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Abstract

While there is high certainty that chronic coastal hazards like flooding and erosion, are increasing
due to climate change induced sea-level rise, there is high uncertainty surrounding the timing,
intensity, and location of future hazard impacts. Assessments that quantify these aspects of future
hazards are critical for adaptation planning under a changing climate and can reveal new insights
into the drivers of coastal hazards. In particular, probabilistic simulations of future hazard impacts
can improve these assessments by explicitly quantifying uncertainty and by better simulating
dependence structures between the complex multivariate drivers of hazards. In this study, a
regional-scale probabilistic assessment of climate change induced coastal hazards is conducted for
the Cascadia region, USA during the 21% century. Three co-produced hazard proxies for beach
safety, erosion, and flooding are quantified to identify areas of high hazard impacts and determine
hazard uncertainty under three sea-level rise scenarios. A novel chronic coastal hazard hotspot
indicator is introduced that identifies areas that may experience significant increases in hazard
impacts compared to present day conditions. We find that Southern Cascadia and Northern
Washington have larger hazard impacts and hazard uncertainty due to their morphologic setting.
Erosional hazards, relative to beach safety and coastal flooding, will increase the most in Cascadia
during the 21* century under all sea-level rise scenarios. Finally, we find that hazard uncertainty
associated with wave and water level variability exceeds the uncertainty associated with sea-level-
rise until the end of the century.

Plain Language Summary

We know that chronic coastal hazards such as erosion and flooding are growing more frequent and
intense due to climate change, but it is difficult to determine exactly when, where, and how bad
these hazards will be in the future. Constraining our predictions of the ‘when, where, and how bad’
is critical if we want to make management decisions that limit potential negative consequences for
coastal communities. In this study, we partnered with stakeholders in the Cascadia Region, USA
(northern California to northern Washington) to assess chronic coastal hazard impacts and hazard
uncertainty. We use a probabilistic modeling approach to simulate flooding, erosion, and beach
safety hazards from 2020-2100 under three sea-level-rise scenarios. We identify areas in Northern
California, Southern Oregon, and Northern Washington, that will experience more hazardous
conditions and a more rapid increase in hazards in the 21st century than elsewhere in the region.
We find that erosion will increase more rapidly than unsafe beach and flooding hazards across
Cascadia and all sea-level-rise scenarios. Lastly, we find that wave and water level variability is a
greater contributor to hazard uncertainty than sea-level-rise throughout most of the 21st century
and therefore should not be neglected in near-term adaptation planning.

1 Introduction

Chronic coastal hazards such as flooding and erosion are increasing in frequency and
severity due to climate change induced sea-level rise (SLR) and changes in storminess patterns
(e.g., Erikson et al., 2022; Moftakhari et al., 2015; Sweet et al., 2022). These hazards translate into
extensive economic costs (e.g., inundation of infrastructure, loss of land and critical ecosystems;
Chu-Agor et al., 2011; Martello & Whittle, 2023) and social costs (e.g., displacement, loss of
community and community resources, limited mobility; Oppenheimer et al., 2019; Otto et al.,
2017). However, much remains unknown about how climate change will influence the timing,
intensity, and location of future chronic coastal hazards. Even more uncertain is the socio-
ecological fallout of coastal squeeze, as the impacts of coastal hazards propagate inland through
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different ecosystems (Mills et al., 2016). As such, hazard assessments at multiple spatial and
temporal scales are needed to inform appropriate climate-aware adaptation strategies aimed at
alleviating future costs of climate change induced coastal hazards (Toimil et al., 2023).

Regional scale hazard studies are particularly useful for guiding adaptation, as they align
well with traditional governmental decision-making spatial scales and timelines (Barros et al.,
2014; Hibbard et al., 2013). However, they remain extremely rare in coastal adaptation literature,
comprising less than 3% of case studies (Cabana et al., 2023). Refining estimates of future
uncertainty in hazard assessments is also a critical issue, for both fundamental coastal hazard
science as well as for applied studies addressing impacts to communities (Hinkel et al., 2021;
Splinter et al., 2021; Toimil et al., 2020). While more and more coastal change and coastal hazard
studies are incorporating uncertainty analysis into their projections (e.g., Le Cozannet, et al., 2019;
Vitousek et al., 2017), typically they only address the uncertainty associated with different carbon
emission and sea-level rise scenarios (Vousdoukas et al., 2018). Neglecting other sources of
uncertainty (e.g., variability in storminess patterns) can significantly truncate the projected range
of outcomes, which, when passed on to coastal communities, can ultimately result in misinformed
or maladaptive policy decisions (Boumis et al., 2023; Toimil et al., 2021).

Extreme value analysis (EVA) approaches are commonly adopted in impact assessments
of future chronic coastal hazards (e.g., Taherkhani et al., 2020; Vousdoukas et al., 2020). These
approaches use statistical techniques to characterize the frequency and intensity of previously
unseen events based on the probability of hazardous extremes in the historical record. These
techniques are powerful, generalizable, and well suited to practical applications (e.g., engineering
design or insurance) because they quantify hazards in terms of traditional design criteria (e.g.,
extreme event return periods). EVA approaches can, however, be less suited to hazard analyses
that explore both extreme and non-extreme conditions together or how the event timing influences
impacts, as traditional EVA techniques typically explore the impacts of extremes in isolation
(Wahl et al., 2017). Furthermore, EVA approaches can be challenged to accurately quantify
extremes for hazards with complex multivariate drivers, as the dependence between drivers can be
difficult to represent in these traditional frameworks (Hamdi et al., 2021).

Probabilistic simulation modeling (e.g., Callaghan et al., 2008, Serafin & Ruggiero, 2014)
is an alternative approach to assessing future hazards that can avoid some of the typical drawbacks
of EVA. Probabilistic methods can simulate a range of potential outcomes, representing both non-
extreme and extreme conditions by varying the timing and intensity of the environmental variables
that drive hazards. This approach enables exploration of how the timing of events can shape hazard
impacts and can help dissect which environmental variables ultimately drive hazardous conditions
(e.g., Serafin etal., 2017, Toimil et al., 2021). When combined with climate aware approaches that
incorporate the uncertainty associated with forecasted carbon emission scenarios, regional sea-
level rise (SLR) rates, decadal to intra-decadal oscillations in climate variability, etc., probabilistic
approaches become a powerful tool for assessing and constraining the uncertainty of future hazard
impacts (Kopp et al., 2019).

In this study, we employ a probabilistic approach to assess chronic coastal hazards in the
21st century at regional scale in Cascadia, USA. A stochastic climate emulator, developed and
validated for several sites in the Pacific Basin (Anderson et al., 2019; Marra et al., 2022), is used
to generate hourly time series of total water level (TWL) drivers for Cascadia open coast beaches
from 2020-2100. We combine TWL drivers with three sea-level rise scenarios and propagate them
onshore using wave transformation metamodels and empirical runup formulas to 100m resolution

3
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along the coast. Using simple hazard proxies for beach safety, erosion, and flooding, we quantify
the evolution of chronic coastal hazard impacts and uncertainty. This modeling approach produces
high spatial and temporal resolution time series of potential hazard impacts in the Cascadia region
and enables a climate-aware, probabilistic understanding of how hazards may evolve under climate
change. We identify areas of high hazard impacts and determine which hazards dominate
throughout the 21% century. We further locate hazard change hotspots, areas that currently see
relatively little hazard activity, but will experience large increases in the future. This is an emerging
priority for hazard planners, as these areas may be underprepared for hazardous conditions based
on assumptions of safety informed by previous experience (Thompson et al., 2023). These areas
are also important to identify as they are prime candidates for proactive climate-informed
adaptation.

