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ABSTRACT

The periodical cicadas of North America (Magicicada spp.) are well-known for their

long life cycles of 13 and 17 years and their mass synchronized emergences. Although

periodical cicada life cycles are relatively strict, the biogeographic patterns of periodical

cicada broods, or year-classes, indicate that they must undergo some degree of life

cycle switching. We present a newmap of periodical cicada Brood V, which emerged in

2016, and demonstrate that it consists of at least four distinct parts that span an area in

the United States stretching from Ohio to Long Island. We discuss mtDNA haplotype

variation in this brood in relation to other periodical cicada broods, noting that different

parts of this brood appear to have different origins. We use this information to refine

a hypothesis for the formation of periodical cicada broods by 1- and 4-year life cycle

jumps.
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INTRODUCTION

North American periodical cicada (Magicicada) adults emerge synchronously, predictably,

and in overwhelming numbers; their black bodies, orange wing veins, striking red eyes,

and loud acoustical choruses are unmistakable. Although early European settlers in

North America mistook these insects for migratory locusts (Kritsky, 2004), their sudden

appearances and equally sudden disappearances are not caused by movement, but by long

life cycles (13- or 17- years) spent mostly underground with only a brief aboveground

adult phase. Perhaps one of the strangest aspects of Magicicada is the existence of broods,

which are multispecies assemblages in which all members, regardless of species, emerge

synchronously on the same schedule. Across the eastern and central United States, the

broods form a patchwork pattern of interlocking year classes that are generally parapatric,

temporally offset, and resemble puzzle pieces. Such spatial relationships suggest the

existence of some kind of competitive interactions that limit brood overlaps, such as

underground competition among nymphs and/or aboveground competition among adults

(Bulmer, 1977; Lehmann-Zeibarth et al., 2005). These spatial patterns also suggest some

mechanism for brood formation by which broods give rise to each other and thus have

parent–child relationships (Marlatt, 1902).WhileMagicicada are well-known for their fixed

life cycles, two kinds of life cycle shifts have been demonstrated; permanent life cycle shifts

(e.g., cicada populations change cycles and stay on their new cycle; Martin & Simon, 1988;

Martin & Simon, 1990; Marshall & Cooley, 2000; Simon et al., 2000; Cooley et al., 2001),

and temporary life-cycle shifts (e.g., cicada populations adopt the alternate cycle but return

to their original cycle; Simon & Lloyd, 1982; Kritsky, 1988; Marshall, Cooley & Hill, 2011;

Marshall, Hill & Cooley, 2018). While both kinds of life-cycle shifts were hypothesized

by Lloyd & Dybas (1966), temporary life-cycle switching is thought to be responsible for

brood formation within life-cycles (Marlatt, 1902; Lloyd & Dybas, 1966; Lloyd & White,

1976; Simon & Lloyd, 1982).

Given the spatial and temporal relationships of the 17-year broods, Lloyd & Dybas

(1966) developed a general ‘‘4-year acceleration’’ hypothesis by which most broods could

be derived by simple 1- or 4-year temporary life cycle advancements (or ‘‘accelerations’’)

from an ancestral parent brood on the same schedule as Brood XIV (Fig. 1; see also Lloyd &

White, 1976; Simon, 1983). The discovery of persistent disjunct ‘‘miniature’’ brood isolates

on Long Island, New York and elsewhere (Simon & Lloyd, 1982; Cooley, 2015; Cooley et

al., 2015) and genetic evidence that many broods have complex, multiple origins (Martin

& Simon, 1988; Martin & Simon, 1990; Simon et al., 2000; Cooley et al., 2001; Sota et al.,

2013) suggest that the process modeled by this hypothesis, in which populations become

temporally isolated and form new broods or join existing ones, may be more common than

previously thought and apply to more than just the known disjunct populations. Here we

test whether the main body of Brood V has a single origin, or whether it reflects multiple

episodes of brood formation.

Seventeen-year periodical cicada Brood V, whose range includes a variety of different

climate and habitat types, emerged in 1931, 1948, 1965, 1982, 1999, and 2016. Brood

V contains all three named 17-year cicada species (M. septendecim, M. cassini, and M.
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Figure 1 The original Lloyd and Dybas ‘‘4-year acceleration’’ scheme (Lloyd & Dybas, 1966). Broods in

parentheses were considered of uncertain existence.

