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Abstract: Prediction of shoreline evolution in coastal environments is critical to aid 

adaptation strategy planning for coastal communities. To perform reliable predictions, 

process-based shoreline change models have recently gained popularity in many 

applications. The study region here, Tillamook County, Oregon, on the US Pacific 

Northwest coast, has recently been experiencing elevated shoreline erosion rates. The 

inherent uncertainties driving coastal change, e.g., sea-level rise and changing patterns 

of storminess, emphasize the need for robust shoreline evolution predictions in this 

region. To this end, we applied CoSMoS-COAST, an ensemble data-assimilated 

shoreline model that simulates short- and long-term shoreline change processes. We 

calibrated and validated the model using the hindcasted wave time series and observed 

shoreline positions and found a strong correlation between the number of observed 

shoreline positions and the model’s hindcasting skill. Moreover, results revealed an 

alongshore close-to-uniform shoreline change rate in the past several years, mainly 

driven by short-term, wave-driven processes. So far CoSMoS-COAST has performed 

satisfactorily with the spatially sparse supply of quality historical shoreline positions 

in our application. Moreover, this model resolves various components (e.g., short- and 

long-term processes) in the shoreline change sufficiently. This study represents a 

starting point in the long-term projection of shoreline evolution throughout the entire 

PNW (Oregon and Washington) coastline since Tillamook County features the 

majority of the coastal settings present in other coastal regions in the PNW. 

Introduction 

Beaches serve as the first line of defense in coastal environments, acting as buffers 

against various coastal hazards, e.g., coastal flooding and dune/bluff erosion. 

Thus, accurate and reliable quantitative predictions of shoreline evolution are of 

paramount importance to inform adaptation planning measures and enhance 

coastal resiliency (Nicholls et al., 2016; Montaño et al., 2020). Shoreline 
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evolution typically occurs at several time scales, ranging from days/weeks (e.g., 

storm-driven erosion events; usually recoverable) to decades (e.g., chronic 

erosion; usually irrecoverable) (Vitousek et al., 2022b). Therefore, it is crucial to 

incorporate various processes in predictive modeling efforts since shoreline 

evolution is often driven by short-term (e.g., cross-shore sediment transport) and 

long-term (e.g., longshore sediment transport and sea-level rise-induced shoreline 

migration) processes (Montaño et al., 2020) and their physical drivers such as 

waves, sea-level rise, water-level variability, and other terrestrial and 

oceanographic processes. 

 

To simulate future shoreline evolution, many well-tested numerical models have 

emerged, generally falling under two categories of (1) physics-based models (e.g., 

Delft3D ‒ Lesser et al., 2004) and (2) process-based (reduced-physics) models 

(e.g., CoSMoS-COAST ‒ Vitousek et al., 2017, 2022b, and LX-Shore ‒ Robinet 

et al., 2018). Physics-based models, while proven to deliver robust results for 

event-driven (short time scale) and spatial extents of several km simulations 

(Roelvink et al., 2009), are generally inappropriate for simulating long-term 

(decades) and large-scale (> 10s of km) shoreline evolution due to their 

prohibitive computational costs and significant error/uncertainty build-up 

(Robinet et al., 2018; French et al., 2016). Thus, the growing need for long-term 

and large-scale predictions of shoreline change has led to the development and 

application of data-driven, process-based models, which have demonstrated 

considerable skill across a wide range of spatiotemporal scales and coastal 

environments, while incorporating the major processes contributing to shoreline 

evolution. 

 

The focus region of this study, the US Pacific Northwest (PNW), is projected to 

experience greater levels of coastal hazards due to projected sea-level variability, 

changing storminess patterns, and potential changes in the frequency and intensity 

of El Niño events. Many PNW communities, such as Tillamook County, Oregon, 

have recently been experiencing higher shoreline change rates (SCRs) compared 

to historical SCRs (Ruggiero, 2013; Anderson et al., 2018). For example, the 

percentage of the Oregon coastline experiencing modern (2002-2016) erosion 

rates > 1 m/yr compared to the long-term (1967-2002) has risen from 18% to 42% 

(Light, 2021). The increase of erosional behavior in recent SCRs emphasizes the 

need for robust multiscale projections of future SCRs while accounting for the 

uncertainties in climate forcing, such as wave and sea-level variability, as well as 

adaptation measures enacted by coastal communities. 

