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Abstract: Regional scale assessments of future chronic coastal hazard impacts are 
critical tools for adaptation planning under a changing climate. Probabilistic 
simulations of hazard impacts can improve these assessments by explicitly attempting 
to quantify uncertainty and by better simulating dependence between complex 
multivariate drivers of hazards. In this study, probabilistic future timeseries of total 
water levels (TWLs) are generated from a stochastic climate emulator (TESLA; 
Anderson et al., 2019) for the Cascadia region, USA for use in a chronic hazard impact 
assessment. This assessment focuses on three hazard metrics: collision, overtopping, 
and beach safety, and also introduces a novel hotspot indicator to identify areas that 
may experience dramatic changes in hazard impacts compared to present day 
conditions. Results are presented for a subset of the Cascadia region (Rockaway Beach 
Littoral Cell, Oregon) to demonstrate the power of the probabilistic impact assessment 
approach. The results highlight how useful spatially varying, scenario-based hazard 
impacts assessments and hotspot indicators are for identifying which areas and types 
of hazards may require increased adaptation support. This approach enables us to piece 
apart the relative uncertainty of hazards as driven by SLR versus natural variability 
(caused by variation in climate, weather, and hydrodynamic drivers). 

Introduction 

Hazardous coastal flooding and erosion events are becoming more frequent and 
intense due to a changing climate and evolving societal pressures. Rising sea 
levels and shifting storminess patterns (e.g., Sweet et al., 2022; Erikson et al., 
2022), combined with increasing financial and cultural investment in coastal 
regions (Lincke et al., 2022), compound hazard stressors in coastal communities. 
To alleviate the economic and social costs of chronic flooding and erosion 
hazards, coastal communities need to take proactive steps toward relieving hazard 
stressors driven by both natural and human systems based on a comprehensive 
understanding of possible future risk (Haasnoot et al., 2019). Regional scale 
assessments of potential future hazard impacts are critical tools for enabling this 
comprehensive understanding, as they generate results on spatial and temporal 
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scales typically embedded in policy decision structures (Hibbard and Janetos, 
2013). 

Impact assessments of potential future chronic coastal hazards commonly adopt 
extreme value analysis (EVA) approaches (e.g., Vitousek et al., 2017, Taherkhani 
et al., 2020). EVA uses statistical techniques to characterize the intensity and 
frequency of previously unseen hazardous events based on the probability of 
extremes in the historical record. These techniques are powerful, generalizable, 
and well suited to practical applications (e.g., engineering or insurance) as they 
quantify hazards in terms of traditional engineering design criteria (i.e., extreme 
event return periods). However, EVA approaches can be less suited to analyses 
that wish to explore both chronic and extreme conditions together, or how the 
timing of events influences hazard impacts, as traditional EVA techniques explore 
the impacts of extremes in isolation. Furthermore, EVA can have challenges 
accurately quantifying extremes for hazards with complex multivariate drivers, as 
the dependence between drivers can be difficult to represent (Hamdi et al., 2021).  

Probabilistic simulation modeling (e.g., Callaghan et al., 2008, Serafin and 
Ruggiero, 2014) is an alternative approach to assessing future hazards that can 
avoid some of the typical drawbacks of EVA described above (Toimil et al., 
2020). Probabilistic methods simulate a range of potential outcomes, representing 
both chronic and extreme conditions by varying the timing and intensity of 
environmental variables driving hazards. This enables exploration of how the 
timing of events can shape hazard impacts and can help dissect which 
environmental variables ultimately drive hazardous conditions (e.g., Toimil et al., 
2021). When combined with climate aware approaches that incorporate the 
uncertainty associated with forecasted carbon emission scenarios, regional sea 
level rise (SLR) rates, decadal to intra-decadal oscillations in climate variability, 
etc., probabilistic approaches become a powerful tool for assessing and 
constraining the uncertainty of future hazard impacts (Kopp et al., 2019).  