The paper is organized into 6 sections. In section 2, we describe the Cascadia coastline and
provide background on chronic coastal hazards in the region. Section 3 details the methodology,
models, and hazard proxy frameworks used in this study. In section 4, we describe the evolution
of hazards under the three sea-level rise scenarios and their associated uncertainty, as well as the
quantification and identification of hazard hotspots. Finally, sections 5 and 6 are comprised of
discussion and conclusions.

2 Study Setting: The Cascadia Coastline

The outer US Cascadia coastline is approximately 950 km long, ranging from Northern
California to the Straits of Juan de Fuca at the border between Washington state and Canada
(Figure 1). Its longitudinal extent is defined by tectonic plate boundaries, namely the subduction
of the Juan de Fuca and Gorda Plates under the North American Plate. Due to its tectonic setting,
the Cascadia region faces an imminent nearfield rupture of the Cascadia Subduction Zone with a
resultant earthquake (magnitude ranging from ~7.0-9.0) and tsunami (Atwater, 1987; OSSPAC,
2013). There is growing investment and motivation in the region to understand and prepare for a
wide range of coastal hazards in Cascadia (earthquake, tsunami, and climate change). Stakeholders
in the region have also emphasized the need for coastwide analyses that can integrate knowledge
across different political and cultural boundaries (e.g., OSSPAC, 2013; Ruckelshaus Center,
2017). This analysis is aimed at better characterizing the impacts and uncertainty associated with
chronic, climate change induced coastal hazards as part of this effort.

The tectonic setting of Cascadia also contributes to substantial vertical land motion (VLM)
variability along the coast, translating to regional variability in relative sea-level rise rates (RSLR)
(Figure 1). In some areas of Cascadia, VLM has been able to keep pace with increases in sea level
(Burgette et al., 2009; Komar et al., 2011). However, in other areas of Cascadia the situation is
more dire. For example, Humboldt Bay, CA is subsiding rapidly, resulting in local RSLR rates of
approximately 6mm/yr (Anderson, 2018).

9/28/2023
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Figure 1. Cascadia Region with fault lines (Staisch and Walton, 2022) and historical regional
sea level rise rates (NOAA Tides and Currents)

The Cascadia region experiences mixed semi-diurnal tides with a tidal range of 2-4 meters.
The wave climate of the Cascadia region is also notable for its severity. Winter storms frequently
produce long period waves with heights exceeding 9-10m (Komar et al., 2013; Tillotson & Komar,
1997), although there is some alongshore variability in wave conditions. While central and
northern Cascadia experience mean wave heights up to 0.5 meter higher than southern Cascadia,
the southern region tends to receive more long period (>20s) waves from the south (Smith et al.,
2020). The Cascadia wave climate can be especially damaging to coastal infrastructure and road
networks when compounded with elevated water levels (Serafin et al., 2017). El Nino Southern
Oscillation (ENSO) events contribute to increased flood risk and hotspot erosion in the region due
to more extreme winter waves (~30% higher) and higher water levels (~0.2-0.3m) than typical
(Barnard et al., 2015; Barnard et al., 2017; Komar et al., 2011; Shope et al., 2022; Vos et al., 2023).
While storm surges greater than 1.0 m have been observed in the region, surge typically contributes
less than 0.3m to TWLs, due to the relatively narrow continental shelf and lack of tropical storms
(Ardhuin et al., 2003; Serafin et al., 2017).

The outer coast of the Cascadia region is largely comprised of sandy beaches (58%), with
some stretches of mixed sediment and cobble beaches (27% and 4% respectively). Approximately
34% of all beaches on the outer coast of the Cascadia region, regardless of sediment type, are cliff
or bluff backed. Of the sandy beaches, 80% are backed by dunes while 4% are armored with riprap
(Shope et al., 2022). Cliffs and bluffs in Cascadia tend to be comprised of consolidated layers of
mud, sand, and gravel, and often are fronted by a thin veneer of eroded gravel (Ruggiero et al.,
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2013). Dunes in the Cascadia region are highly vegetated with non-native grasses that produce tall,
linear features and provide some protection from erosion and flooding hazards to the communities
and ecosystems behind them (Ruggiero et al., 2018). However, while some communities in the
Cascadia region are planting dune grasses to mitigate erosion and stabilize backshore systems,
other communities bulldoze dunes to improve viewsheds and move sand away from infrastructure.
Riprap is the most common solution employed to stem erosion hazards in Cascadia. However,
increasingly, communities are attempting natural and nature-based solutions to provide more
ecosystem services and contend with government restrictions protecting public beach access
(Bond, 2021). Coastal management practices in the Cascadia region are further complicated by
extensive protections for endangered species habitats, including the western snowy plover (Biel et
al., 2017).

Many Cascadia coastal communities have already begun to experience increased coastal
erosion rates and nuisance flooding events due to the combination of land management practices
and climate change effects (e.g., Light, 2021; Anderson, 2018; Quinault Indian Nation, 2017).
While individuals in Cascadia adapt to these changes on a parcel-by-parcel basis (e.g., by armoring
property, Dundas & Lewis, 2020), there is debate among communities surrounding equitable
adaptation and the role of the government in managing it (Lipiec et al., 2018; Mills et al., 2021).
Developing a better understanding of future hazard exposure is therefore critically important to
adopting adaptive measures, at both an individual and community scale.

3 Methods

We generated stochastic simulations of future TWLs from 2020-2100 for the Cascadia
Region using the model framework TESLA (Time-varying Emulator for Short and Long-Term
Analysis of coastal flooding and erosion; Anderson et al., 2019) in combination with three sea-
level rise scenarios associated with 0.5m, 1.0m, 1.5m of global mean (GM)SLR by 2100 (Sweet
et al., 2022) (fig. 2). The SLR scenarios of Sweet et al. (2022) are regionally corrected to
probabilistically incorporate uncertainties associated with local processes (e.g., VLM and
gravitational, rotational, and deformational changes caused by ice-mass loss). In this study we
selected the median probability cases for each of the three SLR scenarios, focusing on producing
TWLs that capture the range in probability associated with storminess and wave climate
variability, which can produce differences in water level elevation on the order of decimeters to
meters. TWLs represent the maximum elevation that water reaches on the coast. They are driven
by atmospheric, oceanographic, and geomorphic processes and can be represented by the
following equation (Serafin & Ruggiero, 2014):

TWL = Nysy + Nar + Nss + Mumst + Ray, (1)

where 15, 1s mean sea level, 1747 is the deterministic astronomical tide, 15 describes the
atmospheric driven storm surge, nyus. represents interannual variability captured through
monthly mean sea level (MMSL), and R,¢, represents the wave driven runup (2% exceedance
level, e.g., Holman, 1986).

TWLs were simulated in two phases: first, through the simulation of offshore boundary
conditions at eight semi-coupled TESLA nodes; and second, through nearshore transformation of
wave conditions using wave transformation metamodels and empirical runup formulas (Figure 3).
Onshore TWLs were used to conduct regional impact analyses at 100m resolution based on simple
hazard proxies for unsafe beaches, erosion, and flooding derived from well-known coastal
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frameworks and stakeholder engagement. Hazard indices were developed to determine joint
hazard impacts and rates of hazard change.

