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Abstract

Sparsity of a learning solution is a desirable feature in machine learning. Certain
reproducing kernel Banach spaces (RKBSs) are appropriate hypothesis spaces for sparse
learning methods. The goal of this paper is to understand what kind of RKBSs can promote
sparsity for learning solutions. We consider two typical learning models in an RKBS: the
minimum norm interpolation (MNI) problem and the regularization problem. We first
establish an explicit representer theorem for solutions of these problems, which represents
the extreme points of the solution set by a linear combination of the extreme points of
the subdifferential set, of the norm function, which is data-dependent. We then propose
sufficient conditions on the RKBS that can transform the explicit representation of the
solutions to a sparse kernel representation having fewer terms than the number of the
observed data. Under the proposed sufficient conditions, we investigate the role of the
regularization parameter on sparsity of the regularized solutions. We further show that
two specific RKBSs, the sequence space `1(N) and the measure space, can have sparse
representer theorems for both MNI and regularization models.

Keywords: sparse representer theorem, reproducing kernel Banach space, minimum
norm interpolation, regularization, sparse learning

1. Introduction

The goal of this paper is to study a class of RKBSs that can promote sparsity for learn-
ing solutions in the spaces. In order to alleviate the computational burden brought by
big data, developing sparse learning methods is the future of machine learning (Hoefler
et al. (2021)). Reproducing kernel Banach spaces (RKBSs), spaces of functions on which
the point-evaluation functionals are continuous, were introduced in Zhang et al. (2009) as
potential appropriate hypothesis spaces for sparse learning methods. Some of these spaces
have sparsity promoting norms which lead to sparse representations for learning solutions
under suitable bases. Following Xu (2023), we are interested in a class of RKBSs, each of

c©2024 Rui Wang, Yuesheng Xu and Mingsong Yan.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/23-0645.html.



Wang, Xu and Yan

which has an adjoint RKBS. Such an RKBS provides a reproducing kernel for representing
not only the point evaluation functionals but also learning solutions in the spaces.

We first clarify the notion of sparsity. Intuitively, a vector or a sequence is said to be
sparse if most of its components are zero. We say that a function in an RKBS has a sparse
representation under the kernel sessions (a kernel with one of its two variables evaluated at
given points) if the coefficient vector of the representation is sparse. It is well-known from
the celebrated representer theorem (deBoor and Lynch (1966); Argyriou et al. (2009); Cox
and O’Sullivan (1990); Kimeldorf and Wahba (1970); Schölkopf et al. (2001)) that when
we learn a target function in a reproducing kernel Hilbert space (RKHS) from n function
values, a solution of the regularization problem is a linear combination of the n kernel
sessions. Often large amount of data are used to learn a target function and the learning
solution is used in prediction or other decision-making procedures repeatedly. As a result,
a dense learning solution will lead to large computational costs. As we have known, RKHSs
do not lead to sparse learning solutions, see for example, Xu (2023). We then appeal to
RKBSs as hypothesis spaces for learning methods and hope that some of them can offer
sparse representations for their learning solutions under the kernel sessions, which have
terms significantly fewer than the number of the given data points.

We consider two typical learning models in an RKBS: the minimum norm interpolation
(MNI) problem and the regularization problem. Representer theorems for the solutions of
these two models in RKBSs have received considerable attention in the literature (Huang
et al. (2021); Unser (2021); Unser et al. (2016); Wang and Xu (2021); Xu and Ye (2019);
Zhang et al. (2009); Zhang and Zhang (2012)). In particular, a systematic study of the
representer theorems for a solution of the MNI problem and the regularization problem in
a Banach space was conducted by Wang and Xu (2021). The resulting representer theorem
stated that the solutions lie in a subdifferential set of the norm function evaluated at a finite
linear combination of given functionals. On the other hand, an explicit representer theorem
for a variational problem in a Banach space was proved in Boyer et al. (2019); Bredies and
Carioni (2020) in which the extreme points of the solution set of the variational problem
were expressed as a finite linear combination of extreme points of the unit ball in the Banach
space. The representer theorem of this kind is data-independent, as the searching area for
extreme points claimed to express the solution is always the unit ball no matter what the
given data are.

The road-map for establishing the sparse representer theorem for the solutions of the
MNI problem and the regularization problem in an RKBS may be described as follows. By
combining the advantages of the two representer theorems in Wang and Xu (2021) and Boyer
et al. (2019), we first put forward an explicit solution representation for the MNI problem
in a general Banach space, which is assumed to have a pre-dual space. The new explicit
representer theorem allows us to represent the extreme points of the solution set as a linear
combination of the extreme points of a subdifferential set of a pre-dual norm, evaluated at
a linear combination of the functionals determined by given data. As a result, unlike the
representer theorems presented in Boyer et al. (2019); Bredies and Carioni (2020), which are
data-independent, the new representer theorem is data-dependent. Moreover, we prove that
the extreme point set of the subdifferential set is a subset of the extreme point set of the
unit ball and its cardinality is finite for certain specific Banach spaces, while the extreme
point set of the unit ball includes infinitely many elements. By making use of the explicit
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representer theorem, we propose a sufficient condition on an RKBS so that the solution of
the MNI problem in the RKBS has a sparse kernel representation. The establishment of a
sparse kernel representation for the learning solution requires addressing two issues. The
first one is to represent the learning solution by the kernel sessions. Observing from the
explicit representer theorem, it is intuitive to require that the elements in the subdifferential
set, the building blocks of the solution set, coincide with the kernel sessions. This is the
first assumption imposed on the RKBS. The second issue is to ensure that the kernel
representation has fewer terms than the number of the given data points. To this end,
we impose an additional assumption on the RKBS by requiring its norm to be equivalent
to the `1 norm which is well-known to promote sparsity. Under these two assumptions,
we install kernel representations for the extreme points of the solution set of the MNI
problem. The number of the kernel sessions emerging in the representation is bounded
above by the rank of a matrix determined by the observed data. Under a mild condition,
the rank of the matrix may be less than the number of the observed data. This leads
to a sparse representer theorem for the solutions of the MNI problem in the RKBS. We
then convert the resulting sparse representer theorem for the MNI problem to that for
the regularization problem through a relation between the solutions of the two problems
pointed out in Micchelli and Pontil (2004); Wang and Xu (2021). Unlike the MNI problem,
the regularization problem involves a regularization parameter. Under the assumptions on
the RKBS, we reveal that the regularization parameter can further promote the sparsity
level of the solution. Moreover, we show that the sequence space `1(N) and the space of
functions constructed by the measure space satisfy the imposed assumptions. In this way,
the sparse representer theorems for the MNI problem and the regularization problem in
these two RKBSs are established, showing that they indeed can promote sparsity in kernel
representations for learning functions in these two spaces.

