
Neurocomputing 571 (2024) 127174

Available online 28 December 2023
0925-2312/© 2023 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Convergence of deep ReLU networks
Yuesheng Xu a,1, Haizhang Zhang b,∗,2
a Department of Mathematics & Statistics, Old Dominion University, Norfolk, VA 23529, USA
b School of Mathematics (Zhuhai), Sun Yat-sen University, Zhuhai, PR China

A R T I C L E I N F O

Communicated by H.R. Karimi

Keywords:
Deep learning
ReLU networks
Activation domains
Infinite product of matrices

A B S T R A C T

We explore convergence of deep neural networks with the popular ReLU activation function, as the depth of the
networks tends to infinity. To this end, we introduce the notion of activation domains and activation matrices
of a ReLU network. By replacing applications of the ReLU activation function by multiplications with activation
matrices on activation domains, we obtain an explicit expression of the ReLU network. We then identify the
convergence of the ReLU networks as convergence of a class of infinite products of matrices. Sufficient and
necessary conditions for convergence of these infinite products of matrices are studied. As a result, we establish
necessary conditions for ReLU networks to converge that the sequence of weight matrices converges to the
identity matrix and the sequence of the bias vectors converges to zero as the depth of ReLU networks increases
to infinity. Moreover, we obtain sufficient conditions in terms of the weight matrices and bias vectors at
hidden layers for pointwise convergence of deep ReLU networks. These results provide mathematical insights
to convergence of deep neural networks. Experiments are conducted to mathematically verify the results and
to illustrate their potential usefulness in initialization of deep neural networks.

1. Introduction

Deep neural networks have achieved great successes for a wide
range of machine learning problems including face recognition, speech
recognition, game intelligence, natural language processing, and au-
tonomous navigation. It is generally agreed that four ingredients con-
tribute to the successes. The first two of them are the availability
of vast amounts of training data, and recent dramatic improvements
in computing and storage power. The third one is a class of effi-
cient numerical algorithms such as the Stochastic Gradient Decent
(SGD) algorithms, Adaptive Boosting (AdaBoost) algorithms, and the
Expectation–Maximization algorithm (EM). The fourth ingredient, also
the most important one, is powerful neural network architectures, such
as Convolutional Neural Networks (CNN), Long-Short Time Memory
(LSTM) networks, Recurrent Neural Networks (RNN), Generative Ad-
versarial Networks (GAN), Deep Belief Networks (DBN), and Residual
Networks (ResNet), which provide a superior way of representing data.
We refer to a survey paper [1] and monograph [2] for an in-depth
overview of deep learning.

Compared to the vast development in engineering and applications,
research on the mathematical theory of deep neural networks is still
at its infancy, and yet is undergoing rapid progress. Many interesting

∗ Corresponding author.
E-mail addresses: y1xu@odu.edu (Y. Xu), zhhaizh2@sysu.edu.cn (H. Zhang).

1 Supported in part by US National Science Foundation under grants DMS-1912958 and DMS-2208386, and by the US National Institutes of Health under
grant R21CA263876.

2 Supported in part by National Natural Science Foundation of China under grants 12371103, 11971490 and 12126610.

papers on the approximation and expressive powers of deep neural

networks have appeared in the past several years. We provide here a

brief review. More details can be found in two recent surveys [3,4].

Poggio, Mhaskar, Rosasco, Miranda, and Liao [5] proved that deep

neural networks approximate a class of functions with special composi-

tional structure exponentially better than shallow networks. Montanelli

and Du [6] and Yarotsky [7] estimated the number of parameters

needed for deep neural networks to achieve a certain error tolerance

in approximating functions in the Koborov space and differential func-

tions, respectively. Montanelli and Yang [8] achieved error bounds

for deep ReLU networks approximation of multivariate functions using

the Kolmogorov–Arnold superposition theorem. These three pieces of

work indicated that deep neural networks are able to lessen the curse

of dimensionality. E and Wang [9] proved that for analytic functions

in a low dimension, the convergence rate of the deep neural network

approximation is exponential. Zhou [10] established the universality

of deep convolutional neural networks. Shen, Yang, and Zhang put for-

ward in a series of works [11–13] optimal approximation rates for ReLU

networks in terms of width and depth to approximate an arbitrary con-

tinuous or Hölder continuous function. Daubechies, DeVore, Foucart,

Hanin, and Petrova [14] showed that deep neural networks possess

https://doi.org/10.1016/j.neucom.2023.127174
Received 10 January 2023; Received in revised form 1 October 2023; Accepted 26 December 2023

https://www.elsevier.com/locate/neucom
https://www.elsevier.com/locate/neucom
mailto:y1xu@odu.edu
mailto:zhhaizh2@sysu.edu.cn
https://doi.org/10.1016/j.neucom.2023.127174

Neurocomputing 571 (2024) 127174

2

Y. Xu and H. Zhang

greater approximation power than traditional methods of nonlinear
approximation such as variable knot splines and n-term approximation
from dictionaries. Wang [15] presented a mathematical introduction to
generative adversarial nets. Lipschitz and proximal properties of neural
networks were investigated in [16–19]. Investigations on theoretical
properties of deep neural networks via the neural tangent kernel were
conducted in [20–22].

In this paper, we study convergence of deep ReLU networks from
a different perspective. We are interested in knowing whether or not
a deep ReLU network with a fixed width and an increasing depth will
converge to a meaningful function (as a function of the input variable),
as its depth tends to infinity. It is well-known that in linear approxima-
tions (for example, Fourier analysis [23] and wavelet analysis [24]),
issues regarding convergence of an expansion such as Fourier expansion
and wavelet expansion are fundamental. In particular, in classical
analysis, convergence of Fourier expansions with given coefficients
is a basic issue. As deep neural networks are used more and more
in approximation as a function class, convergence of a sequence of
neural networks approximating to a function has become a pressing
and interesting issue. Along this line, the first question is: What require-
ments should we impose to the weight matrices and the bias vectors to
guarantee that the related ReLU deep neural network will converge to a
meaningful function as its number of layers tends to infinity? This paper
attempts to answer this question. The neural networks to be considered
here are not tied with a specific target function. Convergence of neural
networks that result from approximation of a given function will be
investigated in a different occasion.

It has long been understood that a neural network with the ReLU
activation function results in a piecewise linear function. The first
novelty of this work is to identify a subdomain that corresponds to a
linear component of the ReLU network as an activation domain and to an
activation matrix which is a diagonal matrix whose diagonal entries are
either 1 or 0. The identification allows us to replace the applications of
the ReLU activation function, often a source of technical difficulties,
by multiplications with the activation matrices. Making use of this
observation, we put forward a useful representation for deep ReLU net-
works, by which we formulate the convergence of deep ReLU networks
as convergence of a class of infinite products of matrices. Necessary
and sufficient conditions for convergence of such infinite products of
matrices are then established. Based on this understanding, we provide
necessary conditions and rather week sufficient conditions for a deep
ReLU network to converge. The necessary conditions supply mathe-
matical guidelines for further development of deep ReLU networks.
Moreover, the sufficient conditions enable us to interpret the design
strategy of the well-known deep residual networks, which have been
widely used in image classification, with an insightful mathematical
explanation.

The rest of this paper is organized as follows. In Section 2, we review
the definition and notation of neural networks and define the notion
of convergence of neural networks when new layers are paved to the
existing network so that the depth is increasing to infinity. In Section 3,
we introduce the notions of the activation domain and activation
matrix, with which we present an explicit expression for deep ReLU
networks. Based on this expression, we connect convergence of deep
ReLU networks with the existence of two limits involving infinite prod-
ucts of matrices. Conditions for convergence of such infinite products of
matrices are examined in Section 4. Finally, in Section 5 we revisit the
convergence of deep ReLU networks by presenting sufficient conditions
for the pointwise convergence of the deep ReLU networks. Moreover,
as an application of the result established, we provide a mathematical
interpretation to the design of the successful deep residual networks.

2. Deep neural networks and convergence

In this section, we recall the definition of the deep neural network
and formulate its convergence problem to be studied in this paper.

We consider general fully connected feed-forward neural networks
with fixed width m and increasing depth n, for m, n * N, from input
domain [0, 1]d ⊆ Rd to the output space Rd2 . For each i with 1 d i d n,
let ēi and Āi denote respectively the weight matrix and bias vector of
the ith hidden layer. That is, Āi * Rm for 1 d i d n, ē1 * Rm×d , and
ēi * Rm×m for 2 d i d n. The weight matrix ēo and bias vector Āo of
the output layer satisfyēo * Rd2×m and Āo * Rd2 . The structure of such
a deep neural network is determined after the choice of an activation
function.

Widely-used activation functions in neural networks include the
ReLU function

ReLU (x) ∶= max(x, 0), x * R

and the logistic sigmoid function

S(x) ∶=
1

1 + e−x
, x * R.

