
Undoing CRDT Operations Automatically

Provakar Mondal and Eli Tilevich
Software Innovations Lab, Virginia Tech, USA

{provakar, tilevich}@cs.vt.edu

Abstract—In a distributed replicated data system, Conflict-
free Replicated Data Types (CRDTs) keep data replicas consis-
tent on different nodes, while providing intuitive programming
abstractions for accessing and modifying the replicas. Due to
user errors, program bugs, or hardware malfunctions, a CRDT
can be updated incorrectly, so the effect of the executed CRDT
update operations needs to be undone. However, because CRDT
libraries rarely include the undo capability, adding it requires
modifying source code by hand, a task that is hard to accomplish
in a modular and reusable fashion. As a result, programmers
end up adding this advanced functionality in an ad-hoc fashion,
with the resulting code being hard to understand, maintain,
and reuse. To address this problem, this paper presents AUTO-
UNDO, an automatic approach that generates and actuates
undo functionality for existing CRDT libraries, based on simple
configurations and without modifying the library code by hand.
The configurations specify which CRDT operations undo each
other and the conditions that trigger the execution of undo
procedures. Based on the configuration, AUTO-UNDO generates
and actuates a sequence of update operations that undo the
specified updates on a given replica. We have implemented
and evaluated AUTO-UNDO in JavaScript, a popular CRDT
language, demonstrating our approach’s effectiveness, flexibility,
and efficiency. Our experiences show that AUTO-UNDO effectively
provides the undo capability for CRDT-based applications, thus
streamlining the complexity of adding features to distributed
programming frameworks.

Index Terms—Distributed Computing, Fault Tolerance,
Conflict-free Replicated Data Types, Undo, Code Generation

I. INTRODUCTION

Modern distributed applications commonly replicate data

across distributed execution sites. The resulting replication is

required to reduce access latency, increase availability, and

provide fault tolerance [1]. Because individual replicas can be

modified independently, their states need to be synchronized

across the distributed system to ensure consistency. Eventual

consistency protocols have proven themselves as an effective

means of synchronizing the states of distributed replicas in

various application scenarios [2], [3].

Conflict-free replicated Data Types (CRDTs) have become

a popular approach for providing eventual consistency. A

CRDT is an abstract data type that provides an interface that

exposes update and access methods, keeping the synchro-

nization functionality out of the programmer’s purview [4].

The CRDT runtime propagates the updates of an individual

replica to the remaining replicas. The eventual consistency of

CRDTs ensures their resilience against partial failure, caused

by temporary network disconnection [5] or replica nodes going

up and down [6]. Eventually, all updates are propagated to

the participating replicas, so their states are synchronized.

However, eventual consistency is no remedy for application

errors, caused by incorrect user actions, system malfunction, or

program bugs [7]. Modern replicated data systems commonly

integrate volatile hardware components, such as sensors and

actuators [8]. These realities often lead to incorrect updates

to the distributed replicated data, with the erroneous states

unrelated to the correct execution of eventual consistency

protocols, thus propagating wrong data across the system.

To make it possible for developers to fix such incorrect up-

dates, some CRDT libraries may provide the undo functional-

ity, which restores the distributed state to some prior execution

point [9], [10]. Despite the potential of the undo functionality

as a powerful building block for error-handling strategies,

established CRDT libraries rarely include it as part of their

built-in functions. As a result, when needing to undo CRDT

operations, developers end up implementing this non-trivial

functionality by modifying the CRDT library code by hand.

Even if the CRDT library code can be modified, adding the

undo functionality this way can be laborious, time-consuming,

and error-prone, with the resulting ad-hoc modifications being

hard to understand and reuse [11]. Furthermore, a recent

study reveals that application programmers face difficulties

with using CRDT libraries correctly and find some CRDT

functionalities confusing [12].

We address this problem with a generative approach that

introduces the undo functionality to existing CRDT libraries

based on declarative metadata specifications. In many CRDT

libraries, some update operations form so-called undo pairs,

with one operation canceling the effect of another operation.

For example, increment(x) and decrement(x) form

an undo pair. Additionally, only those update operations that

change the CRDT state need to be undone. For example, if

increment(x) ends up having no effect (e.g., as the data

type has reached the specified upper bound), then undoing

its intended effect would be erroneous. With the developer

declaratively providing this information about the CRDT, our

approach then automatically generates a sequence of update

operations that we refer to as an Undo Script.

