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DEEP NEURAL NETWORK SOLUTIONS
FOR OSCILLATORY FREDHOLM INTEGRAL EQUATIONS

JIE JIANG AND YUESHENG XU

We studied the use of deep neural networks (DNNs) in the numerical solution of the oscillatory Fredholm
integral equation of the second kind. It is known that the solution of the equation exhibits certain oscillatory
behaviors due to the oscillation of the kernel. It was pointed out recently that standard DNNs favor low
frequency functions, and as a result, they often produce poor approximation for functions containing high
frequency components. We addressed this issue in this study. We first developed a numerical method
for solving the equation with DNN’s as an approximate solution by designing a numerical quadrature that
tailors to computing oscillatory integrals involving DNNs. We proved that the error of the DNN approxi-
mate solution of the equation is bounded by the training loss and the quadrature error. We then proposed a
multigrade deep learning (MGDL) model to overcome the spectral bias issue of neural networks. Numer-
ical experiments demonstrate that the MGDL model is effective in extracting multiscale information of
the oscillatory solution and overcoming the spectral bias issue from which a standard DNN model suffers.

1. Introduction

The goal of this paper is to develop an effective deep neural network (DNN) method for the numerical
solution of the oscillatory Fredholm integral equation of the second kind. The integral equation has
wide applications in physics and engineering, such as electromagnetic scattering [3; 6]. Even though the
numerical solution for the equation is a classical research topic [1; 3; 5; 23; 24], it is desirable to investigate
how DNNs can be effectively used to represent its numerical solution, given the recent success of the use
of DNNss in the numerical solution of partial differential equations [20; 21] and variational problems [9].

The solution of the oscillatory Fredholm integral equation of the second kind exhibits certain oscillation
due to the oscillation of its kernel, see [23]. In other words, the solution of the equation contains high
frequency components as a result of its involvement of an oscillatory kernel. A similar circumstance also
exists in the solution of the oscillatory Volterra integral equation [4]. This fact places a barrier for using
DNNs as an approximate solution of the equation because of the spectral bias phenomenon of neural
networks. The spectral bias phenomenon was discussed in [19], which showed that while neural networks
can approximate arbitrary functions, they favor low frequency ones, and as a result, they exhibit a bias
towards smooth functions. It is the aim of this paper to investigate how to overcome the spectral bias barrier.

Because of the nonlinearity of DNNs, solving the integral equation for a DNN approximate solution
boils down to solve a non-convex optimization problem by an iterative scheme. Every step of the iteration
requires to evaluate the objective function which involves oscillatory integrals. Hence, it is inevitable to
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compute oscillatory integrals at every step of the iteration. There is a large literature on the numerical
quadrature of oscillatory integrals. Computing integrals of the product of a smooth non-oscillatory
function and a structured oscillatory kernel function has a long history in numerical analysis. For example,
computing integrals involving the Fourier kernel, the Bessel kernel and the Gauss kernel was studied in
[12; 10], [7; 22] and [16], respectively. Existing quadrature methods for oscillatory integrals may be
divided into four major categories: asymptotic methods [12], Filon-type methods [10; 15; 16], Levin-type
methods [14; 17; 18] and numerical steepest descent methods [2]. All these methods require to know the
oscillation level of the integrand in advance. The oscillatory integrals appearing in the context of using
DNNs as approximate solutions are generated during the iteration and thus, their oscillatory levels cannot
be determined exactly before hand. Therefore, aforementioned methods cannot be applied directly to the
current situation. We will design a numerical quadrature that tailors to oscillatory integrals generated
during the iteration process and estimate its error bound. Moreover, we will establish the error estimate
that bounds the error of the DNN solution by the training loss and the quadrature error.

It is well understood that DNNs have the great expressiveness to present different scales of a function.
However, the standard DNN model is not always competent to extract multiscale information of a
function as discussed previously. The multigrade deep learning (MGDL) model tailors to the needs of the
extraction. The effectiveness of the MGDL model was demonstrated in [25; 26] and [27] in the context
of function approximation and numerical solutions of partial differential equations, respectively. We
will develop a MGDL model for the DNN solution of the oscillatory Fredholm integral equation and
demonstrate numerically that the proposed MGDL model can effectively extract multiscale components
of its oscillatory solution, leading to a promising method, unlike the standard DNN model which suffers
from the spectral bias.

We organize this paper in eight sections. In Section 2, we outline the oscillatory Fredholm integral
equations under consideration and discuss the oscillatory property of its solution. In Section 3, we
describe the DNN model for the numerical solution of the oscillatory integral equation and its associated
optimization problem. Section 4 is devoted to the development of a numerical quadrature scheme
for computing the oscillatory integrals involving DNNs generated during the iteration that solves the
optimization problem, and its error analysis. In Section 5, we establish the error estimate for the DNN
approximate solution bounded by the training loss and the quadrature error. We describe in Section 6
the MGDL model for the numerical solution of the integral equation. Numerical results are presented in
Section 7. Finally, we make conclusive remarks in Section 8.

2. Oscillatory Fredholm integral equation of the second kind

In this section, we describe the Fredholm integral equation of the second kind with an oscillatory kernel
to be considered in this paper.

Let I :=[—1, 1]. We denote by C (/) the space of continuous complex-valued functions defined on /
and C(I?) the space of continuous complex-valued bivariate functions on 72. Suppose that K € C(I?)
and f € C(/) are given. We consider the oscillatory integral equation

(1) y(s) — /1 K(s. 0" yydt = f(5), sel,

where k > 1 is the wavenumber and y € C(]) is the solution to be solved. For simplicity, in this paper
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we always assume the kernel function
K(s,t):=A, (s,t)elxI
where A € C, without loss of generality. By defining the integral operator .#” for h € C(I) by
(A h)(s) = /Ie"K‘S—"h(r)dz, sel,
integral equation (1) can be written in its operator form
2) (J =1y =f,

where .# denotes the identity operator on C (/).
It is known that the solution y of (2) in general exhibits certain oscillatory behavior. It is advantageous
to classify the degree of oscillation for a given function. We recall a definition from [23].

Definition 2.1. Let n be a positive number and (X, || - ||x) be a normed space. A function u is called
k-oscillatory of order n in X if it satisfies

(1) u is k-oscillatory in X, that is, u is k-parametrized and u € X for any «,

(2) there exist a positive constant ¢ such that for all « > 1,
Kk Mlullx <ec.
When n = 0, we say that u is non-x-oscillatory in X.

Let m be a fixed positive integer. For Sobolev space H" (1) :={u € L>():u™ e L2 (I),n € Zmi1}
where 7,11 :=1{0, 1,2, ..., m} with the norm

N2
]l :z( > ||u(f)||2) :

jezm-H

define the space of the oscillatory functions H;’fo(l ) as
H! (1) = {u; + uze™ +uze ™ uj is non-k-oscillatory in H" (1), j € N3},

where N, :={1, 2, ..., n}. Then Theorem 5.8 of [23] shows that the solution y exhibits certain oscillatory
behavior. We state the result below for convenience of reference. To this end, for each n € N, we denote
by C!"(1?) the space of functions whose derivatives of order up to n with respect to both the first and
second variables are continuous.

Theorem 2.1. Let y be the solution of (1). If K € C"(1?) is independent of k and f H,(I), then
y € Hl ().

This theorem shows the solution y is in the space of oscillatory function H,"((/), which is the basis
for our further discussion and numerical experiments.

For numerical solutions of the integral equation (2), traditional methods typically focus on constructing
an appropriate function space where a viable solution exists, and subsequently seek the solution within
this space. Commonly utilized function spaces encompass polynomial spaces, trigonometric function
spaces, piecewise polynomial spaces, and multi-scale spaces. The construction of a function space
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typically necessitates a profound understanding of the solution’s characteristics. In contrast, the DNN
method directly seeks the solution through training data. Specifically, this methodology employs a DNN
with unknown parameters to approximate the desired solution. The equation and constraints are then
transformed into an optimization problem. Finally, the optimal parameters of the network are determined.
In the subsequent section, we will introduce the DNN method to solve (2).

3. DNN learning model

In this section, we describe a DNN learning model for solving the oscillatory Fredholm integral equation.

We begin by describing DNNSs to be used as approximate solutions of the integral equation. We adopt
the notation from [29; 30]. A DNN is a function formed by compositions of vector-valued functions,
each of which is defined by an activation function applied to an affine map. Given a uni-variate activation
function o : R — R, the vector-valued activation function o : R? — R? is defined as

o(v):=[o(v)),0),...,0wy)]", for v:i=[vy,va,...,v4]" €R%.

