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Abstract: Prediction of shoreline evolution in coastal environments is critical to aid
adaptation strategy planning for coastal communities. To perform reliable predictions,
process-based shoreline change models have recently gained popularity in many
applications. The study region here, Tillamook County, Oregon, on the US Pacific
Northwest coast, has recently been experiencing elevated shoreline erosion rates. The
inherent uncertainties driving coastal change, e.g., sea-level rise and changing patterns
of storminess, emphasize the need for robust shoreline evolution predictions in this
region. To this end, we applied CoSMoS-COAST, an ensemble data-assimilated
shoreline model that simulates short- and long-term shoreline change processes. We
calibrated and validated the model using the hindcasted wave time series and observed
shoreline positions and found a strong correlation between the number of observed
shoreline positions and the model’s hindcasting skill. Moreover, results revealed an
alongshore close-to-uniform shoreline change rate in the past several years, mainly
driven by short-term, wave-driven processes. So far CoOSMoS-COAST has performed
satisfactorily with the spatially sparse supply of quality historical shoreline positions
in our application. Moreover, this model resolves various components (e.g., short- and
long-term processes) in the shoreline change sufficiently. This study represents a
starting point in the long-term projection of shoreline evolution throughout the entire
PNW (Oregon and Washington) coastline since Tillamook County features the
majority of the coastal settings present in other coastal regions in the PNW.

Introduction

Beaches serve as the first line of defense in coastal environments, acting as buffers
against various coastal hazards, e.g., coastal flooding and dune/bluff erosion.
Thus, accurate and reliable quantitative predictions of shoreline evolution are of
paramount importance to inform adaptation planning measures and enhance
coastal resiliency (Nicholls et al., 2016; Montafio et al., 2020). Shoreline
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evolution typically occurs at several time scales, ranging from days/weeks (e.g.,
storm-driven erosion events; usually recoverable) to decades (e.g., chronic
erosion; usually irrecoverable) (Vitousek et al., 2022b). Therefore, it is crucial to
incorporate various processes in predictive modeling efforts since shoreline
evolution is often driven by short-term (e.g., cross-shore sediment transport) and
long-term (e.g., longshore sediment transport and sea-level rise-induced shoreline
migration) processes (Montafio et al., 2020) and their physical drivers such as
waves, seca-level rise, water-level variability, and other terrestrial and
oceanographic processes.

To simulate future shoreline evolution, many well-tested numerical models have
emerged, generally falling under two categories of (1) physics-based models (e.g.,
Delft3D — Lesser et al., 2004) and (2) process-based (reduced-physics) models
(e.g., CoOSMoS-COAST - Vitousek et al., 2017, 2022b, and LX-Shore — Robinet
et al., 2018). Physics-based models, while proven to deliver robust results for
event-driven (short time scale) and spatial extents of several km simulations
(Roelvink et al., 2009), are generally inappropriate for simulating long-term
(decades) and large-scale (> 10s of km) shoreline evolution due to their
prohibitive computational costs and significant error/uncertainty build-up
(Robinet et al., 2018; French et al., 2016). Thus, the growing need for long-term
and large-scale predictions of shoreline change has led to the development and
application of data-driven, process-based models, which have demonstrated
considerable skill across a wide range of spatiotemporal scales and coastal
environments, while incorporating the major processes contributing to shoreline
evolution.

The focus region of this study, the US Pacific Northwest (PNW), is projected to
experience greater levels of coastal hazards due to projected sea-level variability,
changing storminess patterns, and potential changes in the frequency and intensity
of El Nifio events. Many PNW communities, such as Tillamook County, Oregon,
have recently been experiencing higher shoreline change rates (SCRs) compared
to historical SCRs (Ruggiero, 2013; Anderson et al., 2018). For example, the
percentage of the Oregon coastline experiencing modern (2002-2016) erosion
rates > 1 m/yr compared to the long-term (1967-2002) has risen from 18% to 42%
(Light, 2021). The increase of erosional behavior in recent SCRs emphasizes the
need for robust multiscale projections of future SCRs while accounting for the
uncertainties in climate forcing, such as wave and sea-level variability, as well as
adaptation measures enacted by coastal communities.