An advisory council was consulted throughout project development through quarterly to
semi-annual meetings. The council was directly involved in formulating research questions by
identifying coastal community knowledge needs, co-producing the hazard proxies included in the
study, and providing feedback on preliminary results. Advisory council members included federal
and state agency employees, county commissioners, planners and emergency managers, city
planners and city emergency managers, non-profit organizations, and academics. By design, this
co-productive approach (Kates et al. 2000) produces new knowledge for the benefit of both the
involved communities and researchers. Furthermore, it grows adaptive capacity through network
building and the development of social capital (Norstrom et al., 2020).

3.1 Generating Probabilistic Future Total Water Levels

3.1.1 Statistical Simulation of Offshore Total Water Level Drivers

We used the stochastic climate emulator, TESLA (Anderson et al., 2019), to simulate 100
hypothetical chronologies of hourly TWL drivers from 2020-2100 based on statistical relationships
derived from observations of present-day climate. This approach generates time series that
represent the full range of water levels, as it captures the inherent randomness of individual
processes that superimposed can compound or dampen the overall TWL signal. The TESLA
methodology to create probabilistic simulations of hydrodynamic variables representing present
day climate has been applied and validated at several sites globally (Anderson et al., 2021; Marra
et al., 2020; d’Anna et al., 2022, Marra et al., 2022;; Vitousek et al., 2021). We provide a short
summary of the methodology and Cascadia-specific validation below.

TESLA uses a weather type-based approach (Camus et al., 2014), in which
annual weather types (AWTs), intra-seasonal weather types (IWTs), and daily weather types
(DWTs) are defined based on observed atmospheric and oceanographic variables (fig. 2).
Following the methodology presented in Anderson et al. (2019), we define six AWTs
corresponding to conditions representative of El Nifio, La Nifia, and transition phases of ENSO.
IWTs in turn represent changes in the Madden Julian Oscillation, and DWTs reflect synoptic
weather patterns in the Pacific Basin. New chronologies of the weather types are generated via
auto-logistic regression models that are able to reproduce the persistence, transition, and
probability of occurrence of the weather types reflective of historical observations and model
covariates (Antolinez et al., 2016).

The datasets used to define AWTs, IWTs, and DWTs make up the predictors in the TESLA
framework. These datasets include sea surface temperature reanalysis products to classify AWTs
(Extended Reconstructed Sea Surface Temperature v4, i.e., ERSSTv4; Huang et al., 2015),
outgoing longwave radiation timeseries to cluster MJO intensity and location into IWTs (Wheeler
& Hendon, 2004), and CFSR sea level pressure and sea level pressure gradient fields to create
DWTs (Saha et al., 2011). The predictands, or the outputs of TESLA, include wave characteristics
(wave height, period, and direction) and non-tidal residuals (MMSL and storm surge). Historical
observations of the predictands are derived from wave hindcasts from the Center for Australian
Weather and Climate Research (CAWCR; Durrant et al., 2014; Smith et al., 2020) and tide gauges
(NOAA, tidesandcurrents.noaa.gov). Tide gauge water level data were corrected for vertical datum
bias where necessary (Burgette et al., 2009) and decomposed into their constituent parts (47, 7ss,
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Numsra) following the methodology presented in Serafin and Ruggiero (2014). The observed wave
and water level datasets are used to populate statistical models (e.g., copulas and linear regression)
that are used to connect the predictors and predictands.

The predictands are simulated to an hourly timescale for each synthetic WT timeseries
through a multistep process. First, consecutive days of the same DWTs are grouped together as we
assume they represent the same synoptic weather system or storm. Each weather event is assigned
an event hydrograph that represents the ramp up to and ramp down from maximum potential wave
height within that weather system and is designed to maintain physically realistic joint dependence
of sea state parameters. Synthetic wave hydrographs are generated based on random sampling of
parameterized historical hydrographs during the specified DWT sea state using gaussian copulas
(Anderson et al., 2019). Employing gaussian copulas maintains the historical dependence
structures between sea state parameters and weather types while allowing for extrapolation from
historical observations (Cagigal et al., 2020). While wave height evolves hourly based on
hydrograph ramp up and down, other variables (Tp, Dir, and 7¢s) remain static for the duration of
the hydrograph for simplicity. Astronomical tide and MMSL are the only predictands not
simulated through the hydrographs. Instead, astronomical tides are simulated using the
deterministic UTide model initialized with the pre-processed NOAA water level data (Codiga et
al., 2011). MMSL was simulated using a linear regression with covariates derived from the weather

types.

We implemented TESLA in Cascadia primarily using the approach developed by Anderson
et al. (2019), however, there were a few differences. First, we updated the MMSL regression to
include additional covariates (eq. 2). In Anderson et al. (2019), MMSL in San Diego, CA was
simulated using a linear regression with just three covariates (the first three principal components
(PCs) derived from the SST dataset used to produce the AWTs), producing an r-squared of 0.73.
In this application, the methodology was less effective (r-squared = 0.57), indicating the
regression was missing important drivers of water level variability in the Cascadia region. We
added three additional covariates (PCs from SLP describing regional monthly averaged synoptic
weather) to the approach (Mukhopadhyay et al., 2023), which improved the r-squared to = 0.9 in
Cascadia locations.

MMSL =4a, + alAPCI + azAPCZ + a3APC3 + a4MPC1 + asMPCZ + a6MPC3
+(b, + byAPC, + byAPC, + bsAPCs + byMPC, + bsMPC, + bgMPC3) - cos(2nt)  (2)
+(co, + ¢1APCy + c;APC, + c3APC3 + c4MPC; + csMPC, + ccMPC3) - sin (2mt)

Here, a, b, and ¢ variables represent the linear regression coefficients, APCs are the AWT
SST PCs, MPCs are the monthly-averaged SLP PCs, and the periodic terms serve to force an
annual seasonal cycle.

A second difference from Anderson et al. (2019) is due to this being a regional (all of
Cascadia), rather than local (San Diego Bay), application. Instead of building one TESLA node to
drive all the waves and water levels in the Cascadia region, we built eight semi-coupled TESLA
nodes at approximately one degree resolution to better capture alongshore varying conditions (fig.
3). Here, semi-coupled implies that the weather types are shared across all eight sites, while the
hydrodynamic inputs and outputs, comprised of deepwater wave hindcasts, tide gauges, and
simulations of those variables, are unique to each location (S1). As such, for a given TESLA
simulation, large scale climate, intra-seasonality, and daily weather are consistent across the
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Cascadia region, but the synthetic wave (Hs, Tp, Dir) and water level characteristics (1ss, TymsLas
Nar) are generated from statistical distributions based on local observations.