 

The current work represents a starting point in our effort to predict long-term, 

large-scale shoreline evolution across the entire PNW. Here, we focus on 

modeling shoreline change in Tillamook County, Oregon. To this end, we take 

 D
o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 D

av
id

 H
o
n
eg

g
er

 o
n
 0

4
/1

7
/2

3
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



1439 

advantage of both field data collection campaigns and a recently updated process-

based model, called CoSMoS-COAST, that incorporates components of short- 

and long-term shoreline change processes, e.g., cross-shore and longshore 

sediment transport. First, we calibrate the model by assimilating the historical 

shoreline observations (during 1997-2016), and then, we assess the model’s 

performance in hindcasting observed shoreline positions during the validation 

period (2016-2021). Ultimately, we evaluate the recent (2016-2021) SCRs 

throughout the county’s coastline and compare them to the short-term/modern 

(2002-2016) SCRs. Our findings will inform on the suitability of CoSMoS-

COAST, as a data-driven, process-based model, to be employed for the multiscale 

projection of shoreline evolution in Tillamook County, Oregon, and eventually, 

for the entire PNW under a broad range of climatic and anthropogenic coastal 

management scenarios. 

Study Site 

Tillamook County, located in northwestern Oregon, is home to ~100 km of the 

state’s coastline and offers many recreational, ecological, and aesthetic features 

that the PNW beaches typically provide. This region features a broad variety of 

coastal geomorphology, e.g., sandy beaches (dune-backed and riprap revetment-

backed; covering ~63% of the county’s coastline), bluff-backed beaches, cobble 

and boulder beaches, and cliffs. Tillamook County, among other coastal 

communities in the PNW, is currently experiencing heightened levels of coastal 

issues including coastal flooding and erosion at some locations (Ruggiero et al., 

2013; Lipiec et al., 2018; Mills et al., 2018). While ~65% of the county’s coastline 

is eroding, this erosional trend is anticipated to intensify under various physical 

drivers such as the climate change-induced sea-level rise and possible changes in 

storminess patterns (Ruggiero, 2013; Light, 2021), posing several threats to this 

coastal environment. 

Data and Methods 

CoSMoS-COAST Governing Equation and Features 

The model used here, CoSMoS-COAST (Vitousek et al., 2017, 2022b), is a “one-

line” shoreline evolution model that integrates various short- and long-term 

processes contributing to shoreline change. The model’s main governing equation 

evaluates the variation of shoreline position (𝑌) over time (𝑡) on each transect 

(discussed below in the “Spatial Discretization” section) and is given by 
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డ௒డ௧  ൌ  െ ଵௗ೎ డொడ௑ᇣᇤᇥሾଵሿ ௟௢௡௚௦௛௢௥௘௧௥௔௡௦௣௢௥௧

െ ௖୲ୟ୬ఉ డௌడ௧ᇣᇤᇥሾଶሿ ௦௛௢௥௘௟௜௡௘ ௠௜௚௥௔௧௜௢௡ ௗ௨௘ ௧௢ ௦௘௔ି௟௘௩௘௟ ௥௜௦௘
൅ 𝑣௟௧ดሾଷሿ ௟௢௡௚ି௧௘௥௠ ௦௛௢௥௘௟௜௡௘ ௧௥௘௡ௗ;௨௡௥௘௦௢௟௩௘ௗ ௣௥௢௖௘௦௦௘௦

ᇩᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇫ௟௢௡௚ି௧௘௥௠ ௣௥௢௖௘௦௦௘௦
 

 ൅ ଵఛ ൫𝑌௘௤ െ 𝑌൯ᇣᇧᇧᇤᇧᇧᇥሾସሿ ௖௥௢௦௦ି௦௛௢௥௘ 

"௘௤௨௜௟௜௕௥௜௨௠"௧௥௔௡௦௣௢௥௧
൅ 𝜀⏟ሾହሿ ௔ௗௗ௜௧௜௩௘ ௡௢௜௦௘

ᇩᇭᇭᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇭᇭᇫ௦௛௢௥௧ି௧௘௥௠ ௣௥௢௖௘௦௦௘௦
. (1) 

Term [1] in Eq. (1) incorporates the contribution of longshore sediment transport, 

where 𝑑௖ is the depth of closure, 𝑄 is the longshore sediment transport rate, and 𝑋 represents the alongshore (parallel to the local shoreline) coordinate. Term [2] 

represents the shoreline recession due to sea-level rise, known as the “Bruun rule”, 

where tan𝛽 is the active beach profile average slope, 𝑆 is the magnitude of sea-

level rise, and 𝑐 is a calibration coefficient. Term [3], defined as the long-term 

shoreline trend, represents residual long-term sediment transport processes, e.g., 

fluvial sources and sinks of sediment, which are not contained in terms [1] and 

[2]. Term [4] models the wave-driven, cross-shore sediment transport occurring 

on a short-term/seasonal basis where 𝑌௘௤ and 𝜏 are the equilibrium shoreline 

position and equilibrium time scale. Lastly, term [5] aims to estimate the 

parametric uncertainty in the model (see Vitousek et al., 2017, 2022b for more 

details on Eq. (1)). 

 

CoSMoS-COAST is equipped with an Ensemble Kalman Filter (EnKF) data 

assimilation method (with 1,000 ensemble members) which enables it to nudge 

the model solution and model parameters to best fit the observed data during the 

calibration (training) period. In other words, as the model assimilates historical 

shoreline positions during the simulation process, it calibrates multiple 

coefficients/variables in Eq. (1), such as 𝑣௟௧ in term [3], adjusting the model’s 

performance in hindcasting the historical shoreline positions, which lends higher 

confidence in the model’s ability to predict future shoreline evolution. 

Furthermore, the recent “localization” feature available in the data assimilation 

method enables transects with many observed historical shoreline positions (i.e., 

data-rich transects) to influence/adjust the model solution and parameters on 

adjacent transects with limited observed historical shoreline positions (i.e., data-

poor transects) (see Appendix B in Vitousek et al., 2022b for more details on data 

assimilation). 
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Spatial Discretization 

Tillamook County’s coastline is discretized into shore-perpendicular transects 

spaced every 50 m in the alongshore direction (𝑋), representing the model “grid”. 

To produce these transects, we digitized a “reference shoreline”, as a visually 

identifiable shoreline, from the latest high-resolution satellite imagery available 

on Google Earth Pro (https://www.google.com/earth/versions), as well as a “non-

erodible shoreline” located on the onshore side of the reference shoreline 

(following the method described in Vitousek et al., 2017). The non-erodible 

shoreline represents the furthest-onshore extent of beaches that are typically 

constrained by dunes, vegetation, cliffs, bluffs, or urban development. As shown 

in Figure 1, transects are straight lines extending from the non-erodible shoreline 

as their onshore limit to an offshore point while perpendicular to the reference 

shoreline. We also labeled groups of model transects into so-called “littoral cells”, 

i.e., sedimentologically isolated stretches, along Tillamook County’s coastline: 

(1) Rockaway, (2) Netarts, (3) Sand Lake, and (4) Neskowin, which are separated 

via distinguished headlands along the coastline. Transect-based discretization in 

CoSMoS-COAST allows for covering long, irregular coastlines, where these 

transects act as “rails”, along which the shoreline position can evolve through 

time. 