Full-size DOI: 10.7717/peerj.5282/fig-1

septendecula) and has a reported range whose various parts are in close proximity to

or in contact with Broods I, VIII, IX, X, and XIV (Marlatt, 1923; Simon & Lloyd, 1982;

Simon, 1988). Brood V is close to the boundary between eastern and middle periodical

cicada haplotypes as defined by Sota et al. (2013), but sampling in that paper did not

encompass the full range of Brood V. In this paper, we genotype samples of Brood V and

neighboring Brood I in Virginia and West Virginia, collate historical records, and create

a new georeferenced map of Brood V’s 2016 emergence. Our genetic, geographic, and

historical data suggest that like Broods IX and X (Sota et al., 2013), Brood V is composed

of at least four subpopulations with separate evolutionary origins and that the main range

of Brood V is not of a single origin but rather consists of fused eastern and western

populations. We propose hypotheses for the formation of these subpopulations and review

the temporal and geographic relationships of other broods in contact with Brood V.

We suggest that Lloyd & Dybas’s (1966) ‘‘4-year acceleration’’ hypothesis be expanded to

consider decelerations (or temporary life cycle retardations), which are sometimes more

geographically parsimonious. We also document changes in the distribution of Brood V in

parts of its range.

METHODS

Verified records

In May and June 2016, we collected records of the Brood V emergence across its range by

searching for active choruses on days with appropriate weather conditions. We usedmobile

GPS dataloggers to collect information about the density of cicadas and the species present
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(more details of the methods can be found in Cooley et al., 2013; Cooley et al., 2016). In

northeast Ohio, particularly Cuyahoga, Medina and Lake counties, and in eastern Suffolk

County (Long Island) New York, data were collected by trained surveyors with handheld

GPS devices visiting preselected locations on multiple days throughout the emergence.

Distributional information was organized and mapped using ArcGIS 10.5 (ESRI, 2017).

Cuyahoga and Medina county Ohio data were deposited in a database managed by

Cleveland Metroparks. All data were also included in the periodical cicada database found

at http://www.magicicada.org.

Crowdsourced records

The website http://www.magicicada.org and Cleveland Metroparks collected unverified

(‘‘crowdsourced’’) periodical cicada sightings from the general public inMay 2016.We used

these records to inform our decisions about areas tomap in detail. Individual crowdsourced

records are not necessarily reliable; thus, we weighted crowdsourced records by assigning

higher confidence to records that were clustered or that were in close proximity to verified

records as described in Cooley et al. (2015). After we had stopped collecting data from

the general public, we received an unusual number of reports from Carbon County,

Pennsylvania, via the website http://www.cicadamania.com/ which we then investigated.

Overlaps

Because roads are sparse in the parts of Virginia where Brood V contacts Brood I, direct

measurements of overlaps are impractical. Instead, we made conservative estimates of

overlaps by constructing linear features in Arc GIS 10.5 that linked verified presence

observations of Brood I with verified presence records of Brood V. To do so we looked

for instances in which series of verified records of one brood are clearly within territory

occupied by the other brood; for example, if we collected 11 records along a route occupied

by Broods I and V in the order (V1 V2 V3 I4 V5 I6 V7 I8 I9 I10 I11), then we constructed

a single linear feature connecting (I4 V5 I6 V7). We extracted the lengths of all linear

features as conservative estimates of overlap. We did not use records of single individuals

as endpoints of these features.

Historical data

Historical data from Brood V can be found in Marlatt (1923), Simon (1988), Kritsky,

Smith & Gallagher (1999; for Ohio only), and Simon & Lloyd (1982; for Long Island

only). Additional historical records were gleaned from Magicicada published literature,

museum specimens in the University of Michigan Museum of Zoology (UMMZ) and

from unpublished field notes and records in the http://www.magicicada.org database.

To verify the historical presence of the newly discovered disjunct population in Carbon

County, Pennsylvania, we gathered data from archived copies of newspapers in the Carbon

County area for the Brood V emergence years 1883, 1897, 1931, 1948 and 1965 and 1999.

We searched for the terms ‘‘cicada’’ or ‘‘locust’’ (an archaic term for cicadas used in

North America (Kritsky, 2001; Kritsky, 2004) in the months of January through August in

three newspaper archives: Library of Congress’s Chronicling America Historic American

Newspapers, the Pennsylvania Historical Newspapers, and http://Newspapers.com.

Cooley et al. (2018), PeerJ, DOI 10.7717/peerj.5282 4/23
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Table 1 Mitochondrial haplotypes of select Brood V and Brood IM. septendecim specimens. See Fig. 7 for mapped locations of specimens.