For vector-valued functions f;, j € N, satisfying the condition that the range of f; is contained in the
domain of f;, their consecutive composition is denoted by

é)lfj = fao fa10---0 f1.
]:

Suppose that positive integers m;, j € Z,1, with mg := 1, m,, := 2, are chosen. For weight matrices
W; € R™/*™i-1 and the bias vectors b; € R™/, j € N,,, a DNN is a function defined by

n—1

3) (Wi Yoy s) = (W,, O a(W;-+b)) —{—bn)(s), sel

J=1

The goal of this paper is to construct approximate solutions, of integral equation (1), which take the
form of (3). Note that the solution of (1) is a complex-valued function. This requires us to define an
operator .7 that transforms a real two dimensional vector-valued function to a complex-valued function.
Specifically, for a two-dimensional vector-valued function f(s) := [f1(s), H1T, s € I, with fi1,
being real-valued functions defined on I, the operator 7 is defined as (7 f)(s) := fi1(s) +ifa(s), s € 1.
With this operator, we define the loss function as

4) e({W), bj)i_yss) = (I = AT A (W), bYi_ys - )(s) — f(9), sel
We then find the optimal parameters {W;.‘, bjf ’}:1 by solving the optimization problem
. 2
5) min |e({W;,b;}'_.; )|..
I SR

Once the optimal parameters {W7, b’;};f: | is obtained, the function y* := 7.4 ({Wj’.“, b; Rt
a DNN solution of (1).

Numerical implementation for solving optimization problem (5) requires the availability of collocation
data {(x;, f(x;)), j € Ny} and discretization of the integral operator 2. The L, norm used in (5) may be

. ) provides
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approximated by its discrete form

1

Il o= \/ﬁ > 6@l for ¢ €C),
JjeNy

where | - | denotes the modulus of a complex number. It is clear that the functional || - || ; is a seminorm

on C(I), but it is not a norm since ||¢ ||y = 0 does not imply ¢ = 0. This seminorm || - || i is associated

with the I, norm in C". For any ¢ € C (1), defining vy :=[P(x;), j € Ny], it follows from the definition

of || - ||v that

||v¢||a
N

We then assume that there is a discrete oscillatory integral operator %), that approximates the operator
¢ defined by 2, where p, is a positive integer dependent on «. We postpone the construction of operator
Hp, to the next section.

With the availability of the discrete form of the L,-norm and the discrete oscillatory integral operator
Hp, , the discrete loss function is defined by

(6) lollv

(7 e((W;, b)Y s s) = (f = (I =2, )T (W), b;Yi15-)) (), sel,

which approximates the loss function defined by (4). We then find the optimal parameters {WJ’.“, 5"?}?:1
by solving the discrete optimization problem

(8) argmln H ({W],bj}] 15')”?\/’
{W;.b;)i_

where

1
” ({WJ’bJ}j l")”f\/: N Z |e({ijb }J X )|

IENN

Upon finding the parameters {W* b*}"_., we obtain a numerical solution of (2) given by

’ Jj ] 1°
©) V= T AW B )
with an error defined by
(10) & (s) = e({Wr bYi_ss), sel

Optimization problem (8) is often solved by employing gradient-based algorithms. This motivates us
to construct the discrete operator %), via a numerical integration method.

4. Numerical quadrature of oscillatory integrals

This section is devoted to the development of the discrete oscillatory integral operator .}, and its error
estimates.

The discrete oscillatory integral operator %), that approximates the oscillatory integral operator %" is a
key attribute of the DNN model. The discrete operator %), should effectively approximate the continuous
oscillatory integral operator .. Typically, in the optimization process, the optimization problem (8) is
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solved by using gradient-based optimization algorithms. These algorithms iteratively update the model
parameters 0; := {W, ;, b ;}]_,, where j e N:={1,2,3,...}. By defining

gj(s):=TM®Bj;s)€C), jeN, sel,

we will construct 7, in a way that the errors [(#'g; — %) g;)(x)|,l € Ny, j € N are as small as
possible. Noting that for any / € Ny,

(2gj—Hp 8D <X 8j —Hp, 8jlloo  JEN,

our objective is to construct the operator %), to control || x — %), x|lcc When wavenumber « is large
for x in the class of functions {g;};en.

The behavior regarding the level of oscillation in the function sequence {g} jen is a crucial consideration,
especially given the use of the sin function as the activation function in the DNN, which directly influences
the oscillatory behavior through the parameter 6;, j € N. The initial guess 6, proposed in [11] leads to a
non-oscillatory function g; independent of «, setting the starting point for the iteration. If the iteration
converges, the oscillation of the generated function sequence {g;};en Will not deviate significantly from
the oscillation of the exact solution y. Below, we define a class of oscillatory functions with a relaxed
oscillation level so that the class contains the exact solution y and approximate solutions g; of the j-th
iteration steps.

Motivated by Theorem 2.1, we assume that there exist functions u;, j € N3, satisfying the condition
for some t > 0,

W) <7, forall sel, [€Zy,

such that the solution y of integral equation (2) is in H,"(I). In other words, y can be expressed as
(11) Y(s) = ur(s) +ua(s)e™ +uz(s)e ™, sel.

The functions g; are not exactly in H,(/) but in its perturbation. Below, we define a perturbation class
of H,;"O(I ) that contains the functions g;. LetI" > 0 and » € N. Suppose that «; € R, j € N, are unknown
but satisfy |o;| < 1+T, and functions w;, j € N,, satisfy

(12) W<t sel. 1€Zn.

The functions x, in the perturbation class have the form
r .
(13) Xe(s) =Y w;(s)e' ", sel.
j=l1

We next introduce a sequence of discrete operators %), for p € N, which approximate the integral
operator ¥ by using the compound trapezoidal quadrature formula. Specifically, for each p € N, let
h:=2/p,sj:=—1+ jhfor j € Z,y1, and for any F € C(I), we define

h : r=l lss lss
(14) (HpF)(s) = E[F(so)e’”'s—so' +2 3 F(sj)e P!+ F(s»el“"‘“v}, sel
j=1

In the rest of this section, we choose the value of p according to the growth of the error ||7" x,c — ) Xl oo
with respect to the wavenumber «. Error analysis of the compound trapezoidal quadrature formula for
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smooth non-oscillatory integrands is well-understood (for example, see [8]). However, since the integrand
that we consider here is oscillatory and non-differentiable, we will estimate the error by taking the special
property of the integrand into account.

When analyzing the error || % x — ) X« |0 due to (13), it suffices to consider

(15) 1 (@) = w®)e' ™, tel,

where o € R satisfies |«| < 14T, and function w is m times differentiable and satisfies (12). Our goal is
to develop an effective quadrature scheme for numerical computation of the integral

(Hw(-)e ) (s) ::/I [w()e ] e*Fldr, sel,

for the purpose of constructing the discrete operator %), .
Next, we estimate || X — %) X« |loo. To this end, for a fixed s € I, we define

(16) (1) = wt)e @ e

Then, (% X, — 2, X )(s) can be expressed as

p=1 Sj+1 h
(17) (F e = Ay ) = & [ [ e -3 (g6 +¢<sj+1))] ,
j= 5

and for any j € Z,, there holds that s; | —s; = h.

Since the integrand ¢ defined by (16) is m times differentiable at I \ {s} for any positive integer m,
we partition interval / into three subintervals such that except for the interval containing the point s, the
function ¢ remains m times differentiable over the other two intervals. Specifically, we choose

o[ e

L%J , otherwise,

where for x € R, [x] represents the largest integer not exceeding x. Thus, j* € Z,. Noticing

—t t s D],
(18) |S —t| — {S ) € [SO S] ]

t_sa tE[Sj*+1,Sp],

together with the definition (16) of function ¢, we conclude that ¢ is analytic in the intervals [so, s;+] and
[sj*+1, sp]. If we define an m-times differentiable function

w(t)e' @Dt e [0, 541,
w(t)e! @Rt e [5i41, 5],

(19) Y1) = {

together with the relation (18), we obtain

eSY(t),  t€lso, s,
e SY (), t €[St 8pl.

¢(t)={
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Upon defining
. j*_l Sj+1 h
(20) Ty :=e"" ) [/ V(1) dr — 3 (W (sy) +W(sj+1)):| ,
j=0 LYs;
S 41 h
@1 = [ o =2 (60 +dGsi40).
. p—1 Sj+1 h
(22) Tyi=e ™ Y [/ Y di -3 (x//(sj)+1/f(s,~+1))]
j=i*+1 L)

equation (17) can be rewritten as

(H xe — Hpx) () =T +Tr + Ts.
Using the triangle inequality in the above equation, it yields that
(23) | X — Hp X)) < Tl + [ T2] + | T3]

We will estimate T}, j =1, 2, 3, separately.
We first estimate | 73| in the following lemma.