We created 100 hypothetical simulations of hourly future TWL drivers. Time series
exploration and probability distribution functions (PDFs) of TWL drivers validate that TESLA
recreates the frequency, magnitude, and timing of drivers based on statistical relationships derived
from present day observations (fig. 4). From Figure 4, we see that TESLA is able to simulate both
chronic and extreme conditions and can extrapolate out from observations, allowing for slightly
longer tails in the synthetic distributions, while maintaining the overall distribution shape and
dependencies between drivers. Coefficient of Variation (CoV), a standard technique to determine
the number of simulations needed to capture a desired estimation accuracy in the modeled system
(Au and Wang, 2014), indicated that 100 TESLA simulations is adequately data-rich to explore
TWLs on a monthly scale (72,000 TWL data points). In this study, analyses are generally
conducted on the decadal scale (>8 million data points) to explore the influence of SLR on coastal
hazards. However, the number of simulations allows us to confidently explore seasonal influences
on coastal hazards as well.
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TESLA simulation of Stochastic Total Water Level Drivers
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Figure 2. TESLA (Time-varying Emulator for Short- and Long-Term Analysis of flooding and
erosion), a stochastic climate emulator (Anderson et al., 2019), is used to generate offshore drivers
of TWLs for 2020-2100. Probabilistic TWL drivers are combined with three SLR scenarios as
inputs into onshore TWL calculations.
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Figure 3. (a) Map of the Cascadia Region showing model inputs, domains, and resolutions. Eight
semi-coupled TESLA nodes produce offshore TWL drivers at CAWCR wave hindcast locations
(~1° resolution). (b) SWAN metamodels transform TESLA wave outputs to the 20m contour line
(1km resolution) and empirical runup formulas calculate onshore TWLs (100m resolution)
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Figure 4. (a) Timeseries of TESLA inputs (observed weather types and TWL drivers) and one
simulation of TESLA outputs (80 years of synthetic weather types and TWL drivers) and (b) PDFs
of observed vs simulated TWL and TWL drivers for the Astoria TESLA node, demonstrating
TESLA’s ability to recreate present day TWL conditions.

11
9/28/2023



manuscript submitted to Earth’s Future

3.1.2 Onshore Propagation of Waves

The outputs of TESLA are generated at an offshore location (the site of the wave hindcast
node). To develop TWLs relevant for onshore impact assessments, TESLA outputs need to be
propagated across local bathymetry and onto the beach (Serafin et al., 2019). To calculate the wave
driven runup component of TWLs, we use a combination of previously developed metamodels for
nearshore wave transformation (Allan et al., 2015) and empirical runup formulas. The metamodels
are comprised of interpolated lookup tables generated based on stationary SWAN modeling of
historical water level and wave conditions. Offshore wave simulations from TESLA are input into
the SWAN lookup tables and extracted at approximately the 20m contour line at 1km alongshore
resolution. They are then back propagated to compute alongshore varying effective deep-water
wave conditions for input into runup models (e.g., Stockdon et al., 2006). While the surrogate
models are capable of extracting waves every 100m in the alongshore direction, sensitivity testing
revealed down-sampling to 1km resolution significantly reduced computational expense with low
impact to final TWL values.

Using the alongshore varying wave conditions (lkm resolution) and lidar-derived
geomorphology (100m resolution; Shope et al., 2022) as input into empirical runup formulas, we
incorporate the wave driven component of TWLs into the simulated impact analysis for the
Cascadia region. Two flavors of empirical runup formulas were employed based on beach type
and relative TWL elevation. The Stockdon et al. (2006) formula was applied to sandy, dune backed
beaches while a modified TAW (Technical Advisory Committee for Water Retaining Structures)
barrier runup method was applied to cobble, bluff, or riprap backed beaches when TWL elevation
exceeded the barrier toe (Allan et al., 2015; Pullen et al., 2007; van der Meer, 2002). For sandy
beaches with beach slopes greater than 0.12 we applied the barrier runup method, as the empirical
data used to derive the Stockdon formula did not include such steep beaches. Headlands, estuaries,
and bays were excluded from our analysis. We also excluded transects that had backshore features
with unrealistic elevations (e.g., backshore feature toe >10m or crest >50m), as we assumed these
reflect lidar-derived error rather than a realistic depiction of backshore features. There were two
locations within our study domain that did not have existing lookup tables: in Northern California
and a 30km gap in Southern Oregon. At these locations, TESLA deep water wave outputs were
directly input into empirical runup formulas and no nearshore bathymetric transformation was
captured. As found by Serafin et al. (2019) we expect alongshore beach topographic variability to
have the largest influence on the severity of coastal impacts.

The time evolving TESLA outputs are transformed over reference bathymetry and
topography that does not change over time. Nearshore bathymetric data used in the SWAN models
was derived from 1/3 arc-second (~10 m) DEMs downloaded from the NOAA’s National
Geophysical Data Center and onshore geomorphic data is derived from a 2016 US West Coast
lidar dataset (Shope et al., 2021; Shope et al., 2022). Keeping bathymetry and topography static in
this analysis is a necessary choice for impact studies of this scope (100 simulations, 80 years, 9,010
transects) as existing models used for morphological evolution (e.g., XBeach, Delft3D) are largely
designed for event-based simulations along a single beach (Roelvink et al., 2009). To evolve
bathymetry and topography over the spatial and temporal scale of this study with available tools
would therefore be computationally prohibitive and would likely yield results with unquantifiable
compounding errors. It is important to note, however, that since morphology is held static, the
future TWLs and hazard impact projections presented here should not be interpreted as predictions,
but rather as practical projected comparisons to present day conditions.
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9/28/2023



manuscript submitted to Earth’s Future

3.2 Regional Scale Impact Analyses

We assessed the Cascadia coastline’s physical exposure to extreme TWLs using three
simple co-produced proxies including unsafe beach hours, collision hours, and overtopping hours.
These proxies were developed from well-established coastal hazard frameworks (Sallenger, 2000)
and feedback from regional stakeholders (Hadziomerspahic, 2022) (fig. 5). Collision and
overtopping are classic proxies for dune face erosion and backshore flooding, respectively
(Sallenger, 2000). Here we apply these metrics to dune-backed beaches in Cascadia, as well as
areas with other backshore features (e.g., cliff-backed, armored, cobble beaches). While the
morphological response to collision and overtopping for sandy and non-sandy coasts is different,
the metrics can still indicate whether conditions that commonly lead to erosion or flooding are
present.

The unsafe beach hours metric was developed through extensive engagement with
stakeholders in the Cascadia region. Stakeholders highlighted that solely assessing flooding and
erosion proxies tends to center hazard impact discussions on (typically wealthy) coastal property
owners only. Stakeholders expressed interest in a proxy that can communicate how the general
population may also be impacted by chronic coastal hazards. On their suggestion, we co-created a
beach safety proxy that underscores how visitors to beaches (either for work or leisure) may feel
unable to utilize the beach for their preferred activities based on its time-dependent width. To
quantify beach safety, we track the number of daylight hours during which the beach is ‘unsafe’,
or too narrow to comfortably recreate without safety concerns. The definition of ‘too narrow’
should be determined based on the unique conditions of a particular beach and how visitors use it.
In this study a threshold width of 10m was applied regionally for simplicity after testing varying
thresholds of 10m, 15m, and 20m.

Chronic Hazard Proxies
Safe Beach Recreation Hours Coiiision Hours Qvertopping Hours

Proxy for usahility of the beach (wide Prexy for eresion Proxy for flooding
encugh to play, werk, camp, atc.]

BW < 10m, during day

< TWL<z, TWL >z,

Figure 5. Description of chronic hazard proxies, where BW is the beach width, z; is the backshore
feature toe elevation, and zc is the backshore feature crest elevation at a given transect.