Banach spaces were recently employed to understand neural networks and to promote
sparsity. A sparse technique was successfully applied in Rosset et al. (2007) to learning
with regularization for a feature space of infinite (possibly non-countable) dimension. Neu-
ral networks of a single hidden layer with infinitely many neurons as functions by integral
representation with a variational norm were studied in Bach (2017). Based on the varia-
tional framework of L-splines developed in Unser et al. (2017) and the representer theorem
established in Bredies and Carioni (2020), Parhi and Nowak (2021) obtained a represen-
ter theorem expressing neural networks of a single hidden layer as solutions of a variation
problem with the TV regularization in the Radon domain. The representer theorem for
single-output neural networks of one hidden layer was extended in Shenouda et al. (2023)
to multi-output networks by considering vector-valued variation spaces. RKBSs were em-
ployed in Bartolucci et al. (2023) to study neural networks with one hidden layer. It was
shown in Spek et al. (2023) that the Barron spaces were a class of integral RKBSs and their
dual spaces as RKBSs were studied. Results developed in Rosset et al. (2007) were found
useful in understanding neural networks in RKBSs.

We organize this paper in six sections and two appendices. In Section 2, we review the
framework of RKBSs and describe the MNI and regularization problems to be considered
in this paper. Also, we define precisely the notion of sparsity of a learning solution in an
RKBS. Moreover, we present several new observations for RKBSs, including the closure and
weak* closure of the space of point evaluation functionals and the unique reproducing kernel
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of a RKBS whose δ-dual space is isometrically isomorphic to a Banach space of functions.
In Section 3, we first establish a representer theorem for the solutions of the MNI problem
in a general Banach space that is assumed to have a pre-dual space. We then impose
two assumptions on the RKBSs, which ensure that the spaces have the sparsity promoting
property. Under the assumptions, we convert a representation of the solutions to a sparse
kernel representation. In Section 4, we translate the sparse representer theorem established
in Section 3 for the MNI problem to the regularization problem via a connection between the
solutions of these two problems. We also study the effect of the regularization parameter on
the sparsity of the regularized solutions and obtain choices of the regularization parameter
for sparse solutions. In Section 5, we specialize the sparse representer theorem to the
sequence space `1(N). By comparing this space with the sequence spaces `p(N) for 1 < p <
+∞, we show that `1(N) can promote sparsity of learning solutions but spaces `p(N) have
no such a feature. Section 6 concerns a specific RKBS constructed by the measure space.
We establish the sparse representer theorems for the solutions of the MNI problem and
the regularization problem in the space by verifying that the RKBS satisfies the imposed
assumptions. We include in Appendix A a complete proof of the explicit representer theorem
of the MNI problem in a general Banach space established in Section 3. In Appendix B,
we characterize the dual problem of the MNI problem in order to acquire the dual element
emerging in the representer theorem established in this paper.

2. Learning in RKBSs

Motivated by developing sparse learning algorithms, RKBSs have been proposed as ap-
propriate hypothesis spaces for learning an objective function from its values. Since the
introduction of the notion of RKBSs, theory and applications of these function spaces have
attracted much research interest (Bartolucci et al. (2023); Fasshauer et al. (2015); Lin et al.
(2021, 2022); Song et al. (2013); Spek et al. (2023); Xu and Ye (2019); Zhang et al. (2009);
Zhang and Zhang (2012)). In this section, we recall the notion of RKBSs. We reveal the
important role of the family of the point evaluation functionals in the dual space of an
RKBS and identify a unique reproducing kernel for the RKBS as closed-form function rep-
resentations for the point evaluation functionals. We also describe the MNI problem and
the regularization problem in an RKBS and introduce the notion of sparse kernel represen-
tations for solutions of such learning problems.

We start with recalling the notion of RKBSs. A Banach space B is called a space of
functions on a prescribed set X if B is composed of functions defined on X and for each
f ∈ B, ‖f‖B = 0 implies that f(x) = 0 for all x ∈ X. The notion of RKBSs was originally
introduced in Zhang et al. (2009), to ensure the stability of sampling function values from
functions in the hypothesis space.

Definition 1 A Banach space B of functions on a prescribed set X is called an RKBS if
all the point evaluation functionals δx, x ∈ X, are continuous on B, that is, for each x ∈ X,
there exists a constant Cx > 0 such that

|δx(f)| ≤ Cx‖f‖B, for all f ∈ B.
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This definition appeared originally in Zhang et al. (2009) in a somewhat restricted
version and its current form is adopted from Xu (2023). We let

∆ := span{δx : x ∈ X}. (1)

It is essential to understand the closures of ∆ under various types of topology.