Brood Year Location State County Latitude Longitude No. of

samples

Sample code

(haplotype group: haplotype

accession)

Haplotype

group

I 1978 A NY Suffolk 40.903 −72.862 3 en0001 (Ae: AB740808)

en0002 (Ae: AB740809)

en0005 (Ae: AB740810)

Ae

I 2012 B VA Shenandoah 38.6861 −78.7338 4 V68B Ae

I 2012 C WV Pendleton 38.515 −79.1404 4 en1027 (Am); en1028 (Am);

en1029 (Am: AB740828);

en1030 (Ae: AB740808)

Ae, Am

I 2012 D WV Pendleton 38.5121 −79.2557 4 en1023,1024,1026 (Am: AB740828);

en1025 (Am: AB74026)

Am

I 2012 E VA Rockingham 38.3853 −79.0246 3 en1013-1015 (Ae: AB740808) Ae

I 2012 F WV Pendleton 38.3041 −79.1918 4 en0913,0914,0916 (Ae: AB740808);

en0915 (Ae)

Ae

I 2012 G VA Augusta 38.2152 −79.1232 4 en1016-1019 (Ae: AB740808) Ae

I 2012 H VA Augusta 38.1614 −79.1741 3 en1020-1022 (Ae: AB740808) Ae

I 2012 I VA Rockbridge 37.84432 −79.59543 4 12.VA.RKB (Ae: AB740808) Ae

I 2012 J VA Botetourt 37.5555 −79.6355 4 V57 Ae

V 1999 K OH Ross 39.317 −82.777 3 en0011 (Am: AB740826)

en0012 (Am: AB740827)

en0013 (Am: AB740828)

Am

V 2016 L VA Shenandoah 38.87299 −78.63828 4 en0961-0964 (Ae: AB740808) Ae

V 2016 M VA Augusta 38.21769 −79.21769 4 en1001-1004 (Ae: AB740808) Ae

V 2016 N VA Augusta 38.1839 −79.21317 4 en0957-0960 (Ae: AB740808) Ae

V 2016 O VA Bath 38.0921 −79.78225 4 en1009-1012 (Am: AB740828) Am

V 2016 P VA Bath 37.95093 −79.86982 4 en1005,1007 (Am: AB740828);

en1006 (Ae: AB740808); en1008 (Am)

Ae, Am

V 2016 Q VA Alleghany 37.85146 −79.80739 4 en0997-0999 (Am: AB740828);

en1000 (Ae: AB740808)

Ae, Am

Genetic data

We amplified and sequenced a 525-bp portion of mitochondrial cytochrome oxidase

subunit I (COI) for 64 M. septendecim specimens collected in 2016 from Brood V, and

in 2012 from Brood I using methods described in Sota et al. (2013). Haplotypes were

compared to previously reported mitochondrial haplotypes ofM. septendecim from Broods

I and V (Sota et al., 2013) to determine haplotype groups. We used TCS version 1.21 to

construct a haplotype network (Clement, Posada & Crandall, 2000). Details of specimens

and accession numbers of the reference haplotype sequences are given in Table 1. Methods

are identical to those in Sota et al. (2013).

RESULTS

Brood V consists of four distinct parts: (1) a large body of the brood extending from

the Ohio Valley to Lake Erie; (2) a nearby but separate, southeastern portion associated

with the Shenandoah Valley and in close contact with Brood I; (3) a small disjunct
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Figure 2 Overview of 17-year periodical cicada Brood V records from 2016.Orange circles are positive

records, while gray circles are negative (absence) records. Symbol size reflects weights applied to reflect

confidence (see text). Smaller symbols are crowdsourced records with low confidence; larger symbols have

higher confidence (note that in Southern VA crowdsourced records in the range of Brood II were checked

by the authors a week or more after the reports; we found no evidence of cicadas and their absence is indi-

cated by grey dots).

Full-size DOI: 10.7717/peerj.5282/fig-2

population ofM. septendecim in Carbon County, Pennsylvania, associated with the Lehigh

River in and around the town of Jim Thorpe; and (4) a previously known disjunct

population ofM. septendecim on eastern Long Island containing onlyM. septendecim (Figs.

2–5). We found that Brood V in Virginia is largely parapatric with Brood I; for the five

Virginia locations where we found measurable overlap, estimated overlaps were limited to

0.51 ± 0.45 km, with the largest overlap less than 1.3 km (Fig. 6).

Crowdsourced records

In this study, we evaluated 1,361 crowdsourced data points, most of which were within the

range of Brood V, but some of which were from as far away as California (well outside the

range of Magicicada). Crowdsourced records suggest that we did not miss any significant

populations (Figs. 2–4). The existence of the Carbon County, Pennsylvania population was

initially revealed to us by records provided by the general public.