We track the evolution of the hazard proxies through changes in the percent occurrence
(eq. 3). This measurement is the sum of the total hours in which conditions for hazard impacts are
met during a particular time period (impact hours) divided by the total hours in that period. Here,
we largely present the percent occurrence over the duration of decades to explore the influence of
SLR on hazard impacts, but different durations can be chosen based on research focus or
stakeholder needs.

impact hours during period

Percent Occurrence = 100 (3)

total hours during period
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To identify areas that experience a large change in hazard impacts compared to present day
conditions, we propose a novel hotspot indicator:

Hotspot Indicator = Impact Multiplier X Total Dif f in Hours (4)

where the impact multiplier is the factor by which the hazard impact hours increase from
the initial to the final timestep, and the total difference in hours is the difference in impact hours
between the final time step and the initial. The combination of these two variables serves to
emphasize the importance of relative change (impact multiplier), while normalizing by the total
magnitude change (total difference in hours). Finally, the hotspot indicators are normalized
across all metrics, and combined into a joint hazard index to produce a single hazard change
score that allows for inter-site comparisons:

Joint Hazard Indicator = 100 * (Norm. Unsafe Hotspot * (1/3)
+ Norm. Collision Hotspot * (1/3) (5)
+ Norm. Overtopping Hotspot x (1/3))
4 Results

4.1 Hazard Impact Metrics at the Transect to Beach Scale

The hazard proxy impacts can be visualized at multiple spatial and temporal scales to
explore the various processes influencing hazardous events. We demonstrate this by first looking
at a single transect in the Rockaway littoral cell within Northern Oregon (Figure 6) and applying
the percent occurrence metric (eq. 3) to the unsafe beach and erosion hazard proxies over time
periods of months, years, and decades for the moderate SLR scenario (1.0m GMSLR). Flooding
hazards are extremely rare at this location (occurring less than 1% of the time under all sea-level
rise scenarios). However, even just a few flooding events can be extremely disruptive to
communities, causing lasting closures to transportation networks and community assets. As such,
low values of hourly percent occurrence for overtopping may mask the true hazard risk. For clarity,
we instead present the overtopping metric as a sum of impact hours during the studied time period.

The box plots in Figure 6 show the range of variability attributable to the stochasticity of
wave and water levels from the 100 TWL simulations. By assessing hazard proxy impacts over
different time durations, we can see the influence of different processes (seasonality, intra-annual
variability driven by weather type, intra-decadal variability driven by SLR, and variability
associated with nodal cycles in the deterministic tide). The transect shown in Figure 6 lies along
one of the most highly erosive stretches of beach in the Cascadia region (Light, 2021). This transect
was chosen because, it’s unarmored and, even amongst neighboring transects, has a relatively low
dune toe elevation (3.53m) and low dune crest elevation (6.14m) allowing unsafe beach, collision,
and overtopping hazards to occur more frequently than elsewhere in the region. Nevertheless,
overtopping remains extremely rare throughout the 21 century under the moderate SLR scenario
(median is less than 15 hrs per year in 2100). The unsafe beach proxy occurs more frequently than
the erosion proxy (collision) because anytime the total water level is high enough to trigger a
collision or overtopping hazard the beach will also have a width less than 10m. At this transect,
beach safety also tends to have more variability across the simulation space than the erosion proxy
(collision) as seen by the size of the box body and whiskers, particularly when looking at percent
occurrence over shorter durations. This could be explained by the relatively shallow slope at this
beach, which allows small variations in TWL height to drastically affect beach width. Both the
unsafe beach metric and collision metric almost triple in percent occurrence over the 80-year
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simulations for the 1.0 m SLR scenario (median unsafe beach increases from 17% to 46%; median
collision increases from 15% to 45%)).

In Figure 7, we show a similar analysis, but have increased the number of transects to 50
(~5km of coastline) to explore how morphology as well as TWL stochasticity can influence hazard
occurrence. In this stretch of coast, only five transects are armored with riprap, the rest are sandy
dune backed. The morphology of this stretch averages to slightly steep beaches (slope=0.04) and
moderate backshore feature elevations (z=5.5m, zc=6.1m). However, there are a few transects with
very steep beaches (slope>0.10) and low dune toes (>4m). In this analysis, morphologic features
like dune toe elevation, dune crest elevation, and beach slope are significant controls on the time
evolution and variance of hazard occurrence. As these transects on average have dune features at
higher elevations than the single transect analyzed in figure 6, the three hazard proxies occur with
less frequency. Incorporating morphological variability into the percent occurrence analysis tends
to dramatically lower the box bodies (interquartiles). At the transect explored in figure 6, unsafe
beach and collision hazards occur over 15% of the time in the median case during 2020.
Incorporating neighboring transects into this analysis lowers the 2020 median percent occurrence
to less than 5%, indicating that even along this notoriously erosive stretch of beach, most transects
spend relatively little time experiencing hazardous conditions. Similarly, the overtopping hazard
box bodies shrink while the whiskers (i.e., the extremes, 0.05 and 0.95 quantiles) lengthen, further
demonstrating that in this Skm stretch, a few transects are responsible for extreme overtopping
conditions and the rest of this area’s morphology is fairly similar. This serves to narrow the body
of the distribution of hazard percent occurrence, while lengthening the tails.

9/28/2023
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Figure 7. Box plots of percent occurrence for the three impact metrics during 100 simulations of
TWL under the 1.0m GMSLR scenario, calculated over different time durations at 50 transects
over a 5 km stretch of coast. Average morphology is shown on the map, with colored dots
indicating toe elevation at each transect. Box plots show the range of hazard variability when both
probabilistic water levels and static geomorphology are included in the analysis. Variability in
local geomorphology lowers interquartiles (box bodies) of hazard percent occurrence, while
lengthening the extremes represented by the 0.05 and 0.95 quartiles (whiskers).

4.2 Hazard Impact Metrics at Regional Scale

For the regional scale analysis, it was necessary to simplify the dimensionality of the
simulation space before analyzing hazard impacts to retain computational efficiency. To do this,
we saved the hourly median (0.5) and tails (0.05 and 0.95) of the distribution representing how
likely it was for a hazard impact to occur over the 100 simulations using binomial maximum
likelihood estimates (MLE). These three likelihood estimates are used to approximate the hazard
probability space without calculating the full probability distribution at every transect on the
regional scale. After calculating the hourly likelihood, we explored hazard impacts over our
different time periods of interest. Regional scale results for 0.05, 0.50, and 0.95 probabilities are
presented below; more detail on this methodology can be found in the supplemental section (S2).

In figure 8, we present the median probability percent occurrence for the last decade of the
21 century (2090-2100) under ‘no SLR’, low, medium, and high RSLR scenarios, calculated at
each transect and then averaged over the littoral cell scale (ranging from ~10km to 50km). This
offers a comparison of hazards one could expect during hypothetical simulations of present day
mean sea level to those they could expect under the three SLR scenarios. While averaging over
the littoral cell scale obfuscates extremes caused by morphological variability on a transect by

17
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transect basis, it allows for first cut identification of coastal communities that may experience
disproportionate hazard exposure. Averaging over the entire Cascadia region and using the 0.5
MLE, unsafe beach conditions occur between 12-21% of the time by 2100 dependent on the sea-
level rise scenario explored. Collision (erosion) conditions occur between 10-19% of the time.
Under all sea-level rise scenarios, overtopping (flooding) remains rare (<1%), occuring just a few
times per year. However, as noted above, a few hours of flooding can be catastrophic, and just
0.5% percent occurrence of overtopping translates to 438 hours of flooding in a decade. As such,
low values of hourly percent occurrence for overtopping may mask the true hazard risk and should
be interpreted carefully.