We first review necessary notions in Banach spaces. For a Banach space B with a
norm ‖ · ‖B, we denote by B∗ the dual space of B, which is composed of all bounded linear
functionals on B endowed with the norm

‖ν‖B∗ := sup
‖f‖B≤1

|ν(f)|, for all ν ∈ B∗.

The dual bilinear form 〈·, ·〉B on B∗ × B is defined by 〈ν, f〉B := ν(f) for all ν ∈ B∗ and
all f ∈ B. The weak∗ topology of the dual space B∗ is the smallest topology for B∗ such
that, for each f ∈ B, the linear functional ν → 〈ν, f〉B on B∗ is continuous with respect to
the topology. A topological property that holds with respect to the weak∗ topology is said
to hold weakly∗. For example, a sequence νn, n ∈ N, in B∗ is said to converge weakly∗ to
ν ∈ B∗ if limn→+∞ 〈νn, f〉B = 〈ν, f〉B, for all f ∈ B. Let M and M′ be subsets of B and
B∗, respectively. The annihilator, in B∗, of M is defined by

M⊥ := {ν ∈ B∗ : 〈ν, f〉B = 0, for all f ∈ M},

and the annihilator, in B, of M′ is defined by

⊥M′ := {f ∈ B : 〈ν, f〉B = 0, for all ν ∈ M′}.

We denote by M′ and M′w
∗

the closure of M′ in the norm topology and the weak∗ topology
of B∗, respectively.

We now turn to characterizing the weak∗ density of the linear span ∆ in B∗. We observe
from Definition 1 that if B is an RKBS on X, then there holds δx ∈ B∗ for all x ∈ X.
That is, ∆ ⊆ B∗ . It is known that if B is an RKHS, then there holds ∆ = B∗ due to the
Riesz representation theorem of the Hilbert space, where the closure is in the sense of the
norm ‖ · ‖B of the Hilbert space. This result cannot be extended to a general RKBS B,
because of the lack of the representation theorem in a general Banach space. However, we
can show that the linear span ∆ is weakly∗ dense in B∗. We present this result in the next
proposition.

Proposition 2 If B is an RKBS on X, then ∆
w∗

= B∗.

Proof By Definition 1, we clearly see that ∆ ⊆ B∗. Note that f ∈ ⊥∆ if and only if
δx(f) = 0, for all x ∈ X. That is, f(x) = 0, for all x ∈ X, or f = 0. Therefore, we obtain
that ⊥∆ = {0}, which further leads to (⊥∆)⊥ = B∗. According to Proposition 2.6.6 of

Megginson (1998), there holds that (⊥∆)⊥ = ∆
w∗

. Combining the above two equations, we

conclude that ∆
w∗

= B∗.
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When an RKBS B is assumed to have a pre-dual space B∗ satisfying ∆ ⊆ B∗, we can
identify ∆ with the pre-dual B∗, where the closure ∆ is taken in the norm of B∗. We say
that the Banach space B has a pre-dual space if there exists a Banach space B∗ such that
(B∗)

∗ = B and we call the space B∗ a pre-dual space of B. The existence of a pre-dual
space B∗ makes it valid for B to be equipped with weak∗ topology. Since the pre-dual space
B∗ can be isometrically embedded into B∗, any element in B∗ can be viewed as a bounded
linear functional on B. Namely, B∗ ⊂ B∗ and there holds

〈ν, f〉B = 〈f, ν〉B∗
, for all f ∈ B and all ν ∈ B∗. (2)

Proposition 3 Suppose that an RKBS B on X has a pre-dual space B∗. If ∆ ⊆ B∗, then
∆ = B∗.

Proof Suppose that f ∈ B satisfies 〈f, δx〉B∗
= 0 for all x ∈ X. By equation (2), we have

that 〈δx, f〉B = 0 for all x ∈ X. This leads to f(x) = 0 for all x ∈ X and thus f = 0. Due
to the arbitrariness of f ∈ B, we get the desired density result.

A reflexive RKBS B always takes the dual space B∗ as a pre-dual space B∗. As a direct
consequence of Proposition 3, we obtain that ∆ = B∗ for a reflexive RKBS B.

It is known that each RKHS enjoys a unique reproducing kernel, which provides closed-
form function representations for all point evaluation functionals on the RKHS. The exis-
tence of the reproducing kernel lies in the well-known Riesz representation theorem, which
states that the dual space of a Hilbert space is isometrically isomorphic to itself. However,
in general, the dual space of a Banach space is not isometrically isomorphic to itself. To
ensure the existence of the reproducing kernel for an RKBS, we need to impose additional
assumptions. Various hypotheses have been imposed on RKBSs (Lin et al. (2022); Xu
(2023); Xu and Ye (2019); Zhang et al. (2009)) in the literature. A hypothesis, which better
captures the essence of reproducing kernels, was described in Xu (2023). Following Xu
(2023), we call ∆ the δ-dual space of B and denote it by B′. Note that B′ is the smallest
Banach space that contains all the point evaluation functionals on B. We assume that the
δ-dual space B′ is isometrically isomorphic to a Banach space F of functions on a set X ′.
In the rest of this paper, we will not distinguish B′ from F . We now identify a unique
reproducing kernel with each RKBS satisfying the hypothesis.

Proposition 4 Suppose that B is an RKBS on X and its δ-dual space B′ is isometrically
isomorphic to a Banach space of functions on X ′. Then there exists a unique function
K : X ×X ′ → R such that the following statements hold.

(1) For each x ∈ X, K(x, ·) ∈ B′ and

f(x) = 〈K(x, ·), f〉B, for all f ∈ B. (3)

(2) The linear span K(X) := span{K(x, ·) : x ∈ X} is dense in B′.