The current work represents a starting point in our effort to predict long-term,
large-scale shoreline evolution across the entire PNW. Here, we focus on
modeling shoreline change in Tillamook County, Oregon. To this end, we take
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advantage of both field data collection campaigns and a recently updated process-
based model, called CoSMoS-COAST, that incorporates components of short-
and long-term shoreline change processes, e.g., cross-shore and longshore
sediment transport. First, we calibrate the model by assimilating the historical
shoreline observations (during 1997-2016), and then, we assess the model’s
performance in hindcasting observed shoreline positions during the validation
period (2016-2021). Ultimately, we evaluate the recent (2016-2021) SCRs
throughout the county’s coastline and compare them to the short-term/modern
(2002-2016) SCRs. Our findings will inform on the suitability of CoSMoS-
COAST, as a data-driven, process-based model, to be employed for the multiscale
projection of shoreline evolution in Tillamook County, Oregon, and eventually,
for the entire PNW under a broad range of climatic and anthropogenic coastal
management scenarios.

Study Site

Tillamook County, located in northwestern Oregon, is home to ~100 km of the
state’s coastline and offers many recreational, ecological, and aesthetic features
that the PNW beaches typically provide. This region features a broad variety of
coastal geomorphology, e.g., sandy beaches (dune-backed and riprap revetment-
backed; covering ~63% of the county’s coastline), bluff-backed beaches, cobble
and boulder beaches, and cliffs. Tillamook County, among other coastal
communities in the PNW, is currently experiencing heightened levels of coastal
issues including coastal flooding and erosion at some locations (Ruggiero et al.,
2013; Lipiec et al., 2018; Mills et al., 2018). While ~65% of the county’s coastline
is eroding, this erosional trend is anticipated to intensify under various physical
drivers such as the climate change-induced sea-level rise and possible changes in
storminess patterns (Ruggiero, 2013; Light, 2021), posing several threats to this
coastal environment.

Data and Methods

CoSMoS-COAST Governing Equation and Features

The model used here, CoOSMoS-COAST (Vitousek et al., 2017, 2022b), is a “one-
line” shoreline evolution model that integrates various short- and long-term
processes contributing to shoreline change. The model’s main governing equation
evaluates the variation of shoreline position (Y) over time (t) on each transect
(discussed below in the “Spatial Discretization” section) and is given by
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Term [1] in Eq. (1) incorporates the contribution of longshore sediment transport,
where d_ is the depth of closure, Q is the longshore sediment transport rate, and
X represents the alongshore (parallel to the local shoreline) coordinate. Term [2]
represents the shoreline recession due to sea-level rise, known as the “Bruun rule”,
where tan f is the active beach profile average slope, S is the magnitude of sea-
level rise, and c is a calibration coefficient. Term [3], defined as the long-term
shoreline trend, represents residual long-term sediment transport processes, €.g.,
fluvial sources and sinks of sediment, which are not contained in terms [1] and
[2]. Term [4] models the wave-driven, cross-shore sediment transport occurring
on a short-term/seasonal basis where Y., and 7 are the equilibrium shoreline
position and equilibrium time scale. Lastly, term [5] aims to estimate the
parametric uncertainty in the model (see Vitousek et al., 2017, 2022b for more
details on Eq. (1)).

CoSMoS-COAST is equipped with an Ensemble Kalman Filter (EnKF) data
assimilation method (with 1,000 ensemble members) which enables it to nudge
the model solution and model parameters to best fit the observed data during the
calibration (training) period. In other words, as the model assimilates historical
shoreline positions during the simulation process, it calibrates multiple
coefficients/variables in Eq. (1), such as v, in term [3], adjusting the model’s
performance in hindcasting the historical shoreline positions, which lends higher
confidence in the model’s ability to predict future shoreline evolution.
Furthermore, the recent “localization” feature available in the data assimilation
method enables transects with many observed historical shoreline positions (i.e.,
data-rich transects) to influence/adjust the model solution and parameters on
adjacent transects with limited observed historical shoreline positions (i.e., data-
poor transects) (see Appendix B in Vitousek et al., 2022b for more details on data
assimilation).
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Spatial Discretization

