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Abstract—In a distributed replicated data system, Conflict-
free Replicated Data Types (CRDTs) keep data replicas consis-
tent on different nodes, while providing intuitive programming
abstractions for accessing and modifying the replicas. Due to
user errors, program bugs, or hardware malfunctions, a CRDT
can be updated incorrectly, so the effect of the executed CRDT
update operations needs to be undone. However, because CRDT
libraries rarely include the undo capability, adding it requires
modifying source code by hand, a task that is hard to accomplish
in a modular and reusable fashion. As a result, programmers
end up adding this advanced functionality in an ad-hoc fashion,
with the resulting code being hard to understand, maintain,
and reuse. To address this problem, this paper presents AUTO-
UNDO, an automatic approach that generates and actuates
undo functionality for existing CRDT libraries, based on simple
configurations and without modifying the library code by hand.
The configurations specify which CRDT operations undo each
other and the conditions that trigger the execution of undo
procedures. Based on the configuration, AUTO-UNDO generates
and actuates a sequence of update operations that undo the
specified updates on a given replica. We have implemented
and evaluated AUTO-UNDO in JavaScript, a popular CRDT
language, demonstrating our approach’s effectiveness, flexibility,
and efficiency. Our experiences show that AUTO-UNDO effectively
provides the undo capability for CRDT-based applications, thus
streamlining the complexity of adding features to distributed
programming frameworks.

Index Terms—Distributed Computing, Fault Tolerance,
Conflict-free Replicated Data Types, Undo, Code Generation

I. INTRODUCTION

Modern distributed applications commonly replicate data
across distributed execution sites. The resulting replication is
required to reduce access latency, increase availability, and
provide fault tolerance [1]. Because individual replicas can be
modified independently, their states need to be synchronized
across the distributed system to ensure consistency. Eventual
consistency protocols have proven themselves as an effective
means of synchronizing the states of distributed replicas in
various application scenarios [2], [3].

Conflict-free replicated Data Types (CRDTs) have become
a popular approach for providing eventual consistency. A
CRDT is an abstract data type that provides an interface that
exposes update and access methods, keeping the synchro-
nization functionality out of the programmer’s purview [4].
The CRDT runtime propagates the updates of an individual
replica to the remaining replicas. The eventual consistency of
CRDTs ensures their resilience against partial failure, caused
by temporary network disconnection [5] or replica nodes going
up and down [6]. Eventually, all updates are propagated to

the participating replicas, so their states are synchronized.
However, eventual consistency is no remedy for application
errors, caused by incorrect user actions, system malfunction, or
program bugs [7]. Modern replicated data systems commonly
integrate volatile hardware components, such as sensors and
actuators [8]. These realities often lead to incorrect updates
to the distributed replicated data, with the erroneous states
unrelated to the correct execution of eventual consistency
protocols, thus propagating wrong data across the system.

To make it possible for developers to fix such incorrect up-
dates, some CRDT libraries may provide the undo functional-
ity, which restores the distributed state to some prior execution
point [9], [10]. Despite the potential of the undo functionality
as a powerful building block for error-handling strategies,
established CRDT libraries rarely include it as part of their
built-in functions. As a result, when needing to undo CRDT
operations, developers end up implementing this non-trivial
functionality by modifying the CRDT library code by hand.
Even if the CRDT library code can be modified, adding the
undo functionality this way can be laborious, time-consuming,
and error-prone, with the resulting ad-hoc modifications being
hard to understand and reuse [11]. Furthermore, a recent
study reveals that application programmers face difficulties
with using CRDT libraries correctly and find some CRDT
functionalities confusing [12].

We address this problem with a generative approach that
introduces the undo functionality to existing CRDT libraries
based on declarative metadata specifications. In many CRDT
libraries, some update operations form so-called undo pairs,
with one operation canceling the effect of another operation.
For example, increment (x) and decrement (x) form
an undo pair. Additionally, only those update operations that
change the CRDT state need to be undone. For example, if
increment (x) ends up having no effect (e.g., as the data
type has reached the specified upper bound), then undoing
its intended effect would be erroneous. With the developer
declaratively providing this information about the CRDT, our
approach then automatically generates a sequence of update
operations that we refer to as an Undo Script.