This paper employs a stochastic climate emulator, TESLA (Time varying 
Emulator for Short and Long-term Analysis of coastal flooding and erosion; 
Anderson et al., 2019), to generate probabilistic future total water levels (TWLs) 
for a regional scale impact analysis in Cascadia, USA. TESLA combines machine 
learning approaches and statistical models to generate hypothetical chronologies 
of the full suite of TWL drivers. TESLA also links climate and weather to the 
multivariate drivers of hazardous events, enabling the exploration of dependence 
structures between hazards, hydrodynamic variables, and associated climate and 
weather conditions. 

In this study, TWL generation and impact analysis is performed for the outer 
coastline of Cascadia, USA, ranging from Northern California to Northern 
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Washington. Many Cascadia coastal communities have already begun to feel the 
effects of climate change through increased nuisance flooding events and erosion 
rates (Light, 2021; Sweet et al., 2022; Taherkhani et al., 2023). While hazards are 
expected to continue to intensify under projected SLR and changing patterns of 
storminess (Shope et al., 2022), the range of potential hazard conditions (timing, 
frequency, magnitude, and location) that communities should prepare for are 
highly uncertain. To begin to constrain that uncertainty, here we assess three 
hazard metrics: collision, overtopping, and beach safety. These metrics are 
calculated for four different SLR scenarios, with 100 probabilistic simulations of 
hourly TWL drivers for 2020-2100, and at 100m resolution across the entire 
Cascadia coastline. We also identify ‘hotspots’ of hazard impacts – areas that will 
see a dramatic change between present day hazard conditions and future 
conditions, to highlight areas which may benefit from greater investment in 
adaptation resources. 

Study Site: Cascadia, USA 

The wave climate of the Cascadia region is notable for its severity. Winter storms 
frequently produce long period waves with heights exceeding several meters 
(Allan et al., 2015). Previous TWL studies conducted on the US West Coast have 
highlighted that wave driven runup accounts for the largest fractional contribution 
to extreme TWL events (>50%) and that the most extreme events occur when 
large astronomical tide and high wave events coincide (Serafin et al., 2017). In 
addition, local bathymetry and beach morphology are dominant controls in 
determining onshore impacts of extreme TWLs, as they can cause large nonlinear 
changes to the number of hazard impact hours with only small variations in TWL 
(Serafin et al., 2019). 

El Niño Southern Oscillation (ENSO) events have also been shown to contribute 
to hotspot erosion and increased flood risk in the Pacific Northwest (PNW) due 
to more extreme winter waves (~30% higher) and higher water levels (~0.2-0.3m) 
(Barnard et al., 2015; Barnard et al., 2017; Komar et al., 2011; Shope et al., 2022). 
Changes to ENSO event frequency and wave climate intensity are expected under 
climate change (Cai et al., 2015; Erikson et al., 2022). However, how these 
phenomena will evolve is not certain (e.g., Yu et al., 2017; Cai et al., 2018). As 
such, incorporating sources of climatic and weather driven uncertainty into water 
level projections is valuable for coastal communities and their planning efforts.  

While impact analysis has been performed for the entire Cascadia coastline, this 
paper will present results for a subset of the region, the Rockaway Beach littoral 
cell in Tillamook County, Oregon (Figure 1), for the sake of simplicity and to 
demonstrate the capabilities of the methodology. 
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Figure 1. Location of TESLA hydrodynamic variable inputs (CAWCR wave hindcasts and NOAA 
tide gauges), hybrid nearshore wave transformation domains (SWAN Lookup Tables), and the subset 
region for which results will be presented. 

Probabilistic Total Water Level Simulations 

Total water levels represent the maximum elevation that water reaches on the 
coast. They are driven by atmospheric, oceanographic, and geomorphic processes 
and can be represented by the following equation: 

𝑇𝑊𝐿 ൌ  𝑆𝑊𝐿 ൅ 𝑅ଶ%                                       (1) 

Where 𝑅ଶ% represents the wave driven runup (2% exceedance level, e.g., Holman, 
1986) and 𝑆𝑊𝐿 represents the still water level. SWL can be further decomposed 
as the sum of several processes:  

𝑆𝑊𝐿 ൌ  𝜂ெௌ௅ ൅  𝜂஺் ൅ 𝜂ௌா ൅  𝜂ௌௌ ൅ 𝜂ெெௌ௅஺                  (2) 