Tillamook County’s coastline is discretized into shore-perpendicular transects
spaced every 50 m in the alongshore direction (X), representing the model “grid”.
To produce these transects, we digitized a “reference shoreline”, as a visually
identifiable shoreline, from the latest high-resolution satellite imagery available
on Google Earth Pro (https://www.google.com/earth/versions), as well as a “non-
erodible shoreline” located on the onshore side of the reference shoreline
(following the method described in Vitousek et al., 2017). The non-erodible
shoreline represents the furthest-onshore extent of beaches that are typically
constrained by dunes, vegetation, cliffs, bluffs, or urban development. As shown
in Figure 1, transects are straight lines extending from the non-erodible shoreline
as their onshore limit to an offshore point while perpendicular to the reference
shoreline. We also labeled groups of model transects into so-called “littoral cells”,
i.e., sedimentologically isolated stretches, along Tillamook County’s coastline:
(1) Rockaway, (2) Netarts, (3) Sand Lake, and (4) Neskowin, which are separated
via distinguished headlands along the coastline. Transect-based discretization in
CoSMoS-COAST allows for covering long, irregular coastlines, where these
transects act as “rails”, along which the shoreline position can evolve through
time.

CoSMoS-COAST is capable of predicting shoreline evolution for different
coastal settings (i.e., different beach types) by incorporating relevant terms among
terms [1]-[4] in Eq. (1). Shoreline evolution in long, sandy beaches is performed
via the “full-model” version of Eq. (1), i.e., all terms in Eq. (1) contribute to the
shoreline evolution (transects designated as “full-model” are shown in green in
Figure 1). On the other hand, in short, sandy beaches (“pocket beaches™), long-
term alongshore sediment transport is negligible and term [1] is omitted (these
transects are specified as “cross-shore only” and are depicted in yellow in
Figure 1). In the case of cobble or heterogeneous sandy/rocky beaches, longshore
and cross-shore sediment transport assumptions (terms [1] and [4]) are not valid
anymore and these terms are ignored (transects specified as “rate only” and
represented in red in Figure 1). Finally, no predictions for shoreline evolution are
carried out for the coastal settings not discussed above, e.g., sea cliffs and rocky
shorelines, and their associated transects are labeled as “no prediction” (depicted
in purple in Figure 1). Among the 1,678 transects defined for this study region
(numbered from south to north), “full model”, “cross-shore only”, “rate only”,
and “no prediction” types are assigned to 76%, 1%, 4.5%, and 18.5% of the
transects, respectively.
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Fig. 1. 50-m spaced transects and their types along Tillamook County’s four littoral cells used in
CoSMoS-COAST. Base maps from Google Earth Pro.

Wave Forcing

Longshore and cross-shore sediment transport processes are driven by the
interaction of waves, shoreline orientation, and profile elevation, respectively,
over various time scales. Thus, waves play an integral role in the prediction of
shoreline evolution, which here are simulated via terms [1] and [4] in Eq. (1). To
evaluate these terms at any time, the time series of bulk parameter wave triplets,
i.e., (1) significant wave height, (2) peak wave period, and (3) incident wave
direction, are required for the simulation period. Here, we utilized CSIRO’s
hindcasted wave time series (available for 1979-present; Durrant et al., 2019) at
the closest offshore, deep-water location (node) to Tillamook County. Since the
littoral cells along Tillamook County’s coastline are relatively long [O(10s of
km)], we needed to account for the alongshore nonuniformity of the wave
conditions. We downscaled (propagated) the deep-water wave time series to
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alongshore varying (~100 m spatial resolution along the coastline) 20 m depth
contour conditions, which is very close to the offshore end of each individual
model transect. This propagation was carried out via previously developed look-
up tables as a surrogate for SWAN model (Allan et al., 2015; Booij et al., 1999),
which implements shoaling and refraction during wave propagation. Then, the
daily average of the wave triplets time series is used to hindcast shoreline
positions via CoSMoS-COAST, which applies a daily model time step.