Our approach’s implementation, AUTO-UNDO, adds the
undo functionality to CRDT libraries in JavaScript, a widely
used language in this domain. AUTO-UNDO makes use of the
JSON format as its metadata and relies on JavaScript’s ad-
vanced code adaptation techniques, such as monkey patching,
to introduce the required additional functionalities [13].

This paper makes the following contributions:
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Fig. 1: Incorrect Undo Procedure

1) We present a novel approach for automatically gener-
ating and actuating the undo functionality for existing
CRDT libraries without having to modify their source
code by hand; parameterized via declarative metadata,
the approach provides flexible options for configuring
whether to actuate the generated Undo Scripts.

We provide a concrete implementation of our approach as
AUTO-UNDO, which adds the required undo functionality
to existing CRDT libraries implemented in JavaScript,
configured via JSON metadata.

We report on the results of applying AUTO-UNDO to add
the undo functionality to different CRDTSs in third-party
libraries; our evaluation assesses the applicability of our
approach and its performance characteristics.

2)

3)

II. MOTIVATING EXAMPLE

Consider an Add-Remove Set CRDT, a replicated set data
structure, whose functionality ensures the mathematical defi-
nition of a set: all elements are unique. Set elements can be
added and removed. Once removed, elements can be added to
the same set at a later point. Imagine an application scenario
requiring that developers undo the effect of the last n update
operations of this set. However, the CRDT library provides no
built-in undo functionality.

One can come up with a seemingly straightforward solution.
For each executed update operation, identify its counter-
operation that cancels out the resulting effect (i.e., add for
remove and vice versa). Having executed an operation, record
its counter-operation, and then replay the recorded counter-
operations in reverse order.

Figure 1 depicts the aforementioned approach. The figure’s
upper part presents a set in the initial state of {1,3,5},
followed by six update operations, whose execution leads to
the state of {1,5,7}. The figure’s lower part presents the
counter-operations for the executed update operations. Notice
that the counter-operations are meant to be executed in reverse
order. However, this undo strategy fails to correctly restore the
set’s initial state. Indeed, the resulting state arrives at {3,4,5}
rather than the expected {1,3,5}.

This undo strategy is flawed, as it fails to consider the data
structure disallowing the execution of operations that violate
its properties. In particular, adding an existing element to a
set would have no effect. Similarly, removing a non-existing
element would have no effect either. Hence, blindly recording
the counter-operations may lead to invalid undo procedures.

To correct this strategy, one can check whether an update
operation actually ends up updating the data structure’s state,
and only then record the corresponding counter-operation.
The problem is that it might be prohibitively expensive to
determine if a data structure’s state has changed, particularly if
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it needs to be done for each operation. However, our approach
efficiently determines whether a data structure’s state has
changed by leveraging domain-specific information provided
by a developer, which we refer to as no_op. For example,
if the size of a set before and after executing an operation
remains the same, the operation is a no_op.

By exploiting this insight, our approach automatically gen-
erates a Undo Script. Notice how in our example, add(1) and
remove(4) do not change the set’s state, and we can determine
that by comparing the set’s size before and after executing
these operations. Figure 2 depicts the execution and its undo
procedure, cognizant of the no_op property. The add(1) and
remove(4) appear as no_op, and as such are excluded from
the generated Undo Script. As a result, the undo procedure
correctly restores the set to its initial state of {1, 3,5}.

III. KEY COMPONENTS

Figure 3 gives an overview of our approach as realized
in AUTO-UNDO, whose programming model is developer-
provided declarative metadata. The provided metadata de-
scribes the target CRDT data structures, their update opera-
tions, the counter operations for the updates, and the undo ac-
tuation conditions. Developers also mark the update operations
that will need to be monitored and then undone, if required.
We use a higher-order function for that purpose as explained
below. AUTO-UNDO consists of four key components: Update
Function Interceptor, Update Manager, Undo Script Generator,
and Undo Script Actuator. The following subsections elaborate
on the functionality of the corresponding components.
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Fig. 3: Undo Generation and Actuation with AUTO-UNDO

A. Update Function Interceptor

This component intercepts the specified update operations
of the target CRDT library, being invoked in the application.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 09,2024 at 00:38:01 UTC from IEEE Xplore. Restrictions apply.



AUTO-UNDO provides the undo functionality by proxying each
update operation, removing the need to manually modify the
CRDT library source code. Via proxying, AUTO-UNDO injects
additional functionality that interacts with the runtime. Update
Function Interceptor generates proxy functions that provide the
necessary interception. Procedure 1 explains the functionality
of the proxy functions. The main additional functionality is
adding the corresponding undo action to the Undo Script for
the intercepted update operation.