Our approach’s implementation, AUTO-UNDO, adds the

undo functionality to CRDT libraries in JavaScript, a widely

used language in this domain. AUTO-UNDO makes use of the

JSON format as its metadata and relies on JavaScript’s ad-

vanced code adaptation techniques, such as monkey patching,

to introduce the required additional functionalities [13].

This paper makes the following contributions:

246

2023 IEEE International Conference on Cloud Computing Technology and Science (CloudCom)

2380-8004/23/$31.00 ©2023 IEEE
DOI 10.1109/CloudCom59040.2023.00047

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

lo
ud

 C
om

pu
tin

g
Te

ch
no

lo
gy

 a
nd

 S
ci

en
ce

 (C
lo

ud
C

om
) |

 9
79

-8
-3

50
3-

39
82

-6
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
C

lo
ud

C
om

59
04

0.
20

23
.0

00
47

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 09,2024 at 00:38:01 UTC from IEEE Xplore. Restrictions apply.

add(2)

{ 1,3,5 } { 1,2,3,5 } { 1,2,3,5 } { 1,2,5 } { 1,2,5,7 } { 1,2,5,7 } { 1,5,7 }

add(1) remove(3) add(7) remove(4) remove(2)

{ 3,4,5 } { 2,3,4,5 } { 1,2,3,4,5 } { 1,2,4,5 } { 1,2,4,5,7 } { 1,2,5,7 } { 1,5,7 }

add(2)add(4)remove(7)add(3)remove(1)remove(2)

Fig. 1: Incorrect Undo Procedure

1) We present a novel approach for automatically gener-

ating and actuating the undo functionality for existing

CRDT libraries without having to modify their source

code by hand; parameterized via declarative metadata,

the approach provides flexible options for configuring

whether to actuate the generated Undo Scripts.

2) We provide a concrete implementation of our approach as

AUTO-UNDO, which adds the required undo functionality

to existing CRDT libraries implemented in JavaScript,

configured via JSON metadata.

3) We report on the results of applying AUTO-UNDO to add

the undo functionality to different CRDTs in third-party

libraries; our evaluation assesses the applicability of our

approach and its performance characteristics.

II. MOTIVATING EXAMPLE

Consider an Add-Remove Set CRDT, a replicated set data

structure, whose functionality ensures the mathematical defi-

nition of a set: all elements are unique. Set elements can be

added and removed. Once removed, elements can be added to

the same set at a later point. Imagine an application scenario

requiring that developers undo the effect of the last n update

operations of this set. However, the CRDT library provides no

built-in undo functionality.

One can come up with a seemingly straightforward solution.

For each executed update operation, identify its counter-

operation that cancels out the resulting effect (i.e., add for

remove and vice versa). Having executed an operation, record

its counter-operation, and then replay the recorded counter-

operations in reverse order.

Figure 1 depicts the aforementioned approach. The figure’s

upper part presents a set in the initial state of {1, 3, 5},

followed by six update operations, whose execution leads to

the state of {1, 5, 7}. The figure’s lower part presents the

counter-operations for the executed update operations. Notice

that the counter-operations are meant to be executed in reverse

order. However, this undo strategy fails to correctly restore the

set’s initial state. Indeed, the resulting state arrives at {3, 4, 5}
rather than the expected {1, 3, 5}.

This undo strategy is flawed, as it fails to consider the data

structure disallowing the execution of operations that violate

its properties. In particular, adding an existing element to a

set would have no effect. Similarly, removing a non-existing

element would have no effect either. Hence, blindly recording

the counter-operations may lead to invalid undo procedures.

To correct this strategy, one can check whether an update

operation actually ends up updating the data structure’s state,

and only then record the corresponding counter-operation.

The problem is that it might be prohibitively expensive to

determine if a data structure’s state has changed, particularly if

add(2)

{ 1,3,5 } { 1,2,3,5 } { 1,2,3,5 } { 1,2,5 } { 1,2,5,7 } { 1,2,5,7 } { 1,5,7 }

add(1) remove(3) add(7) remove(4) remove(2)

{ 1,3,5 } { 1,2,3,5 } { 1,2,3,5 } { 1,2,5 } { 1,2,5,7 } { 1,2,5,7 } { 1,5,7 }

add(2)no_opremove(7)add(3)no_opremove(2)

Fig. 2: no_op Undo Procedure

it needs to be done for each operation. However, our approach

efficiently determines whether a data structure’s state has

changed by leveraging domain-specific information provided

by a developer, which we refer to as no_op. For example,

if the size of a set before and after executing an operation

remains the same, the operation is a no_op.