Lemma 4.1. If T; is defined in (21), then

4t
|7 < —.
P

Proof. Applying the triangle inequality to the definition of 75, it yields that

|T>| é/
S

This together with the relation s+ 1 — s+ = h leads to the bound

Si%4q
O] dr Rl lloo < (11— 550+ WDl oo-

]*

(24) 12| < 27| Pl oo-

Using the inequality (12) with [ := 0, we know that ||w||o < 7. Combining this with the definition of
¢, we observe that ||¢]lcc = ||w|leo < T. Thus, the inequality (24) reduces to | 7| < 27h, which together
with the fact 1 = 2/ p yields the desired result. (I

We next estimate the terms |77| and |73|. In the following consideration, we unify the cases | 77| and
|T3] into one. For u, v € Z, satisfying 0 < u < v < p — 1 with j* ¢ [, v], we consider

v Sjt1 h
©5) ri= ¥ | [P vww- S e+ )|
j=w LS 2

Clearly, if we choose p :=0, v:= j*—1, then |T| =|T1| by (20), and if we choose := j*+1,v:=p—1,
then |T'| = |T3| by (22).

To estimate |T'|, we will make use of the Taylor expansion of the function i at the midpoint of each
subinterval. Specifically, for each j € Z; ) :={u, u+1,..., v}, welet sy, 1= %(sj +5j41), and
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write W(lll/z =y )(sj+1/2) for € Z,,41. By the Taylor theorem, for each ¢ € [s;, s;41], there exists a

& between ¢ and 51,7 such that

Lt —sjy1) E—=sjt12™  om
(26) YO =90, + Z T T e A ()
For each j € 7y, ), we let
( h)’" m m

27) Dji =y ’(&,)+ w< ' Es)-
By the Taylor expansion (26), we obtain that

h 0 noop (N on | hD il
(28) SWED VI =hy2a+ 3 o (3) vihe+™s

where m := | (m — 1)/2]. Meanwhile, by integrating both sides of (26) from s; to s;41, and letting

(29) D;,:= / JHMW(W!)(S yde,
I Sj m
we have
S+l ) ul 2 AREE) '
(30) /s, Y(t) dt—hlﬂjH/Z +[§W (E) 1//j+1/2+D],2.

Substituting (28) and (30) into the right-hand side of (25) yields

v iRy hD;
31 T = -y — ) Di,——I2).
ey ,E( Ea@r it )
Upon defining
v 21

. (2] .
(32) U = hjgu le/z and 7 := —41(21+ D [ €N,
we rewrite (31) as

hD;
(33) Z mh* U, + Z < 2= 2‘/’ )
=1 j=u

We begin estimating |7T'| by establishing the inequality

m
> nh?U|.

m
(34) IT| < ‘T+th”w +
=1

=1

The next lemma estimates the first term of the right-hand side of (34).
Lemma 4.2. If T is defined as in (25), then

m )y ) h m+1
(35) ’T+th Uil <30 =14 DIV letsosnn (3)

=1




32 JIE JIANG AND YUESHENG XU

Proof. By (33) and the triangle inequality, we have
v h|Dj 1l
<X (le,zl + 2J ) :
j=n

It suffices to estimate the remainders D; 1, D; », j € Zy,, ), defined respectively in (27) and (29), of the
Taylor expansion. Clearly, for each j € 7|, .}, we have the estimates

(36) ‘T + Y Uy
=1

AR
D1l < ———
2m=lm
where [ oo == 1% "Il Lo (t5,.50,11) and
1Y ™o fsi e A
IDj,zlé—oof |t —sjq1ppl"dt = ——— =
m! sj 2Mm(m+ 1)!

Substituting the above two estimates into the right-hand side of inequality (36) with noticing &1%2

3
D=2
yields the desired result.

We now consider the second term of the right-hand side of (34), which involves U; defined by (32).

Note that when & = = and v — — 1, there holds

200 — w4+ DY@ ||
p

\Uy| = 2|, €N,

@n
h Z Vit S

We will see later that ||y %) || is in the order of ¥%, which will lead to the conclusion that the second
term of the right-hand side of (34) has a leading term in the order of 2. We would like to obtain a better
estimate so that the leading term is in the order of «, not x2. To this end, we need the Taylor expansion of
the function ¥ ), I € N7, at the midpoint of the every subinterval. For each j € Ziu,vy, and [ € Nz, the
Taylor theorem ensures that for each ¢ € [s;, sj41], there exists a & ; between f and 5,1/ such that

—21—1 (b) . m—21
2 @l " (t—sj+1/2) @+b) (t—sj+1/2)
(37) v = v+ LT Vet T v (&)

Integrating both sides of (37) from s; to s;4 and defining

xj+1(t—sj+1/2)m_2[ (m)
R; ::/ S URIRT g
Jil g (m — 21)! v (&)

we obtain

- - ay =2 R\2PH b :
I i e Y G e e AL ]

Summing up (38) for j € Zj, ., together with the definition (32) of n;, we obtain that

@1y @1y e Mb | 2b41., (2+2b) |
(2 (Sv+1) — ¢ (Su):h Z 1/fj_|.1/2+ Z Z h ‘/fj_;_l/z + Z Rj,h I € Nj.
J=n —ub=12 J=n
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With the definition of Uy, I € N in (32), the above equation can be rewritten as
v
(39) U+ bz bhsz =y V() =¥ Vs — X Rjp. LeN;
j=n
We now return to investigating the second term of the right-hand side of (34).

Lemma 4.3. If

-1
Ni—b0b
40 8 i =mn — , leN,
(40) =1 El o L€
then
L 21 & e 201 -
(41) > mh*Ur =3 8h (w EUCE RS A CVEDS Rj,l).
I=1 =1 j=n
Proof. According to (39), it suffices to prove that
it
(42) > mh®U = Z SJhZI(Uz + Z —thUb 1)
=1

By direct computation, we observe that

43) Zah” U+Z M 2oy —f 5 +121 b0 ) iy,
I l ~ 2b b+l P I > 21— 2 7.
By the definition (40) of &;, [ € N, we have
-1
Ni—bSb
=34 leN.

N =or+ Z] 23—’

Substituting this into the right-hand side of (43) yields the desired (42). (I

Substituting (41) into the second term in the right-hand side of inequality (34) yields

m
(44) IT| < ‘T+th2’w
=1

+X |81|h2’(|:/f<2’—“<sv+1> AR CHIEDY |R,-,z|).
=1

=1

Substituting
[y @D (sy) — v @V (s <20V

1Y ™ lloo fsi+1 a1 i AR I AN
R; <—/ t—s; "ede = < 2™ (_) ’
IRl m—2n1),, |t —sj+1)2 2 — 21+ 1! ¥ oo { 5

and estimate (35) into the right-hand side of inequality (44), we obtain

(45) IT| < 2Zh2’|6z|||w<2’ ”||oo+<v—u+1>(3+2Z4l|61|)||w<m>||oo(2) :

=1 =1

By the above inequality, we estimate the growth of derivatives of function i in the following lemma.



34 JIE JIANG AND YUESHENG XU

Lemma 4.4. If  is defined in (19), then
(46) 1Y Plloo < TUT +2)k + 11, 1 € Zps1,

where 1™ [loo 1= %" | Lo ls,0 5011

Proof. Without loss of generality, we will assume that 0 < © < v < j* — 1. In this case, the definition
(19) of ¥ yields that ¥ (¢) = w(t)e! @~V* t € [s,,, sy+1]. Repeatedly differentiating ¥ yields

) I
(47) YO (s) =@V 5™ 0w @(s), s elsu, sl [ €Zpy,
d=0

where Cp o :=1 and for [ € N,,,,

i(a—=1«xCi-1,4, d=0,
Crag:=qi(a—DxCi_1g+Ci—1 49—, d=1,2,...,1—1,
Ci1,d-1, d=1.

It can be shown by induction on / that
l !
(48) Y 1Cal < A+ la—1lk), € Zpytr.
d=0
Now, by applying the Ls,-norm of ) to (47), we obtain that

1
(49) 1 Ploo < X 1CLANIWD 1oy 1 € Zypr-
d=0

Substituting (12) and (48) into the right-hand side of (49) yields
1Dl ST+l = 110), 1 € Zpps1.

The above inequality with | — 1| < |e¢| + 1 < T" 4+ 2 leads to the desired estimate. [l

We next estimate |T'|. To this end, we define A(m) := Z 418/ and G, := (F+2;K+l
I=1

Lemma 4.5. If p € N is chosen to satisfy p > (I' +2)k + 1, then

(50) IT| < p(ZA(m)G,,K + (3 +2A00)) G ).