After an activation function � is chosen, the structure of the resulting
deep neural network may be illustrated as follows:

x * [0, 1]d
ē1 ,Ā1
←←←←←←←←←←←←←←←←←←←←←←←³

�
x(1)

ē2 ,Ā2
←←←←←←←←←←←←←←←←←←←←←←←³

�
x(2) ³ ď ³

ēn ,Ān
←←←←←←←←←←←←←←←←←←←←←←←³

�
x(n)

ēo ,Āo
←←←←←←←←←←←←←←←←←←←←←←³ y * R

d2 .

input 1st layer 2nd layer nth layer output

(2.1)

Here

x(k) ∶= �(ēkx
(k−1) + Āk), 1 d k d n with x(0) = x, (2.2)

y ∶= ēox
(n) + bo, (2.3)

and the activation function � is applied to a vector componentwise.
Thus, the above deep neural network determines a continuous function
x ³ y from [0, 1]d to Rd2 .

Consecutive compositions of functions are typical operations used
in deep neural networks. To have a compact form, below we define the
notation for consecutive compositions of functions.

Definition 2.1 (Consecutive Composition). Let f1, f2,& , fn be a finite
sequence of functions such that the range of fi is contained in the
domain of fi+1, 1 d i d n − 1, the consecutive composition of {fi}

n
i=1

is
defined to be function
n*
i=1

fi ∶= fnċfn−1ċďċf2ċf1,

whose domain is that of f1.

Note that whenever the consecutive composition notation is used,
the order of compositions given in Definition 2.1 is always assumed.

Using the notation defined in Definition 2.1 for consecutive compo-
sitions of functions, Eqs. (2.2) and (2.3) may be rewritten as

x(k) =

(
k*
i=1

�(ēi ç +Āi)

)
(x), 1 d k d n

and

y = ēo

(
n*
i=1

�(ēi ç +Āi)

)
(x) + bo, x * [0, 1]d ,

respectively. We are concerned with convergence of the above func-
tions determined by the deep neural network as n increases to infinity.
One sees that the output layer is a linear function of x(n) and thus, it
does not affect the convergence. By this observation, we introduce the
following definition.

Definition 2.2 (Convergence of Neural Networks). Let ē ∶= {ēn}
@
n=1

with ē1 * Rm×d , ēn * Rm×m, n e 2 be a sequence of weight matrices,

Neurocomputing 571 (2024) 127174

3

Y. Xu and H. Zhang

and Ā ∶= {Ān}
@
n=1

with Ān * Rm be a sequence of bias vectors. Define
the deep neural network by

ün(x) ∶=

(
n*
i=1

�(ēi ç +Āi)

)
(x), x * [0, 1]d . (2.4)

We say the deep neural network ün determined by ē, Ā and a chosen
activation function � converges with respect to some norm ‖ ç ‖ to a
limit function ü if

lim
n³@

‖ün −ü‖ = 0.

The goal of this paper is to understand what conditions are required
for the weight matrices ēn and the bias vectors Ān to ensure con-
vergence of the deep neural network when the activation function is
chosen to be ReLU.

3. Convergence of ReLU networks

In this section, we consider convergence of a deep ReLU network
ün as the number n of layers goes to infinity. For this purpose, we
introduce an algebraic formulation of a deep ReLU network convenient
for convergence analysis.

It has been understood [3] that the neural network (2.1) with �

being the ReLU activation function determines a function

fn(x) = Woün(x) + bo, x * [0, 1]d ,

that is piecewise linear. Our novelty is to identify the linear compo-
nents of ün and their associated subdomains by using a sequence of
activation matrices.

We begin with analyzing a one layer ReLU network ü1, which has
the form

ü1(x) ∶= �(ē1x + Ā1), x * [0, 1]d ,

where � is the ReLU activation function. Note that the m components
of ē1x + Ā1 are linear functions āj (x), x * [0, 1]d for j = 1, 2,& , m.
Hence,

ü1(x) = [�(āj (x)) ∶ j = 1, 2,& , m]T . (3.1)

According to the definition of the ReLU activation function, we observe
for j = 1, 2,& , m that

�(āj (x)) = 0, if āj (x) d 0, and �(āj (x)) = āj (x), if āj (x) > 0.

(3.2)

When �(āj (x)) = 0, we say that the node with āj (x) is deactivated, and
otherwise, it is activated. Apparently, there are at most 2m different
activation patterns at the first layer. To describe these patterns, we
introduce a set of m × m diagonal matrices whose diagonal entries are
either 1 or 0.

Specifically, we define the set of activation matrices by

òm ∶=
{
diag (a1, a2,& , am) ∶ ai * {0, 1}, 1 d i d m

}
.

An element of òm is either the identity matrix or its degenerated
matrix (some diagonal entries degenerated to zero). The support of an
activation matrix J * òm is defined by

supp J ∶= {k ∶ Jkk = 1, 1 d k d m}.

Clearly, an activation matrix J * òm is uniquely determined by its
support. The set òm of the activation matrices has exactly 2m elements
since each of the m diagonal entries of an element in the set has
exactly two different choices. This matches the number of possible
different activation patterns of a ReLU neural network: Each element
of the set òm corresponds to an activation pattern. For this reason, it
is convenient to use òm as an index set.

Definition 3.1 (Activation Domains of One Layer Network). For a weight
matrix ē with m rows and a bias vector Ā * Rm, the activation domain
of �(ēx + Ā) with respect to a diagonal matrix J * òm is

DJ ,ē,Ā ∶=
{
x * R

m2
∶ (ēx + Ā)j > 0 for j * supp J and

(ēx + Ā)j d 0 for j + supp J
}
.

Note that the integer m2 in Definition 3.1 may be chosen to be d

(when it is used to define activation domains of the first layer) or m

(when it is used to define activation domains of layers which are not
the first layer).

In Definition 3.1, we use an activation matrix J * òm to associate
an activation pattern of the m components of ēx + Ā. As a result,
Definition 3.1 enables us to construct a partition of the unit cube [0, 1]d

that corresponds to the piecewise linear nature of the function ü1 and
allows us to reexpress ü1 in a piecewise linear manner. Specifically,
we have that

[0, 1]d =
å

I1*òm

(DI1 ,ē1 ,Ā1
K [0, 1]d). (3.3)

By Eqs. (3.1) and (3.3), the one layer ReLU network can be reexpressed
as

ü1(x) = I1(ē1x + Ā1), x * DI1 ,ē1 ,Ā1
, for I1 * òm. (3.4)

Clearly, on each activation domain DI1 ,ē1 ,Ā1
, ü1 is a linear function.

The essence of Eq. (3.4) is that we are able to replace the application
of the ReLU activation function by multiplication with an activation
matrix in òm. This will lead to great convenience in processing ReLU
networks. We remark that some of the 2m activation domains might
be empty. In fact, by [25], the number of activation domains with

nonempty interior does not exceed
d1

k=0

(
m

k

)
.

For a deep ReLU neural network with n layers, we need a sequence
of n activation matrices ą̄n ∶= (I1, I2,& , In) * (òm)

n to identify its
different activation patterns on the n hidden layers, where Ik marks the
activation pattern at the kth layer. We next define activation domains
of a multi-layer network.

Definition 3.2 (Activation Domains of a Multi-Layer Network). For
ē̄n ∶= (ē1,& ,ēn) * Rm×d × (Rm×m)n−1, Ā̄n ∶= (Ā1,& ,Ān) * (Rm)n,
the activation domain of
n*
i=1

�(ēi ç +Āi)

with respect to ą̄n ∶= (I1,& , In) * (òm)
n is defined recursively by

D
ą̄1 ,ē̄1 ,Ā̄1

= DI1 ,ē1 ,Ā1
K [0, 1]d

and

D
ą̄n ,ē̄n ,Ā̄n

=

{
x * D

ą̄n−1 ,ē̄n−1 ,Ā̄n−1
∶

(n−1*
i=1

�(ēi ç +Āi)

)
(x) * DIn ,ēn ,Ān

}
.

We have the following observation regarding the activation domain.

Proposition 3.3. The sequence of the activation domains D
ą̄n ,ē̄n ,Ā̄n

are
nested, that is,

D
ą̄n+1 ,ē̄n+1 ,Ā̄n+1

⊆ D
ą̄n ,ē̄n ,Ā̄n

, n * N.