Procedure 1 Intercept Update Functions

1: procedure INTERCEPT_UPDATE_FUNCTIONS

2 crdt_functions < read_functions(metaData)
3 for all func € erdt_functions do

4: params < metaData[func.params)

5: func < generate_proxy( func, params)

6 end for

7: end procedure

8.

9: procedure GENERATE_PROXY (func, params)

10: origFunc + func
11: generate_undo_action( func, params)
12: origFunc(params)

13: end procedure

B. Update Manager

The Update Manager component tracks the specified update
operations of the CRDT library, as they are being invoked
in the application. To keep track of which update operations
to monitor, AUTO-UNDO provides a higher-order function
undoable ([...]), which accepts the invocations of the
marked update operations as parameters. Additionally, the
Update Manager queues up the remote update requests re-
ceived from other replicas while tracking the marked update
operations. If the execution of an Undo Script is allowed to
be interleaved with the processing of external update requests,
the resulting CRDT state may deviate from that under which
the counter operations were determined. To prevent this issue,
the Update Manager queues up all incoming update requests
issued by the other replicas in the order of arrival. After
completing the execution of undoable ([...]) (having
actuated an Undo Script or not), it then processes the queued
update requests. Because AUTO-UNDO proxies all update
functions, it has complete control over their execution.

C. Undo Script Generator

The Undo Script Generator component automatically gen-
erates the required sequence of undo actions for the invoked
update operations. By executing the resulting Undo Script,
AUTO-UNDO brings the CRDT’s state to the point before the
first monitored update operation was executed. Procedure 2
details the generation procedure for a single monitored update
operation. Notice how the generation logic makes use of the
no_op information, also specified declaratively in metadata.

D. Undo Script Actuator

The Undo Actuator (1) checks the current state of the
CRDT to determine if an Undo Script needs to be executed

248

Procedure 2 Generate Undo Action

1: procedure GENERATE_UNDO_ACTION (funcName, params)
no_op « is_no_op(funcName, params)
if not no_op then
undoFuncName < metaData|funcName]
undo_stack.push(undoFuncName, params)
end if
end procedure

AR

by applying a decision-making model, and (2) executes the
Undo Script if needed. Procedure 3 describes the logic used to
determine whether an undo is needed. For its decision-making,
AUTO-UNDO provides deterministic and probabilistic models,
as configured in metadata. The deterministic model makes
use of standard statistical functions and static thresholds. The
outcome of a deterministic model is solely determined by the
specified statistical functions, their thresholds, and the CRDT
data. If checking whether an undo is needed by a deterministic
model becomes computationally prohibitive, AUTO-UNDO pro-
vides an alternative probabilistic model that takes advantage of
Machine Learning (ML). It uses the AUTO-UNDO’s execution
history to train itself (i.e., among the previous checks, what
were the states of the CRDT, which led to the positive
and negative outcomes). This trained model is then used to
compute the probability that the undo is needed at a given
point. Developers also configure the probability threshold
under which an Undo Script is to be executed. Finally, to
specify whether AUTO-UNDO should utilize the deterministic
or probabilistic model, developers can use metadata to provide
the corresponding conditions. For added flexibility, AUTO-
UNDO makes it possible for developers to express their own
custom decision-making logic as a function parameter. Finally,
the Undo Actuator automatically actuates the undo procedure
once it is triggered by the specified conditions, as explained
in Procedure 4.

Procedure 3 Check Undo
1: procedure UNDO_CHECK (crdt)

2: params <— read_params(crdt)

3: option < read_options(crdt)

4: if option is in metaData then

5: model < read_model(crdt, metaData)

6: if model is deterministic then

7: res < deterministic_model(params)

8: return res > metaDataldet_threshold)
9: else

10: res < probabilistic_model(params)

11: return res > metaData[prob_threshold]
12: end if

13: else

14: accept_custom_predicate(custom Logic)

15: end if

16: end procedure

IV. EVALUATION

Our evaluation is driven by the following questions:

1) Q1: What is the performance overhead of applying
AUTO-UNDO to add the undo capability in existing CRDT
libraries under different workloads?
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Procedure 4 Execute Undo Actions