By exploiting this insight, our approach automatically gen-

erates a Undo Script. Notice how in our example, add(1) and

remove(4) do not change the set’s state, and we can determine

that by comparing the set’s size before and after executing

these operations. Figure 2 depicts the execution and its undo

procedure, cognizant of the no_op property. The add(1) and

remove(4) appear as no_op, and as such are excluded from

the generated Undo Script. As a result, the undo procedure

correctly restores the set to its initial state of {1, 3, 5}.

III. KEY COMPONENTS

Figure 3 gives an overview of our approach as realized

in AUTO-UNDO, whose programming model is developer-

provided declarative metadata. The provided metadata de-

scribes the target CRDT data structures, their update opera-

tions, the counter operations for the updates, and the undo ac-

tuation conditions. Developers also mark the update operations

that will need to be monitored and then undone, if required.

We use a higher-order function for that purpose as explained

below. AUTO-UNDO consists of four key components: Update

Function Interceptor, Update Manager, Undo Script Generator,

and Undo Script Actuator. The following subsections elaborate

on the functionality of the corresponding components.

CRDT Replica

Update
Function

Interceptor

CRDT
Update

Manager

Undo
Script

Generator

Undo
Script

Actuator

undoable ([
� � crdt.update(...),
� ��crdt.update(...),
� ��crdt.update(...),
� ��......................
]) CRDT

Library

� If check_undo()
� � execute_undo(crdt, undo_script)

Deterministic
Model

Probabilistic
Model

AUTO-UNDO

Metadata

Undo Script

Remote Update Requests

Fig. 3: Undo Generation and Actuation with AUTO-UNDO

A. Update Function Interceptor

This component intercepts the specified update operations

of the target CRDT library, being invoked in the application.

247

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 09,2024 at 00:38:01 UTC from IEEE Xplore. Restrictions apply.

AUTO-UNDO provides the undo functionality by proxying each

update operation, removing the need to manually modify the

CRDT library source code. Via proxying, AUTO-UNDO injects

additional functionality that interacts with the runtime. Update

Function Interceptor generates proxy functions that provide the

necessary interception. Procedure 1 explains the functionality

of the proxy functions. The main additional functionality is

adding the corresponding undo action to the Undo Script for

the intercepted update operation.

Procedure 1 Intercept Update Functions

1: procedure INTERCEPT UPDATE FUNCTIONS

2: crdt functions ← read functions(metaData)
3: for all func ∈ crdt functions do
4: params ← metaData[func.params]
5: func ← generate proxy(func, params)
6: end for
7: end procedure
8:
9: procedure GENERATE PROXY (func, params)

10: origFunc ← func
11: generate undo action(func, params)
12: origFunc(params)
13: end procedure

B. Update Manager

The Update Manager component tracks the specified update

operations of the CRDT library, as they are being invoked

in the application. To keep track of which update operations

to monitor, AUTO-UNDO provides a higher-order function

undoable([...]), which accepts the invocations of the

marked update operations as parameters. Additionally, the

Update Manager queues up the remote update requests re-

ceived from other replicas while tracking the marked update

operations. If the execution of an Undo Script is allowed to

be interleaved with the processing of external update requests,

the resulting CRDT state may deviate from that under which

the counter operations were determined. To prevent this issue,

the Update Manager queues up all incoming update requests

issued by the other replicas in the order of arrival. After

completing the execution of undoable([...]) (having

actuated an Undo Script or not), it then processes the queued

update requests. Because AUTO-UNDO proxies all update

functions, it has complete control over their execution.

C. Undo Script Generator

The Undo Script Generator component automatically gen-

erates the required sequence of undo actions for the invoked

update operations. By executing the resulting Undo Script,

AUTO-UNDO brings the CRDT’s state to the point before the

first monitored update operation was executed. Procedure 2

details the generation procedure for a single monitored update

operation. Notice how the generation logic makes use of the

no_op information, also specified declaratively in metadata.