Proof We first prove statement (1). For each x ∈ X, since δx is a continuous linear
functional on B, there exists kx ∈ B′ such that f(x) = 〈kx, f〉B, for all f ∈ B. By defining a
function K : X×X ′ → R as K(x, x′) := kx(x

′), x ∈ X, x′ ∈ X ′, we obtain that K(x, ·) ∈ B′

for all x ∈ X. Thus, we observe that equation (3) holds.
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It suffices to verify that the function K on X × X ′ satisfying the above properties is
unique. Assume that there exists another K̃ : X × X ′ → R such that K̃(x, ·) ∈ B′ for all
x ∈ X, and f(x) = 〈K̃(x, ·), f〉B, for all f ∈ B and all x ∈ X. It follows from the above
equation and equation (3) that

〈K(x, ·)− K̃(x, ·), f〉B = 0, for all f ∈ B and all x ∈ X.

That is, for all x ∈ X, K(x, ·)− K̃(x, ·) = 0. Noting that B′ is isometrically isomorphic to
a Banach space of functions on X ′, we conclude that K(x, x′)− K̃(x, x′) = 0 for all x ∈ X,
x′ ∈ X ′, which is equivalent to K = K̃.

We next show the density stated in (2). It follows from statement (1) that the linear
span K(X) is isometrically isomorphic to ∆ defined by (1). Hence, the closure K(X) in
the norm topology is isometrically isomorphic to the closure ∆ in the norm topology, which
together with ∆ = B′ leads to K(X) = B′.

We call the function K : X × X ′ → R, satisfying K(x, ·) ∈ B′ for all x ∈ X, and
equation (3), the reproducing kernel for the RKBS B. Moreover, equation (3) is called the
reproducing property.

Motivated by representing the solutions of learning problems in an RKBS via its repro-
ducing kernel, we introduce the notion of the adjoint RKBS. Specifically, if in addition B′

is an RKBS on X ′, K(·, x′) ∈ B for all x′ ∈ X ′, and

g(x′) = 〈g,K(·, x′)〉B, for all g ∈ B′ and all x′ ∈ X ′, (4)

we call B′ an adjoint RKBS of B and call B, B′ a pair of RKBSs. We introduce the linear
span of the point evaluation functions on B′ by

∆′ := span{δx′ : x′ ∈ X ′}. (5)

Observing from equation (4), the linear span K(X ′) := span{K(·, x′) : x′ ∈ X ′}, as a subset
of B, is isometrically isomorphic to ∆′ defined by (5). Moreover, the next result shows that
if B′ is a pre-dual space of B, then the function space K(X ′) is large enough to fill in B in
the sense that any function f in B could be approximated arbitrarily well by elements in
K(X ′) with respect to weak∗ topology.

Proposition 5 Suppose that B is an RKBS on X, the δ-dual space B′ is an adjoint RKBS
on X ′ of B and K is the reproducing kernel. If B′ is a pre-dual space of B, then there holds

K(X ′)
w∗

= B.

Proof Since B′ is an RKBS on X ′, Proposition 2 with B being replaced by B′ ensures that

∆′w
∗

= (B′)∗. This together with the assumption that (B′)∗ = B leads to ∆′w
∗

= B. Note
that the linear span K(X ′) is isometrically isomorphic to ∆′. Hence, we get the desired
weak∗ density of K(X ′) in B.

We also characterize the RKBS in terms of the feature representation.
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Proposition 6 A Banach space B of functions on X is an RKBS if and only if there exist
a Banach space W and a map Φ : X → W ∗ satisfying

span{Φ(x) : x ∈ X}w
∗

= W ∗, (6)

such that

B = {〈Φ(·), u〉W : u ∈ W} , (7)

equipped with

‖〈Φ(·), u〉W ‖B = ‖u‖W , for all u ∈ W. (8)

Proof Suppose that B is an RKBS onX. We choose the Banach spaceW := B and the map
Φ : X → B∗ defined by Φ(x) := δx, x ∈ X. Hence, we have that span{Φ(x) : x ∈ X} = ∆.
It follows from Proposition 2 that the density condition (6) holds true. In addition, we can
trivially represent any f ∈ B as f = 〈Φ(·), u〉W with u := f and hence ‖f‖B = ‖u‖W .

Conversely, suppose that there exist W and Φ : X → W ∗ such that equation (6) holds
true. We then define a vector space B by (7) and a map ‖ · ‖B : B → R by (8). We
point out that under the assumption that span{Φ(x) : x ∈ X} is weakly∗ dense in W ∗,
any function in B has a unique representation. Indeed, if 〈Φ(x), u〉W = 〈Φ(x), v〉W , for all
x ∈ X, then 〈Φ(x), u − v〉W = 0, for all x ∈ X. This together with equation (6) leads to
u = v. As a result, the map defined by (8) is well-defined. It is easy to verify that ‖ · ‖B is
a norm on B. Moreover, B is isometrically isomorphic to W and then is a Banach space. It
suffices to show that point evaluation functionals are continuous on B. For all x ∈ X and
all f = 〈Φ(·), u〉W ∈ B with u ∈ W , it holds that

|f(x)| ≤ ‖Φ(x)‖W ∗‖u‖W = ‖Φ(x)‖W ∗‖f‖B.

This ensures that the point evaluation functionals are all continuous on B. According to
Definition 1, B is an RKBS.