𝜂ெௌ௅ is the mean sea level, 𝜂஺் is the astronomical tide, 𝜂ௌா is the seasonal signal, 
𝜂ௌௌ describes the atmospheric driven storm surge, and 𝜂ெெௌ௅஺ represents 
interannual variability captured through monthly mean sea level anomalies.  
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We generate 100 simulations of hourly future TWLs at 100m resolution for the 
Cascadia region in two phases: first, through the simulation of offshore boundary 
conditions at eight semi-coupled TESLA nodes; second, through transformation 
of wave conditions and runup calculations using hybrid nearshore models and 
empirical runup formulas (Figure 2). TWLs are then combined with four 
probabilistic regional scale SLR scenarios associated with 0.5m, 1.0m, 1.5m, and 
2.0m of global mean SLR by 2100 (Sweet et al., 2022).  

Figure 2. Framework of models (TESLA, SWAN surrogate model, empirical runup formulas) used in 
total water level simulation for the Cascadia region. 100 simulations are applied to four regionally 
scaled global sea level rise scenarios. 

Probabilistic Simulation of Offshore Total Water Level Drivers: TESLA 

The TESLA framework produces the offshore drivers of TWLs using a weather 
type-based approach, in which annual weather types (AWTs), intra-seasonal 
weather types (IWTs), and daily weather types (DWTs) are defined based on 
observed atmospheric and oceanographic variables. The weather types are then 
linked to hydrodynamic variables (e.g., wind waves, swell, storm surge) via joint 
probabilities, enabling simulation of new timeseries of these variables based on 
the probabilities of historical observations. A brief summary of the TESLA 
methodology (see Anderson et al., 2019 for more detail) is presented below: 

The three weather types are generated using statistical techniques including 
principal component analysis and k-means clustering. Each weather type 
represents a different scale of climate and weather; AWTs depict large scale 
climate via ENSO patterns, IWTs represent the Madden Julien Oscillation (MJO), 
and DWTs depict synoptic weather patterns. New chronologies of the weather 
types are generated using autoregressive logistic regression models that are able 
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to reproduce the persistence, transition, and probability of occurrence of the 
weather types based on historical observations and model covariates (Antolinez 
et al., 2015).  

TESLA simulates the persistence of waves during individual storm events using 
wave hydrographs. When consecutive days of the same DWT occur, they are 
grouped together as a single weather event. Each weather event is assigned a 
hydrograph that represents the ramp up to and ramp down from the maximum 
potential flooding within the weather system based on random sampling of 
parameterized historical hydrographs during the specified DWT. Wave and water 
level variables are sampled for each hydrograph using gaussian copulas, which 
are fit using the joint probabilities between the hydrodynamic variables and the 
weather type. Employing gaussian copulas maintains the historical dependence 
structures between sea state parameters and weather types while allowing for 
extrapolation from historical observations (Cagigal et al., 2020). While wave 
height evolves hourly based on hydrograph ramp up and down, other variables 
remain static for the duration of the hydrograph for simplicity. Monthly mean sea 
level is the only predictand not simulated through the hydrographs. Instead, it is 
simulated using a linear regression, for which three PCs derived from the AWTs 
and three PCs describing regional monthly-averaged synoptic weather serve as 
the inputs. 

Following the methodology in Anderson et al., (2019), we constructed eight semi-
coupled TESLA nodes along the Cascadia coastline at 1 degree latitude spacing. 
Here, semi-coupled indicates that the weather types are shared across all eight 
sites, while the hydrodynamic inputs, comprised of wave hindcasts from the 
Center for Australian Weather and Climate Research (CAWCR; Durrant et al., 
2014; Smith et al., 2020) and tide gauges (NOAA, tidesandcurrents.noaa.gov), are 
unique to each location (Figure 1). As such, for a given TESLA simulation, large 
scale climate, intra-seasonality, and daily weather are consistent across the 
Cascadia region, but the offshore hydrodynamic variables are generated from 
local wave and water level observations. 