Moreover, for each n * N,

D
ą̄n ,ē̄n ,Ā̄n

=
{
x * DI1 ,ē1 ,Ā1

K [0, 1]d ∶

(k−1*
i=1

�(ēi ç +Āi)

)
(x) * DIk ,ēk ,Āk

, 2 d k d n

}
. (3.5)

Proof. That D
ą̄n ,ē̄n ,Ā̄n

are nested follows directly from the definition.
Equality (3.5) may be proved by induction on n. ¦

Neurocomputing 571 (2024) 127174

4

Y. Xu and H. Zhang

The activation domain D
ą̄n ,ē̄n ,Ā̄n

characterizes the inputs x * [0, 1]d

such that when those inputs are going through the ReLU neural network
(2.1), at the kth hidden layer (1 d k d n), exactly the nodes with
index in supp Ik are activated. There are at most 2

nm activation domains
D

ą̄n ,ē̄n ,Ā̄n
corresponding to all choices of sequences of diagonal matrices

ą̄n * (òm)
n, and a large number of them might be empty or have zero

Lebesgue measure.
For each positive integer n, the activation domains

D
ą̄n ,ē̄n ,Ā̄n

, for ą̄n ∶= (I1,& , In) * (òm)
n,

form a partition of the unit cube [0, 1]d . That is, for each n * N,

[0, 1]d =
å

ą̄n*(òm)
n

D
ą̄n ,ē̄n ,Ā̄n

By using these activation domains, we are able to write down an ex-
plicit expression of the ReLU networkün with applications of the ReLU
activation function replaced by multiplications with the activation
matrices.

We now establish a representation of the ReLU network based on
its activation domains and activation matrices. To this end, we need
a notation to denote the product of matrices with a prescribed order.
Specifically, we write

n/
i=1

ēi = ēnēn−1 ďē1.

For n, k * N, we also adopt the following convention that

n/
i=k

ēi = ēnēn−1 ďēk, for n e k, and
n/

i=k

ēi = I, for n < k,

where I denotes the m × m identity matrix.

Theorem 3.4. It holds that

ün(x) =

(
n/
i=1

Iiēi

)
x +

n1
i=1

(
n/

j=i+1

Ijēj

)
IiĀi, x * D

ą̄n ,ē̄n ,Ā̄n
,

ą̄n ∶= (I1,& , In) * (òm)
n.

(3.6)

Proof. We prove by induction on n. When n = 1, by (3.4), the result is
true. Suppose that (3.6) holds for n − 1. Now let x * D

ą̄n ,ē̄n ,Ā̄n
. Then

ün(x) = �

(
ēn

(n−1*
i=1

�(ēi ç +Āi)

)
(x) + Ān

)
.

By Definition 3.2,

(n−1*
i=1

�(ēi ç +Āi)

)
(x) * DIn ,ēn ,Ān

.

We then get by (3.4) and induction that

ün(x) = In

(
ēn

(
n−1*
i=1

�
(
ēi ç +Āi

))
(x) + Ān

)

= Inēn

((
n−1/
i=1

Iiēi

)
x +

n−11
i=1

(
n−1/
j=i+1

Ijēj

)
IiĀi

)
+ InĀn

=

(
n/
i=1

Iiēi

)
x +

n1
i=1

(
n/

j=i+1

Ijēj

)
IiĀi,

which proves (3.6). ¦

The representation of a deep ReLU network established in Theo-
rem 3.4 is crucial for further investigation of the network. The piece-
wise linear property of a ReLU network follows immediately from this
representation. It is also helpful for developing the convergence results
of ReLU Networks later in this paper.

In the remaining part of this section, we formulate the convergence
of deep ReLU networks as a problem about convergence of infinite

products of matrices. Denote by ‖ ç ‖p the āp-norm on Rm, 1 d p d +@.
For a Lebesgue measurable subset
 ⊆ Rd , by Lp(
,Rm) we denote
the space of all real-valued functions f ∶
 ³ Rm such that each
component of f is Lebesgue measurable on
 and such that

‖f‖p ∶=
⎧⎪⎨⎪⎩

(
+
 ‖f (x)‖p

p
dx

)p

, 1 d p < +@,

ess sup
x*

‖f (x)‖@, p = +@

is finite. Also, C(
,Rm) is the space of all continuous functions from

to Rm.
Theorem 3.4 allows us to present a necessary and sufficient con-

dition for ReLU neural networks ün to converge to a function in
Lp([0, 1]d ,Rm), as n ³ @. Let ē ∶= {ēn}

@
n=1

with ē1 * Rm×d , ēn *

Rm×m, n > 1 and Ā ∶= {Ān}
@
n=1

with Ān * Rm be a sequence of weight
matrices and bias vectors, respectively. Suppose ü * C([0, 1]d ,Rm). It
follows from Theorem 3.4 that the ReLU neural networks ün converge
to ü in Lp([0, 1]d ,Rm) if and only if

lim
n³@

1
ą̄n*(òm)

n
+D

ą̄n,ē̄n,Ā̄n

‖‖‖‖‖‖

(
n/
i=1

Iiēi

)
x+

n1
i=1

(
n/

j=i+1

Ijēj

)
IiĀi−ü (x)

‖‖‖‖‖‖

p

p

dx = 0, 1 d p < +@

(3.7)

and

lim
n³@

max
ą̄n*(òm)

n

sup
x*D

ą̄n ,ē̄n ,Ā̄n

‖‖‖‖‖‖

(
n/
i=1

Iiēi

)
x +

n1
i=1

(
n/

j=i+1

Ijēj

)
IiĀi −ü (x)

‖‖‖‖‖‖@
= 0,

p = @.

(3.8)

This necessary and sufficient condition together with Theorem 3.4
leads to useful necessary conditions and sufficient conditions for the
sequence of ReLU neural networks to converge. They will be presented
next. To this end, we first establish a technical lemma.

Lemma 3.5. Let An * Rm×d , bn * Rm, n * N and let 1 d p d +@. Then
the sequence of linear functions

Anx + bn

converges in Lp(
,Rm) on a bounded subset
 ⊆ Rd that has positive
Lebesgue measure if and only if both {An} and {bn} converge.

Proof. We first prove the sufficient condition. Suppose that both {An}

and {bn} converge. Then, clearly, Anx + bn converges uniformly on

as
 is bounded. As a result, {Anx + bn} converges in Lp(
,Rm) for all
1 d p d +@.

Conversely, suppose that {Anx+bn} converges to some limit function
ē ∶= (u1, u2,& , um)

T in Lp(
,Rm) for some p * [1,+@], where
 has
positive Lebesgue measure. Let bn ∶= (bn1, bn2,& , bnm)

T and An ∶=

[An,jk ∶ 1 d j d m, 1 d k d d]. Thus, for each j with 1 d j d m, we
have that

(Anx + bn)j = bnj +

d1
k=1

An,jkxk ³ uj in Lp(
) as n ³ @. (3.9)

As
 has a positive measure, C(
) is infinite-dimensional. Therefore,
there exists g * C(
) such that

+
 g(x)xkdx = 0, for all 1 d k d d and +
 g(x)dx = 1.

Eq. (3.9) ensures that

lim
n³@

bnj = lim
n³@+
 g(x)(Anx + bn)jdx = +
 g(x)uj (x)dx,

which implies that for every 1 d j d m, bnj converges as n ³ @. Hence,
{bn} converges. Similarly, for each l with 1 d l d d, there exists a
function ℎl * C(
) such that

+
 ℎl(x)xkdx = �l,k, for all 1 d k d d and +
 ℎl(x)dx = 0.

Neurocomputing 571 (2024) 127174

5

Y. Xu and H. Zhang

Again, by (3.9), we have that

lim
n³@

An,jl = lim
n³@+
 ℎl(x)(Anx + bn)jdx = +
 ℎl(x)uj (x)dx,

which proves the convergence of {An}. ¦

We are now ready to prove the main result of this section.

Theorem 3.6. Let ē ∶= {ēn}
@
n=1
with ē1 * Rm×d , ēn * Rm×m, n > 1

and Ā ∶= {Ān}
@
n=1
with Ān * Rm be a sequence of weight matrices and bias

vectors, respectively.

1. (Necessary condition for convergence) If the sequence of ReLU
networks {ün}

@
n=1
converges in Lp([0, 1]d ,Rm) then for all sequences

of diagonal matrices I = (In * òm ∶ n * N) such that the set
@ä
n=1

D
ą̄n ,ē̄n ,Ā̄n

has positive Lebesgue measure, the two limits
@/
n=1

Inēn ∶= lim
n³@

n/
i=1

Iiēi (3.10)

and

lim
n³@

n1
i=1

(
n/

j=i+1

Ijēj

)
IiĀi (3.11)

both exist.
2. (Sufficient condition for pointwise convergence) If for all
sequences of diagonal matrices I = (In * òm ∶ n * N), the above
two limits both exist, then the sequence of ReLU neural networks
{ün}

@
n=1
converges pointwise on [0, 1]d .

Proof. We prove the first claim of this theorem. If for a sequence of
diagonal matrices I = (In * òm ∶ n * N),

DI ∶=

@ä
n=1

D
ą̄n ,ē̄n ,Ā̄n

has positive Lebesgue measure, then by (3.7) and (3.8),

‖ün −ü‖Lp(DI ,R
m) d ‖ün −ü‖Lp(D

ą̄n,ē̄n,Ā̄n
,Rm)

d ‖ün −ü‖Lp([0,1]d ,Rm) ³ 0, n ³ @.