To close this section, we describe two learning problems in RKBSs to be considered in
this paper. Learning a function from a finite number of sampled data is often formulated
as a MNI problem or a regularization problem. For each n ∈ N, let Nn := {1, 2, . . . , n}.
Suppose that B is an RKBS having a pre-dual space B∗ and νj ∈ B∗, j ∈ Nn, are linearly
independent. Associated with these functionals, we set

V := span{νj : j ∈ Nn}, (9)

and define an operator L : B → R
n by

L(f) :=
[
〈νj , f〉B : j ∈ Nn

]
, for all f ∈ B. (10)

Let y := [yj : j ∈ Nn] ∈ R
n be a given vector. Learning a target function in B from the

given sampled data {(νj , yj) : j ∈ Nn} consists of solving the first kind operator equation

L(f) = y, (11)
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for f ∈ B. The MNI aims at finding an element in B, having the smallest norm and
satisfying equation (11). By introducing a subset of B as

My := {f ∈ B : L(f) = y}, (12)

we formulate the MNI problem with the given data {(νj , yj) : j ∈ Nn} as

inf {‖f‖B : f ∈ My} . (13)

To address the ill-posedness of equation (11), the regularization approach adds a regular-
ization term to a data fidelity term constructed from equation (11) such that the resulting
optimization problem is much less sensitive to disturbances. Specifically, the regularization
problem has the form

inf {Qy(L(f)) + λϕ (‖f‖B) : f ∈ B} , (14)

where Qy : Rn → R+ := [0,+∞) is a loss function, ϕ : R+ → R+ is a regularizer and
λ is a positive regularization parameter. We always assume Qy and ϕ to be both lower
semi-continuous. A function T mapping from a topological space X to R is said to be lower
semi-continuous if T (f) ≤ lim infα T (fα) whenever fα, α ∈ I, for some index set I is a net
in X converging to some element f ∈ X . We also assume that ϕ is increasing and coercive,
that is, limt→+∞ ϕ(t) = +∞. Throughout this paper, we denote by S(y) and R(y) the
solution sets of the MNI problem (13) and the regularization problem (14) with y ∈ R

n,
respectively.

Proposition 5 motivates us to consider representing the solutions of the MNI problem
and the regularization problems in B by the kernel sessionsK(·, x′), x′ ∈ X ′. In this paper, a
solution of a learning problem in an RKBS from n data points is said to have a sparse kernel
representation if there exist a nonnegative integer m less than n and x′j ∈ X ′, αj ∈ R\{0},
j ∈ Nm, such that

f(·) =
∑

j∈Nm

αjK(·, x′j).

We call the smallest nonnegative integer m such that the above equation holds the sparsity
level of f under the kernel representation.

3. Sparse Representer Theorem for MNI

The goal of this section is to establish a sparse representer theorem for solutions of the MNI
problem in an RKBS. For this purpose, we first provide a representer theorem for solutions
of the MNI problem in a general Banach space. We then formulate two assumptions on
the RKBS and the functionals used to produce the sampled data, which together with the
representer theorem transfer the MNI problem in the RKBS of infinite dimension to a finite
dimensional one. We finally establish the sparse representer theorem for solutions of the
MNI problem in the RKBS using the sparse representation for the solutions of the finite
dimensional MNI problem.

We begin with the MNI problem (13) in an RKBS B. To obtain sparse kernel repre-
sentations for the solutions, we first need an explicit representer theorem. A representer
theorem for the solutions of the MNI problem (13) in a general Banach space having a pre-
dual space was established in Wang and Xu (2021). To describe this result, we recall the
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notion of the subdifferential of a convex function on a Banach space B. A convex function
φ : B → R ∪ {+∞} is said to be subdifferentiable at f ∈ B if there exists ν ∈ B∗ such that

φ(g)− φ(f) ≥ 〈ν, g − f〉B, for all g ∈ B.

The set of all functionals in B∗ satisfying the above inequalities is called the subdifferential
of φ at f and denoted by ∂φ(f). A subset A of a vector space X is called a convex set if
tx+ (1− t)y ∈ A for all x, y ∈ A and all t ∈ [0, 1]. It can be directly verified by definition
that for any f ∈ B, ∂φ(f) is a convex and weakly∗ closed subset of B∗. In particular, the
subdifferential of the norm function ‖ · ‖B at each f ∈ B\{0} has the following essential
property (Cioranescu (1990))

∂‖ · ‖B(f) = {ν ∈ B∗ : ‖ν‖B∗ = 1, 〈ν, f〉B = ‖f‖B} . (15)

The elements in ∂‖·‖B(f) are also called norming functionals of f as applying such functional
on f turns out exactly the norm of f . Suppose that B is a Banach space having a pre-dual
space B∗ and νj ∈ B∗, j ∈ Nn, are linearly independent. Theorem 12 in Wang and Xu

(2021) states that f̂ ∈ B is a solution of the MNI problem (13) with y ∈ R
n if and only if

f̂ ∈ My and there exists ν̂ ∈ V, such that

f̂ ∈ ‖ν̂‖B∗
∂‖ · ‖B∗

(ν̂) . (16)

This representer theorem provides a characterization for the solutions of the MNI problem
(13) by using an inclusion relation. We will develop an explicit representer theorem for the
solution f̂ of the MNI problem (13) based on the aforementioned result.

We recall the notion of extreme points of a closed convex subset. Let A be a nonempty
closed convex subset of a Hausdorff topological vector space X . An element z ∈ A is said
to be an extreme point of A if x, y ∈ A and tx+(1− t)y = z for some t ∈ (0, 1) implies that
x = y = z. By ext(A) we denote the set of extreme points of A. It is known (Megginson
(1998)) that z ∈ ext(A) if and only if whenever x, y ∈ A and z = (x+ y)/2, it follows that
x = y = z. We also need the notion of the convex hull of a subset. The convex hull of a
subset A of a vector space X , denoted by co(A), is the smallest convex set that contains A.
It is easy to show that

co(A) =





∑

j∈Nn

tjxj : xj ∈ A, tj ∈ [0,+∞),
∑

j∈Nn

tj = 1, j ∈ Nn, n ∈ N



 .