Historical Shoreline Positions

Historical shoreline positions are essential for the calibration and validation of
CoSMoS-COAST model, as with any other numerical shoreline change model. In
this study, historical shoreline positions are extracted from two sources. The first
source, airborne LIDAR data, has provided us with three data sets, all of which
fully cover Tillamook County’s coastline (Light, 2021), collected in ~September
2002, ~June 2011, and ~May 2016, by NASA/USGS, USACE, and USGS,
respectively. The second source is the seasonal topographic GPS profile surveys,
available at many discrete locations along Tillamook County’s coastline (Allan &
Hart, 2008). This data set is spatially relatively sparse (~1 km spacing) but
provides seasonal (~3-month temporal resolution) observations at the majority of
the locations where the profile surveys are carried out, not covering Sand Lake
only among the four littoral cells. Satellite imagery-derived historical shoreline
positions, as another potential source, have emerged to be a game-changer in the
calibration and validation efforts in shoreline evolution modeling (Vos et al.,
2019; Vitousek et al., 2022a, b), although not incorporated in our study at this
time.

Model Performance Assessment

Assessment of model performance is heavily influenced by the quantity of the
available observed data (historical shoreline positions in our case). We rely on the
GPS- and LIDAR-derived historical shoreline positions during the validation
period (2016-2021) to quantify the performance of CoSMoS-COAST model. The
metric utilized here is the Root-Mean-Square-Error (RMSE), which is defined as

RMSE = "(Yobs - Ymod)z ’ (2)

where Y,,s and Y,,q are the observed and modeled shoreline positions,
respectively, during the validation period, and the overbar is the average over
time.
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Results

Using the CoSMoS-COAST model, we hindcasted the shoreline positions along
all littoral cells on Tillamook County’s coastline for the calibration (Jan 1, 1997
to Mar 31, 2016) and the validation (Apr 1, 2016 to Dec 31, 2020) periods using
the hindcasted wave time series and a sea-level rise scenario that results in 0.8 m
of rise by 2100 (i.e., the Intermediate scenario for PNW (Sweet et al., 2022)). The
model results are based on an ensemble of 1,000 simulations to account for the
model’s epistemic/parametric uncertainties. Figure 2 represents the wave heights
(Panel A) and hindcasted shoreline positions (Panel B) for the simulation period
at one of the transects (#1309) with a comparatively large number of
available/observed historical shoreline positions along Rockaway littoral cell. By
comparing these two panels, it is evident the model satisfactorily captures the
influence of the seasonal variability in the wave climate, where the low wave
energy during summer (high wave energy during winter) causes the shoreline
position to prograde (recede). This relationship between wave energy and
shoreline position is distinctly obvious during Winter 2016 when the significantly
heightened wave energy during the 2015/2016 El Nifio season (Barnard et al.,
2017) caused a sizeable recession of shoreline position. Moreover, as the model
assimilates more historical shoreline positions through time, the uncertainty of the
modeled shoreline positions (the width of the uncertainty bands in Figure 2B)
tends to decrease considerably, where data-rich periods constrain model
uncertainty and vice versa. We also calculated the modeled SCRs (via linear
regression) during the validation period at all transects (see the thick red line in
Figure 2) to compare with the modern (2002-2016) SCRs, as discussed below.