Hybrid Nearshore Wave Transformation and TWL Calculation 

To calculate wave driven runup components of TWLs, we use a combination of 
previously developed surrogate models for nearshore wave transformation (Allan 
et al., 2015) and empirical runup formulas. The surrogate models are comprised 
of interpolated lookup tables generated based on stationary SWAN modeling of 
historical water level and wave conditions. Offshore wave simulations from 
TESLA are input into the SWAN lookup tables and extracted at approximately 
the 20m contour line at 1km resolution. They are then back propagated to compute 
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alongshore varying deep-water wave conditions. While the surrogate models are 
capable of extracting waves every 100m in the alongshore direction, sensitivity 
testing revealed down-sampling to 1km significantly reduced computational 
expense with low impact to final TWL values. 

Using the alongshore varying wave conditions (1km resolution) and lidar-derived 
geomorphology (100m resolution; Shope et al., 2021) as input into the Stockdon 
et al. (2006) empirical runup formula, we incorporate the wave driven component 
of TWLs into the simulated impact analysis for the Cascadia region.  

The time evolving TESLA outputs are transformed over reference bathymetry and 
topography that does not change over time. Nearshore bathymetric data used in 
the SWAN models was derived from 1/3 arc-second (~10 m) DEMs downloaded 
from the NOAA’s National Geophysical Data Center and onshore geomorphic 
data is derived from a US West Coast lidar dataset (Shope et al., 2021). Keeping 
bathymetry and topography static in this analysis is a necessary choice for impact 
studies of this scope (100 simulations, 80 years, regional scale), as existing models 
used for morphological evolution (e.g., XBeach, Delft3D) are largely designed 
for event-based simulations along a single beach (Roelvink et al., 2009). To 
evolve bathymetry and topography over the spatial and temporal scale of this 
study with available tools would therefore be inappropriate and would yield 
results with compounding errors. It is important to note, however, that since 
morphology is held static, the future TWLs and hazard impact projections 
presented here should not be interpreted as accurate forecasts, but rather as 
practical comparisons to present day conditions.  

Coastal Hazard Impact Metrics 

We assess coastal hazard impacts using three simple proxies (collision hours, 
overtopping hours, and unsafe beach hours) developed from well-established 
coastal hazard frameworks (Sallenger, 2000) and feedback from regional 
stakeholders (Table 1).  

Collision and overtopping are classic proxies for dune face erosion or dune 
flattening and backshore flooding, respectively (Sallenger, 2000). Here we apply 
these metrics to dune-backed beaches in Cascadia, as well as areas with other 
backshore features (e.g., cliff-backed, armored, cobble beaches, etc.). While the 
erosional response to collision and overtopping for sandy and non-sandy 
backshore morphologies is different, the metrics can still indicate whether 
conditions that commonly lead to erosion or flooding are present. 
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Table 1. Description of Chronic Hazard Proxies 

The unsafe beach hours metric was developed through extensive engagement with 
stakeholders in the Cascadia region. Stakeholders highlighted that solely 
assessing flooding and erosion proxies tends to center hazard impact discussions 
on coastal property owners only. Stakeholders expressed interest in a proxy that 
can communicate how the general population may also be impacted by chronic 
coastal hazards. On their suggestion, we created a beach safety proxy that 
underscores how visitors to beaches (either for work or leisure) may feel unable 
to utilize the beach for their preferred activities based on its time-dependent width. 
To quantify beach safety, we track the number of daylight hours during which the 
beach is ‘unsafe’, or too narrow to comfortably recreate without safety concerns. 
The definition of ‘too narrow’ should be determined based on the unique 
conditions of a particular beach and how visitors use it. In the Rockaway Beach 
Littoral Cell presented here, a width of 10m was chosen through stakeholder 
input.  

We track the evolution of impact metrics through the changes in the percent 
impact hours. This measurement sums the total hours in which conditions for 
hazard impacts are met during a particular time period and divides it by the total 
hours in that period. Here, we largely present the percent impact hours over the 
duration of decades to explore the influence of SLR on hazard impacts, but 
different durations can be chosen based on research focus or stakeholder needs. 