If X has a topology, then the closed convex hull of A, denoted by co(A), is the small-
est closed convex set that contains A. The celebrated Krein-Milman theorem (Megginson
(1998)) states that if A is a nonempty compact convex subset of a Hausdorff locally convex
topological vector space X , then A is the closed convex hull of its set of extreme points,
that is, A = co (ext(A)). As a direct consequence of this result, the set ext(A) must be
nonempty. Notice that if the Banach space B has a pre-dual space, then it equipped with
the weak∗ topology is a Hausdorff locally convex topological vector space. The solution set
S(y), guaranteed by Lemma 31 in Appendix A, is a nonempty, convex and weakly∗ compact

10
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subset of B. Then the Krein-Milman Theorem enables us to express S(y) by its extreme
points as

S(y) = co (ext (S(y))) , (17)

where the closed convex hull is taken under the weak∗ topology. Observing from equation
(17), we will only provide closed-form representations for the extreme points of S(y).

With the help of the dual element ν̂ appearing in inclusion (16), we establish in the
following proposition an explicit representer theorem for the extreme points of the solution
set S(y) of problem (13). In this result, we consider a general Banach space which has a
pre-dual space. Its complete proof is included in Appendix A.

Proposition 7 Suppose that B is a Banach space having a pre-dual space B∗. Let νj ∈ B∗,
j ∈ Nn, be linearly independent and y ∈ R

n\{0}. Suppose that V and My are defined by
(9) and (12), respectively, and ν̂ ∈ V satisfies

(‖ν̂‖B∗
∂‖ · ‖B∗

(ν̂)) ∩My 6= ∅. (18)

Then for any f̂ ∈ ext(S(y)), there exist γj ∈ R, j ∈ Nn, with
∑

j∈Nn
γj = ‖ν̂‖B∗

and
uj ∈ ext (∂‖ · ‖B∗

(ν̂)), j ∈ Nn, such that

f̂ =
∑

j∈Nn

γjuj . (19)

Two remarks about this explicit representer theorem are in order. First, a representer
theorem was proposed in Boyer et al. (2019); Bredies and Carioni (2020) based on which
additional results were obtained in Bartolucci et al. (2023); Lin et al. (2020); Unser and
Aziznejad (2022). While specializing the result in Boyer et al. (2019) to the MNI problem
(13) in a Banach space which has a pre-dual space, any f̂ ∈ ext(S(y)) can be represented
as in (19) with γj ∈ R, j ∈ Nn and uj ∈ ext(B0), j ∈ Nn, where B0 denotes the closed unit
ball of B with center in the origin. This representation does not depend on the given data
that define the MNI problem (13). Proposition 7 strengthens the representer theorem of
Boyer et al. (2019) by specifying the elements uj , j ∈ Nn, used to represent the extreme
points of S(y), to belong to the data-dependent set ext(∂‖ · ‖B∗

(ν̂)), where ν̂ is some linear
combination of the given functionals νj , j ∈ Nn. Moreover, as shown in Proposition 35 of
Appendix A, the set ext(∂‖ · ‖B∗

(ν̂)) is indeed smaller than the set ext(B0). In Section 5,
we will show that in the special case that B := `1(N), the set ext(B0) includes infinitely
many elements while ext(∂‖ · ‖B∗

(ν̂)) has only finite elements. In a word, Proposition 7
provides a more precise characterization for uj , j ∈ Nn by using the given data. Second,
observing from Proposition 7, the element ν̂ ∈ V satisfying (18) plays an important role
in the representation (19) of the extreme points of S(y). To characterize such an element,
we establish in Appendix B a dual problem for the MNI problem (13). Proposition 37 in
Appendix B demonstrates that the element ν̂ can be obtained by solving the associated
dual problem.

The explicit representer theorem enables us to establish sparse kernel representations
for solutions of the MNI problem (13) in certain RKBSs. In the remaining part of this
section, we always assume that B and B′ are a pair of RKBSs and K : X × X ′ → R is
the reproducing kernel for B. In addition, we suppose that B∗ is a pre-dual space of B

11
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and νj , j ∈ Nn, are linearly independent elements in B∗. Proposition 7 ensures that any
extreme point of the solution set S(y) of problem (13) with y ∈ R

n\{0} can be expressed
by the linear combination of elements in the set ext(∂‖ · ‖B∗

(ν̂)) for some ν̂ ∈ V. In order to
promote sparse kernel representations for the solutions of the MNI problem, it is intuitive
to require that the elements in ext(∂‖ · ‖B∗

(ν)), the building blocks of the solution set, are
as sparse as possible. For this purpose, we require that the RKBS B and the functionals
νj ∈ B∗, j ∈ Nn, satisfy the following assumption.

(A1) For any nonzero ν ∈ V, there exists a finite subset X ′
ν of X ′ such that

ext(∂‖ · ‖B∗
(ν)) ⊂

{
−K(·, x′),K(·, x′) : x′ ∈ X ′

ν

}
.

Under Assumption (A1), we can express any extreme point of the solution set S(y) as
a linear combination of the kernel sessions. We impose an additional assumption on the
RKBS B by relating its norm with the well-known sparsity-promoting norm ‖ · ‖1.

(A2) There exists a positive constant C such that for anym ∈ N, distinct points x′j ∈ X ′,
j ∈ Nm, and α = [αj : j ∈ Nm] ∈ R

m, there holds

∥∥∥∥∥∥

∑

j∈Nm

αjK(·, x′j)

∥∥∥∥∥∥
B

= C‖α‖1.