Proof. We prove this lemma by employing inequality (45). As for the first term in the right-hand side
of inequality (45), by inequality (46) in Lemma 4.4 and the fact 7 = 2/p, with noting G, , < 1 by the
choice of p, we observe that

2t ((I' + 2):< +1

Z4Z|6|

Z4l|5 le, 2 ZrG,,,KA(rh)‘
=1 p

m
23 sV o <
=1

((r +2)k + 1)2"2
p
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As for the second term in the right-hand side of inequality (45), for the same reason, we obtain
)V"+1 < T (3+2A(m)) G,
p
Substituting the above two inequalities into the right-hand side of inequality (45) yields the desired
estimate (50). O

G +2860) ¥l (5

(o.¢]
Note that A(/i) < Y 4'|8;|, which is estimated in the next lemma.
=1

Lemma 4.6. If §;,1 € N, is the sequence defined in (40), then

o
> 418 < ¢
I=1 5
Proof. Defining
< | I R T
51 8= , leN,
D SNOIY +b§1 (2b)!
this lemma may be proved by establishing the two estimates
. 6
(52) Zalgg and 4181 <§, leN.
I=1

First, we establish the latter inequality via induction on [ € N. By definition (40), the sequence §;,
[ € N, can be written as

-1 Si_
(53) S=m—3 2 jen,
b=1 2b

For [ =1, it is clear that 4|§;| = % < 51 = l. Now, we assume for some [* € N that

(54) 4185) <8y, beN:

2b 1

: — J* . : L b — <
and consider the case [ =[* 4 1. Using (53) with / :=[*+ 1 and the fact 4”n, D1 S (2b)!’b

we derive that

eN,

: 1 4151
41 +1 Sre
181411 < (21*+2)‘+Z 2b)!
Using (54), this becomes
1 I Spei—p

4l*+18* - ,
| il S ) ; (2b)!

whose right-hand side is exactly equal to 8+, by definition (51). Thus, we have proved the desired
inequality for the case [ :=[* + 1. By the induction principle, the inequality holds for all / € N.
We now prove the first inequality in (52). By defining a positive monotonically increasing sequence

L.
(55) A=Y 6, €N,
b=1
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it suffices to show

6

5

We~ﬁrst derive a recursive formula for the sequence Ay, I € N. To this end, we substitute definition (51)
of §; into definition (55) of A; to obtain that

(56) lim A; <
[— o0

) ) 1
(57) A=Y =Y ==+> ¥ = leN.

Since forall l e N,
Xl: d—b L PR el Vi VAN
i1 D) ety b)) gD b)Y

where the last equality holds due to definition (55) of A;, equation (57) becomes a recursion of A;:

l 1 -1 A I—b
(58) A= —+ > ——, leN.
b; (2b)! bgl (2b)!
We observe the sequence Ay, [ € N is monotonically increasing. In particular, for [ > 2, we have A, < Ay
for all b € N;_;. Consequently, (58) implies that

I -1 1
AN <) ——+A0N ) —,
El (2b)! b; (2b)!
S |
Since A; > 0 for / € N and —— =cosh(1l) — 1, we deduce
= @b)!

A; < (cosh(l)—D(A;+1), [>=2,

namely,
cosh(l)—1 6
IS ———— < < o
2—cosh(l) ~ 5

=

Thus, by the monotone convergence theorem, we conclude the existence of the limit for sequence Ay,
[ € N, and confirm inequality (56). O
Combining Lemmas 4.5 and 4.6 yields the following estimate of |T'|.

Lemma 4.7. If p € N is chosen to satisfy p > (I' +2)k + 1, then
T
(59) IT| < 5(12G,£,,K+27(v—,¢¢+1)(;';“).

Finally, we have the next proposition for an estimate of ||Z x, — ) X« [l oo-

Proposition 4.1. For a complex-valued analytic x, as defined in (13), for any k > 1, if parameter p € N
is selected to satisfy p > (I' +2)k + 1, then
44rr 27rt

”t%/XK_'%/pXI(Hoog 5p + 5 GI;;,/('
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Proof. 1t suffices to prove, for x, as defined in (15), that

- - 44r 27t .
(60) ||'%/XK_%XK”00 < —+—G
5p 5
By letting £ :=0,v:=j*—1and u:= j*+ 1, v:= p — 1 in the definition of T in (25), the inequality
(59) in Lemma 4.7 holds for |T| = |T| and |T| = |T3| respectively, namely

|T)| < (12GPK+27]*G’") and |T3| < (12GpK+27(p—] - DGy ,).

Together with the estimate of |7>| in Lemma 4.1 and the fact j* 4+ (p — j* — 1) < p, inequality (23)
implies that
- 6 27t
O T = AR @I < 5 (1486,0) + 200
The above equality holds for any fixed s € I, with noting G, < 1 by the choice of p, yielding the
estimate (60). O

Proposition 4.1 elucidates the connection among the error, the sample size p and the wavenumber «.
Next, we aim at ascertaining the value of p as a function of the wavenumber « such that the error tends
to zero as « approaches infinity. This will be expounded upon in the following proposition. Before this,
for any x € R, [x] denotes the smallest integer greater than or equal to x.

Proposition 4.2. For the function x, defined in (13), suppose the parameters B and y are chosen to
satisfy B> landy 2T +3. If p_ 1= [y«P, then for any k > 1,

- v < d4rt 27rr(T +3)"
| X — p,(XK”oo X 5)//(5 + 5)/me(ﬁ_l) .

Proof. First, we need to verify p, > (I' +2)k + 1 which is the condition of Proposition 4.1. For g > 1
we consider k#~1G p..ic» k= 1. By the definition of p,_, it holds that

I'+2)+1
K'B_leK,Kg;y 21
VK
Noting that the right hand side of above inequality equal to = +2 + ny is a decreasing function for « > 1,
the above inequality implies
'+3
KﬂfleK,K < ;, k>1.
v
This is,
r+3
(61) ka,xém, K>1

Since y > I' 4- 3, the above equation implies that p, > (I' + 2)x + 1. Hence, by Proposition 4.1 with
p = p,, we obtain that

44rtr 2Trr _,
||f%/XK_‘%/pKXK”OO< 5p + 5 GPKJC'

K
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Substituting p, > y«# and inequality (61) into the two terms in the right hand side of above inequality
respectively yields the desired result directly. ]

As for y € H(I) as shown in (11), we have the next proposition.

Proposition 4.3. Suppose that the function y has the form (11) and I" > 0 is a given relaxation factor. If

the parameters B and y are chosen to satisfy B > 1,y >2T'+3 and p, := [P, then for any k > 1,

132t 81t (I"+3)™

5)/[(/3 Syme(ﬁfl) ’

Proof. The function y having the form (11) can be expressed in the form yx, by letting r := 3, oy :=0,

ary:=—1,a3:=1,and w; :=u; for j € N3. Then, (62) can be obtained by setting x, =y in Proposition 4.2.
O

(62) 127y = Ap, Yoo <

For the purpose of approximating the operator .’#", by Proposition 4.3, we propose the discrete oscillatory
integral operator %), by taking

(63) p. = [yk"1,
where the parameters 8 and y are chosen to satisfy
(64) B=1, y>T+3.

Up to now, with the discrete oscillatory integral operator %}, , the DNN learning model is well described.

In the next section, we will estimate the error of the solution obtained from the DNN model (8). To
distinguish it from a MGDL model to be described in section 6, we will refer to the standard DNN model
(8) as the single-grade learning model.

5. Analysis of single-grade learning model

The purpose of this section is to bound the error of the DNN approximate solution by the training loss
and the quadrature error.

Throughout this section, we assume that the solution y has the form (11), the parameters g and y
are chosen according to rule (64), and p, is defined as in (63). The operator %), is defined by setting
p := p, as described in (14).

We first derive an equivalent form of the fully discrete minimization problem (8). To this end, for each
k > 1and a fixedg € N, we let N, :=¢gp, + 1 and

2K i
(65) Wy = e4P«c
We then define the matrix
(66) B = (bj (k) j1eny, € CNM
with |
wl(] ) l E {17 NK}?

bji(k):= 20071 1€ {dg+1:deN, _}, for jeNy,.
0, otherwise,
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Since p, = [y«#] where y, B is chosen by the rule (64), the matrix B, is completely determined by four
independent parameters «, B, ¥, g. However in this paper, we only concern the influence of wavenumber
k. Thus, notation B, indicates only its dependence on k even though it depends on the other three
parameters S, y, g, and so do p,_ and N,.

We assume that the training data {(x;, f(x;)), j € Ny_} are chosen as x; := —14+2(j —1)/(N, — 1),
J €Ny, . Thus, for each h € C(I), the [((.# — A% Yh)(x;): j=1,2,..., N, 17 has an equivalent matrix
form. We show it in the next lemma.

Lemma 5.1. Forallk > 1, h € C(I), there holds
. A
(67) (S =2y ) j =12, N = <IK - p—BK) i,

where v, ;= [h(x;) : j € Ny ]| and I, denotes the N, x N, identity matrix.