Cooley et al. (2018), PeerJ, DOI 10.7717/peerj.5282 6/23



Figure 3 Ohio Valley and Virginia portions of 17-year periodical cicada Brood V.Orange symbols

are verified positive records; gray symbols are verified 2016 negative records. Circles are presence records

from 2016, squares from 1999, and crosses from 1982. Symbol size reflects weights applied to reflect con-

fidence (see text). Smaller symbols are crowdsourced records with low confidence; larger symbols have

higher confidence.

Full-size DOI: 10.7717/peerj.5282/fig-3
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Figure 4 Long Island portion of 17-year periodical cicada Brood V.Orange symbols are verified posi-

tive records, gray symbols are verified negative records. Circles are records from 2016, squares from 1999,

and crosses from 1982. Green symbols are Brood XIV records, and the single purple symbol is a Brood I

record from 1978. Protected areas are shown in light green.

Full-size DOI: 10.7717/peerj.5282/fig-4

Genetic data

We obtained COI sequences for 64 M. septendecim from 17 populations in Ohio, West

Virginia, and Virginia (Table 1). All haplotypes are variants of mitochondrial lineage A,

which is restricted to M. septendecim and M. neotredecim (Martin & Simon, 1988; Martin

& Simon, 1990; Marshall & Cooley, 2000; Simon et al., 2000; Cooley et al., 2001; Sota et

al., 2013). Midwestern portions of Brood V contain only the Midwest haplotype, Am.

Eastern populations of Brood V possess the Eastern haplotype, Ae. Brood V populations

in mountainous areas along the Virginia-West Virginia border contain both haplotypes

Ae and Am in the same forest patches in multiple locations (Fig. 7). Disjunct populations

of Brood V on Long Island were entirely Ae. Populations from Jim Thorpe, Pennsylvania

were not genotyped.

HISTORICAL RECORDS AND POPULATION STATUS

Changes in brood ranges and abundance in Ohio

The recession of Brood V boundaries in Ohio has been discussed for over a century.

Webster mapped the 1897 emergence, noting that in Erie County, periodical cicadas

Cooley et al. (2018), PeerJ, DOI 10.7717/peerj.5282 8/23



Figure 5 Carbon County, PA portion of 17-year periodical cicada Brood V as mapped in 2016.Orange

symbols are verified positive records; gray symbols are verified negative records. Brood II presence records

are shown in red and reprinted from Cooley et al. (2015).

Full-size DOI: 10.7717/peerj.5282/fig-5

could be found in an area that was ‘‘little more than a peninsula-like extension, and will

probably not appear again.’’ Gossard (1916) surveyed the next emergence in Erie County

and documented that the brood persisted for another generation. Forsythe (1976) checked

the distribution in 1965 and found cicadas just south of the Erie County line. The brood

did emerge in 2016 just north of the county line, suggesting that there may have been doubt

about the line when mapping the 1965 and later emergences.

The recession of the southwestern Ohio limits of Brood V, noted by Kritsky, Smith &

Gallagher (1999), continued with the 2016 emergence. The emergences in Ross, Pike, and

Scioto counties were scattered, with only light chorusing observed in the eastern portion of

the counties compared to strong choruses reported in 1897. Forsythe (1976) noted that such

light emergences suggest that ‘‘relatively small, isolated locations may be more persistent

than originally supposed.’’

Carbon County Pennsylvania disjunct population

Even though the Carbon County Pennsylvania disjunct of Brood V (Fig. 5) has not

been reported in the scientific literature until now, it has been documented in museum

collections and local newspaper reports. We found 12 M. septendecim in the UMMZ

Cooley et al. (2018), PeerJ, DOI 10.7717/peerj.5282 9/23
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Figure 6 Associations of 17-year periodical cicada Broods. Periodical cicada Broods V (orange sym-

bols), I (purple symbols; Cooley, 2015), II (red symbols Cooley et al., 2015), IX (pink symbols) and X (blue

symbols; Cooley et al., 2009).

Full-size DOI: 10.7717/peerj.5282/fig-6

collected 6/23/1982 by J. A. Lankalis in Mauch Chunk (prior to 1953, Jim Thorpe was

named Mauch Chunk, and the name has persisted because it is also the name of a nearby

ridge). The UMMZ collection also contains four M. septendecim collected 5/13/1982 in

Lehigh Gorge. Jim Thorpe is the gateway to the Lehigh Gorge.