While the heat maps in figure 8 (and fig. 9) provide information on average hazard severity
in a littoral cell, they don’t reveal where the individual transects that experience the most extreme
hazard impacts are located. We identified transects with ‘extreme’ hazards as those that exceed the
top 10" percentile of hazard impacts over the region for a given period. During 2090-2100,
transects that exceed 139 (daylight) days/year of unsafe beaches, 238 days/year of erosional
conditions, or 3.8 hours/year of flooding fall within the top 10" percentile. Figure 10 shows the
percentage of transects in a littoral cell that are in the top 10™ percentile. Transects that experience
the most extreme unsafe beach hazards are concentrated in Northern Cascadia along the Olympic
Peninsula, where mixed sediment beaches, steep beach slopes, and low backshore feature toes lead
to narrower beach widths (fig. 11). For collision and overtopping, there are higher concentrations
of top 10% transects in both Southern and Northern Cascadia, where mixed sediment bluff backed
beaches have relatively low backshore feature toes and crests.

After exploring the median (0.5 MLE) cases in figures 8 and 10, we quantify the
uncertainty associated with TWLs for each hazard under one SLR scenario (fig. 9) by comparing
the 0.95 and 0.05 MLEs to the median. Uncertainty varied spatially, temporarily, and by hazard.
Spatially, uncertainty is fairly uniform across SLR scenarios for overtopping hazards. However,
for unsafe beach and collision hazards there is slightly higher hazard uncertainty in southern
Cascadia and northern Washington than the rest of the region. This spatial pattern is consistent
through time and across SLR scenarios, and correlates strongly with on average steeper beach
slopes (~0.10) and a high proportion of mixed sediment bluff backed beaches (fig. 11).

Temporally, TWL-derived uncertainty increases linearly across the entire region between
2020 and 2100. By the end of the century, the TWL uncertainty, calculated by subtracting the 0.05
MLE from the 0.95 MLE and averaging over the region and the three SLR scenarios, is 8.3%,
6.6%, and 3.7% for unsafe beach, collision, and overtopping hazards, respectively. The hazard
uncertainty derived from SLR scenarios increases exponentially throughout the century. By 2100,
the uncertainty range associated with SLR scenarios for unsafe beach and collision hazards is
similar to the average TWL-induced uncertainty (8.7%, 8.4%), but much lower than the TWL-
induced uncertainty for overtopping hazards (0.3%). It is only in the last decade of the century that
uncertainty associated with the three SLR scenarios exceeds the uncertainty derived from
stochastic TWL variability for any of the hazards.

Hazard uncertainty has a non-normal distribution, with long tails skewed towards more
hazardous events, i.e., the difference between the 0.95 quantile and the 0.50 quantile exceeds the
difference between the 0.50 and 0.05 quantiles. This pattern is similarly seen in the box plots of
figure 7, where hazard percent occurrence ‘bottoms out’, limiting the uncertainty range between
low and median quantiles, but often capturing very high variability at the 0.95 quantile based on
morphology.
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Influence of SLR on Hazards in 2100
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Figure 8. Median percent occurrence of unsafe beach conditions (S), collision conditions (C), and
overtopping conditions (O) during 2090-2100 decades under a ‘no SLR’ scenario (purple colorbar)
and the difference between ‘no SLR’ and low (0.5m), medium (1.0m), and high (1.5m) SLR

scenarios (red colorbar) averaged over littoral cells.
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Figure 9. Difference between median hazard percent occurrence (middle panels, purple colorbar
on left) and 0.05 (left panels, red colorbar) and 0.95 (right panels, red colorbar) MLEs caused by
variability in wave and water level drivers in the decades beginning in 2020 and in 2090 under the
medium (Im GMSLR) scenario for unsafe beach conditions (S), collision conditions (C), and
overtopping conditions (O).
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Figure 10. Percentage of transects in each littoral cell that
exceed the 10™ percentile of hazard impact during 2090-
2100 under the 0.5MLE and median SLR scenario.
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Figure 11. Median beach type
and average morphology for each
littoral cell in the Cascadia
Region, where T is beach type,
is beach slope, z: is backshore
feature toe elevation, and z. is
backshore feature crest elevation.
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4.3 Hazard Change Hotspots

Hotspots of hazard change in the Cascadia region were identified using the Hotspot
Indicator (eq. 4) and the Joint Hazard Change Indicator (eq. 5). Figure 12 depicts both indicators,
with the Joint Hazard Change Indicator represented by the size of each pie chart (areas with larger
pie charts will see high increases in hazard occurrence from the initial decade (2020-2030) to the
final decade (2090-2100) in our analysis). The slices of the pie chart reveal the individual
contributions of the Hotspot Indicators (increase of a single hazard proxy) to the overall Joint
Hazard Change Indicator. As expected, the highest increase in hazards occurred under the largest
SLR scenario explored. Unsafe beach and erosion hazards are the dominant contributors to the
joint hazard change in the Cascadia region during the 21 century. Only under the high SLR
scenarios and in specific areas of the Cascadia region do overtopping hazards begin to significantly
influence the hazard change indices. The areas that experience large changes in overtopping also
have the greatest joint hazard change. Overtopping increases most in Southern Cascadia (Southern
Oregon and Northern California) and parts of Northern Cascadia (Washington). Many of these
littoral cells are the same areas marked by large numbers of extreme (top 10" percentile) hazard
transects and higher hazard uncertainty. Erosion (collision), across all sites and sea-level rise
scenarios, is the greatest contributor to the joint hazard indicator. Its influence on the joint hazard
indicator increases as the SLR scenario grows. While unsafe beach hazards also continue to
increase through SLR scenario, the rapid change in erosion hazards leads to a relative reduction in
the unsafe beach hazard contribution to the overall joint hazard change.

Areas of greatest joint hazard change are focused around the southern portion of the
Cascadia Region and around the mouths of estuaries in Southern Washington and Northern Oregon
(Columbia River and Willapa Bay) and in Central Oregon (Yaquina Bay). In Southern Cascadia,
this joint hazard increase is again correlated to the presence of mixed sediment bluff backed
beaches and low backshore feature elevations. Around the estuaries, the joint hazard increase
seems associated with relatively shallow beach slopes and low backshore feature elevations (toes
in Oregon and both toes and crests in Washington), allowing for small changes in TWL to
significantly increase the occurrence of all hazard proxies. Notably, some of the littoral cells that
have the greatest increase in joint hazard change do not have a large proportion of transects in the
top 10" percentile of hazard impacts.
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Figure 12. Hazard change hotspots from 2020-2100 under three SLR scenarios. The size of the pie
charts is determined by the Joint Hazard Change Indicator, while the individual contributions of
the Hazard Hotspot Indicators to the Joint Hazard Change Indicator make up the pie chart slices.
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5 Discussion

5.1 Hazards and Hazard Change Hotspots

Computing simple hazard proxies enables stochastic hazard analysis over large spatial (950
km) and temporal (80 year) scales. They are fast to compute yet maintain relatively high resolution
(100m-1,000m scale). They offer valuable comparisons to present day conditions while generating
quantitative results that affected coastal communities have identified as critical for their hazard
planning efforts. The hazard proxies and hazard change indices chosen for this study were the
result of extensive co-production, so results fill stated needs of Cascadia’s coastal planners while
simultaneously progressing fundamental knowledge about how chronic coastal hazards will evolve
under climate change.