D. Undo Script Actuator

The Undo Actuator (1) checks the current state of the

CRDT to determine if an Undo Script needs to be executed

Procedure 2 Generate Undo Action

1: procedure GENERATE UNDO ACTION (funcName, params)
2: no_op ← is no_op(funcName, params)
3: if not no_op then
4: undoFuncName ← metaData[funcName]
5: undo stack.push(undoFuncName, params)
6: end if
7: end procedure

by applying a decision-making model, and (2) executes the

Undo Script if needed. Procedure 3 describes the logic used to

determine whether an undo is needed. For its decision-making,

AUTO-UNDO provides deterministic and probabilistic models,

as configured in metadata. The deterministic model makes

use of standard statistical functions and static thresholds. The

outcome of a deterministic model is solely determined by the

specified statistical functions, their thresholds, and the CRDT

data. If checking whether an undo is needed by a deterministic

model becomes computationally prohibitive, AUTO-UNDO pro-

vides an alternative probabilistic model that takes advantage of

Machine Learning (ML). It uses the AUTO-UNDO’s execution

history to train itself (i.e., among the previous checks, what

were the states of the CRDT, which led to the positive

and negative outcomes). This trained model is then used to

compute the probability that the undo is needed at a given

point. Developers also configure the probability threshold

under which an Undo Script is to be executed. Finally, to

specify whether AUTO-UNDO should utilize the deterministic

or probabilistic model, developers can use metadata to provide

the corresponding conditions. For added flexibility, AUTO-

UNDO makes it possible for developers to express their own

custom decision-making logic as a function parameter. Finally,

the Undo Actuator automatically actuates the undo procedure

once it is triggered by the specified conditions, as explained

in Procedure 4.

Procedure 3 Check Undo

1: procedure UNDO CHECK (crdt)
2: params ← read params(crdt)
3: option ← read options(crdt)
4: if option is in metaData then
5: model ← read model(crdt,metaData)
6: if model is deterministic then
7: res ← deterministic model(params)
8: return res > metaData[det threshold]
9: else

10: res ← probabilistic model(params)
11: return res > metaData[prob threshold]
12: end if
13: else
14: accept custom predicate(customLogic)
15: end if
16: end procedure

IV. EVALUATION

Our evaluation is driven by the following questions:

1) Q1: What is the performance overhead of applying

AUTO-UNDO to add the undo capability in existing CRDT

libraries under different workloads?

248

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 09,2024 at 00:38:01 UTC from IEEE Xplore. Restrictions apply.

Procedure 4 Execute Undo Actions

1: procedure EXECUTE UNDO ACTIONS (crdt)
2: if undo check(crdt) then � Undo Required

3: for all action ∈ undo stack do
4: func ← action.crdtFuncName
5: params ← action.crdtparams
6: func(crdt, params)
7: end for
8: end if
9: end procedure

TABLE I: Latency Overhead (%)

Number of
Updates

js-delta-crdts crdts
Counter Set Map Counter Set

100 2.93 3.87 3.36 2.64 3.08
200 2.19 3.98 4.18 3.13 3.45
300 3.27 4.32 4.37 3.49 4.07
500 3.61 4.94 4.78 4.33 4.56

2) Q2: What is the accuracy/performance trade-off between

the deterministic and probabilistic models for determining

whether to execute an undo procedure?

In our evaluation, we applied AUTO-UNDO to two exist-

ing third-party CRDT libraries, js-delta-crdts [14] and

crdts [15]. From js-delta-crdts, we used three CRDT

data structures: PNCounter, Add-Remove Set, and Map; from

crdts, we used PNCounter and Add-Remove Set, as crdts
has no map data structure.

The following subsections describe the evaluation tasks we

conducted to answer the aforementioned questions. To answer

Q1:, we benchmarked the performance impact of applying

AUTO-UNDO to the target CRDT libraries. Finally, to answer

Q2:, we correlated the execution time and the accuracy rate

of the deterministic/probabilistic models to determine their

correctness/performance trade-off.