The earliest news report of periodical cicadas on the same schedule as Brood V in

Carbon County Pennsylvania is from 1880; in March of that year, the Carbon Advocate,

of Leighton, predicted that periodical cicadas would appear that summer ‘‘in accordance

with long established customs;’’ the same paper later reported on May 29 that a substantial

emergence had occurred. In June 1897, the Allentown Morning Call noted the emergence of

periodical cicadas in Schuylkill County, which is immediately to the southwest of Carbon

County. While we did not find any periodical cicadas in Schuylkill County in 2016, we did

not search the county exhaustively, and we did find periodical cicadas in Carbon County

within 7 km of the Carbon/Schuylkill County line. In June 1931, the same newspaper

reported periodical cicadas in Leighton and Mauch Chunk. The Allentown Morning Call

also reported periodical cicadas in June 1948 and June 1965, with specific mentions of

Mauch Chunk and Carbon County. In sum, these newspaper reports seem largely credible,

since they describe cicadas in approximately the correct locations in Brood V emergence

Cooley et al. (2018), PeerJ, DOI 10.7717/peerj.5282 10/23



Figure 7 Periodical cicada mtDNA haplotypes in Broods I and V.Haplotype Ae (triangles) and Am

(circles) are found in 17-year periodical cicada Broods V (orange symbols) and I (purple symbols) follow-

ing terminology of Sota et al. (2013). Genetic data from Table 1; haplotype network constructed using TCS

version 1.21 (Clement, Posada & Crandall, 2000).

Full-size DOI: 10.7717/peerj.5282/fig-7
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years; thus, these records support the existence of this disjunct at least as far back as 1880.

Complete details of Pennsylvania Brood V historical records are included in the (Data S1).

Long Island disjunct populations

Brood XIV is the main brood on Long Island and only small pockets of Broods I, V, and

IX exist in a restricted area of northeastern Long Island (Simon & Lloyd, 1982). The Long

Island disjunct of Brood V (Fig. 4) was first recorded in 1914 by WT Davis (Simon &

Lloyd, 1982). Like the Long Island disjuncts of Broods I, IX and X (Simon, Karban & Lloyd,

1981; Simon & Lloyd, 1982; Cooley et al., 2009; C. Simon field notes), these populations of

Brood V appear to be declining and may go extinct in the near future. For example, Long

Island Brood X has declined precipitously since 1970; an article in Newsday (Nelson, 2004)

documented only small numbers of Brood X individuals emerging on Long Island in 2004

in areas that had large emergences in 1987 (C. Simon field notes) and 1970, including

protected areas such as Connetquot State Park. Similarly, detailed qualitative records of

Brood V in Wildwood State Park, Wading River, Long Island in 1982 and 1999, (C. Simon

field notes; Magicicada database) and our survey in 2016, and anecdotal reports from

residents of Calverton suggest a steep decline in Magicicada density both in protected and

developed areas of north eastern Long Island. No records of Brood XI on Long Island exist

beyond those recorded by W.T. Davis in the early 1900’s and reported in Simon & Lloyd

(1982).

DISCUSSION

Crowdsourcing as a biological tool

Crowdsourcing has been a key component of periodical cicada mapping ever since

C. L. Marlatt constructed maps by enhancing older datasets with reports from state

entomologists, agricultural experiment station bulletins, weather service observers, post

offices, and entomological enthusiasts (Marlatt, 1898). Our crowdsourced periodical

cicada records continue the tradition of citizen science successfully contributing to this

effort. The emergence and evolution of citizen science as a subdiscipline of ecology and

conservation biology, along with its challenges and opportunities have been reviewed

by Silvertown (2009) and Pocock et al. (2017b). Recently, citizen science has emerged as

a tool for evaluating species responses to forest management plans (Mair & Ruete, 2016;

Mair et al., 2017), mapping the arrival and spread of invasive species (Pocock et al., 2017a),

pollinator monitoring (Roy et al., 2016), and tracking monarch butterfly populations

(Schultz et al., 2017). The citizen science approach is particularly powerful in the context

of periodical cicada research due to the large range of potential habitat, the short duration

of adult emergences, and the limited number of ‘‘expert’’ mappers. Notably, the Carbon

County Pennsylvania Brood V disjunct was originally brought to our attention on the

basis of citizen science reports; given the small size of this population, it is unlikely that we

would have found it otherwise. We expect that citizen science efforts will continue to play

an important role in monitoring whether the reported ranges of periodical cicada broods

remain stable or undergo changes in the future.