This study produces probabilistic estimates of hazard impact and hazard change in the
Cascadia region. Under the low SLR scenario (0.5m GMSLR), median likelihood case for TWL
variability, littoral cells in the Cascadia region will have a less than 3% increase in unsafe beach
and erosion hazard percent occurrence by the end of the century and a less than 0.05% (~44 hours
per decade) increase in flooding. Under the medium (1.0m GMSLR) and high SLR scenarios (1.5m
GMSLR), Cascadia on average will experience an additional 5% and 10% increase in unsafe beach
and collision percent occurrences for the respective scenarios. Under those same scenarios, the
Cascadia region will on average increase flooding by approximately 115 and 270 hours by the end
of the century. This indicates that the Cascadia region must prepare for a wide range of hazard
evolution under different sea-level rise scenarios.

Coastal flooding is projected to remain rare in Cascadia, even under the most severe SLR
scenarios, occurring less than 0.5% of the time in 2090-2100. This aligns with current knowledge
about the Cascadia region, as most outer coast beaches in the region are dominated by relatively
tall, linear dunes or bluffs that offer protection from flooding. However, while most of the Cascadia
coast will remain resistant to flooding hazards, projections indicate that several low-lying areas in
Cascadia will bear the brunt of vulnerability (fig. 10). In these areas, rare flooding events have the
potential to be extremely costly, damaging infrastructure and disrupting transportation networks
beyond the perceived area of impact.

This study also identifies hotspots of hazards, areas that are expected to face larger changes
in hazard exposure during the 21 century than their neighbors. Cascadia region stakeholders have
stated that identifying areas of large hazard change is of high priority. Areas that rarely or never
experience a hazard under present-day conditions but will experience an increase in the future may
be under-prepared for climate change induced hazards. These communities currently experience
no incentive to prepare for changing conditions due to a historical sense of security. They therefore
may be the most impacted and ill-equipped for coping with increasing hazards (Thompson et al.,
2023). Areas of hotspot change may also be the best candidates for climate-informed planning, as
they may require relatively little investment to carry out proactive adaptation rather than being
forced to respond to hazards in real time. Overtopping in particular does not increase dramatically
throughout the region, except for a few littoral cells under the most extreme SLR scenario.
Dedicating adaptation resources to these hotspot areas in advance may mitigate extensive long-
term costs (financial and social). Furthermore, some of the areas that have a large joint hazard
change do not contain a large proportion of transects in the top 10™ percentile of hazard impacts
(e.g., in central Oregon). This highlights the need to explore not just total hazard impact, but the
rate of hazard change. The hotspot indicators and joint hazard indicators were designed to provide
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stakeholders with simple, comparative, tools that highlight areas that experience dramatic changes
in hazard conditions under different climate change scenarios.

Our analysis indicates that littoral cells in southern Cascadia and around the mouths of
large estuaries are likely to experience the greatest joint hazard change. Across almost all littoral
cells and sea-level rise scenarios, the collision hazard proxy increases the most between 2020 and
2100. However, a few regions will also experience large increases in flood hazards. The spatial
variability in hazard percent occurrence and hazard change is strongly correlated to beach
morphology (beach type, beach slope, and backshore feature elevation). This indicates that there
is potentially high under preparedness for erosional hazards across the entire Cascadia region and
flooding hazards in select littoral cells. Local scale case studies to identify where these hazards are
focused and who they impact (e.g., are valuable community assets exposed? what is adaptive
capacity in this region?) are necessary to determine whether adaptation efforts should be of higher
priority in these areas compared to areas that will see smaller rates of hazard evolution.

5.2 Drivers of Chronic Coastal Hazards and Hazard Uncertainty in the Cascadia Region

The probabilistic nature of this analysis provides new insights into how variability in wave
and water level drivers translates into uncertainty of hazard impacts. Hazard uncertainty increases
over time and for higher sea-level rise scenarios. Unsafe beach and erosion hazards have fairly
similar uncertainties when averaged over the entire Cascadia region. There is slight spatial
variability in hazard uncertainty, which correlates with morphologic characteristics in the region,
particularly mixed sediment bluff backed beaches in Southern Cascadia. This corresponds well to
Serafin et al.’s (2019) finding that local bathymetry and beach morphology are dominant controls
in determining onshore impacts of extreme TWLs. They found that the bathymetric and
morphologic setting can cause large, nonlinear changes to impact hours experienced by the
backshore with only small variations in TWLs. In probabilistic simulations of TWLs, small
variations in water level elevations can translate to high uncertainty in hazards.

Our analysis also shows that throughout the 21 century, probabilistic TWL variability is
a greater or equal contributor to hazard uncertainty than the low, medium, or high median RSLR
scenarios. This indicates that Cascadia region chronic coastal hazard assessments and hazard
adaptation plans must incorporate TWL variability into their frameworks to accurately evaluate
near future hazard risk and uncertainty.

5.3 Implications of Hazard Proxies for Cascadia Communities and Ecosystems

While hazard proxies provide a probabilistic range of potential impacts in comparison to
present day hazard conditions, how these proxies translate to vulnerability, landscape change, and
ecosystem services is challenging to quantify, particularly when accounting for the various
adaptation strategies communities might employ.

The combination of intensifying hazards and adaptation decisions also has large
implications for tipping points or thresholds in coastal systems. Thresholds could be defined in a
physical sense (e.g., endangered species habitat loss, a dune’s ability to recover) or in a social
sense (e.g., how much flooding/ erosion/ beach narrowing is a community willing to tolerate).
While it’s difficult to apply hazard proxy analysis to quantitatively predict physical tipping points,
probabilistic hazard proxies may be useful for communities in establishing social thresholds and
setting goals for ‘bounce forward’ rather than ‘bounce back’ hazard adaptation.
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5.4 Validity of Assumptions, Areas of Future Research, and Applicability to Other Regions

While in this application we account for daily (synoptic weather), intra-seasonal (MJO),
seasonal, and interannual (ENSO) variability, at the decadal- to century-scale we assume that there
is stationarity in the climate, weather, and hydrodynamic drivers of total water levels. As
implemented here, TESLA relies on observations of oceanographic and atmospheric variables to
recreate the statistics of present day chronic and acute conditions through weather typing.
Although there is growing evidence of non-stationarity in waves and water levels under a changing
climate (Erikson et al., 2022), there is still high uncertainty surrounding how climate change,
beyond SLR, will influence the phenomena that drives TWL variability (Morim et al., 2023). As
such, we chose to investigate the probability range of TWLs and hazard impacts associated with
the statistics of the present-day wave and water level climate. As knowledge of future non-
stationarity is refined and global climate model outputs become more sophisticated, TESLA is
capable of incorporating this knowledge by tuning the behavior (timing, duration, and intensity)
of its weather types. Future work could compare simulations of TWL and hazard impact under
assumptions of stationarity or non-stationarity.