A. Q1: Performance

To understand the performance costs of applying AUTO-

UNDO to add the undo capability, we compared the overall

latencies of executing different numbers of CRDT update

operations with the same operations enhanced with the undo

capability by AUTO-UNDO. Recall that it is the provided

decision-making model (deterministic or probabilistic) that

determines whether to actuate a Undo Script. Therefore, the

total additional latency incurred by AUTO-UNDO includes the

costs of generating Undo Script, consulting the model, and

actuating the undo procedure if required. In our experiments,

we applied AUTO-UNDO to the aforementioned two existing

third-party CRDT libraries and measured the performance

under different workloads under two settings: (1) baseline

CRDT update operations (no AUTO-UNDO present); (2) the

same operations but with AUTO-UNDO. Figures 4 and 5 present

the experimental results for three CRDTs in the first library

and two CRDTs in the second one respectively. Furthermore,

we averaged the imposed overhead as percentage points,

detailed in Table I.

Fig. 4: The overhead for the js-delta-crdts library

Fig. 5: The overhead for the crdts library

a) Experimental Setup: We created a virtual distributed

environment on a 64-bit Ubuntu 20.04 computer with 32

GB of RAM and an Intel Core i7 Processor to conduct our

performance evaluation. Having a virtual environment makes it

possible to avoid the inherent volatility of distributed execution

to be able to isolate AUTO-UNDO’s performance overhead.

We deployed three virtual nodes to measure the overhead

generated by the target CRDT libraries.

With the original CRDT deployment establishing the perfor-

mance baseline, we observed that AUTO-UNDO’s usage incurs

a constant overhead, unaffected by the number of update

operations. Furthermore, the overhead never exceeds 5% in the

worst-case scenario of tracking 500 updates operation of Set

CRDT in js-delta-crdts library. The observed constant

overhead is reasonable, given the saved programming effort

of AUTO-UNDO, which provides versatile undo functionality

without modifying the CRDT source code by hand, based on

declarative metadata input.

B. Q2: Decision-Making Accuracy/Performance Trade-off

To check whether to execute an undo procedure, AUTO-

UNDO takes advantage of two decision-making models: de-

terministic and probabilistic. These models possess dissim-

249

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 09,2024 at 00:38:01 UTC from IEEE Xplore. Restrictions apply.

(a) Add-Remove Set (js-delta-crdts) (b) Map (js-delta-crdts) (c) Add-Remove Set (crdts)

Fig. 6: Latency Comparison of Deterministic vs Probabilistic Model

(a) Add-Remove Set (js-delta-crdts) (b) Map (js-delta-crdts) (c) Add-Remove Set (crdts)

Fig. 7: Correct/Incorrect Ratio for the Probabilistic Model

ilar accuracy performance characteristics. The deterministic

model applies the specified statistical procedures to accurately

determine whether to execute an undo. However, statistical

computations over large data sets can become prohibitively

expensive. In contrast, the probabilistic model approximates

the decision-making process using an ML procedure (the

reference implementation used Logistic Regression).

Although beating in performance the deterministic model

for large data sets, the probabilistic model lacks accuracy.

However, its accuracy keeps growing with usage in line with

the training feature of ML.

Figure 6 compares the two models in terms of their latency

characteristics, without taking the corresponding accuracy into

account. To isolate the performance, the experiments were run

on a single replica. In this experiment, we added more than

1,000 elements to the Set and Map CRDTs. Then we trained

the Probabilistic Model on the responses produced by execut-

ing the Deterministic Model 1000 times. The Deterministic

Model was configured to compute the Standard Deviation of

the contained elements. Since model training can be performed

offline, our measurements exclude the time it took to train the

ML routine of the Probabilistic Model. As one can see, the

performance benefits of the Probabilistic Model increase their

prominence both with the size of the training dataset and usage

frequency.

However, the superior performance of the Probabilistic

Model comes at the price of correctness, as demonstrated in

Figure 7. The number of correct responses appears in green,

while incorrect ones are in red. The ML property manifests

itself in the ratio of correct : incorrect responses increasing

with the number of queries, as the model keeps learning from

the previous interactions.

It is ultimately up to the developer to determine which

model to use in different application scenarios. Irrespective

of the choice made, it takes a simple metadata directive to

specify which model to use. We plan to explore the suitability

of different models in scenarios as a future work direction.