 

CoSMoS-COAST is capable of predicting shoreline evolution for different 

coastal settings (i.e., different beach types) by incorporating relevant terms among 

terms [1]-[4] in Eq. (1). Shoreline evolution in long, sandy beaches is performed 

via the “full-model” version of Eq. (1), i.e., all terms in Eq. (1) contribute to the 

shoreline evolution (transects designated as “full-model” are shown in green in 

Figure 1). On the other hand, in short, sandy beaches (“pocket beaches”), long-

term alongshore sediment transport is negligible and term [1] is omitted (these 

transects are specified as “cross-shore only” and are depicted in yellow in  

Figure 1). In the case of cobble or heterogeneous sandy/rocky beaches, longshore 

and cross-shore sediment transport assumptions (terms [1] and [4]) are not valid 

anymore and these terms are ignored (transects specified as “rate only” and 

represented in red in Figure 1). Finally, no predictions for shoreline evolution are 

carried out for the coastal settings not discussed above, e.g., sea cliffs and rocky 

shorelines, and their associated transects are labeled as “no prediction” (depicted 

in purple in Figure 1). Among the 1,678 transects defined for this study region 

(numbered from south to north), “full model”, “cross-shore only”, “rate only”, 

and “no prediction” types are assigned to 76%, 1%, 4.5%, and 18.5% of the 

transects, respectively. 
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Fig. 1. 50-m spaced transects and their types along Tillamook County’s four littoral cells used in 

CoSMoS-COAST. Base maps from Google Earth Pro. 

Wave Forcing 

Longshore and cross-shore sediment transport processes are driven by the 

interaction of waves, shoreline orientation, and profile elevation, respectively, 

over various time scales. Thus, waves play an integral role in the prediction of 

shoreline evolution, which here are simulated via terms [1] and [4] in Eq. (1). To 

evaluate these terms at any time, the time series of bulk parameter wave triplets, 

i.e., (1) significant wave height, (2) peak wave period, and (3) incident wave 

direction, are required for the simulation period. Here, we utilized CSIRO’s 

hindcasted wave time series (available for 1979-present; Durrant et al., 2019) at 

the closest offshore, deep-water location (node) to Tillamook County. Since the 

littoral cells along Tillamook County’s coastline are relatively long [O(10s of 

km)], we needed to account for the alongshore nonuniformity of the wave 

conditions. We downscaled (propagated) the deep-water wave time series to 
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alongshore varying (~100 m spatial resolution along the coastline) 20 m depth 

contour conditions, which is very close to the offshore end of each individual 

model transect. This propagation was carried out via previously developed look-

up tables as a surrogate for SWAN model (Allan et al., 2015; Booij et al., 1999), 

which implements shoaling and refraction during wave propagation. Then, the 

daily average of the wave triplets time series is used to hindcast shoreline 

positions via CoSMoS-COAST, which applies a daily model time step. 

Historical Shoreline Positions 

Historical shoreline positions are essential for the calibration and validation of 

CoSMoS-COAST model, as with any other numerical shoreline change model. In 

this study, historical shoreline positions are extracted from two sources. The first 

source, airborne LIDAR data, has provided us with three data sets, all of which 

fully cover Tillamook County’s coastline (Light, 2021), collected in ~September 

2002, ~June 2011, and ~May 2016, by NASA/USGS, USACE, and USGS, 

respectively. The second source is the seasonal topographic GPS profile surveys, 

available at many discrete locations along Tillamook County’s coastline (Allan & 

Hart, 2008). This data set is spatially relatively sparse (~1 km spacing) but 

provides seasonal (~3-month temporal resolution) observations at the majority of 

the locations where the profile surveys are carried out, not covering Sand Lake 

only among the four littoral cells. Satellite imagery-derived historical shoreline 

positions, as another potential source, have emerged to be a game-changer in the 

calibration and validation efforts in shoreline evolution modeling (Vos et al., 

2019; Vitousek et al., 2022a, b), although not incorporated in our study at this 

time. 