Cooley et al. (2018), PeerJ, DOI 10.7717/peerj.5282 12/23



Brood V has multiple origins

Although somemorphometric studies suggested that broods are single-originmonophyletic

assemblages (Simon, 1983), Marlatt (1902) acknowledged the possibility of broods having

multiple origins, noting that, ‘‘In the case of a widely-scattered brood ... it is quite possible

that certain swarms originated from a later-appearing brood by retardation of individuals,

and other swarms from an earlier brood by acceleration in time of appearance of individuals

... but with the broods presenting a compact range a singleness of origin is evident’’ (Marlatt,

1902). Marlatt considered Brood V to have a ‘‘compact range.’’ He was unaware of the

small disjunct populations of Brood V in Carbon County Pennsylvania and on Long Island,

which by his reasoning, would be best explained as independently derived from a different

brood.

Genetic data also indicate that the different parts of Brood V have unique histories,

extending the findings of Sota et al. (2013) that Broods VI, IX, X, and XIV have multiple

origins. Brood VM. septendecim fromMidwestern localities belong to a central US mtDNA

clade (Am) shared with all other Midwestern M. septendecim brood populations, while

Brood V M. septendecim from eastern portions of the range belong to an eastern mtDNA

clade (Ae), shared with all other eastern M. septendecim brood populations (Sota et al.,

2013). In themiddle of themain body of Brood V, in the Shenandoah Valley of Virginia and

surrounding areas extending into West Virginia, there is a boundary between haplotypes

Ae and Am. In this region, Brood V overlaps Brood I, which also contains both haplotypes

Ae and Am, as does Brood IX (Table 1, Fig. 7; Sota et al., 2013). The spatial, temporal, and

genetic relationships of Broods I, V, and IX suggest that they are derived from each other

by 4-year jumps (discussed below), and because Brood V has the westernmost extent of

these broods, it may have been a conduit for Midwestern haplotype Am to enter eastern

populations of Broods I and IX. Further exploration of this hypothesis awaits detailed

mapping of Brood IX in 2020 and more fine-scale genetic data for both mtDNA and

nuclear genomes.

Four-year jumps

Magicicada stragglers, or off-cycle cicadas, are a well-documented phenomenon that has

complicated efforts to map broods (Marshall, 2001). If stragglers emerge in sufficient

numbers to satiate predators, then they may establish populations on a new schedule. Early

emergences, or accelerations (written as ‘‘−4’’), have been suggested to result fromcrowding

or better than average environmental conditions (e.g., longer growing seasons) that allow a

fraction of the population to complete development ahead of schedule (Williams & Simon,

1995). Unexpectedly late emergences, or decelerations (written as ‘‘ +4’’), may be caused

by worse than average environmental conditions that prevent a fraction of the population

from completing development in the expected time (see Karban, Black & Weinbaum, 2000;

also Lloyd & Dybas, 1966; Lloyd & White, 1976). The spatial association of brood pairs

(Alexander & Moore, 1962) offset by one year (I/II, III/IV, IX/X, XXII/XXIII) and by 4

years (XIV/I/V/IX, II/VI/X/XIV, XIX/XXIII) suggests that both 1- and 4-year jumps are

important for shaping Magicicada spatiotemporal patterns (Lloyd & Dybas, 1966). Among

the possible jumps that have been documented (Cooley et al., 2011; Marshall, Cooley &

Cooley et al. (2018), PeerJ, DOI 10.7717/peerj.5282 13/23



Hill, 2011; Cooley et al., 2016), 4-year jumps appear particularly common; Marshall, Hill

& Cooley (2018) used repeated censuses to demonstrate that individual cicadas are more

likely to accelerate by 4 years than by 1 year. Furthermore, no straggler emergences dense

enough to form choruses have been documented with 1-year offsets from their broods,

while straggler choruses with 4-year offsets are common (see below).Whether 4-year jumps

are favored by some unknown selective advantage, or whether they are a reflection of the

developmental processes underlying periodical cicada life cycles remains unknown.

Four-year accelerations are well-documented in Magicicada. We hypothesize that

accelerations occur during warmer times when growing seasons are lengthened and cicadas

can complete development quickly. Dybas (1969) found choruses of periodical cicadas

in the Chicago metropolitan area in 1969, four years before the emergence of Brood

XIII, the only brood in the area; such choruses were also found in 2003 (Cooley et al.,

2016). Broods that are offset by 4 years, such as Broods I, V, IX and XIV could be related

to each other by the brood derivation scheme Lloyd & Dybas (1966) based on their ‘‘4-

year acceleration’’ hypothesis, although as originally published there was no parent–child

relationship between Broods I and XIV (Fig. 1). Simon & Lloyd (1982)modified this scheme

to include a derivation of Brood I from V and XIV from I via accelerations (Figs. 8A,

8B) to accommodate the Long Island broods (see also Simon, Karban & Lloyd, 1981).