Proof. For an h € C(I), by the definition of operator .#/ — A%}, , for each j € Ny, (/' — A7) )h)(x;)
can be written as

A . pK_l . .
Hj:=h(x;)— —(h(xl)e’le’_x-’ +2 ¥ h(qu+1)elK|x_/_qu+l| _‘_h(xNK)elKIx_i—xNKI).
p I=1

K

Using the definition (65) of w,, we may further rewrite H; as
)\' . p/(_l . .
H;=h(xj)— — (w,LI”h(xl) +2 3 w1 M h(xg0) —l—a),(JNK'h(xNK)), JjeNy,.
P, I=1

The right-hand side of this equation is seen to equal the j-th component of the vector (IK — pLBK)vh.

K

This proves the desired result. U

Lemma 5.1 relates the operator .#/ — A%, with the matrix
(68) M, :=1I,—AB,/p, € CN>Ne,
In (67), by choosing h := 7 A, ({Wy, bj}j_,; - ), we obtain that
(I = 2ty )T (W BY s ) (xj) 2= 1,2, NAT = Mwg (W, By,

where
v (W b)) =T A (W), BiYj_; x1), 1 € Ny, ] € CMe.

Moreover, by definition (7) of e and by letting vy :=[f(x;) : l € Ny, ] € CNe, it holds that
[e(x;):j=1,2,...,NI" = vy — Mv,({Ws, bi}_)).

Thus, the minimization problem (8) is equivalent to the following minimization problem
.1 2
(69) arg min — || MKvg({Wl, bl};’zl) —vy le .
(Wb}, VK

The optimization problem (69) may be solved by the Adam (adaptive moment estimation) optimization
algorithm [13] with the initialization proposed in [11]. Upon finding the parameters {W;“, b*f};?zl, the
numerical solution y* of (2) and the related error e* are given by (9) and (10), respectively.
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In the rest of this section, we will estimate the error ||y — y*||5, in terms of the loss error |e*|| 5, and
the quadrature error |[(# — ), )y |- We first estimate the error ||(.% — A%, )(y — Y*) ||, -

Lemma 5.2. Foreachk > 1,
(70) (7 =2, ) (v = ) Ine < Ne¥ v, + AN = 25 )Yl 0o-

Proof. By the definition (10) of e*, we have e* = f — (# —A.%), )¥*, which together with f = (¥ =A%)y
yields that
e = (I —rH)y — (I — LA )"

Thus, we obtain

(I =2 ) =) = (I =AH)y = (I = AHp )V +MA — Ky )y =& +MH — Hp)y.
By the triangle inequality of the seminorm || - ||, , we find that
(71) 17 =2, ) = V)N, < €lln, + AN =2,y N, -

The definition of || - || 5, yields that

1 Ne
1A = Ap I¥live =\ 5~ 2Ny = PP NH = )Y lloo-
K ]:1

Substituting this inequality into the right-hand side of (71), we obtain the desired result (70). ([
Next, we provide a condition that ensures the invertibility of the matrix M,.

Lemma 5.3. If there exists a constant C, > 0 such that for any h € C(I),
(72) IAllN, < Cell(F —A2p )hlIN,,
then the matrix M, is invertible.

Proof. We establish the invertibility of the matrix M, by contradiction. Assume, to the contrary, that
M, is not invertible. Then, there exists a nonzero vector v := [v;, j € N,]7 € CM« such that M, v = 0.
By the Lagrange interpolation formula, we can construct a polynomial i, € C(I) such that h,(x;) = vj,
Jj € Ny, . By letting & := h, in inequality (72), we obtain that

(73) Iholln, < Cell(F =2 IhollN, -

Noting that
Iolly, = 10ll/v/Ne  and  [[(F =2 iy, = Mol /v N,

by (6) and (68) respectively, the inequality (73) implies that
(74) vl < Ce IMcvlly, -

However, note that the vector v is nonzero and M, v =0, which contradicts inequality (74). This concludes
that the matrix M, is invertible. |
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Our next step is to identify the range of « that ensures the invertibility of matrix M,.. Note that matrix
M, is related to matrix B, by relation (68) and many columns of the matrix B, defined in (66) are zero.
We denote the set of the indices of the zero columns of B, by J : =Ny _\{ql+1:1€Z,_}. Hence, by
relation (68), for any j € J, the entries in the j-th column of matrix M, are all zeros but the j-th entry,
which is 1. Combining this observation with the fact that a square matrix is invertible if and only if its
determinant is non-zero, we will expand the determinant of matrix M, corresponding to the indices in set
J, thereby obtaining the range of «.

Specifically, assuming that j; is the largest index in set J, we expand the determinant det(M,) by
its ji-th column and obtain that det(M,) = det(M,. 1), where the matrix M, | € CWNe=Dx(Ne=D) i5 the
submatrix of M, obtained by removing its ji-th row and j;-th column. We denote by J; the subset
of J by removing j; from it, that is, J; := J \ {j1}, and observe that all entries in the j-th column of
matrix M, | are zeros, but one, the j-th entry, which is 1. We denote by M, > the submatrix of M, |
obtained by removing its j-th row and j,-th column, where j, denotes the largest index in set J. Clearly,
det(M, 2) =det(M, ). Since #J = N, — p, — 1, where #J denotes the cardinality of set J, we can repeat
this process N — p, — 1 times until obtaining My y,—, —1 € CP<TD*Pc+D yjelding

(75) det(M,) = det(M,..;), j=12,. —p. —1.

Noting that matrix My n,—p -1 € CP+Dx P+ g obtained by removing all the rows and columns of
the indices in the set J, we have

1=2/p,, j=le{l,p +1},
ol Nyp el p 41y, jeN, 1\,
(M Ne—p. 1)1y = .
1—21/p,. j=1e€{2,3,....p.}.

20l p,, 1e2,3,..,p), jeN, 1\l

According to (75), it suffices to consider the range of « for det(M, n,—p 1) # 0. To this end, we
perform elementary transformations on matrix My n,—p_—1 to simplify it. Precisely, we multiply the first
and (p, + 1)-th columns of matrix M n,—p -1 by —p, and the second column to the p, -th column by
—p,. /2 to obtain a new matrix. To describe the resultant matrix, for d € N with d > 4, we denote by
C[x]?*¢ the set of d x d matrices whose entries are polynomials of the variable x € C, and for A € C, we
define the matrix

Ag(x; 1) = (@ (x; 1) jxen, € Clx]*9,

where
—(d-1), j=1le{l,d},
aj(x;A) = A——(d ), j=1€{2,3,...,d—1},
axli=t otherwise.
It can be verified that the matrix that results from matrlx M, N, p, -1 by the elementary transformations
described above is A, 1} (wi; 1). Noticing that wi = em ‘ by the definition (65) of w,, we conclude that
the matrix M, is invertible if and only if det (A P+l (e pcly A )) # 0. We now introduce the set

(76) SO = {ic > 1:det (4,41 (en’s 1)) £0}

and summarize the discussion above in the following lemma.
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Lemma 5.4. Matrix M, € CN<>*Ne is invertible if and only if k € S(L).

Lemma 5.4 indicates that matrix M, I exists if and only if ¥ € S(X). Hence, the norm | M, Y5 is
defined only for k € S(A). Is this too restricted? The next proposition reveals that the complementary
set [1, +00) \ S(A) is at most countable. This in turn implies the set S(A) is equal to [1, +00) almost
everywhere, and thus, it is not too restricted.

Proposition 5.1. For any A € C, the set [1, +00) \ S(X) is at most countable.
Proof. We prove this proposition by decomposing the set [1, +00) \ S(1). By the definition (76) of S(1),
we know that

(77) [1, +00) \ S(b) = {k > 1:det (A4, 11 (en'; 1)) =0}.

Equation (77) reveals that set [1, +-00) \ §(1) is determined by the zeros of polynomial det(A, 11 (x; A)),
x € C. We decompose set [1, +00) \ S(A) according to the order, related to p, + 1, of the polynomial.
Since p, + 1 > 4 by the definition (63) of p_, for d > 4, we define

(78) Ss(L) :={x € C:det(Ay(x; 1)) =0}

Thus, we may decompose the set [1, +00) \ S(1) as

oo .
(79) [1,+0)\ S = U [k >1:er €S0, p=p,}.
p=3
Meanwhile, for any p € {3, 4, ...}, with a direct computation, ¥ > 1 satisfies p = p, = [y«?] if and
only if
k€ ly= =D/ (p/)P]N 11, +o0).

o0

Hence, (79) may be written as [1, +00) \ S(A) = | {K €l,: el e S,,H()L)} , that is,
p=3
o0 2 :
(80) [1,+o)\SW =1 U rkel,:ier’=z}.

p=3 z€8p+1(X)

According to decomposition (80), it suffices to prove that

@1) #(Spp1(W) <400, pefd 4 ...}
and
(82) #(fcel,evi=z)) <400, z€S() pef34,...}.