To assess the performance of the model in recreating historical shoreline
positions, we estimated the RMSE between the modeled and observed shoreline
positions via Eq. (2) during the validation period at all transects, represented in
Figure 3B (note that the star symbol in this figure represents transect #1309, which
is used in Figure 2, and the black dashed lines depict the latitudinal limits of
littoral cells, as well as in the following figures). A visual pattern can be detected
by examining the variation range of the RMSE values for different littoral cells
and comparing it to the number of total observed historical shoreline positions
(Nyps) during the hindcast period at transects present in these littoral cells
(Figure 3A). To uncover this pattern, we divided Tillamook County’s coastline
into three regions (1) Rockaway (shaded blue in Figure 2B), (2) Netarts and Sand
Lake (shaded green in Figure 2B), and (3) Neskowin (shaded red in Figure 2B).
We found the standard deviation of the RMSE values (ozpsg) for all transects
(only transects with N,;s = 4) in regions 1 to 3 to be ~6.3 m (~1.5 m), ~9.8 m
(~14.3 m), and ~9.1 m (~2.6 m), where the average of N, is ~4.3 (~62), ~2.6
(~9), and ~3.6 (~47), respectively. This notable inverse correlation between ogp s
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and N, throughout these three regions is mainly due to the localization effect
embedded in the data assimilation technique in CoSMoS-COAST, where data-
rich (N,,s; = 45) transects assist in the assimilation of the adjacent data-poor
(Nops < 3) transects to optimally infer model parameters during the calibration
period.
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Fig. 2. (A) Wave forcing, and (B) observed and modeled shoreline positions during the hindcast period
at transect #1309 (located in Rockaway littoral cell).

We estimated the average of RMSE across all data-rich (N,,s = 45) transects
(shown in orange in Figure 3B) as ~9.2 m, which is comparable to the range of
RMSE values for well-calibrated process-based shoreline evolution models (~5-
8 m; Montaiio et al., 2020). Note that in Figure 3B we find a sizable difference in
RMSE values as a function of the total number of observations (N, ) for several
transects in Rockaway and Neskowin littoral cells and the rest of the transects.
For many transects, GPS-derived survey data is unavailable, and the only source
of observed data is the spatially continuous, yet temporally sparse LIDAR-derived
shoreline data which fully covers all littoral cells. The transects with significantly
low/high RMSE values are mainly associated with N,,s < 3, where only one of
these data points (extracted from the 2016 LIDAR data set) lies within the
validation period and is used in the calculation of RMSE, being insufficient to
objectively assess the model’s performance at these transects. Hence, using only
one shoreline data point for model validation at certain transects in some cases
fortuitously results in low RMSE values, and, in other cases, unluckily results in
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high RMSE values. It is worth mentioning that the transects located in close
proximity to river/bay entrances (dashed red lines in Figure 3B) generally report
the highest RMSE values. This can be due to unresolved processes (e.g., fluvial
sources and sinks) not explicitly integrated into the model’s governing equations.
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Fig. 3. (A) The total number of observed historical shoreline positions and (B) the RMSE values during
the validation (2016-2021) period at all transects. Base maps are from Google Earth Pro.

Finally, we exploited the modeled shoreline positions during the validation period
to evaluate the interannual trend in shoreline positions (shoreline change rate
(SCR)) at all transects via linear regression (e.g., see the thick red line in
Figure 2B). This allows us to compare the modeled recent (2016-2021) SCRs to
available modern SCRs (2002-2016 observed endpoint rates; from Light, 2021),
as depicted in Figure 4A, where SCR values between —0.25 m/yr and 0.25 m/yr
are designated as “stable” (green shaded area in Figure 4A), < —0.25 m/yr as
“erosional” (red shaded area in Figure 4A), and > 0.25 m/yr as “accretional” (blue
shaded area in Figure 4A), respectively.
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The difference between the observed 2002-2016 shoreline trend and the model-
predicted 2016-2021 trend (SCRyp16-2021 — SCR2002-2016; Shown in Figure 4B)
highlights that at the majority of the transects (specifically in Netarts and
Neskowin littoral cells) the erosional behavior persists, while at a smaller fraction
of transects the older accretional regimes shift to erosional (especially in
Rockaway and Sand Lake littoral cells). Note that the curves in Figures 4A and
4B are low-pass-filtered for better representation of alongshore variability. Only
at a negligible fraction of transects does the regime shift from erosional to
accretional, similar to the persistence of accretional behavior. Figure 4C
represents the percentage of transects in different regimes during the 2002-2016
and 2016-2021 periods at all littoral cells, where a prevailing increase in erosional
transects is estimated. This underscores the emergence of a growing erosional
trend on Tillamook County’s coastline. To assess the severity of this trend, we
categorized the erosional SCRs into three different erosional regimes: (1) mildly
erosional (-1 m/yr <SCR <-0.25 m/yr), (2) moderately erosional (-3 m/yr <SCR
< -1 m/yr), and (3) extremely erosional (SCR < -3 m/yr). The percentage of
erosional transects lying in each of these erosional regimes is shown in Figure 4D,
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pointing out that from 2002-2016 to 2016-2021 the severity of erosional behavior
across all littoral cells (except Netarts) is alleviated, yet almost all of the transects
shifting from accretional to erosional regime end up in the mildly erosional
regime. This highlights that almost no extreme erosional behavior was estimated
in any of the littoral cells during 2016-2021 despite the overall increase in
erosional behavior.