Collision Hours 
Proxy for erosion 

backshore feature toe < TWL < backshore 
feature crest 

Overtopping Hours 
Proxy for flooding 

TWL > backshore feature crest  

Unsafe Beach 
Recreation Hours 

 

Proxy for usability of the beach  
(too narrow to play, work, etc.) 

Beach width < 10m 
during daylight hours 
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Hotspot Identification 

To identify areas that experience a large change in hazard impacts compared to 
present day conditions, we propose a novel normalized hotspot indicator: 

𝐻𝑜𝑡𝑠𝑝𝑜𝑡 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 ൌ  𝐼𝑚𝑝𝑎𝑐𝑡 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 ൈ 𝑇𝑜𝑡𝑎𝑙 𝐷𝑖𝑓𝑓 𝑖𝑛 𝐻𝑜𝑢𝑟𝑠           (3) 

Where the impact multiplier is the factor by which the hazard impact increases 
from the initial to the final timestep, and the total difference in hours is the 
difference in impact hours between the final time step and the initial. 

Results and Discussion 

The Rockaway Beach Littoral Cell, hereafter called RBLC, currently experiences 
relatively low rates of collision (8.4% collision hours when averaged over space 
and 100 simulations), slightly higher rates of unsafe beach conditions (15.3%), 
and virtually no overtopping (0.12%). The 5th and 95th percentile uncertainty range 
bound these metrics by just a few percent for collision and beach safety hazards, 
and by less than 1% for overtopping. Table 2 shows a comparison of impact hours 
for RBLC associated with present-day conditions (0.0m SLR) and the impact 
hours of four different SLR scenarios by the end of the century.  

Table 2. Spatially Averaged Rockaway Beach Impact Hours from 2090-2100 

Hazard Metric Range 0.0m SLR 0.5m SLR 1.0m SLR 1.5m SLR 2.0m SLR 

Collision 

5th pct 6.82 % 8.15 % 10.7 % 14.5 % 20.9 % 

Mean 8.40 % 9.99 % 12.9 % 17.3 % 24.3 % 

95th pct 10.1 % 11.9 % 15.3 % 20.2 % 27.9 % 

Beach Safety 

5th pct 12.1 % 14.2 % 18.1 % 23.8 % 32.4 % 

Mean 15.3 % 17.5 % 21.8 % 27.8 % 36.5 % 

95th pct 18.8 % 21.2 % 25.7 % 31.9 % 40.7 % 

Overtopping 

5th pct 0.06 % 0.09 % 0.14 % 0.24 % 0.39 % 

Mean 0.12 % 0.16 % 0.23 % 0.36 % 0.59 % 

95th pct 0.18 % 0.23 % 0.33 % 0.51 % 0.80 % 

There are a few important results that we can gather from this table. First, under 
the different SLR scenarios, collision will increase to a range between 10% to 
25% impact hours, unsafe beach hours increase to a range of 17.5% to 36.5 %, 
and overtopping will remain close to zero with a range of 0.2% to 0.6% impact 
hours. As such the RBLC community may decide to focus adaptation efforts on 
erosion and beach safety hazards, as flooding will remain rare even under the most 
extreme SLR scenario. Second, as we go to higher SLR scenarios the uncertainty 
of hazard impacts increases along with the total number of impact hours. And 
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finally, the range of uncertainty associated with SLR exceeds the uncertainty 
associated with natural climate variability (derived from the 100 TESLA 
simulations) by the end of the century, but not greatly. For example, focusing on 
collision, the uncertainty range associated with SLR is 14.4%, but the uncertainty 
associated with natural climate variability goes up to 7%, indicating that the 
inherent variability of TWL drivers has a significant influence on the total 
uncertainty of hazard impacts and should not be ignored.  