We first establish (81). For each p > 3, A € C, by the definition (78) of set (1), the cardinality of the
set corresponds to the number of zeros of the polynomial det(A ,41(x; A)), x € C, and this is certainly a
finite number. As for (82), for each p € {3, 4, ...}, we observe that e?Ki, x > 1, as a function of « has
a period pm. Therefore, for each p € {3,4,...} and z € §,,41(2), the number of solutions of equation
eZITK = z in the domain /), is no larger than ((p/VVB —((p—1)/y)/B)/(pm), which is clearly finite.
This ensures that inequality (82) holds. (I

Proposition 5.1 indicates that restriction ¥ € S()) is reasonable. We now return to the error estimate.
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Lemma 5.5. If« € S(A), then for any h € C(I),
1Al N, < IM N — 2oty i,

Proof. Since k € S(1), Lemma 5.4 ensures that the inverse M~ I exists. Hence, by the property of the I,
norm, we derive for any u € C™« that

(83) M ull, < IMZ Nl

Now, for any h € C(I), we define v, :=[h(x;), j € N]T e CN«. Applying inequality (83) to u := M, vy,
yields that
loall, < 1M 2l Micvpl, -

This together with the equations |||y, = [|vxll,/~/ Ny and |[(.F =22, Ih| N, = | M, vy, ||12/«/NK obtained
from relation (6) and (68), respectively, we conclude the desired estimate. U

We next integrate Lemmas 5.2 and 5.5 to yield an estimate of the error ||y — y*||n, .

Theorem 5.6. If k € S(A), then
(84) Iy = 5*llw, < UMl (15 1w, + AT = )y lloo) -
Proof. Applying Lemma 5.5 with i := y — y* yields
Iy = 5 lv, < IMZ 20 (I = 22, ) (0 = 5 |, -
This together with inequality (70) in Lemma 5.2 leads to the desired estimate of this lemma. ([l

The coefficient ||M,~ 1|, of the estimate (84) depends on «. Figure 1 illustrates the dependence of
||MK_1 loonk forA=1,2,...,10, 100, 1000. The figure indicates that ||M;<_1 |l> is either bounded above
by a constant when A = 1, 2 or increasing “linearly” as « increases when A =3, 4, ..., 10, 100, 1000. In
all the linear cases, the largest | M~ 1|5 value is 180 for A =4 at k = 600. It is desirable to have | M - B[P
independent of «, which occurs for A =1, 2, 3 in Figure 1. For this purpose, we make the following
hypothesis.

Hypothesis 5.1. There exists a ko > 1 and a constant C > 0 such that |M Y < C forall k in
S(*) N ko, +00).

Under Hypothesis 5.1, Theorem 5.6 can be strengthened.

Theorem 5.7. Suppose the solution y € H\"y(I) of the oscillatory Fredholm integral equation (2) has the
form (11) and Hypothesis 5.1 holds. If parameters are chosen to satisfy

r=0 821, y=>2I'+3, gqgeN,
and for any k € S(1) N [kg, 00), let p, := [ykP, Ne :=p,q + 1, then
Iy = 5*lv, < C (18 lly, + AN = A7) lloc) -
Proof. This theorem follows directly from Theorem 5.6 and Hypothesis 5.1. U

To close this section, we show, for A satisfying |A| € (O, %), how parameters 8, v, ¢ may be chosen to
ensure the validity of Hypothesis 5.1.
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o =
0 150 200 250 300 350 400 450

A, y.B.9)=(1,6,1,1) A, 7.B.9)=(2,6,1,1) A, 7.B.9)=@3,6,1,1)

M)

A y.B.9)=406,11) A, y.B.9)=(5,6,1,1) ., y.B.9)=1(6,6,1,1)
*,7.8.9)=(7,6,1,1) . 7.B8.9)=(8,6,1,1) *,7.8.9)=0,6,1,1)

M)

10
10 150 200 250 300 350 400 450 50 550 600 100 150 200 250 300 350 400 450 500 550

(., 7.B.9)=(10,6,1,1) (A, v, B,q)=(100,6, 1, 1) (A, v, B, q) = (1000, 6, 1, 1)
Figure 1. Values of |M,~ | N, as a function of « for different (A, y, B8, q).

Lemma 5.8. For A satisfying |A| € (0, %), if the parameters are chosen to satisfy

(85) r=>0, =1 r+3 A1 elr, ! LT
= ) = ) > max s T~ . ,——— — —— R
4 =42 TS amE T
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p, = [ykP] and N, = p.q + 1, then for any k > 1, the matrix M, € CN<*N¢ defined in (68) is invertible
and

(56) M < =
K 2 ~ 1 _ n7
where
1
(87) n:=2xllqg+—
V1

satisfies the condition 0 < n < 1.

Proof. First, we show the existence of parameters I', §, y, and ¢ that satisfy condition (85). Clearly, we
can find T, B, y according to (85). By the choice of y, we know that [y] > 4|A|>/(1 —4|A|?), which
implies that 1/(4|x|?) — 1/[y] > 1. Thus, we can find a ¢ as in (85).

Next we estimate ||AB,( /P, |,- Note that

1B 5= p(B;B) <IIB:Bclli <IBLI11Belli = | Bellooll Bell1,

where p(-) denotes the spectral radius of a matrix. This bound together with || B,|; = 2(gp, + 1) and
| B lloo = 2p, yields || B[, <2V qu2 + p,, which implies

1
<2Al g+ —.
%

A
(88) H — B,
p;( 2 K

Meanwhile, by the definition (63) of p_, we know that p_ = [ykPl > [y] for all k > 1. Using it in
inequality (88), we observe for all ¥ > 1 that

<20l g +

89 i
(89) ‘ . o n,

A
~ B,
p

K

whose right-hand side is independent of «.

Furthermore, by the choice (85) of ¢, we notice that g < 1/ @x» —1/Ty]. Substituting it into the
definition (87) of n yields that 0 < n < 1. This estimation together with inequality (89), we conclude the
matrix M, = I, — %BK is invertible and the inequality (86) holds. O

Lemma 5.8 conveys that for A with |A| € (0, %), the parameters I, B, ¢, and g can be chosen according
to the rule (85) such that Hypothesis 5.1 holds with kg := 1 and C := ﬁ and in this case, there holds
S(A) =[1, +00). The next theorem follows from Lemma 5.8 and Theorem 5.7.

Theorem 5.9. Suppose A satisfies |1| € (0, %) and the solution y € H;:r,lo(l) of the oscillatory Fredholm
integral equation (2) can be written as the form (11). If the parameters I", B, y and q are chosen to satisfy
(85), and p, := [y, Ny := p.q + 1, thenforall k > 1,

- P
Iy =¥ lln, < = (e n, +IANCE = 2507 l00) 5

where n € (0, 1), defined in (87), is independent of the wavenumber k.

Combining Theorem 5.9 with Proposition 4.3 leads to the following corollary.
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Corollary 5.1. If the assumptions of Theorem 5.9 hold, then for all « > 1,

1

s 1 N 13272 81T|A[(I +3)™
1y = 3" 1lw, <Tn<lle*llzvk+ ;

S5yih S5ymmB=1)

where n € (0, 1) as defined in (87) is independent of the wavenumber k.

6. Multigrade learning model

The deep neural network model (8), which we will refer to as the single-grade learning model, has a
computational issue: Solutions of the optimization problem (8) is often trapped in a local minimizer or
even a saddle point due to too many layers used in DNNs. As a result, the loss error ||e*||y, may not be
as small as we expect. In particular, in solving the oscillatory equation, as we will demonstrate in the next
section, the single-grade learning model suffers from the spectral bias, that is, approximate solutions catch
only low frequency components of the exact solution. To address this issue, following [25] we develop a
multigrade learning model for numerical solutions of (1). The multigrade learning model introduced in
[25] was motivated by the human education process which arranges learning in grades.