Four-year decelerations have likely also played a role in Magicicada evolution. We

hypothesize that decelerations occur during colder times when growing seasons are

shortened and an extra four years are needed for cicadas to complete development. A large

chorusing population of Brood IV emerged four-years late north of Omaha, Nebraska in

2002, where no other cicada broods are found (reported inMarshall, Cooley & Hill, 2011).

Similarly, Maier (1985) described reported Brood VI populations in the Hudson River

Valley as possible four-year decelerations from resident Brood II populations and also

suggested that the miniature broods on Long Island may have arisen from decelerations

without offering an explanation for the phenomenon. Aside from such straggling, some

brood relationships appear best explainable by four-year delays; a disjunct of Brood I in

northeastern Tennessee, 300 km southwest of themain range of the brood (Cooley, 2015), is

partially surrounded by Brood XIV and may have been derived by a four-year deceleration

from it (Fig. 9). On Long Island, a population synchronous with Brood I appeared

repeatedly in exactly the same woods and oviposited in exactly the same trees as Brood XIV

that appeared four years earlier (Simon, Karban & Lloyd, 1981). Thirteen-year cicadas also

undergo decelerations;Marshall, Cooley & Hill (2011) explained the unexpected emergence

of light choruses within the territories of 13-year broods as 4-year late cicadas. Finally,

Lloyd & Dybas (1966) suggested that a 4-year deceleration was responsible for the initial

formation of 17-year cicadas from 13-year ancestors.

The eastern section of the main range of Brood V

While the Ohio Valley portion of Brood V occupies a heterogeneous region, the gap

between the Shenandoah and Ohio Valley portions of the brood coincides with a shift

between two major watersheds; the Shenandoah portion of Brood V lies in the James

River drainage adjacent to Brood I, while the Ohio Valley portion occupies the Ohio
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Figure 8 Hypotheses for periodical cicada brood formation based on the original Lloyd & Dybas

(1966) ‘‘4-year acceleration’’ hypothesis. (A) The Simon & Lloyd (1982)modified brood derivation

scheme. Solid single arrows indicate that the two broods have contiguous or closely associated geographic

ranges, dashed arrows indicate that they do not. Triple arrows indicate that the broods’ ranges are closely

associated in three different parts of the country suggesting the possibility of polyphyletic origins (repeated

migration between overlapping broods over generations). Broods in parentheses are of doubtful existence

consisting of very few records; no arrows lead from them. Broods in square brackets could be derived

as shown but there is no need to do so since a simpler derivation exists. We added the parentheses to

Brood XV and subtracted them from XI; (B) possible scenario for the formation of disjunct LI broods by

four-year accelerations superimposed on the Lloyd and Dybas scheme. Grey broods do not occur on LI.

Brood XIV is the most widespread and abundant LI brood. Disjunct LI broods are marked with primes.

Doubtful and extinct broods have been removed. (C) Scenario for the formation of disjunct LI broods

by three four-year decelerations and one on-year acceleration. (D) Our new four-year jump model for

deriving all 17-year periodical cicada broods from a postulated Brood XIV ancestor, by a combination of

4-year and 1-year accelerations, modified from Lloyd & Dybas (1966) and Simon & Lloyd (1982). Broods

for which there are no or doubtful historical records are excluded. Double-headed arrows have been

added to show both accelerations and decelerations. Triple arrows indicate the possibility of continuous

migration through time between geographically overlapping populations over generations. Black arrows

indicate jumps that are hypothesized to occur with high probability, grey arrows indicate jumps that are

hypothesized to be rare or that do not occur today but may have occurred in the past. Dashed arrows

indicate doubtful processes due to lack of geographic proximity. Broods in parentheses are probably not

self-perpetuating at present but may have been in the past. Broods in square brackets are extinct. Under

this scheme, one-year decelerations are unlikely and are not shown.

Full-size DOI: 10.7717/peerj.5282/fig-8
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Figure 9 Periodical cicada Brood I disjunct populations in relation to other broods. Brood I (purple)

in the Shenandoah Valley of Virginia with a disjunct population of 200 km southwest in northeast TN that

is partly surrounded by Brood XIV (green). Broods II (red), V (orange), VI (blue stars), IX (pink) and X

(blue) also shown. Other broods omitted for clarity. Redrawn from (Cooley et al., 2009; Cooley et al., 2011;

Cooley, 2015; Cooley et al., 2015).