We now turn to establishing sparse kernel representations for the solutions of the MNI
problem (13) under the above assumptions. To this end, we introduce a finite dimensional
MNI problem. Suppose that Assumption (A1) holds and ν̂ ∈ V satisfies (18) with y ∈ R

n.
We denote by n(ν̂) the cardinality of the set X ′

ν̂ and suppose that

X ′
ν̂ :=

{
x′j : j ∈ Nn(ν̂)

}
. (20)

By defining a matrix

Lν̂ := [〈νi,K(·, x′j)〉B : i ∈ Nn, j ∈ Nn(ν̂)] ∈ R
n×n(ν̂), (21)

we introduce the finite dimensional MNI problem by

inf
{
‖α‖1 : Lν̂α = y, α ∈ R

n(ν̂)
}
, (22)

and denote by Sν̂(y) the solution set of problem (22) with y ∈ R
n. The next result concerns

the sparsity of the elements in Sν̂(y).

Proposition 8 Suppose that y ∈ R
n\{0}, V and My be defined by (9) and (12), respec-

tively, and ν̂ ∈ V satisfy (18). If Assumption (A1) holds and Lν̂ is defined by (21), then
α̂ ∈ ext (Sν̂(y)) has at most rank(Lν̂) nonzero components.

Proof We prove this result by employing Proposition 7. In this case, the Banach space
B̃ := R

n(ν̂) endowed with the `1 norm has the pre-dual space B̃∗ := R
n(ν̂) endowed with the

`∞ norm. In addition, for each j ∈ Nn, the element ν̃j ∈ B̃∗ is chosen as the j-th row of Lν̂ .

For y := [yj : j ∈ Nn], we set M̃y := {α ∈ B̃ : 〈ν̃j ,α〉
B̃
= yj , j ∈ Nn}. If ν̃j ∈ B̃∗, j ∈ Nn, are

12
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linearly dependent, we may select a maximal linearly independent subset {ν̃nj
: j ∈ N

dim(Ṽ)
}

with Ṽ := span{ν̃j : j ∈ Nn}. For y′ := [ynj
: j ∈ N

dim(Ṽ)
] ∈ R

dim(Ṽ), we define

M̃y′ :=
{
α ∈ B̃ :

〈
ν̃nj

,α
〉
B̃
= ynj

, j ∈ N
dim(Ṽ)

}
.

It is obvious that if M̃y is nonempty, then M̃y and M̃y′ are exactly the same. This

allows us to consider an equivalent MNI problem inf{‖α‖
B̃
: α ∈ M̃y′}, in which the given

functionals are linearly independent.
By choosing ν̃ ∈ Ṽ satisfying ‖ν̃‖

B̃∗
∂‖ · ‖

B̃∗
(ν̃) ∩ M̃y 6= ∅, Proposition 7 ensures that

any extreme point α̂ of the solution set Sν̂(y) can be represented as a linear combination
of at most dim(Ṽ) extreme points of ∂‖ · ‖

B̃∗
(ν̃). Then the desired result follows from the

fact that dim(Ṽ) = rank(Lν̂) and each extreme points of ∂‖ · ‖
B̃∗
(ν̃) has just one nonzero

component.

Empirical results show that the MNI problem with the `1 norm can promote sparsity
of a solution. Proposition 8 provides a theoretical characterization of the sparsity of the
solutions of problem (22). In fact, the sparsity can be further characterized by the positional
relationship between the hyperplanes constructed by the given data and the unit ball of
R
n(ν̂) under the `1 norm. Such relationship can be multifarious making the comprehensive

analysis rather complicated.
Below, we reveal the relation between the solutions of problems (13) and (22).

Lemma 9 Suppose that y ∈ R
n\{0}, V and My be defined by (9) and (12), respectively,

and ν̂ ∈ V satisfy (18). If Assumptions (A1) and (A2) hold, X ′
ν̂ and Lν̂ are defined by (20)

and (21), respectively, then the following statements hold.

1. f̂ :=
∑

j∈Nn(ν̂)
α̂jK(·, x′j) ∈ S(y) if and only if α̂ := [α̂j : j ∈ Nn(ν̂)] ∈ Sν̂(y).

2. If f̂ :=
∑

j∈Nn(ν̂)
α̂jK(·, x′j) ∈ ext(S(y)), then α̂ := [α̂j : j ∈ Nn(ν̂)] ∈ ext(Sν̂(y)).

Proof For any α := [αj : j ∈ Nn(ν̂)] ∈ R
n(ν̂), we set f :=

∑
j∈Nn(ν̂)

αjK(·, x′j). It follows

from Assumption (A2) that
‖f‖B = C‖α‖1. (23)

By definition (21) of the matrix Lν̂ , we have that

Lν̂α =


 ∑

j∈Nn(ν̂)

αj〈νi,K(·, x′j)〉B : i ∈ Nn


 .

This together with definition (10) of the operator L leads to

Lν̂α = L(f). (24)

We first prove statement 1. Suppose that f̂ :=
∑

j∈Nn(ν̂)
α̂jK(·, x′j) ∈ S(y) and set α̂ :=

[α̂j : j ∈ Nn(ν̂)]. It follows that L(f̂) = y. This together with equation (24) with α := α̂
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and f := f̂ leads to Lν̂α̂ = y. To verify α̂ ∈ Sν̂(y), it suffices to show that ‖α̂‖1 ≤ ‖α‖1
for any α ∈ R

n(ν̂) satisfying Lν̂α = y. Suppose that α := [αj : j ∈ Nn(ν̂)] ∈ R
n(ν̂) satisfying

Lν̂α = y. By equation (24), the function f :=
∑

j∈Nn(ν̂)
αjK(·, x′j) satisfies L(f) = y. That

is, f ∈ My. This combined with f̂ ∈ S(y) leads to ‖f̂‖B ≤ ‖f‖B. Substituting equation