We now describe the multigrade learning model for numerical solutions of (1). Recalling the DNN that
appears in minimization problem (8) has n layers, we choose L positive integers n;, forl =1,2, ..., L,
such thatn = ZIL: | 7. Instead of solving one minimization problem (8) of n layers, we solve L intertwined
minimization problems, which have n; layers, for/ =1, 2, ..., L, respectively. For grade 1, we define
the error function by

el({ijb]}J 1> ): (f_(ﬂ )‘f%/ )9%1({“’,,1’]}] 1"))(S)GC(I)7 sel
and find {W} o by J};” | by solving the optimization problem

min{ [ (W, 17 )2, W) € RP<m0-1 b, R, €N )

with m; o =1 and m; ,, = 2. Once the optimal parameters { W/ b}‘ l};“ | are learned, we obtain the

feature of grade 1 as

1,7°

g1(5) := 1 (W] .7 Vi), sel,

where .#,,_1 is the feature of the DNN. Following the definition (3) of a standard DNN, we have
n—1
(90) Fuor (W b1 )_<@a<w,--+b,,->><s>, sel.

j=1

Thus, the approximate solution of grade 1 is
fi(s) :==W[, gi(s)+by, ., sel
with an error defined by

5T(S)I=51({Wﬁj, T’j}l}lzl;S)EC(I), sel.
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Suppose that the neural networks g; : I — R™=~1, f;: ] — R?, ¢ e/ : I — C of grade [ < L have been
learned and we will learn grade [ + 1. To this end, we define the error function of grade / 4+ 1 by

el-H ({W]’b }I;Hi’ ) :e[ (S) - [('] )‘*%/ )yf/%llﬂ ({ijb]}j“ri’ gl())](s)a s € I,

and find {Wl’fH’], by

nj+1
I+1, j}

i by solving the optimization problem

mln{ ||€l+1 ({ij b, }’J’ll+i’ )”ka . W] c le+l,j><7m+1,j—l’ b] e RmHl'j,j c N’ll+l }’

with myy1,0=my 1 and myyy ., = 2. Note that when solving optimization problem 6, the parameters
u I b* 1 j=12,...,n,, u=1,2,...,1, involved in g; are fixed. Then we define the feature of
grade / ~|— 1 by

—1
(91) gl+1(s) = <gfnprl—l({wl):_],ja b;:_l’]};”;ri a g[(S)), NS 17

and the solution component of grade / 4+ 1 by

fir1(s) := W[';angpr](s) +b;k+1.n,+1’ sel.

Substituting (91) into the above equation, we see that f;4 is actually the newly learned neural network
stacked on the top of the feature layer learned in the previous grade. The optimal error of grade [ 41 is
defined by

() = e (IWhey ;o by Y5 s) e €D, s el

We continue this process for / < L. The multigrade DNN approximation for the solution y is given by
~ L
1= T fieCd).
I=1

We will show in the next section that the multigrade DNN solution y; is better than the single-grade
DNN solution in catching the oscillation features of the exact solution of (1) and thus it has higher
approximation accuracy.

7. Numerical experiments

This section is devoted to presentation of numerical experiments that assess and compare the performance
of the proposed single-grade learning model and multigrade learning model with the traditional collocation
method. Specifically, we focus on evaluating the methods’ performance across varying wavenumbers and
sample sizes. All the experiments presented in this section were performed on a Ubuntu Server 18.04
LTS 64bit equipped with Intel Xeon Platinum 8255C CPU @ 2.5GHz and NVIDIA Tesla T4 GPU.

In our experiments, we solved the oscillatory Fredholm integral equation (2) with A = 0.2. For
comparison purposes, we chose its exact solution as

y(s) =54+ Bs?+2s + el + (s +2)e” ™, sel,

which clearly satisfies the condition (11). The right-hand side f of the integral equation (2) is then
calculated accordingly. We solved (2) with the right-hand side specified above using the single-grade,
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multigrade models and the traditional collocation method, and compared the accuracy of these methods.
The relative L, error defined by

1

—3 1 (2 = ’
Iy = Yll2 ( [M 0 — y<s0>|2+zz|y(s,-)—y<sj)|2+|y(sz)—y<sz)|2]>,
Iyl Iyl j=1

was used to evaluate the accuracy of these methods, where y and y denotes the exact solution and an
approximate solution, respectively, / := 20000, s; := —1 + 3 L, for j € Z;11, and ||y |2 was calculated
analytically.

The wavenumber « significantly influences the oscillatory behavior of the solution y and thus im-
pacts the accuracy of its numerical approximations. To evaluate the numerical performance of our
proposed model across varying oscillatory levels, we experimented with the x values chosen from the
set {100, 150, 200, 250, 300, 350, 400}. For the DNN method, we chose ' =2,y =6, =1, g € {1, 2}
which satisfies the condition (85). Moreover, we set p, := [y«#] = [6«], and investigated the impact
of the sample size on the approximation accuracy by considering N, := 6x + 1 and N, := 12« + 1,
corresponding to the choices g := 1 and g := 2, respectively.

For the training model, we introduce a regularization [25] to the loss function of optimization problem
(8) to address overfitting. Specifically, for the single-grade learning model, the training loss is defined as

.. 1 Ne ) n
training_loss == <= 3| f (1)) = (& = Hp )T A (W3 byYi_p: )|+ X 1W;
Kk =1 Jj=1
where > 0 is the regularization parameter, || - || ¢ is the Frobenius norm and x; are training data points to
be specified later. A sparse regularization was used in [28]. The training loss for the multigrade learning
model is defined in a similar manner. All models of single-grade and multigrade were validated with the
validation loss defined as

1 512 )
validation_loss = Z |f(x,) - (I = A, )Y(XI,)| ;

512 12 /=
where Y := y* for the single-grade model and Y := j; for the multigrade model, and x; are validation
data points to be specified.

Now, we specify the training and validation data.

Training data: For each chosen «, we equidistantly choose N, points x; from / and compute f(x;), for
J € Ny, where N, is either 6x + 1 or 12« + 1, and thus obtain the training data {(x;, f(xJ))} L, el xC.

Validation data: The validation set is given by {(x’, i f(x! ))}ilz1 € I x C, where x , j € Nspo, are
uniformly distributed on the interval /. Note that N, is not equal to 512 for any chosen k value.

In our experiments, the activation functions of hidden layers are all chosen to be the sin function for
the single-grade and multigrade networks. We chose three single-grade network architectures SGL-1,
SGL-2 and SGL-3 as shown in Table 1, where [n] indicates a fully-connected layer with n neurons. Note
that the network SGL-2 is an extension of the network SGL-1 with two additional hidden layers and
SGL-3 is an extension of SGL-2 with four additional hidden layers.

We use the three grades for the multigrade learning model corresponding to SGL-1, SGL-2 and SGL-3,
respectively. Their network architectures are described below:
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Methods | Network Structure

SGL-1 [1] — [256] — [256] — [2]

SGL-2 [1] — [256] — [256] — [128] — [128] — [2]

SGL-3 [1] = [256] — [256] — [128] — [128] — [64] — [64] — [32] — [32] — [2]

Table 1. Network structure of single-grade learning model

k=100 | k=150 | k=200 | k =250 | k=300 | « =350 | « =400
bs u bs u bs bs bs u bs u bs

SGL-1 | 64 0 128 107°| 64 0 128 107°| 64 107°| 256 107°| 256 10~°
SGL-2 | 128 107> | 128 10| 128 107%| 128 1076|128 107*| 128 0 64 10~*

N =6c+1 SGL-3 | 128 107*| 64 107*| 128 107*| 128 10=*| 128 10~*| 128 10| 128 10~*
MGDL | 64 107%| 64 107%| 128 1076 | 128 107°| 128 107°| 128 107°| 128 10~°
SGL-1 | 128 107°| 128 0 256 107|256 0 256 0 128 1076 | 256 10~¢
SGL-2 | 128 O 256 1079|256 1075|256 1076|256 0 256 0 256 107°
N=12«k +1

SGL-3 | 128 107*| 256 107|256 10| 256 10~*| 256 10=*| 256 10~*| 256 10~*
MGDL | 64 O 64 0 128 0 128 0 128 0 128 0 128 0

Table 2. Batch size (bs) and regularization parameter (u) for SGL-1, SGL-2, SGL-3 and MGDL.

Grade 1: [1] — [256] — [256] — [2].
Grade?2: [1] — [256]F — [256]F — [128] — [128] — [2].
Grade3: [1] — [256]F — [256]F — [128]F — [128]F — [64] — [64] — [32] — [32] — [2].

Here, [n]F indicates a layer having its parameters trained in the previous grades and remained fixed in
training of the current grade.

We now describe the training and the tuning strategies for the single-grade models and the associated
multigrade model. For the single-grade models, we used 3, 500 epochs for training. While for the
multigrade model, we utilized 500, 1, 000 and 2, 000 epochs for grades 1, 2 and 3, respectively. For
all training processes, we uniformly set the initial learning rate 10~2 and have it exponentially decay
to the final learning rate 10~7. We used regularization parameters 0, 107%, 107>, 10~ and batch sizes
64, 128, 256, and chose the best pair of the hyper-parameters in the sense that with it the model produces
the minimum validation error over five independent experiments for each pair of the parameters. We list
in Table 2 the best pair of the hyper-parameters found for all models.

Table 2 shows that MGDL incorporates implicit regularization. For the case N := 6k + 1, the
regularization parameters for MGDL are all 1e-6 very small, and for the case N := 12«41, all regularization
parameters for MGDL turn out to be zero, indicating that the MGDL model has a built-in regularization
feature and additional regularization may not be needed. While the regularization parameters for the
deepest model SGL-3 are all 1e-4, hinting that it requires regularization.