1: procedure EXECUTE_UNDO_ACTIONS (crdt)
if undo_check(crdt) then
for all action € undo_stack do
func < action.crdt FuncName
params < action.crdtparams
func(crdt, params)
end for
end if
: end procedure

> Undo Required

2
3
4
5:
6:
7
8
9

TABLE I: Latency Overhead (%)

Number of js—delta-crdts crdts
Updates Counter Set | Map | Counter | Set
100 2.93 3.87 | 3.36 2.64 3.08
200 2.19 398 | 4.18 3.13 3.45
300 3.27 432 | 437 3.49 4.07
500 3.61 494 | 478 4.33 4.56

2) Q2: What is the accuracy/performance trade-off between
the deterministic and probabilistic models for determining
whether to execute an undo procedure?

In our evaluation, we applied AUTO-UNDO to two exist-
ing third-party CRDT libraries, js-delta-crdts [14] and
crdts [15]. From js-delta-crdts, we used three CRDT
data structures: PNCounter, Add-Remove Set, and Map; from
crdts, we used PNCounter and Add-Remove Set, as crdts
has no map data structure.

The following subsections describe the evaluation tasks we
conducted to answer the aforementioned questions. To answer
Q1:, we benchmarked the performance impact of applying
AUTO-UNDO to the target CRDT libraries. Finally, to answer
Q2:, we correlated the execution time and the accuracy rate
of the deterministic/probabilistic models to determine their
correctness/performance trade-off.

A. QI: Performance

To understand the performance costs of applying AUTO-
UNDO to add the undo capability, we compared the overall
latencies of executing different numbers of CRDT update
operations with the same operations enhanced with the undo
capability by AUTO-UNDO. Recall that it is the provided
decision-making model (deterministic or probabilistic) that
determines whether to actuate a Undo Script. Therefore, the
total additional latency incurred by AUTO-UNDO includes the
costs of generating Undo Script, consulting the model, and
actuating the undo procedure if required. In our experiments,
we applied AUTO-UNDO to the aforementioned two existing
third-party CRDT libraries and measured the performance
under different workloads under two settings: (1) baseline
CRDT update operations (no AUTO-UNDO present); (2) the
same operations but with AUTO-UNDO. Figures 4 and 5 present
the experimental results for three CRDTSs in the first library
and two CRDTs in the second one respectively. Furthermore,
we averaged the imposed overhead as percentage points,
detailed in Table I.

249

B Counter w/o AUTO-UNDO [l Counter w/ AUTO-UNDO Set w/o AUTO-UNDO
B Setw/AUTO-UNDO [ Map w/o AUTO-UNDO B Map w/ AUTO-UNDO
2000

1500

1000

Execution Time (ms)

o

=]

S
!

Number of Updates

Fig. 4: The overhead for the js-delta-crdts library

B Counter w/o AUTO-UNDO [ Counter w/ AUTO-UNDO
Set w/o AUTO-UNDO [ Set w/ AUTO-UNDO

2000

1500

1000

Execution Time (ms)

500

100 200 300 500

Number of Updates

Fig. 5: The overhead for the crdts library

a) Experimental Setup: We created a virtual distributed
environment on a 64-bit Ubuntu 20.04 computer with 32
GB of RAM and an Intel Core i7 Processor to conduct our
performance evaluation. Having a virtual environment makes it
possible to avoid the inherent volatility of distributed execution
to be able to isolate AUTO-UNDO’s performance overhead.
We deployed three virtual nodes to measure the overhead
generated by the target CRDT libraries.

With the original CRDT deployment establishing the perfor-
mance baseline, we observed that AUTO-UNDO’s usage incurs
a constant overhead, unaffected by the number of update
operations. Furthermore, the overhead never exceeds 5% in the
worst-case scenario of tracking 500 updates operation of Set
CRDT in js—delta-crdts library. The observed constant
overhead is reasonable, given the saved programming effort
of AUTO-UNDO, which provides versatile undo functionality
without modifying the CRDT source code by hand, based on
declarative metadata input.