Full-size DOI: 10.7717/peerj.5282/fig-9

River drainage adjacent to present day Brood VIII (Figs. 3, 6). Drainage changes may

be important in shaping the boundaries of other periodical cicada broods (Cooley et al.,

2013; Cooley et al., 2016), and the divide between watersheds may explain the gap between

the two major portions of Brood V, the eastern portion in the James River watershed

being derived from Brood I by a 4-year deceleration, and the western portion in the Ohio

River watershed derived from Brood IX (the supposed precursor of Brood VIII in the

Lloyd & Dybas, 1966 scheme) by a 4-year acceleration. These hypotheses can be tested by

new data from complete mtDNA genomes and endosymbiont genomes currently under

investigation.

The Long Island disjuncts

While some schemes for the derivation of Long Island disjunct ‘‘miniature broods’’ from

ancestral Brood XIV populations involve both 1- and 4-year changes (Fig. 8B), a scheme

involving only 4-year changes (Fig. 8D) provides a simpler explanation. Four-year jumps

alone can explain the Long Island broods via the following deceleration series: [XIV]+4 →

[I]+4 → [V]+4 → [IX]. The small Long Island disjunct population of Brood X could then
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have been derived from a single four-year acceleration from Brood XIV during warmer

times [XIV]-4 → [X]. These insights suggest that the four-year acceleration hypothesis

should be updated and renamed the ‘‘four-year jump hypothesis’’ to accommodate both

life cycle accelerations and decelerations (Fig. 8D).

The eastern PA Brood V disjunct and the four-year jump model

While a 4-year jump model can account for the timing and geography of the Long Island

broods, the Carbon County Pennsylvania population of Brood V is not easily accounted

for by single 1- and/or 4-year life-cycle jumps from surrounding populations of Brood II

or nearby populations of Brood XIV. Instead, at least two 1- and/or 4 year changes are

required to derive Brood V from either of these potential parents. In one scenario, the

ancestors of Carbon County Brood Vwere Brood XIV cicadas, which underwent one 4-year

deceleration (delay) to join the Brood I schedule, followed by another 4-year deceleration

to adopt their current Brood V schedule [XIV]+4 → [I]+4 →[V]. In the second scenario,

the ancestors of this Brood V population were Brood II cicadas that underwent a 1-year

acceleration to join the Brood I schedule followed by a 4-year deceleration to become

Brood V [II]-1 →[I]+4 → [V]. Alternatively, the ancestors could have been Brood II

cicadas that underwent a 4-year deceleration (joining the Brood VI schedule) followed by a

1-year acceleration [II]+4 → [VI]-1 → [V]. These scenarios, involving either a Brood XIV

or a Brood II ancestor, each require at least one 4-year deceleration. Of these scenarios,

a Brood II ancestor seems more plausible because a) no populations of Brood XIV are

currently found nearby (Cooley et al., 2011), and b) present-day Carbon County Brood V

populations are encircled by Brood II (Cooley et al., 2015). However, all of these hypotheses

are diminished by the complete absence of any cicadas on a Brood I or Brood VI cycle

in or near Carbon County (Cooley, 2015); thus, each scenario requires that the shift away

from the intermediate stage of either scenario be so complete that it left behind no local

populations on the intermediate schedule. A similar problem of multiple shifts leaving

no intermediates arises in explaining the origin of populations of Brood II in eastern

Oklahoma, found occupying a gap within Brood IV (Cooley et al., 2015).

CONCLUDING REMARKS

In one sense, the brood concept is a bookkeeping tool; periodical cicada broods are

numbered sequentially with an arbitrary start date of 1893 (Marlatt, 1902). In another

sense, the brood concept seems to reflect at least some biological reality. To persist, broods

rely on sufficient density and geographic spread to effect predator satiation (White &

Lloyd, 1979; Lloyd & White, 1980; Karban, 1982a; Karban, 1982b;Williams & Simon, 1995);

this reliance on high densities selects for temporal and spatial cohesiveness because small

numbers of potential founders are unlikely to persist for long. Yet such cohesiveness is not

absolute, or broods would not give rise to other broods. Our study adds to the accumulating

evidence that year classes previously thought to have single evolutionary origins are, in a

sense, polyphyletic, with multiple origins. In turn, the increasingly evident polyphyly of

many broods suggests that periodical cicada life cycles are more plastic than previously

thought (Marshall, Cooley & Simon, 2003; Marshall, Cooley & Hill, 2011; Marshall, Hill &
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Cooley, 2018) and that there may be a heretofore underappreciated tension between life

cycle plasticity and selection for strict brood cohesiveness. Even so, successful life cycle

switching appears infrequent enough that the broods’ spatiotemporal patterning seems

interpretable in light of past climate and landscape changes given sufficient integrative

data.
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