It implies

ün(x) =

(
n/
i=1

Iiēi

)
x +

n1
i=1

(
n/

j=i+1

Ijēj

)
IiĀi

converges in DI with respect to the chosen Lp-norm ‖ ç ‖. The proof
may be completed by applying Lemma 3.5 with
 ∶= DI.

Next, we establish the second claim. For every x * [0, 1]d , there
exists a sequence of diagonal matrices I = (In ∶ In * òm, n * N) such
that

x *

@ä
n=1

D
ą̄n ,ē̄n ,Ā̄n

.

Thus, by (3.6)

ün(x) =

(
n/
i=1

Iiēi

)
x +

n1
i=1

(
n/

j=i+1

Ijēj

)
IiĀi, n * N.

Therefore, the existence of the two limits (3.10) and (3.11) are suffi-
cient for pointwise convergence of {ün(x)}. ¦

Theorem 3.6 lays a foundation for studying the convergence issue
of deep ReLU networks.

4. Infinite products of matrices

This section is devoted to investigation of convergence of infinite
products of matrices, which arise in the study of convergence of deep
ReLU networks.

It follows from Theorem 3.6 that the convergence of ReLU networks
is reduced to existence of the two limits (3.10) and (3.11). Specifically,
the convergence of the infinite product of matrices

@/
n=1

Inēn, for any In * òm, (4.1)

appears in the two limits. We hence raise the following question: What
conditions on the matrices ēn, n * N, will guarantee the convergence
of the infinite product (4.1) for all choices In * òm, n * N? We first
answer this question.

There is a well-known sufficient condition ([26], page 127) for
convergence of infinite products of matrices, which can be considered
as a generalization of the convergence of infinite products

/@
n=1(1+xi)

of scalars. The result states that if

ēn = I + Čn and
@1
n=1

‖Čn‖ < +@, (4.2)

where I is the identity matrix and ‖ ç ‖ is any matrix norm satisfying
‖AB‖ d ‖A‖‖B‖, then the infinite product
@/
n=1

ēn

converges. This result was extended by Artzrouni [27]. Our question
differs from those results in having the diagonal matrices In in (4.1)
arbitrarily chosen from òm. Nevertheless, we manage to prove that
this condition (4.2) remains sufficient for the convergence of (4.1). We
proceed to establish this result.

Let ‖ ç ‖ be a norm on Rm that is nondecreasing on the modules of
vector components:

‖ÿ‖ d ‖Ā‖ whenever |ai| d |bi|, 1 d i d m,

for ÿ = (a1, a2,& , am),Ā = (b1, b2,& , bm) * R
m. (4.3)

This requirement on a vector norm is mild and it is satisfied by the
āp-norms for all 1 d p d +@. We then define its induced matrix norm
on Rm×m, also denoted by ‖ ç ‖, by
‖A‖ = sup

x*Rm ,x�0
‖Ax‖
‖x‖ , for A * R

m×m.

Clearly, this matrix norm has the property that

‖AB‖ d ‖A‖‖B‖ for all matrices A,B (4.4)

and

‖Ii‖ d 1 for each Ii * òm. (4.5)

Note that the Frobenius norm satisfies (4.4) but does not satisfy (4.5).
Our first observation regards the product of activation matrices.

Lemma 4.1. If j e 2 and Ii * òm for i = j, j + 1,& , n, then

lim
n³@

n/
i=j

Ii = ÷j ,
for some matrix ÷j * òm, and there exist a positive integer N such that

n/
i=j

Ii = ÷j , whenever n > N. (4.6)

Proof. We first note that for all n * N, there holds
/n

i=j Ii * òm and

supp

(
n/
i=j

Ii

)
=

nä
i=j

supp Ii.

It follows that

∅ ⊆ supp

(
n+1/
i=j

Ii

)
⊆ supp

(
n/
i=j

Ii

)
, (4.7)

Neurocomputing 571 (2024) 127174

6

Y. Xu and H. Zhang

where ∅ denotes the empty set. Therefore, the limit

lim
n³@

supp

(
n/
i=j

Ij

)
=

@ä
i=j

supp Ii

exists. Note that there exists a unique diagonal matrix ÷j * òm such
that

supp÷j =
@ä
i=j

supp Ii

and thus,

lim
n³@

n/
i=j

Ii = ÷j .
Since the set òm contains only a finite number of matrices, accord-

ing to (4.7), there exists a positive integer N such that

supp

(
n/
i=j

Ii

)
= supp

(
N/
i=j

Ii

)
, for all n > N.

Thus, there exists a unique diagonal matrix ÷j * òm such that

÷j =
N/
i=j

Ii

and
n/
i=j

Ii = ÷j , for all n > N. ¦

Lemma 4.2. If a sequence {an}
@
n=1
satisfies an e 0 and

1@
n=1 an < +@,

then for all p * N,

@1
i=p+1

ai +

@1
l=2

1
1di1<i2<ď<il

il>p

l/
k=1

aik
d
(

@1
i=p+1

ai

)
exp

(
@1
i=1

ai

)
. (4.8)

Proof. Recall the expansion

ex =

@1
l=0

xl

l!
, for all x * R. (4.9)

Substituting x ∶=
1@

i=1 ai in Eq. (4.9) yields that

exp

(
@1
i=1

ai

)
=

@1
l=0

1

l!

(
@1
i=1

ai

)l

.

Multiplying both sides of the above equation by the sum
1@

i=p+1 ai gives
that
(

@1
i=p+1

ai

)
exp

(
@1
i=1

ai

)
=

(
@1

i=p+1

ai

)
@1
l=0

1

l!

(
@1
i=1

ai

)l

. (4.10)

Note that for l e 1
(

@1
i=p+1

ai

)
1

(l − 1)!

(
@1
i=1

ai

)l−1

e 1
1di1<i2<ď<il

il>p

l/
k=1

aik
.

Combining this inequality with Eq. (4.10) proves the desired inequality
of this lemma. ¦

When the infinite sum in Lemma 4.2 is reduced to a finite sum,
we obtain the following special result that was originally used in [26]
without a proof. If ai, 1 d i d n, are nonnegative numbers, by setting
ai = 0 for i > n, we then obtain from Lemma 4.2 that for all p < n,

n1
i=p+1

ai +

n1
l=2

1
1di1<i2<ď<ildn

il>p

l/
k=1

aik
d
(

n1
i=p+1

ai

)
exp

(
n1
i=1

ai

)
. (4.11)

We next provide a sufficient condition on the matrices which en-
sures convergence of the infinite product (4.1). In [27], it was proved

that if
@1
i=1

‖Ai‖ < +@

and

‖Ui‖ = 1 for all i * N (4.12)

then
@/
i=1

(Ui + Ai) (4.13)

converges. Our infinite products (4.1) differ from (4.13) in that we have
In’s arbitrarily chosen from òm. Also, the assumption (4.12) does not
apply to our question. We shall make use of the special property (4.6)
of In’s, which making our approach more direct and simple than that
in [27].

Theorem 4.3. Let ‖ ç ‖ be a matrix norm satisfying (4.4) and (4.5). If
ē1 * Rm×d , ēn * Rm×m, n e 2, are matrices satisfying

ēn = I + Čn, n e 2, and
@1
n=2

‖Čn‖ < +@, (4.14)

then the infinite product (4.1) converges for all In * òm, n * N.

Proof. It suffices to prove that the infinite product of matrices

@/
n=2

Inēn

converges under the assumed conditions.
We compute that

n/
i=2

Iiēi =

n/
i=2

(Ii + IiČi).