V. RELATED WORK

Because the undo functionality serves as a useful component

for constructing strategies for handling errors and system

faults, enhancing CRDTs with undo has gained prominence

as a research topic. The research literature primarily contains

examples of highly customized CRDTs with built-in undo

capabilities. Some of the recent examples introduce undo-

enhanced CRDTs as a distributed key-value database with

reversible operations [16] as well as providing robustness and

uniformity for reversing CRDT operations [17]. The ability

to undo CRDT operations has been found particularly ben-

eficial in the domain of collaborative editing. Representative

examples focus on different issues that include: undo causing

undesirable effects that are addressed by the selective undo

of string-wise operations [18]; applying undo functionality to

any number of operations rather than only the last ones [19];

enabling to “undo anywhere, anytime” with low-cost and

formally proved [20]; presenting undo algorithms that satisfy

the conditions of neutrality and forward transposition [21];

supporting selective undo with an algorithm that provides

operational transformation consistency control, with causality

250

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 09,2024 at 00:38:01 UTC from IEEE Xplore. Restrictions apply.

and admissibility preservation [22]; providing multiple undo

with a generic algorithm that generates valid undo opera-

tions [23]; presenting a JavaScript framework, named Yjs for

collaborative editing of arbitrary data types with an Undo/Redo

manager, able to undo/redo selective updates in a domain-

specific fashion, designed to work specifically with collabo-

rative editing [24]. A related approach that provides undo for

CRDTs out-of-the-box, albeit for state-based CRDTs, defines

a formal semantics of concurrent undo and redo operations

and logs state deltas [9].

The presence of such an extensive prior body of work

concerned with adding the undo capability to CRDT confirms

the necessity of efforts such as ours that target this problem

from the perspective of novel programming approaches. Our

work explores solutions to this problem that exploits the

conventions of CRDT libraries to provide concise yet effective

techniques for automating the process of generating and ac-

tuating versatile undo procedures. AUTO-UNDO’s declarative

programming model can be potentially beneficial for some of

the aforementioned state-of-the-art approaches, an angle that

we plan to pursue as a future work direction.

VI. CONCLUSION

We have presented AUTO-UNDO, an automatic approach that

enhances CRDTs with the undo capability. The required extra

functionalities are added without having to modify the CRDT

library code by hand, based on input expressed as declarative

metadata. The reference implementation of AUTO-UNDO tar-

gets JavaScript, a popular language for CRDT libraries. AUTO-

UNDO decides whether to actuate the generated Undo Script

based on decision-making models, both deterministic driven

by statistical functions and probabilistic driven by ML.

Our evaluation results demonstrate the feasibility of declar-

ative meta-programming for generating and actuating undo in

realistic CRDT scenarios. The introduced undo functionality

incurs a reasonable performance overhead at runtime. Finally,

AUTO-UNDO’s decision-making process offers flexibility in

its correctness/performance tradeoff between the determinis-

tic/probabilistic models.

ACKNOWLEDGMENTS

This research is supported by NSF via Grant #2232565.

REFERENCES

[1] B. Krishnamachari and S. Kapadia, “Data replication and scheduling
for content availability in vehicular networks”. University of Southern
California, 2007.

[2] X. Zhao and P. Haller, “Replicated data types that unify eventual
consistency and observable atomic consistency,” Journal of logical and
algebraic methods in programming, vol. 114, p. 100561, 2020.

[3] V. Balegas, D. Serra, S. Duarte, C. Ferreira, M. Shapiro, R. Rodrigues,
and N. Preguiça, “Extending eventually consistent cloud databases
for enforcing numeric invariants,” in 2015 IEEE 34th Symposium on
Reliable Distributed Systems (SRDS). IEEE, 2015, pp. 31–36.

[4] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-free
replicated data types,” in Stabilization, Safety, and Security of Dis-
tributed Systems: 13th International Symposium, SSS 2011, Grenoble,
France, October 10-12, 2011. Proceedings 13. Springer, 2011, pp.
386–400.

[5] Y.-W. Kwon, E. Tilevich, and T. Apiwattanapong, “DR-OSGi: Hard-
ening distributed components with network volatility resiliency,” in
Middleware 2009, J. M. Bacon and B. F. Cooper, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 373–392.

[6] M. Kleppmann and H. Howard, “Byzantine eventual consistency
and the fundamental limits of peer-to-peer databases,” arXiv preprint
arXiv:2012.00472, 2020.

[7] P. Bailis and A. Ghodsi, “Eventual consistency today: Limitations,
extensions, and beyond: How can applications be built on eventually
consistent infrastructure given no guarantee of safety?” Queue, vol. 11,
no. 3, pp. 20–32, 2013.