Model Performance Assessment 

Assessment of model performance is heavily influenced by the quantity of the 

available observed data (historical shoreline positions in our case). We rely on the 

GPS- and LIDAR-derived historical shoreline positions during the validation 

period (2016-2021) to quantify the performance of CoSMoS-COAST model. The 

metric utilized here is the Root-Mean-Square-Error (RMSE), which is defined as 

 𝑅𝑀𝑆𝐸 ൌ ටሺ𝑌௢௕௦ െ 𝑌௠௢ௗሻଶതതതതതതതതതതതതതതതതതതത , (2) 

where 𝑌௢௕௦ and 𝑌௠௢ௗ are the observed and modeled shoreline positions, 

respectively, during the validation period, and the overbar is the average over 

time. 

 D
o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 D

av
id

 H
o
n
eg

g
er

 o
n
 0

4
/1

7
/2

3
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



1444 

Results 

Using the CoSMoS-COAST model, we hindcasted the shoreline positions along 

all littoral cells on Tillamook County’s coastline for the calibration (Jan 1, 1997 

to Mar 31, 2016) and the validation (Apr 1, 2016 to Dec 31, 2020) periods using 

the hindcasted wave time series and a sea-level rise scenario that results in 0.8 m 

of rise by 2100 (i.e., the Intermediate scenario for PNW (Sweet et al., 2022)). The 

model results are based on an ensemble of 1,000 simulations to account for the 

model’s epistemic/parametric uncertainties. Figure 2 represents the wave heights 

(Panel A) and hindcasted shoreline positions (Panel B) for the simulation period 

at one of the transects (#1309) with a comparatively large number of 

available/observed historical shoreline positions along Rockaway littoral cell. By 

comparing these two panels, it is evident the model satisfactorily captures the 

influence of the seasonal variability in the wave climate, where the low wave 

energy during summer (high wave energy during winter) causes the shoreline 

position to prograde (recede). This relationship between wave energy and 

shoreline position is distinctly obvious during Winter 2016 when the significantly 

heightened wave energy during the 2015/2016 El Niño season (Barnard et al., 

2017) caused a sizeable recession of shoreline position. Moreover, as the model 

assimilates more historical shoreline positions through time, the uncertainty of the 

modeled shoreline positions (the width of the uncertainty bands in Figure 2B) 

tends to decrease considerably, where data-rich periods constrain model 

uncertainty and vice versa. We also calculated the modeled SCRs (via linear 

regression) during the validation period at all transects (see the thick red line in 

Figure 2) to compare with the modern (2002-2016) SCRs, as discussed below. 

 

To assess the performance of the model in recreating historical shoreline 

positions, we estimated the RMSE between the modeled and observed shoreline 

positions via Eq. (2) during the validation period at all transects, represented in 

Figure 3B (note that the star symbol in this figure represents transect #1309, which 

is used in Figure 2, and the black dashed lines depict the latitudinal limits of 

littoral cells, as well as in the following figures). A visual pattern can be detected 

by examining the variation range of the RMSE values for different littoral cells 

and comparing it to the number of total observed historical shoreline positions 

(𝑁௢௕௦) during the hindcast period at transects present in these littoral cells  

(Figure 3A). To uncover this pattern, we divided Tillamook County’s coastline 

into three regions (1) Rockaway (shaded blue in Figure 2B), (2) Netarts and Sand 

Lake (shaded green in Figure 2B), and (3) Neskowin (shaded red in Figure 2B). 

We found the standard deviation of the RMSE values (𝜎ோெௌா) for all transects 

(only transects with 𝑁௢௕௦ ൒ 4) in regions 1 to 3 to be ~6.3 m (~1.5 m), ~9.8 m 

(~14.3 m), and ~9.1 m (~2.6 m), where the average of 𝑁௢௕௦ is ~4.3 (~62), ~2.6 

(~9), and ~3.6 (~47), respectively. This notable inverse correlation between 𝜎ோெௌா 
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and 𝑁௢௕௦ throughout these three regions is mainly due to the localization effect 

embedded in the data assimilation technique in CoSMoS-COAST, where data-

rich (𝑁௢௕௦ ൒ 45) transects assist in the assimilation of the adjacent data-poor 

(𝑁௢௕௦ ൑ 3) transects to optimally infer model parameters during the calibration 

period. 