While averaging spatially over the littoral cell is a useful summary tool, it omits 
nuance associated with local bathymetry and topography. To explore the spatial 
variability of impact hazards in greater detail, hazard maps (e.g., Figure 3) are 
useful tools. Figure 3 shows mean hazard impacts and their associated 5th to 95th 
percentile range under present day conditions and at the end of the century under 
the 2.0m global SLR scenario. From these maps we see that while on average the 
RBLC experiences 24% collision hours by the end of the century, some areas will 
need to be prepared for 40 to 60% impact hours under this SLR scenario, while 
others will see virtually no change in erosion hazard. Furthermore, the maps 
contextualize where hazardous conditions occur and help us interpret their effect 
on the community. In RBLC, collision and beach safety hazards are focused on 
headlands, where erosion and sandy beach recreation may be less of a concern. 
However, there are also considerable collision and beach safety hazards near the 
mouths of estuaries, which are susceptible to erosional and beach narrowing 
hazards, and are of significant recreational, cultural, and economic value.  

To better identify where hazard impacts will undergo the greatest change, we 
employ the normalized hotspot indicator metric (Figure 4). We incorporate the 
impact multiplier into the hotspot indicator to emphasize regions that rarely or 
never experience a hazard under current conditions but will experience an increase 
in the future. Community members in these areas may presently feel no incentive 
to prepare for changing conditions and may therefore be relatively unprepared for 
increases in hazards due to a historical sense of security.  

Figure 4 highlights that the impact hours multiplier and the total difference in 
impact hours can have high values in different locations, but the hotspot indicator 
only scores highly in areas where both values are large. In RBLC, the impact 
multiplier for overtopping can extremely large (or infinite) as there are many 
locations where there is a small value of final overtopping hours divided by initial 
overtopping hours zero or close to zero. However, the total increase in the impact 
hours is also near zero, so there are very few locations that score highly on the 
hotspot indicator scale. Conversely, beach safety has a large increase in the total 
impact hours, but the impact multiplier is relatively low (as beach safety started 
with relatively high impact hours in the present decade). As such, the beach safety 
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metric also has low hotspot indicator scores. Collision is the only hazard metric 
that has high values for the impact multiplier and total difference in impact hours. 
This metric has the highest hotspot indicator scores for the RBLC region. 
Therefore, this community may want to focus adaptation efforts on areas with 
high collision hotspot scores. 

 

Figure 3. Percent impact hours for global SLR = 2.0m by 2100 averaged over 100 simulations during 
present day conditions (2020-2030) and at the end of the century (2090-2100) for collision (c), beach 
safety (s), and overtopping (o) hazard metrics. Panels on the right show the range of uncertainty 
between 95th and 5th percent confidence intervals.  

 

Figure 4. Metrics to identify hotspots (see Eq. 3) in future hazard activity for Rockaway Beach littoral 
cell under global SLR = 2.0m by 2100 for collision (c), beach safety (s), and overtopping (o) hazard 
metrics. 
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Conclusion 

The results shown here for a subset of Cascadia, USA highlight how useful 
spatially varying, scenario-based hazard impacts assessments and hotspot 
indicators are for identifying which areas and types of hazards may require 
increased adaptation support. In the Rockaway Beach Littoral Cell (RBLC), 
collision and beach safety are the primary hazards impacting the coast over the 
next century. However probabilistic simulation modeling has shown that these 
hazards are highly spatially variable. Furthermore, collision hotspots are found 
along much of the RBLC sandy beaches, while overtopping and beach safety 
undergo much less dramatic changes from present day conditions even under the 
most extreme SLR scenario.  

RBLC results also showcase the value in combining stochastic TWLs derived 
from TESLA with a hazard impact framework to assess uncertainty through the 
simulation of both chronic and extreme conditions. This approach enables us to 
piece apart the relative uncertainty of hazards as driven by SLR versus natural 
variability (caused by variation in climate, weather, and hydrodynamic drivers). 
Future work will focus on exploring the relative importance of ENSO (AWTs), 
synoptic weather (DWTs), and SLR in driving hazards in the Cascadia region over 
different timescales. Future work will also present a more extensive analysis of 
the sources of hazard impact uncertainty and how they vary spatially and 
temporally while expanding the presentation of results to include the full Cascadia 
region.  

This probabilistic, regional scale hazard impact assessment was produced with 
deep stakeholder engagement and will be a critical component to adaptation 
planning efforts in the Cascadia region. 
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