[8] M. Capra, R. Peloso, G. Masera, M. Ruo Roch, and M. Martina, “Edge
computing: A survey on the hardware requirements in the internet of
things world,” Future Internet, vol. 11, no. 4, p. 100, 2019.

[9] W. Yu, V. Elvinger, and C.-L. Ignat, “A generic undo support for
state-based crdts,” in OPODIS 2019-Proceedings of 23rd International
Conference on Principles of Distributed Systems, 2019.

[10] E. Brattli and W. Yu, “Supporting undo and redo for replicated registers
in collaborative applications,” in 18th International Conference on
Cooperative Design, Visualization, and Engineering, ser. CDVE 2021.
Springer LNCS volume 12983, Oct. 2021, pp. 195–205.

[11] J. Rubin, Cloned product variants: From ad-hoc to well-managed
software reuse. University of Toronto (Canada), 2014.

[12] Y. Zhang, M. Weidner, and H. Miller, “Programmer Experience When
Using CRDTs to Build Collaborative Webapps: Initial Insights,” 3
2023. [Online]. Available: https://kilthub.cmu.edu/articles/conference
contribution/Programmer Experience When Using CRDTs to Build
Collaborative Webapps Initial Insights/22277341

[13] Y. Wang, K. S. Cheng, M. Song, and E. Tilevich, “A declarative
enhancement of javascript programs by leveraging the java metadata
infrastructure,” Science of Computer Programming, vol. 181, pp. 27–
46, 2019.

[14] P. Teixeira, “Delta state-based crdts in javascript,” 2018, https://github.
com/peer-base/js-delta-crdts.

[15] R. Littauer, “A library of conflict-free replicated data types for
javascript,” 2016, https://github.com/orbitdb/crdts.

[16] Y. Mao, Z. Liu, and H.-A. Jacobsen, “Reversible conflict-free replicated
data types,” in Proceedings of the 23rd ACM/IFIP International Mid-
dleware Conference, 2022, pp. 295–307.

[17] N. Saquib, C. Krintz, and R. Wolski, “Log-based crdt for edge appli-
cations,” in 2022 IEEE International Conference on Cloud Engineering
(IC2E). IEEE, 2022, pp. 126–137.

[18] W. Yu, L. André, and C.-L. Ignat, “A crdt supporting selective undo for
collaborative text editing,” in Distributed Applications and Interoperable
Systems: 15th IFIP WG 6.1 International Conference, DAIS 2015, Held
as Part of the 10th International Federated Conference on Distributed
Computing Techniques, DisCoTec 2015, Grenoble, France, June 2-4,
2015, Proceedings 15. Springer, 2015, pp. 193–206.

[19] S. Martin, P. Urso, and S. Weiss, “Scalable xml collaborative editing
with undo: (short paper),” in On the Move to Meaningful Internet
Systems: OTM 2010: Confederated International Conferences: CoopIS,
IS, DOA and ODBASE, Hersonissos, Crete, Greece, October 25-29,
2010, Proceedings, Part I. Springer, 2010, pp. 507–514.

[20] S. Weiss, P. Urso, and P. Molli, “Logoot-undo: Distributed collaborative
editing system on p2p networks,” IEEE transactions on parallel and
distributed systems, vol. 21, no. 8, pp. 1162–1174, 2010.

[21] J. Ferrié, N. Vidot, and M. Cart, “Concurrent undo operations in collabo-
rative environments using operational transformation,” in On the Move to
Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE: OTM
Confederated International Conferences, CoopIS, DOA, and ODBASE
2004, Agia Napa, Cyprus, October 25-29, 2004. Proceedings, Part I.
Springer, 2004, pp. 155–173.

[22] B. Shao, D. Li, and N. Gu, “An algorithm for selective undo of any
operation in collaborative applications,” in Proceedings of the 2010 ACM
International Conference on Supporting Group Work, 2010, pp. 131–
140.

[23] C. Sun, “Undo as concurrent inverse in group editors,” ACM Trans-
actions on Computer-Human Interaction (TOCHI), vol. 9, no. 4, pp.
309–361, 2002.

[24] K. Jahns, “Yjs: A crdt framework with a powerful abstraction of shared
data,” 2014, https://github.com/yjs/yjs.

251

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 09,2024 at 00:38:01 UTC from IEEE Xplore. Restrictions apply.