Discussion and Conclusions

In this study, we calibrated and validated a process-based, one-line shoreline
evolution model, CoOSMoS-COAST, which incorporates multiple short- and long-
term components of multiscale shoreline evolution. We found that the model’s
performance is strongly correlated with the number of observed shoreline
positions during the calibration period. This emphasizes the importance of the
data quantity (i.e., the number of observed shoreline positions) in the application
of data-driven, process-based models, justifying the applicability of these models
to data-rich regions. Fortunately, the growing availability of satellite imagery-
derived shoreline positions can potentially enable the use of process-based models
for the projections of shoreline evolution globally, especially in historically data-
poor regions (Vos et al., 2019; Vitousek et al., 2022a). Additionally, we identified
an extensive increase in SCRs exhibiting erosion throughout Tillamook County’s
coastline during the 2016-2021 period compared to the 2002-2016 period, where
a higher fraction of transects exhibits erosional behavior. However, the intensity
of this new erosional behavior has been suppressed and considerably less extreme
erosion is detected during 2016-2021. Also, the SCRs during this period represent
a lack of significant alongshore variability. We hypothesize the approximately
alongshore-uniform erosional SCRs are driven partially by sea-level rise-induced
(“Bruunian”) change in shoreline positions (since here we focus on the recent
shoreline trends rather than long-term projections, sea-level rise-induced erosion
is anticipated to be relatively minor) but mainly forced by the cross-shore
sediment transport processes driven by increasing wave-energy flux during
winters 2019 and 2020 compared to winters 2017 and 2018. To test this
hypothesis, we calculated the 2016-2021 SCRs by ignoring cross-shore sediment
transport and sea-level rise-induced shoreline position changes (terms [2] and [4]
in Eq. (1)) and found that for almost all transects, 2016-2021 SCRs fall within the
stable region (results not shown here). This behavior is expected since by ignoring
terms [2] and [4] in Eq. (1), the only main remaining process is the gradients in
longshore sediment transport (term [1] in Eq. (1)), which as a process that usually
becomes more important over longer time scales, it does not influence the
shoreline positions drastically over the short span of time allocated (~4.5 years).
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So far CoSMoS-COAST has performed satisfactorily with the spatially sparse
supply of quality historical shoreline positions in our application. Moreover, this
model resolves various components (e.g., short- and long-term processes) in the
shoreline change sufficiently. In our next step of the current study, we will
incorporate satellite imagery-derived historical shoreline positions (CoastSat —
Vos et al., 2019) into our model, which will provide us with spatiotemporally
high-resolution data for the whole hindcasting duration. Consequently, the
potential increase in the model’s skill will lend confidence in its capability to
predict future (e.g., 2021-2100) shoreline evolution in Tillamook County under
several projected climatic and management/anthropogenic scenarios. This study
represents a starting point in the long-term projection of shoreline evolution
throughout the entire PNW (Oregon and Washington) coastline since Tillamook
County features the majority of the coastal settings present in other coastal regions
in the PNW. Ultimately, this long-term, large-scale projection will help to inform
on the risks associated with future shoreline evolution and assist coastal
management entities in the design and implementation of efficient adaptation
strategies to cope with these risks over various time scales.
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