 

Fig. 2. (A) Wave forcing, and (B) observed and modeled shoreline positions during the hindcast period 

at transect #1309 (located in Rockaway littoral cell). 

 

We estimated the average of RMSE across all data-rich (𝑁௢௕௦ ൒ 45) transects 

(shown in orange in Figure 3B) as ~9.2 m, which is comparable to the range of 

RMSE values for well-calibrated process-based shoreline evolution models (~5-

8 m; Montaño et al., 2020). Note that in Figure 3B we find a sizable difference in 

RMSE values as a function of the total number of observations (𝑁௢௕௦) for several 

transects in Rockaway and Neskowin littoral cells and the rest of the transects. 

For many transects, GPS-derived survey data is unavailable, and the only source 

of observed data is the spatially continuous, yet temporally sparse LIDAR-derived 

shoreline data which fully covers all littoral cells. The transects with significantly 

low/high RMSE values are mainly associated with 𝑁௢௕௦ ൑ 3, where only one of 

these data points (extracted from the 2016 LIDAR data set) lies within the 

validation period and is used in the calculation of RMSE, being insufficient to 

objectively assess the model’s performance at these transects. Hence, using only 

one shoreline data point for model validation at certain transects in some cases 

fortuitously results in low RMSE values, and, in other cases, unluckily results in 
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high RMSE values. It is worth mentioning that the transects located in close 

proximity to river/bay entrances (dashed red lines in Figure 3B) generally report 

the highest RMSE values. This can be due to unresolved processes (e.g., fluvial 

sources and sinks) not explicitly integrated into the model’s governing equations. 

 

Fig. 3. (A) The total number of observed historical shoreline positions and (B) the RMSE values during 

the validation (2016-2021) period at all transects. Base maps are from Google Earth Pro. 

 

Finally, we exploited the modeled shoreline positions during the validation period 

to evaluate the interannual trend in shoreline positions (shoreline change rate 

(SCR)) at all transects via linear regression (e.g., see the thick red line in  

Figure 2B). This allows us to compare the modeled recent (2016-2021) SCRs to 

available modern SCRs (2002-2016 observed endpoint rates; from Light, 2021), 

as depicted in Figure 4A, where SCR values between ‒0.25 m/yr and 0.25 m/yr 

are designated as “stable” (green shaded area in Figure 4A), < ‒0.25 m/yr as 

“erosional” (red shaded area in Figure 4A), and > 0.25 m/yr as “accretional” (blue 

shaded area in Figure 4A), respectively. 
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Fig. 4. (A) SCRs, (B) change in SCRs and regimes, (C) the percentage of transects in each SCR regime, 

and (D) the percentage of erosional transects in each erosional regime during each period. 

 

The difference between the observed 2002-2016 shoreline trend and the model-

predicted 2016-2021 trend (𝑆𝐶𝑅ଶ଴ଵ଺ିଶ଴ଶଵ െ 𝑆𝐶𝑅ଶ଴଴ଶିଶ଴ଵ଺; shown in Figure 4B) 

highlights that at the majority of the transects (specifically in Netarts and 

Neskowin littoral cells) the erosional behavior persists, while at a smaller fraction 

of transects the older accretional regimes shift to erosional (especially in 

Rockaway and Sand Lake littoral cells). Note that the curves in Figures 4A and 

4B are low-pass-filtered for better representation of alongshore variability. Only 

at a negligible fraction of transects does the regime shift from erosional to 

accretional, similar to the persistence of accretional behavior. Figure 4C 

represents the percentage of transects in different regimes during the 2002-2016 

and 2016-2021 periods at all littoral cells, where a prevailing increase in erosional 

transects is estimated. This underscores the emergence of a growing erosional 

trend on Tillamook County’s coastline. To assess the severity of this trend, we 

categorized the erosional SCRs into three different erosional regimes: (1) mildly 