We compared performance of the DNN models to that of the traditional collocation method using
continuous piecewise linear functions and continuous piecewise quadratic functions as bases. For details
of the collocation method, the readers are referred to [1; 5]. We now describe the collocation method
using the continuous piecewise polynomial of degree d as the basis for d = 1, 2. For each chosen «,
let N, be equal to 6« + 1 or 12k + 1. For each [ € Ny _, the basis function ¢; € C({) is defined to be a
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k=100 | k=150 | k=200 | k=250 | k=300 | k=350 | k=400
CM1 1.16-1072 | 1.15:1072 | 1.15-1072 | 1.15-1072| 1.15-107% | 1.15-1072 | 1.15-102
CM2 | 1.67-1073| 1.67-1073 | 1.67-1073 | 1.66-107% | 1.66-1073 | 1.66-1073 | 1.66-10~3

SGL-01 | 1.11-1072 | 8.82-10"' [ 9.82-107!| 9.83-10~" | 9.01-107! | 9.48-10~! | 9.83-10!

Ne=6c+1"| oG 02 | 1.49-10-3 | 1.29:103 | 1.67-10~% | 1.94-10-3 | 3.75-103 | 3.36.10~3 | 5.54.10-3
SGL-03 | 8.11-1073 | 6.91-1073 | 6.80-1073 | 6.61-1073 | 4.92-1073| 5.92.1073 | 5.38-103
MGDL | 4.23.10~%| 3.09-10 4 | 3.87.10~%| 3.20-10* | 3.05-10~*| 3.53.10% | 3.91.10*
CMI1 |[2.94.1073|2.91-1073|2.89-1073 | 2.89-1073 | 2.89-1073 | 2.89-1073 | 2.90-10~3
CM2 |2.10-107*|2.10-107*| 2.10-10~*| 2.09-10~* | 2.09-10~* | 2.09-10~* | 2.08-10~*
N = 12641 SGL-01 1.22-10:1 3.17-10:1 9.81-10:1 9.82-10:1 9.82-10:1 9.83-10:1 9.84-10:1
« SGL-02 | 7.36-10~* | 5.93-10~*| 6.17-10~*| 7.01-10~* | 7.73-10~*| 7.71-10~* | 8.05-10~*

SGL-03 | 3.91-107% | 3.43-1073 | 3.36-107% | 3.57-1073 | 3.43.1073 | 3.71-10% | 4.20-1073
MGDL | 1.30-10~*| 8.20-10~5 | 7.81-10~5 | 5.85.105 | 4.32.105 | 4.54.105 | 4.54.10°5

Table 3. Relative error for CM1, CM2, SGL-1, SGL-2, SGL-2 and MGDL.

polynomial of degree d in the interval [x 441, X(j+1)a+1] for each j € Z(y,_1)/q and satisfies ¢ (x;) =6,
for any j € Ny, , where §;; := 1, for j =1, and 0 otherwise, for j, ! € Ny_. The collocation method for
solving the integral equation (2) with the described bases leads to the algebraic system

Gt = f, where G :=[((.# —AX)¢)(xj): j, 1 €Ny ], t:=[t;: jeNy 1T, fi=[f(x;):jeNy]".

By solving the above system, we obtain the coefficients ¢* := [t;.‘ : j € Ny, 17, which gives rise to
the collocation solution y, := Zy; 1 17¢;. In our discussion to follow, we use CM1 and CM2 for the
collocation method with piecewise polynomials of degree d = 1 and d = 2, respectively.

Relative errors of approximate solutions for all methods are summarized in Table 3 for wavenumbers
k := 100, 150, 200, 250, 300, 350, 400 and sample sizes N, := 6k + 1, 12k + 1. Comparing the three
single-grade models SGL-1, SGL-2 and SGL-3, and the multigrade model MGDL with the two collocation
methods, we find that MGDL significantly outperforms all other methods for all wavenumbers and all
sample sizes. Among the three single-grade models, SGL-2 performs the best. Moreover, SGL-2
outperforms CM1 for all wavenumbers and all sample sizes and has slight larger errors than CM2 for most
wavenumbers and sample sizes. However, model SGL-3, which is deeper than SGL-2, performs worse
than SGL-2 for all cases, against the expectation that as the depth of the network increases, the expressive
power of the neural network should improve. This may be due to the reason that as the neural network
becomes deeper, the resulting optimization problem is more difficult to solve, leading to decline in the
overall accuracy of the model. Moreover, as it will be shown later in this section, the single-grade deep
learning model may suffer from the spectrum bias phenomenon when it is applied to solve an oscillatory
integral equation. This serves as motivation for the development of multigrade learning model.

We further compare the performance of the single-grade learning model and multigrade learning model
for the case when « = 350 and N, = 12k + 1. Specifically, we tabulated in Table 4 the training loss,
the validation loss and the relative error for models SGL-1, SGL-2, SGL-3 and MGDL. We also plot in
Figure 2 the training loss and the validation loss against the number of epochs. Furthermore, we display in
Figure 3 the absolute error in the time domain between the exact solution and the approximate solutions
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Figure 2. Training loss and validation loss for SGL-1, SGL-2, SGL-3 and MGDL for
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the case x =350, N, =12« + 1.

SGL-1 SGL-2 SGL-3 Grade 1 Grade 2 Grade 3
Training loss 383 [2.51-107°%]7.19-107° 3.61 6.31-107°|3.34.107°
Validation loss 398 [2.89-107%] 6.83-107° 3.93 8.87-107°| 6.88-107°
Relative error | 9.83-10~!|7.71-107*|3.71-1073(| 9.81-107"| 1.19-1073| 4.54-.107°

Table 4. Training loss, validation loss and relative error of the solution for SGL-1, SGL-2,
SGL-3 and MGDL for the case ¥k = 350, N, = 12k + 1.

generated by SGL-3 and grades of MGDL whose network architecture matches that of SGL-3. It is clear
that MGDL generates a more accurate approximate solution than SGL-3.

Figure 4 plots different solution components generated by different grades of the MGDL model. It
illustrates that the MGDL model can effectively extract the intrinsic multiscale information hidden in the
oscillatory solution of the integral equation. This well explains why the MGDL model can overcome the

spectral bias from which single-grade learning models suffer.
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Figure 3. Absolute errors of the approximate solutions of SGL-3 and MGDL at s; :=
—1+4 /10000, j € Zyy01 for the case x := 350, N, := 12k + 1.

To close this section, we show how the MGDL model improves approximation grade-by-grade looking
from the frequency domain. To this end, we denote by (% v)(z) the fast Fourier transform of a vector v,
where z denotes the frequency variable. We then use

|Z (Ly(s;) : j € Nogoo11")(2) — F (Y (sj) : j € Nagoo117)(2)]
|.Z ([y(s;) : j € Nagoo117) (2)]

to compute the relative error of an approximate solution Y at the frequency z € {0.5j —5000.5: j € Nagoo1},
where y denotes the exact solution and s; := —1+ %, for j € Npggo1. Here, Y = y* for the single-grade

!
learning model and Y = Y; := ) 7 fy for [ € Ny for the [-th grade solution of the L-grade learning
d=1
model. In Figure 5, we plot the relative errors between the frequency of the exact solution and that of

approximate solutions for SGL-3 and MGDL. Figure 5 demonstrates that the single-grade learning model
favors low frequency components. When the frequency greater than 100, the single-grade learning model
gives large errors, which are larger than the errors for the grade 2 solution Y,. On the contrary, errors of
the MGDL model reduce grade-by-grade across all frequency levels and for frequencies higher than 100,
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Figure 4. Grade components of MGDL for the case k = 350, N, = 12« + 1.
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Figure 5. Relative errors of the approximate solutions generated by SGL-3 and grades
1, 2, 3 of MGDL in the frequency domain for the case x =350, N, = 12« + 1.

the errors for the grade 3 solution Y3 reduce remarkably. This pinpoints that the higher grade can capture
the high-frequency component of the solution and thus, the MGDL model can overcome the spectral bias
from which the single-grade learning suffers.
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8. Concluding remarks

We developed a DNN method for the numerical solution of the oscillatory Fredholm integral equation of
the second. The proposed methodology includes two major components: the numerical quadrature scheme
that tailors to computing oscillatory integrals in the context of DNNs and the multigrade deep learning
model that aims at overcoming the spectral bias issue of neural networks. We established the error of the
single-grade neural network approximate solution of the equation by showing that it is bounded by the
training loss plus the quadrature error. We demonstrated by numerical examples that the multigrade deep
learning model is effective in extracting multiscale information of the oscillatory solution and overcoming
the spectral bias issue from which the traditional single-grade learning model suffers.
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