B. Q2: Decision-Making Accuracy/Performance Trade-off

To check whether to execute an undo procedure, AUTO-
UNDO takes advantage of two decision-making models: de-
terministic and probabilistic. These models possess dissim-
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ilar accuracy performance characteristics. The deterministic
model applies the specified statistical procedures to accurately
determine whether to execute an undo. However, statistical
computations over large data sets can become prohibitively
expensive. In contrast, the probabilistic model approximates
the decision-making process using an ML procedure (the
reference implementation used Logistic Regression).
Although beating in performance the deterministic model
for large data sets, the probabilistic model lacks accuracy.
However, its accuracy keeps growing with usage in line with
the training feature of ML.

Figure 6 compares the two models in terms of their latency
characteristics, without taking the corresponding accuracy into
account. To isolate the performance, the experiments were run
on a single replica. In this experiment, we added more than
1,000 elements to the Set and Map CRDTs. Then we trained
the Probabilistic Model on the responses produced by execut-
ing the Deterministic Model 1000 times. The Deterministic
Model was configured to compute the Standard Deviation of
the contained elements. Since model training can be performed
offline, our measurements exclude the time it took to train the
ML routine of the Probabilistic Model. As one can see, the
performance benefits of the Probabilistic Model increase their
prominence both with the size of the training dataset and usage
frequency.

However, the superior performance of the Probabilistic
Model comes at the price of correctness, as demonstrated in
Figure 7. The number of correct responses appears in green,
while incorrect ones are in red. The ML property manifests
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itself in the ratio of correct : incorrect responses increasing
with the number of queries, as the model keeps learning from
the previous interactions.

It is ultimately up to the developer to determine which
model to use in different application scenarios. Irrespective
of the choice made, it takes a simple metadata directive to
specify which model to use. We plan to explore the suitability
of different models in scenarios as a future work direction.

V. RELATED WORK

Because the undo functionality serves as a useful component
for constructing strategies for handling errors and system
faults, enhancing CRDTs with undo has gained prominence
as a research topic. The research literature primarily contains
examples of highly customized CRDTs with built-in undo
capabilities. Some of the recent examples introduce undo-
enhanced CRDTs as a distributed key-value database with
reversible operations [16] as well as providing robustness and
uniformity for reversing CRDT operations [17]. The ability
to undo CRDT operations has been found particularly ben-
eficial in the domain of collaborative editing. Representative
examples focus on different issues that include: undo causing
undesirable effects that are addressed by the selective undo
of string-wise operations [18]; applying undo functionality to
any number of operations rather than only the last ones [19];
enabling to “undo anywhere, anytime” with low-cost and
formally proved [20]; presenting undo algorithms that satisfy
the conditions of neutrality and forward transposition [21];
supporting selective undo with an algorithm that provides
operational transformation consistency control, with causality



and admissibility preservation [22]; providing multiple undo
with a generic algorithm that generates valid undo opera-
tions [23]; presenting a JavaScript framework, named Yjs for
collaborative editing of arbitrary data types with an Undo/Redo
manager, able to undo/redo selective updates in a domain-
specific fashion, designed to work specifically with collabo-
rative editing [24]. A related approach that provides undo for
CRDTs out-of-the-box, albeit for state-based CRDTSs, defines
a formal semantics of concurrent undo and redo operations
and logs state deltas [9].

The presence of such an extensive prior body of work
concerned with adding the undo capability to CRDT confirms
the necessity of efforts such as ours that target this problem
from the perspective of novel programming approaches. Our
work explores solutions to this problem that exploits the
conventions of CRDT libraries to provide concise yet effective
techniques for automating the process of generating and ac-
tuating versatile undo procedures. AUTO-UNDO’s declarative
programming model can be potentially beneficial for some of
the aforementioned state-of-the-art approaches, an angle that
we plan to pursue as a future work direction.

VI. CONCLUSION

We have presented AUTO-UNDO, an automatic approach that
enhances CRDTs with the undo capability. The required extra
functionalities are added without having to modify the CRDT
library code by hand, based on input expressed as declarative
metadata. The reference implementation of AUTO-UNDO tar-
gets JavaScript, a popular language for CRDT libraries. AUTO-
UNDO decides whether to actuate the generated Undo Script
based on decision-making models, both deterministic driven
by statistical functions and probabilistic driven by ML.

Our evaluation results demonstrate the feasibility of declar-
ative meta-programming for generating and actuating undo in
realistic CRDT scenarios. The introduced undo functionality
incurs a reasonable performance overhead at runtime. Finally,
AUTO-UNDO’s decision-making process offers flexibility in
its correctness/performance tradeoff between the determinis-
tic/probabilistic models.
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