This study produced a highly unique dataset (probabilistic TWLs and hazard proxies for
the 21 century at 100m resolution over greater than 900 km). As such, several research pathways
can leverage the publicly accessible data for their own work including hydrodynamic flood
modeling, shoreline change modeling, estuary evolution modeling, etc. One research pathway
Cascadia stakeholders highlighted is a significant need for coastal hazard equitable resilience
studies focused on climate change induced hazards. Most existing studies that explore differential
community vulnerability to coastal hazards in the Cascadia region focus on tsunami and
earthquake hazards (e.g., Wood et al. 2010; Stanton et al., 2022). Future work could tie the chronic
hazard proxies explored here to assessments of coastal vulnerability and adaptive capacity to help
improve community understanding of which populations may need more resources to adapt to
climate change.

Finally, while this study focuses on the Cascadia region, there is broader applicability. The
coastal hazard proxy framework and hotspot change indices presented here can be applied on any
coastline with projections of future TWL data. Furthermore, broader connections between chronic
coastal hazards and drivers may also be inferred. Stochastic TWL variability causes hazard
uncertainty greater than or equal to the uncertainty caused by median SLR scenarios throughout
the 21° century. Coastal hazard impacts, hazard change rates, and hazard uncertainty have high
correlation to morphology.

6 Conclusions

This study presents an assessment of probabilistic chronic coastal hazards in the
Cascadia USA region from 2020-2100 using three simple hazard proxies for unsafe beaches,
coastal erosion, and flooding and novel indices to identify areas of large hazard change. Beaches
in Southern Cascadia and in the Olympic Peninsula of Northern Cascadia have the highest
concentration of top 10" percentile hazard impact transects, due to their morphologic setting.
These areas, dominated by mixed sediment bluff backed beaches (Southern Cascadia) and low
elevation backshore features (around the mouths of estuaries), additionally tend to experience
greater rates of hazard change. Collision (erosion) hazards will increase the most of the three
proxies explored during the next century, indicating coastal communities in Cascadia may have
the opportunity to mitigate large erosional impacts should there be concentrated adaptation efforts
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dedicated to this hazard. We found hazard proxy uncertainty to have a non-normal distribution,
particularly for the erosion and overtopping proxies, with the distributions having longer tails for
extreme (0.95 likelihood) impacts and ‘bottoming out’ for median and low (0.05) likelihood cases.
This analysis reveals new insights into the drivers of chronic coastal hazards in the Cascadia region
and presents hazard change assessment tools that could be extended to new locations. This study
further provides a hazard assessment on spatial and temporal scales relevant to management
timelines and guided by a community based advisory council.
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S1. Methodology for Semi-Coupling TESLA Nodes.

In the TESLA lexicon, the term ‘semi-coupled’ indicates that multiple TESLA nodes
share model predictors (i.e., weather types: AWTs, IWTs, and DWTs), while each node
maintains unique predictands (wave characteristics and water level drivers). To semi-
couple AWTs and IWTs is trivial for the Cascadia nodes, as AWTs (representing ENSO
patterns) are universal for the entire Pacific Basin and IWTs (representing MJO cycles) are
universal for the entire globe. DWTs, representing synoptic weather, are tailored for each
site, so the semi-coupling methodology requires a few additional steps and is detailed
below.

The methodology to create DWTs for a single site in TESLA involves using the model
ESTELA (Evaluation of Source and Travel-time of wave Energy reaching a Local Area; Perez
et al.,, 2014) to define a bounding region representing the area from which 99% of wave
energy traveling along great circle arcs reaches the study site. SLP, representing high and
low-pressure systems in the atmosphere, and SLP gradients, representing the wind stress
responsible for generating waves and storm surge, from CFSR reanalysis products (Saha
et al., 2011) are extracted from within the ESTELA bounds. Weather typing, which consists
of principal component analysis of SLP and SLPG datasets and k-means clustering of
resultant principal components, is performed at daily scale to depict patterns of synoptic
weather in the region of interest. More detail on this methodology can be found in
Anderson et al. (2019) and Camus et al. (2014).

If this methodology were completed at each of the eight Cascadia nodes
independently, DWTs would likely be similar but not exactly the same, as slightly different
ESTELA boundaries would be defined and the k-means clustering algorithm inserts some
inherent randomness in the weather typing process. To ensure synoptic weather is
represented uniformly across all eight nodes, we defined ESTELA bounds for three of our
eight TESLA nodes (the northern-most, southern-most, and central-most study sites) and
created a combined boundary that envelopes the largest extent of all three bounds (Figure
S1). SLP and SLP gradient extraction and subsequent weather typing was performed using
the central-most site as the anchoring point following the Anderson et al. (2019)
methodology and used as the DWTs for all eight nodes.

North Spit ESTELA bounds South Beach ESTELA bounds Neah Bay ESTELA bounds Combined ESTELA bounds

Figure S1. Area where 99% of wave energy reaching the specified site is generated
according to ESTELA. Wave energy boundaries for three (northernmost, central, and
southernmost) TESLA nodes were combined to form a super-boundary. Sea level pressure
and sea level pressure gradients are extracted from the boundaries and used to define the
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DWTs for the Cascadia region, enabling coupling of WTs for all TESLA sites, while
maintaining independent hydrodynamic variables.

§2. Simplification of Hazard Probability Space for Regional Scale Analysis

Due to the high resolution and dimensionality of the hazard proxy data (~9,000
transects, 800,000+ hours, 3 SLR scenarios, 100 simulations), it was necessary to reduce
the computational expense of our analysis before assessing hazard impacts on the
regional scale. To do this, we calculated the likelihood that a hazard impact occurred for
each hour over the 100 simulations using binomial maximum likelihood estimates (MLEs)
for the 0.05, 0.5, and 0.95 cases. Calculating the binomial MLEs for median and tail cases
allows us to represent the probability distribution of hazard impact without saving the
entire distribution, while still exploring hazard impacts at the full spatial and temporal
resolution of the dataset. The hazard proxy data is instead represented by ~9,000
transects, 800,000+ hours, 3 SLR scenarios, and 3 MLEs. The binomial MLEs representing
the tails (0.05, 0.95) and median (0.50) cases of TWL variability are then used to calculate
the percent occurrence (eq. 3) and hotspot change indices (eqgs. 4, 5) at each transect and
at the different time intervals of interest.

Using the three MLEs to represent the hazard impact probability space rather
than the 100 simulations minimally alters how the tails of the percent occurrence
results are represented based on which time interval being explored. The effect of
using the MLEs rather than the full simulation space can be seen in figure S1, where
we show the beach safety percent occurrence for the same transect shown in figure
6. The percent occurrence from the median (0.50) MLE matches the median percent
occurrence found from using the full simulation space at all time durations
explored (the interpretation of median probability hazard occurrence is not
affected). However, the 0.05 and 0.95 binomial MLEs represent different quantiles
than the full simulation space when calculating the percent occurrence for different
time durations. At the monthly time scale, the 0.05 and 0.95 MLEs percent
occurrence aligns well with the inter-quartiles of the full simulation space. At the
annual time scale, the 0.05 and 0.95 MLEs match well with the 0.05 and 0.95
quantiles, and at the decadal scale the 0.05 and 0.95 MLEs represent outliers of the
full simulation and time space since they retain more information from the hourly
scale. In short, the tails of the hazard occurrence probability space are represented
differently by the 0.05 and 0.95 MLEs when assessing different time periods.
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Figure S2. Box plots of unsafe beach percent occurrence compared to the percent
occurrence of the 0.05, 0.5, 0.95 binomial MLEs derived from the 100 TWL simulations for
one transect (same transect shown in figure 6).
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