Expanding the product on the right hand side of the above equation
yields

n/
i=2

Iiēi =

n/
i=2

Ii +

n−11
l=1

1
2dj1<j2<ď<jldn

(
n/

k=jl+1

Ik

)

×

(
l/

i=2

(
Iji

Čji

ji−1/
k=ji−1+1

Ik

))
Ij1

Čj1

(
j1−1/
k=2

Ik

)
. (4.15)

According to (4.6), we assume that n2 > n > p are large enough integers
so that

n/
i=j

Ii =

n2/
i=j

Ii = ÷j , 2 d j d p + 1

for some ÷j * òm. This fact ensures that for 1 d l d n − 1, the terms in

1
2dj1<j2<ď<jldn

(n/
k=jl+1

Ik

)(l/
i=2

(
Iji

Čji

ji−1/
k=ji−1+1

Ik

))
Ij1

Čj1

(j1−1/
k=2

Ik

)
,

which appear in (4.15) and those in

1
2dj1<j2<ď<jldn2

(n2/
k=jl+1

Ik

)(l/
i=2

(
Iji

Čji

ji−1/
k=ji−1+1

Ik

))
Ij1

Čj1

(j1−1/
k=2

Ik

)

which appear in (4.15) with n replaced by n2 are identical if jl d p.
Now, for n2 > n > p we consider the difference

n/
i=2

Iiēi −

n2/
i=2

Iiēi

and use (4.15) with the fact pointed out above so that the identical
terms appearing in the two products are canceled. By applying the

Neurocomputing 571 (2024) 127174

7

Y. Xu and H. Zhang

matrix norm to the resulting sum, we get by (4.4) and (4.5)

‖‖‖‖
n/
i=2

Iiēi −

n2/
i=2

Iiēi

‖‖‖‖ d
n1

j=p+1

‖Čj‖ +
n21

j=p+1

‖Čj‖ +
n−11
l=2

1
2dj1<j2<ď<jldn

jl>p

l/
k=1

‖Čjk
‖

+

n−11
l=2

1
2dj1<j2<ď<jldn2

jl>p

l/
k=1

‖Čjk
‖ +

n2−11
l=n

1
2dj1<j2<ď<jldn2

l/
k=1

‖Čjk
‖.

Invoking inequality (4.11) we obtain from the last inequality for large
enough positive integers n2 > n

‖‖‖‖
n/
i=2

Iiēi −

n2/
i=2

Iiēi

‖‖‖‖ d 2

(@1
i=p+1

‖Či‖
)
exp

(@1
i=2

‖Či‖
)
. (4.16)

Finally, the second inequality of (4.14) ensures that for " > 0, there
exists p * N such that

@1
j=p+1

‖Čj‖ < ". (4.17)

Using estimate (4.17) in the right hand side of (4.16) yields

‖‖‖‖‖‖

n/
i=2

Iiēi −

n2/
i=2

Iiēi

‖‖‖‖‖‖
d 2" exp

(
@1
i=2

‖Či‖
)
,

which together with the second inequality of condition (4.14) proves
the convergence of the infinite product (4.1). ¦

We next deal with the second limit (3.11). Our first task is to
formulate a necessary condition, showing that the linear functionēnx+

bn on the nth layer will be close to the identity mapping for sufficiently
large n.

Theorem 4.4. Let ‖ ç ‖ be a norm on Rm that satisfies (4.3) and ‖ ç ‖ be
its induced matrix norm. Suppose that the matrices ēn, n e 2, satisfy

ēn = I + Čn, n e 2,

@1
n=2

‖Čn‖ < +@, and
@1

i=n+1

‖Či‖ = o

(
1

n

)
, n ³ @,

(4.18)

and that the vectors Ān, n * N, are bounded. If the limit (3.11) exists for
all choices of matrices Ii * òm, i * N, then

lim
n³@

ēn = I (4.19)

and

lim
n³@

Ān = 0. (4.20)

Proof. The second inequality of condition (4.18) implies ‖Čn‖ ³ 0 as
n ³ @. Thus, using the first equation of condition (4.18), we conclude
Eq. (4.19).

It remains to prove Eq. (4.20). Since the limit (3.11) exists for all
Ii * òm, we let Ii = I for i e 2 to get that

lim
n³@

n1
i=1

(n/
j=i+1

ēj

)
Āi (4.21)

exists. By similar analysis as those in the proof of Theorem 4.3, we
conclude that

‖‖‖‖
n/

j=i+1

ēj−

@/
j=i+1

ēj

‖‖‖‖ d
(@1
j=n+1

‖Čj‖
)
exp

(@1
j=i+1

‖Čj‖
)
dC1

(@1
j=n+1

‖Čj‖
)
,

(4.22)

where

C1 ∶= exp

(@1
j=2

‖Čj‖
)
.

Noting that Ān, n * N, are bounded, we may let

C2 ∶= sup
n*N

‖Ān‖ < +@. (4.23)

Employing (4.22) and (4.23) yields the estimate

‖‖‖‖
n1
i=1

(n/
j=i+1

ēj

)
Āi −

n1
i=1

(@/
j=i+1

ēj

)
Āi

‖‖‖‖ d
n1
i=1

‖‖‖‖
n/

j=i+1

ēj −

@/
j=i+1

ēj

‖‖‖‖‖Āi‖

d C1C2n

(@1
j=n+1

‖Čj‖
)
.

By the third condition in (4.18) and the existence of the limit (4.21),
we observe that

lim
n³@

n1
i=1

(@/
j=i+1

ēj

)
Āi

also exists. It follows that

lim
i³@

(@/
j=i+1

ēj

)
Āi = 0. (4.24)

Notice that

@/
j=i+1

ēj − I =

@/
j=i+1

(I + Čj) − I =

@1
j=i+1

Čj +

@1
l=2

1
i+1dj1<j2<ď<jl

l/
k=1

Čjk
.

It follows from Lemma 4.2 with an ∶= ‖Čn‖ that for i big enough,
‖‖‖‖

@/
j=i+1

ēj − I
‖‖‖‖ d

@1
j=i+1

‖Čj‖ +
@1
l=2

1
i+1dj1<j2<ď<jl

l/
k=1

‖Čjk
‖

d
(@1
j=i+1

‖Čj‖
)
exp

(@1
j=i+1

‖Čj‖
)
.

Therefore, for big enough i,

‖‖‖‖
@/

j=i+1

ēj − I
‖‖‖‖ <

1

2
.

By a classical result from function analysis ([28], page 193), we con-
clude that for big enough i,

@/
j=i+1

ēj = I +

(@/
j=i+1

ēj − I

)

is invertible and its inverse satisfies

‖‖‖‖
(@/

j=i+1

ēj

)−1‖‖‖‖ d 1

1 −
‖‖‖‖
/@

j=i+1 ēj − I
‖‖‖‖
d 2.

Consequently, for big enough i,

‖Āi‖ =
‖‖‖‖
(@/
j=i+1

ēj

)−1(@/
j=i+1

ēj

)
Āi

‖‖‖‖ d 2
‖‖‖‖
(@/
j=i+1

ēj

)
Āi

‖‖‖‖,

which together with (4.24) ensures the validity of Eq. (4.20). ¦

The necessary conditions given in Theorem 4.4 for a ReLU network
to converge provide mathematical guidelines for further construction
of deep ReLU networks.

Our next task is to establish a useful sufficient condition guarantee-
ing the existence of limit (3.11).

Theorem 4.5. Let ‖ ç ‖ be a norm on Rm that satisfies (4.3) and ‖ ç ‖ be
its induced matrix norm. If

@1
n=1

‖Ān‖ < +@, (4.25)

@/
j=i

Ijēj converges for every i e 2, (4.26)

Neurocomputing 571 (2024) 127174

8

Y. Xu and H. Zhang

and there exists a positive constant C such that

n/
j=i

‖ēj‖ d C for all 2 d i d n < +@, (4.27)

then the limit (3.11) exists.

Proof. It suffices to show that

ān ∶=

n1
i=1

(n/
j=i+1

Ijēj

)
IiĀi, n * N

forms a Cauchy sequence in Rm. Let " > 0 be arbitrary. By condi-
tion (4.25), there exists some p * N such that

@1
i=p+1

‖Āi‖ < ". (4.28)

According to hypothesis (4.26), when n2 > n are big enough, it holds
for all i = 1, 2,& , p that

‖‖‖‖
n2/

j=i+1

Ijēj −

n/
j=i+1

Ijēj

‖‖‖‖ d ". (4.29)

For such n2 > n > p, we estimate ‖ān2 − ān‖. To this end, we let

Ăn2 ,n,p ∶=

p1
i=1

(n2/
j=i+1

Ijēj −

n/
j=i+1

Ijēj

)
IiĀi.

Then, it follows from condition (4.29) that for big enough n2 > n,

‖Ăn2 ,n,p‖ d
p1

i=1

‖‖‖‖
n2/

j=i+1

Ijēj −

n/
j=i+1

Ijēj

‖‖‖‖‖Āi‖ d "

p1
i=1

‖Āi‖. (4.30)

Note that

ān2 − ān = Ăn2 ,n,p +

n21
i=p+1

(n2/
j=i+1

Ijēj

)
IiĀi +

n1
i=p+1

(n/
j=i+1

Ijēj

)
IiĀi. (4.31)

Employing (4.30), (4.5), (4.27), and (4.28), we have for big enough
n2 > n that

‖ān2 − ān‖ d ‖Ăn2 ,n,p‖ +
n21

i=p+1

(n2/
j=i+1

‖ēj‖
)
‖Āi‖ +

n1
i=p+1

(n/
j=i+1

‖ēj‖
)
‖Āi‖

d "

p1
i=1

‖Āi‖ + 2C

@1
i=p+1

‖Āi‖

d "

(p1
i=1

‖Āi‖ + 2C

)
.

