mathematical models
simulate abiotic and biotic components of marine ecosystems,
linking nutrient availability to primary production and grazing
(e.g., Darwin; Follows et al., 2007), and, in some cases, higher
trophic levels (e.g., COBALT; Stock et al, 2014), To do so in a
computationally tractable manner, these models typically collapse
plankton diversity into fewer dimensions (i.e. functional groups and
size classes) in order to represent the feedbacks between different
trophic groups and carbon/nutrient cycles (Ward and Follows,
2016; Dutkiewicz et al, 2020; Leles et al, 2021; Serra-Pompei
et al, 2022). Models vary in the degree of functional complexity
they represent, and in the geographic scale modeled, from regional
(Leles et al,, 2021) to global (Ward and Follows, 2016). Although
not all ecosystem models indude representations of mixotrophy,
those that do have already demonstrated the importance of
mixotrophy to carbon cycling (Ward and Follows, 2016).
However, these models’ accuracy hinges on the quality of input
data. Thus, information on mixotroph palatability can directly affect
trophic linkages built into models, mixoplankton stoichiometry can
be used to estimate trophic transfer efficiency, and so on.

6 Conclusions

The field of mixoplankton and phago-mixotrophy research is
full of potential. We have presented eight budding research
questions related to four topics and have highlighted the
integration of empirical approaches and different classes of
models to address these questions. We believe that to fill current
knowledge gaps and generate new hypotheses, we must combine
different approaches, from using established methods in new ways
and investing in developing i situ single-cell techniques to identify,
isolate, and study mixoplankton cells, to developing models that
evolve with our understanding of the system. However, in order to
accomplish that, the number of scientists collecting data on
mixoplankton, and the diversity of data types being collected
needs to expand. Many of the methods mentioned here have been
used to study mixoplankton in some capacity, but few have been
applied to in situ mixoplankton communities. Currently, it is still
necessary to test most methods using cultures under controlled
laboratory conditions to understand the nuances of a method and
improve it before applying it in situ. Data collected from culture
experiments can then be used to model mixoplankton and fill in
research gaps while empirical methods for in situ data are being
improved and developed. The coming decade has the potential to
produce mixoplankton research that will shift our foundational
understanding of plankton ecology. Even for those not directly
engaged in phago-mixotrophy research, it is essential to
acknowledge the presence and influence of mixoplankton in
aquatic datasets, fostering a more comprehensive understanding
of aquatic ecosystems. We encourage scientists of all career stages to
consider these ideas for inspiration.
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