erosional (‒1 m/yr < SCR < ‒0.25 m/yr), (2) moderately erosional (‒3 m/yr < SCR 

< ‒1 m/yr), and (3) extremely erosional (SCR < ‒3 m/yr). The percentage of 

erosional transects lying in each of these erosional regimes is shown in Figure 4D, 
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pointing out that from 2002-2016 to 2016-2021 the severity of erosional behavior 

across all littoral cells (except Netarts) is alleviated, yet almost all of the transects 

shifting from accretional to erosional regime end up in the mildly erosional 

regime. This highlights that almost no extreme erosional behavior was estimated 

in any of the littoral cells during 2016-2021 despite the overall increase in 

erosional behavior. 

Discussion and Conclusions 

In this study, we calibrated and validated a process-based, one-line shoreline 

evolution model, CoSMoS-COAST, which incorporates multiple short- and long-

term components of multiscale shoreline evolution. We found that the model’s 

performance is strongly correlated with the number of observed shoreline 

positions during the calibration period. This emphasizes the importance of the 

data quantity (i.e., the number of observed shoreline positions) in the application 

of data-driven, process-based models, justifying the applicability of these models 

to data-rich regions. Fortunately, the growing availability of satellite imagery-

derived shoreline positions can potentially enable the use of process-based models 

for the projections of shoreline evolution globally, especially in historically data-

poor regions (Vos et al., 2019; Vitousek et al., 2022a). Additionally, we identified 

an extensive increase in SCRs exhibiting erosion throughout Tillamook County’s 

coastline during the 2016-2021 period compared to the 2002-2016 period, where 

a higher fraction of transects exhibits erosional behavior. However, the intensity 

of this new erosional behavior has been suppressed and considerably less extreme 

erosion is detected during 2016-2021. Also, the SCRs during this period represent 

a lack of significant alongshore variability. We hypothesize the approximately 

alongshore-uniform erosional SCRs are driven partially by sea-level rise-induced 

(“Bruunian”) change in shoreline positions (since here we focus on the recent 

shoreline trends rather than long-term projections, sea-level rise-induced erosion 

is anticipated to be relatively minor) but mainly forced by the cross-shore 

sediment transport processes driven by increasing wave-energy flux during 

winters 2019 and 2020 compared to winters 2017 and 2018. To test this 

hypothesis, we calculated the 2016-2021 SCRs by ignoring cross-shore sediment 

transport and sea-level rise-induced shoreline position changes (terms [2] and [4] 

in Eq. (1)) and found that for almost all transects, 2016-2021 SCRs fall within the 

stable region (results not shown here). This behavior is expected since by ignoring 

terms [2] and [4] in Eq. (1), the only main remaining process is the gradients in 

longshore sediment transport (term [1] in Eq. (1)), which as a process that usually 

becomes more important over longer time scales, it does not influence the 

shoreline positions drastically over the short span of time allocated (~4.5 years). 
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So far CoSMoS-COAST has performed satisfactorily with the spatially sparse 

supply of quality historical shoreline positions in our application. Moreover, this 

model resolves various components (e.g., short- and long-term processes) in the 

shoreline change sufficiently. In our next step of the current study, we will 

incorporate satellite imagery-derived historical shoreline positions (CoastSat ‒ 
Vos et al., 2019) into our model, which will provide us with spatiotemporally 

high-resolution data for the whole hindcasting duration. Consequently, the 

potential increase in the model’s skill will lend confidence in its capability to 

predict future (e.g., 2021-2100) shoreline evolution in Tillamook County under 

several projected climatic and management/anthropogenic scenarios. This study 

represents a starting point in the long-term projection of shoreline evolution 

throughout the entire PNW (Oregon and Washington) coastline since Tillamook 

County features the majority of the coastal settings present in other coastal regions 

in the PNW. Ultimately, this long-term, large-scale projection will help to inform 

on the risks associated with future shoreline evolution and assist coastal 

management entities in the design and implementation of efficient adaptation 

strategies to cope with these risks over various time scales. 
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