This shows that ān is a Cauchy sequence and thus it converges. ¦

We remark that when ēi, Ii all equal the identity matrix, limit
(3.11) becomes

lim
n³@

n1
i=1

Āi.

Thus, condition (4.25) is almost necessary for the existence of limit
(3.11). The other two conditions (4.26) and (4.27) are weaker than
condition (4.14), as explained in the proof of Theorem 5.1 to be
presented in the next section.

5. Sufficient conditions for convergence of ReLU networks

In this section, we present sufficient conditions for deep ReLU
networks to converge pointwise by using results established in the
previous two sections. Moreover, we demonstrate that these sufficient
conditions provide mathematical interpretation to the well-known deep
residual networks which have achieved remarkable success in image
classification.

We now establish sufficient conditions on their weight matrices and
bias vectors for deep ReLU networks to converge pointwise.

Theorem 5.1. Let ‖ ç ‖ be a norm on Rm that satisfies (4.3) and ‖ ç ‖ be
its induced matrix norm. If the weight matrices ēn, n e 2, satisfy

ēn = I + Čn, n e 2,

@1
n=2

‖Čn‖ < +@ (5.1)

and the bias vectors Āi, i * N, satisfy

@1
n=1

‖Ān‖ < +@, (5.2)

then the ReLU neural networks ün converge pointwise on [0, 1]
d .

Proof. According to Theorem 3.6, it suffices to show under the given
conditions of this theorem, limits (3.10) and (3.11) exist for all In * òm,
n * N.

Since the vector norm on Rm satisfies (4.3), its induced matrix norm
satisfies conditions (4.4) and (4.5). By Theorem 4.3, condition (5.1)
ensures that limit (3.10) exists for all In * òm, n * N.

It remains to confirm that limit (3.11) exists for all In * òm,
n * N. By the proof of Theorem 4.3, condition (4.26) is satisfied when
condition (5.1) is fulfilled. We can also verify by using properties of the
exponential function that

n/
j=i

‖ēj‖ d
n/
j=i

(1 + ‖Čj‖) d
n/
j=i

exp(‖Čj‖) d exp

(@1
j=2

‖Čj‖
)
,

2 d i d n < +@.

Therefore, condition (4.27) is also satisfied with the constant

C ∶= exp

(@1
j=2

‖Čj‖
)
.

By Theorem 4.5, limit (3.11) exists for all In * òm, n * N.
Finally, by part 2 of Theorem 3.6, we conclude that the ReLU deep

network ün converges pointwise on [0, 1]d as n tends to infinity. ¦

We remark that under the conditions in Theorem 5.1 or Theo-
rem 4.4, it holds

lim
n³@

ēnx + Ān = x, x * R
m,

which reveals that for deep layers, the linear function ēnx+Ān will be
close to the identity mapping. Thus the deep weight layers of a ReLU
network apply gradual changes to the ultimate input–output relation
determined by the network. This may justify the design strategy of the
successful deep Residual Networks (ResNets) for image recognition [29,
30].

6. Experiments

In this section, we present two experiments to verify the main result
Theorem 5.1 mathematically, and demonstrate the usefulness of the
result in deep learning applications. For the first aim, we shall first
randomly generate a sequence of weight matrices and bias vectors that
satisfy the sufficient conditions in Theorem 5.1 and then check if the
neural network will converge as the number of layers increases. For
the second aim, we shall conduct experiments with very deep DNN in
different strategies on the benchmark dataset MNIST. We shall see that
the strategy that initializes the parameters according to the sufficient
conditions in Theorem 5.1 makes the DNN easier to train and obtain
better accuracy on the test set.

6.1. Mathematical verification

To verify Theorem 5.1 mathematically, we shall conduct multiple
experiments with different input dimensions and hidden dimensions.
For each experiment, we set the depth of network to be n = 1000

to see whether the neural networks {üi}
n
i=1

defined by (2.1) will be
convergent. We utilize the following steps to randomly generate the

Neurocomputing 571 (2024) 127174

9

Y. Xu and H. Zhang

Table 6.1
Error ‖üi+1 −üi‖@ for d = 2.

m

layer index i
1 9 99 999

10 0.26796682 0.00902423 0.00010435 0.00000127

100 0.27893739 0.00955302 0.00010594 0.00000109

500 0.24848135 0.01025245 0.00009931 0.00000100

Table 6.2
Error ‖üi+1 −üi‖@ for d = 3.

m

layer index i
1 9 99 999

10 0.26884935 0.01346173 0.00011699 0.00000109

100 0.25358571 0.01112940 0.00010544 0.00000109

500 0.29031739 0.01011117 0.00010057 0.00000105

weight matrices and bias vectors that satisfy the sufficient conditions
in Theorem 5.1.

1. Since the first weight matrix is not involved in the sufficient
conditions, we directly generate a m × d matrix ē1 with each
element generated from the standard normal distribution.

2. To generate matrices that meet condition (5.1), we let

ēi = ą + Či = ą +
1

i2
ĉi ⊙ Āi, 2 d i d n,

where ⊙ denotes the Hadamard product (namely, component-
wise product) of matrices, entries of ĉi are randomly chosen as
−1 or 1, and Āi is a randomly generated doubly stochastic matrix
whose entries are first generated from the uniform distribution
on [0, 1] and then normalized so that the sum of each row and
column equals 1.
The matrices ēi generated in the above manner satisfies the
sufficient condition (5.1), as by the Riesz–Thorin interpolation
theorem (see [31], page 200), one has for every 1 d p d +@,

n1
i=2

‖Či‖p =
n1
i=1

1

i2
‖ĉi ⊙ Āi‖p d

n1
i=1

1

i2
‖ĉi ⊙ Āi‖

1
p

1
‖ĉi ⊙ Āi‖

1−
1
p

@

=

n1
i=1

1

i2
‖Āi‖

1
p

1
‖Āi‖

1−
1
p

@ =

n1
i=1

1

i2
<

�2

6
.

3. The bias vectors Āi are generated by

Āi =
Ā̃i

i2‖Ā̃i‖@
, 1 d i d n

where the entries of Ā̃i are generated from the standard normal
distribution. Condition (5.2) is also satisfied, as

n1
i=2

‖Āi‖p d
n1
i=1

m
1
p ‖Āi‖@ = m

1
p

n1
i=1

1

i2
< m

1
p
�2

6
.

With above preparations, we shall perform experiments for (d, m) *
{2, 3} × {10, 100, 500}. In our implementation, we construct an equally-
distributed grid for [0, 1]d with 100d grid points, and then compute the
maximal error ‖üi+1−üi‖@ between adjacent layers at the grid points.
The results are tabulated in Tables 6.1 and 6.2 for d = 2 and d = 3,
respectively. We also plot the error ‖üi+1 −üi‖@ in Fig. 6.1. Both the
tables and figures show that the error ‖üi+1 − üi‖@ is dramatically
decreasing to zero as the number of layers increases. Therefore, these
experiments confirm that the sufficient conditions for convergence of
DNN in Theorem 5.1 are mathematically correct.

6.2. Experiment on the MNIST dataset

We shall conduct experiments on the MNIST dataset to indicate that
parameters of DNN initialized according the sufficient conditions in
Theorem 5.1 may be able to accelerate the training process.

We shall train our models with Keras [32]. Recall that the structure
of DNN discussed in this work could be illustrated as

x * [0, 1]d
ē1 ,Ā1
←←←←←←←←←←←←←←←←←←←←←←←³

�
x(1)

ē2 ,Ā2
←←←←←←←←←←←←←←←←←←←←←←←³

�
x(2) ³ ď ³

ēn ,Ān
←←←←←←←←←←←←←←←←←←←←←←←³

�
x(n)

ēo ,Āo
←←←←←←←←←←←←←←←←←←←←←←³ y * R

d2 .

input 1st layer 2nd layer nth layer output

We set the width m = 784 and the depth n = 10, 100, 1000. The input
dimension d = 784 is given by the dataset. Also, we shall formulate
the problem as regression. To this end, we set the output dimension
d2 = 1, and fix the parameters in the output layer byēo = (

1

784
,& ,

1

784
)

and Āo = 0. Notice that the prediction label will be determined by
min(+y + 1

2
,, 9). The network structure is summarized in Table 6.3.

The experiment is to illustrate the potential usefulness of our theo-
retical results to deep learning. Specifically, we propose to initialize the
weight matrices and bias vectors of a deep neural network according to
the sufficient conditions in Theorem 5.1. In this manner, the network
tends to converge faster so that the training process can be accelerated.
We illustrate the effectiveness of this initialization strategy on the
benchmark dateset MNIST below.

For 1 d i d n, we denote by Či and Ā̂i the weight matrix and bias
vector at the ith layer, which will be determined with two different
strategies as follows.

Strategy 1 (proposed initialization strategy according to Theorem 5.1):
We design the parameters according to the sufficient conditions
established in the paper by

ēi = ą +
Či

i2
, Āi =

Ā̂i

i2
, 1 d i d n,

where ‖Či‖@ d 784 and ‖Ā̂i‖@ d 784 for all 1 d i d n.

Strategy 2 (a usual initialization strategy in deep learning): The sec-
ond strategy is the usual one without any constraints on the
parameters

ēi = Či, Āi = Ā̂i, 1 d i d n.

Our purpose is to see if the first strategy according to our theorem
will lead to a more stable training process, a lower loss and a higher
accuracy. To this end, for each strategy, we shall train the network for
50 epochs with Mean Squared Error (MSE) as the loss function. For a
fair performance comparison of the two strategies, we shall evaluate
the two strategies with different parameter initialization methods for
the parameters in weight matrices, while all biases will be initialized
with zeros. All the initialization methods utilized in our experiments
are described in details in Table 6.4. In addition, we train the network
with the Adam optimizer in both strategies. Adam is a replacement
optimization algorithm for stochastic gradient descent for training deep
learning models. And we set the learning rates as 10−3 for all cases with
strategy 1, while the learning rates for strategy 2 are set as 10−3, 10−4,
10−6 for 10-layer, 100-layer, 1000-layer network, respectively. We use
such learning rates since several cases in strategy 2 will be unstable

Neurocomputing 571 (2024) 127174

10

Y. Xu and H. Zhang

Fig. 6.1. Plot of the error ‖üi+1 −üi‖@ for various dimensions and widths.

Table 6.3
The DNN Architecture.

weight dimension bias dimension description

784 × 784 784 10, 100, 1000 layers with ReLU activation

– – Output layer (Linear, Average, Not trainable)

Table 6.4
Descriptions of initialization methods.

Initialization method Description

He normal [33] Each trainable parameter in weight matrices is generated by a truncated

normal distribution with mean 0 and standard deviation
√
2

28
where the

values more than two standard deviations from the mean are discarded
and redrawn.

He uniform [33] Each trainable parameter in weight matrices is generated by a uniform

distribution within
[
−

√
6

28
,

√
6

28

]
.

Zeros/Identity For strategy 1, each trainable parameter in weight matrices is initially
zero which would make ēi = ą for all 1 d i d n. For strategy 2, each Či is
initially identity matrix, which would also make ēi = ą for all 1 d i d n.

with 10−3 learning rate when n is large, and such issue would not
happen in strategy 1.

The detailed performance of the two strategies is shown in Ta-
ble 6.5. One could see that the best MSE on training set, the best
MSE on test set and the best accuracy on training set are all obtained
with strategy 1. Although the best accuracy on test set is obtained
with strategy 2, strategy 1 is more robust for training under different
settings with competitive performance. Note that the performance of
strategy 2 with a 100-layer network is significantly poorer and more
biased than other cases, which may be caused by the gradient vanishing
phenomenon.

In particular, for the 1000-layer networks, the MSE on the training
set and test set of each strategy in the training process are also plotted
in Fig. 6.2, and listed in Tables 6.6 and 6.7 respectively for every 5
epochs. We observe from these tables and plots that the initialization
strategy of parameters according to the sufficient conditions (5.1) and
(5.2) indeed leads to a faster training process. This is predicted by the

mathematical result Theorem 5.1. It also leads to a better performance
on both the training and test sets, which is a surprise.

Finally, we shall check whether the sufficient conditions in The-
orem 5.1 are satisfied in the training processes of each strategy. We
shall only check for the 1000-layer networks since they are sufficiently
deep. Recalling the Riesz–Thorin interpolation theorem, we shall com-
pute

1n

i=1 max(‖Či‖1, ‖Či‖@)∕i2 and
1n

i=1 ‖Āi‖@∕i2 for strategy 1, and
compute

1n

i=1 max(‖Či − ą‖1, ‖Či − ą‖@) and
1n

i=1 ‖Āi‖@ for strategy 2.
These two quantities are plotted in Figs. 6.3 and 6.4, respectively. One
sees that the trained network under Strategy 1 does satisfy the sufficient
conditions in Theorem 5.1, while that under Strategy 2 does not.

7. Conclusion

Deep learning based on deep neural networks (DNNs) has achieved
great successes in machine learning. DNNs constitute a highly efficient
system to represent high-dimensional complicated functions. A DNN

Neurocomputing 571 (2024) 127174

11

Y. Xu and H. Zhang

Table 6.5
Performances of different strategies.

Strategy Initialization method Depth MSE on training set MSE on test set Accuracy on training set Accuracy on test set

1

He normal
10 0.0281 0.3934 95.03% 91.19%
100 0.0234 0.2962 99.75% 96.56%
1000 0.0055 0.3021 99.97% 96.77%

He uniform
10 0.0174 0.3114 99.83% 96.5%
100 0.0039 0.3047 99.96% 96.54%
1000 0.0081 0.3030 99.40% 94.68%

Zeros
10 0.0290 0.3403 99.24% 95.66%
100 0.0195 0.2987 99.57% 96.61%
1000 0.0160 0.2897 99.54% 96.74%

2

He normal
10 0.0431 0.3063 99.18% 97.15%
100 8.370 8.4172 9.74% 9.82%
1000 0.2792 1.2793 87.30% 79.72%

He uniform
10 0.0608 0.2915 99.01% 96.96%
100 0.0782 0.3350 98.35% 96.41%
1000 0.2716 1.3350 86.08% 77.44%

Identity
10 0.0716 0.3471 98.56% 96.54%
100 0.0303 0.3298 99.23% 96.40%
1000 0.0092 0.3129 99.85% 97.34%

Fig. 6.2. Convergence plot of strategy 1 (left) and strategy 2 (right).

Table 6.6
Best MSE among all initialization methods of each strategy on the training set for every 5 epochs when n = 1000.

Strategy
Epoch

5 10 15 20 25 30 35 40 45 50

1 0.3746 0.1103 0.0914 0.0626 0.0462 0.0272 0.0384 0.0056 0.0039 0.0030

2 1.6608 0.9643 0.6321 0.5191 0.6849 0.3226 0.2621 0.2164 0.3436 0.1875

Table 6.7
Best MSE among all initialization methods on the test set for every 5 epochs when n = 1000.

Strategy
Epoch

5 10 15 20 25 30 35 40 45 50

1 0.5997 0.4077 0.3471 0.4240 0.3472 0.2770 0.3874 0.2688 0.2708 0.2697

2 1.8877 1.4853 1.4060 1.2980 1.2699 1.2253 1.2209 1.1008 1.1311 1.1342

in applications usually possesses a massive amount of parameters. In
practice, a DNN is trained on given data and is considered to be
convergent once a certain accuracy is attained. However, it is hard
to give explanation to how such a nonlinear system with so many
parameters achieves convergence. In other words, people did not know
what mathematical conditions the parameters have to satisfy in order
for the DNN to converge.

In this paper, we establish mathematical sufficient conditions on
the parameters of a DNN to ensure that it converges to a well-defined
function as the number of layers increases to infinity. For a sequence
of ReLU neural networks defined by

ün(x) =

(
n*
i=1

�(ēi ç +Āi)

)
(x), x * [0, 1]d ,

the established sufficient conditions ensuring the convergence of ün as
n tends to infinity are convergence of two infinite series:

1. The weight matrices ēn satisfy

ēn = I + Čn, n e 2,

@1
n=2

‖Čn‖ < +@.

2. The bias vectors Ān satisfy

@1
n=1

‖Ān‖ < +@.

One sees that the conditions are in simple mathematical form and
hence easy to comprehend and apply. The results provide insightful
understanding of the convergence of deep neural networks. As far as

Neurocomputing 571 (2024) 127174

12

Y. Xu and H. Zhang

Fig. 6.3. Sufficient condition for weight matrices of the trained 1000-layer networks with Strategy 1 under zero initialization (left) and Strategy 2 under identity initialization(right).

Fig. 6.4. Sufficient condition for bias vectors of the trained 1000-layer networks with Strategy 1 under zero initialization (left) and Strategy 2 under identity initialization(right).

we know, such sufficient conditions on the parameters of a DNN to
ensure its convergence are new in the literature. For their potential
applications to deep learning, we propose to initialize the weight
matrices and bias vectors of a deep neural network according to the
sufficient conditions above. By the mathematical analysis in the paper,
a DNN initialized in this way tends to converge faster so that the
training process can be accelerated.

The sufficient conditions are verified by mathematical experiments
on randomly generated weight matrices and bias vectors. Experiments
on the MNIST dataset are also conducted to illustrate the proposed
initialization strategy. Specifically, it is shown in the experiments that
parameters of a DNN initialized according to the sufficient conditions
may lead to a faster training process.

CRediT authorship contribution statement

Yuesheng Xu: Discussed to form the research question and ideas
of the paper, Discussed, Checked, Corrected the proofs, Improved the
presentation of the paper, Discussed the results and contributed to the
final manuscript. Haizhang Zhang: Discussed to form the research
question and ideas of the paper, Conceived and proved the main
results of the paper, Writing – original draft, Discussed the results and
contributed to the final manuscript.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

We would like to express gratitude to the reviewers for comments
and suggestions that help improve the manuscript. We would also like
to thank Wentao Huang for helping with the numerical experiments.

References

[1] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015)
436–444, 2015.

[2] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, Cambridge,
2016.

[3] R. DeVore, B. Hanin, G. Petrova, Neural network approximation, Acta Numerica
30 (2021) 327–444.

[4] D. Elbrächter, D. Perekrestenko, P. Grohs, H. Bölcskei, Deep neural network
approximation theory, IEEE Trans. Inform. Theory 67 (2021) 2581–2623.

[5] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, Q. Liao, Why and when can
deep-but not shallow-networks avoid the curse of dimensionality: A review, Int.
J. Autom. Comput. 14 (2017) 503–519.

[6] H. Montanelli, Q. Du, New error bounds for deep networks using sparse grids,
SIAM J. Math. Data Sci. 1 (1) (2019) 78–92.

[7] D. Yarotsky, Error bounds for approximations with deep relu networks, Neural
Netw. 94 (2017) 103–114.

[8] H. Montanelli, H. Yang, Error bounds for deep ReLU networks using the
Kolmogorov–Arnold superposition theorem, Neural Netw. 129 (2020) 1–6.

[9] W. E, Q. Wang, Exponential convergence of the deep neural network
approximation for analytic functions, Sci. China Math. 61 (10) (2018)
1733–1740.

[10] D.X. Zhou, Universality of deep convolutional neural networks, Appl. Comput.
Harmon. Anal. 48 (2) (2020) 787–794.

http://refhub.elsevier.com/S0925-2312(23)01297-3/sb1
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb1
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb1
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb2
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb2
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb2
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb3
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb3
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb3
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb4
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb4
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb4
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb5
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb5
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb5
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb5
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb5
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb6
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb6
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb6
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb7
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb7
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb7
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb8
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb8
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb8
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb9
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb9
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb9
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb9
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb9
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb10
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb10
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb10

Neurocomputing 571 (2024) 127174

13

Y. Xu and H. Zhang

[11] Z. Shen, H. Yang, S. Zhang, Deep network approximation characterized by
number of neurons, Commun. Comput. Phys. 28 (5) (2020) 1768–1811.

[12] Z. Shen, H. Yang, S. Zhang, Deep network with approximation error being
reciprocal of width to power of square root of depth, Neural Comput. 33 (4)
(2021) 1005–1036.

[13] Z. Shen, H. Yang, S. Zhang, Optimal approximation rate of ReLU networks in
terms of width and depth, J. Math. Pures Appl. 157 (2022) 101–135.

[14] I. Daubechies, R. DeVore, S. Foucart, B. Hanin, G. Petrova, Nonlinear
approximation and (deep) ReLU networks, Constr. Approx. 55 (2022) 127–172.

[15] Y. Wang, A mathematical introduction to generative adversarial nets (GAN),
2020, arXiv:2009.00169.

[16] P.L. Combettes, J.-C. Pesquet, Lipschitz certificates for layered network structures
driven by averaged activation operators, SIAM J. Math. Data Sci. 2 (2) (2020)
529–557.

[17] M. Hasannasab, J. Hertrich, S. Neumayer, G. Plonka, S. Setzer, G. Steidl, Parseval
proximal neural networks, J. Fourier Anal. Appl. 26 (4) (2020) 31, Paper No.
59.

[18] K. Scaman, A. Virmaux, Lipschitz regularity of deep neural networks: analysis
and efficient estimation, in: 32nd Conference on Neural Information Processing
Systems, NeurIPS 2018, Montréal, Canada.

[19] D. Zou, R. Balan, M. Singh, On Lipschitz bounds of general convolutional neural
networks, IEEE Trans. Inform. Theory 66 (3) (2020) 1738–1759.

[20] B. Hanin, M. Nica, Finite depth and width corrections to the neural tangent
kernel, 2019, arXiv:1909.05989.

[21] A. Jacot, F. Gabriel, C. Hongler, Neural tangent kernel: convergence and
generalization in neural networks, in: 32nd Conference on Neural Information
Processing Systems, NeurIPS 2018, Montréal, Canada.

[22] Q. Nguyen, M. Mondelli, G.F. Montufar, Tight bounds on the smallest eigenvalue
of the neural tangent kernel for deep ReLU networks, in: Proceedings of the 38th
International Conference on Machine Learning, PMLR 139, 2021, pp. 8119–8129.

[23] E. Stein, R. Shakarchi, Fourier Analysis. An Introduction, Princeton University
Press, Princeton, NJ, 2003.

[24] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
[25] T. Zaslavsky, Facing up to arrangements: face-count formulas for partitions of

space by hyperplanes, Mem. Amer. Math. Soc. 1 (1) (1975) no. 154.
[26] J.H.M. Wedderburn, Lectures on Matrices, Dover, New York, 1964.
[27] M. Artzrouni, On the convergence of infinite products of matrices, Linear Algebra

Appl. 74 (1986) 11–21.
[28] P.D. Lax, Functional Analysis, Wiley-Interscience, New York, 2002.
[29] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,

in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR,
2016, pp. 770–778.

[30] K. He, X. Zhang, S. Ren, J. Sun, Identity mappings in deep residual networks, in:
B. Leibe, J. Matas, N. Sebe, M. Welling (Eds.), Computer Vision – ECCV 2016,
in: Lecture Notes in Computer Science, vol. 9908, Springer, Cham.

[31] G.B. Folland, Real Analysis: Modern Techniques and their Applications, John
Wiley & Sons, 1999, p. 40.

[32] F. Chollet, et al., Keras, 2015, Available at: https://github.com/fchollet/keras.
[33] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing

human-level performance on ImageNet classification, in: 2015 IEEE International
Conference on Computer Vision, ICCV, pp. 1026–1034.

Yuesheng Xu received B.S. and M.S. degrees from Zhong-
shan (Sun Yat-sen) University, Guangdong, China, in 1982
and 1985, respectively, and a Ph.D. degree from Old Do-
minion University, Norfolk, VA, in 1989. He is currently a
professor of data science and mathematics at Old Dominion
University, Norfolk, VA. He was the Eberly Chair Professor
of Mathematics at West Virginia University from 2001 to
2003, Professor of Mathematics at Syracuse University from
2003 to 2013, and Guohua Chair Professor of Mathematics
at Sun Yat-sen University from 2009 to 2017. He was the
Managing Editor of Advances in Computational Mathemat-
ics from 2009–2012. Prof. Xu’s research interests include
numerical analysis, applied harmonic analysis, image and
signal processing, and machine learning. His research was
supported by US National Science Foundation, DoD, DoE,
NASA, NIH and Natural Science Foundation of China.

Haizhang Zhang received the B.S. degree in mathematics
and applied mathematics from Beijing Normal University
in 2003, the M.S. degree in computational mathematics
from the Chinese Academy of Sciences in 2006, and the
Ph.D. degree in mathematics from Syracuse University in
2009. From June 2009 to May 2010, he was a postdoctoral
research fellow at University of Michigan, Ann Arbor. Since
June 2010, he has been a Professor with Sun Yat-sen
University. Prof. Zhang’s research interests include applied
and computational harmonic analysis, machine learning,
sampling theory, and time–frequency analysis.

http://refhub.elsevier.com/S0925-2312(23)01297-3/sb11
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb11
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb11
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb12
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb12
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb12
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb12
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb12
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb13
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb13
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb13
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb14
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb14
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb14
http://arxiv.org/abs/2009.00169
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb16
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb16
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb16
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb16
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb16
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb17
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb17
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb17
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb17
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb17
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb18
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb18
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb18
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb18
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb18
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb19
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb19
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb19
http://arxiv.org/abs/1909.05989
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb21
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb21
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb21
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb21
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb21
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb22
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb22
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb22
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb22
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb22
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb23
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb23
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb23
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb24
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb25
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb25
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb25
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb26
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb27
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb27
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb27
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb28
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb29
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb29
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb29
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb29
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb29
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb30
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb30
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb30
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb30
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb30
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb31
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb31
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb31
https://github.com/fchollet/keras
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb33
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb33
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb33
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb33
http://refhub.elsevier.com/S0925-2312(23)01297-3/sb33

	Convergence of deep ReLU networks
	Introduction
	Deep Neural Networks and Convergence
	Convergence of ReLU Networks
	Infinite Products of Matrices
	Sufficient Conditions for Convergence of ReLU Networks
	Experiments
	Mathematical verification
	Experiment on the MNIST dataset

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