(23) with the pair f,α and the same equation with the pair f̂ , α̂ into the above inequality,
we conclude that ‖α̂‖1 ≤ ‖α‖1. Conversely, suppose that α̂ := [α̂j : j ∈ Nn(ν̂)] ∈ Sν̂(y)

and set f̂ :=
∑

j∈Nn(ν̂)
α̂jK(·, x′j). It follows from Lν̂α̂ = y and equation (24) with α := α̂,

f := f̂ that L(f̂) = y. That is f̂ ∈ My. We choose f ∈ ext(S(y)) and proceed to show

that ‖f̂‖B ≤ ‖f‖B. Combining Proposition 7 with Assumption (A1), we represent f as
f =

∑
j∈Nn(ν̂)

αjK(·, x′j) for some α := [αj : j ∈ Nn(ν̂)] ∈ R
n(ν̂). Equation (24) ensures

that Lν̂α = y, which together with α̂ ∈ Sν̂(y) leads to ‖α̂‖1 ≤ ‖α‖1. Again substituting

equation (23) with the pair f,α and the same equation with the pair f̂ , α̂ into the above
inequality, we obtain that ‖f̂‖B ≤ ‖f‖B. By noting that f ∈ S(y), we get the conclusion
that f̂ ∈ S(y).

We next verify statement 2. Suppose that f̂ :=
∑

j∈Nn(ν̂)
α̂jK(·, x′j) ∈ ext(S(y)). State-

ment 1 of this lemma ensures that α̂ := [α̂j : j ∈ Nn(ν̂)] ∈ Sν̂(y). According to the

definition of extreme points, it suffices to prove that whenever β̂ := [β̂j : j ∈ Nn(ν̂)] ∈ Sν̂(y)

and γ̂ := [γ̂j : j ∈ Nn(ν̂)] ∈ Sν̂(y) satisfying α̂ = (β̂ + γ̂)/2, we have β̂ = γ̂. Set

ĝ :=
∑

j∈Nn(ν̂)
β̂jK(·, x′j) and ĥ :=

∑
j∈Nn(ν̂)

γ̂jK(·, x′j). Clearly, f̂ = (ĝ + ĥ)/2. Again using

statement 1 of this lemma, we obtain that ĝ, ĥ ∈ S(y). Combining f ∈ ext(S(y)) with
the definition of extreme points, we get that ĝ = ĥ. It follows from Assumption (A2) that
‖β̂ − γ̂‖1 = ‖ĝ − ĥ‖B/C = 0. Thus, β̂ = γ̂, which complets the proof.

Combining the relation between the solutions of problems (13) and (22) and the sparsity
characterization of the latter, we are ready to provide sparse kernel representations for the
solutions of the MNI problem (13).

Theorem 10 Suppose that y ∈ R
n\{0}, V and My are defined by (9) and (12), respec-

tively, and ν̂ ∈ V satisfy (18). If Assumptions (A1) and (A2) hold with a positive constant
C, X ′

ν̂ and Lν̂ are defined by (20) and (21), respectively, then for any f̂ ∈ ext (S(y)), there
exist α̂j 6= 0, j ∈ NM , with

∑
j∈NM

|α̂j | = ‖ν̂‖B∗
/C and x′j ∈ X ′

ν̂ , j ∈ NM , such that

f̂ =
∑

j∈NM

α̂jK(·, x′j), (25)

for some positive integer M ≤ rank(Lν̂).

Proof Suppose that f̂ ∈ ext (S(y)). By Proposition 7 and noting that Assumption (A1)
holds, we represent f as

f̂ =
∑

j∈Nn(ν̂)

α̂jK(·, x′j), (26)

for some α̂j ∈ R, x′j ∈ X ′
ν̂ , j ∈ Nn(ν̂). Since f̂ ∈ ext(S(y)), we get by statement 2 of Lemma 9

that α̂ := [α̂j : j ∈ Nn(ν̂)] ∈ ext(Sν̂(y)). Proposition 8 ensures that α̂ has at most rank(Lν̂)
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nonzero entries, which allows us to rewrite equation (26) as (25) with α̂j 6= 0, j ∈ NM , for
some positive integer M ≤ rank(Lν̂). It remains to show that

∑
j∈NM

|α̂j | = ‖ν̂‖B∗
/C. It

follows from Assumption (A2) that

∑

j∈NM

|α̂j | = ‖f̂‖B/C. (27)

Theorem 12 in Wang and Xu (2021) guarantees that if ν̂ ∈ V satisfies (18), then any
f ∈ (‖ν̂‖B∗

∂‖ · ‖B∗
(ν̂))∩My is a solution of the MNI problem (13). According to property

(15), any f ∈ (‖ν̂‖B∗
∂‖ · ‖B∗

(ν̂)) ∩My satisfies that ‖f‖B = ‖ν̂‖B∗
. That is, the infimum

of the MNI problem (13) is ‖ν̂‖B∗
. By noting that f̂ ∈ S(y), we obtain that ‖f̂‖B = ‖ν̂‖B∗

.
Substituting the above equation into equation (27), we get that

∑
j∈NM

|α̂j | = ‖ν̂‖B∗
/C,

which completes the proof.

Theorem 10 provides kernel representations, for the solutions of the MNI problem (13),
with the number of the kernel sessions, which appear in the resulting representations, being
no more than the number n of the observed data. In Section 5, we will show by specific
examples that rank(Lν̂) is usually less than the number of the data. Hence, Theorem 10
may be taken as a sparse representer theorem for the solutions of the MNI problem. Such
a sparse kernel representation profits from the fact that Assumptions (A1) and (A2) allow
us to transform the original MNI problem to an equivalent finite dimensional MNI problem
with the `1 norm. As a result, a further characterization of the sparsity of the solutions of
problem (22) may lead to a more precise sparsity of the solutions of problem (13).

4. Sparse Representer Theorem for Regularization Problems

In this section, we establish a sparse representer theorem for regularization problems in the
RKBS. This is done by translating the sparse representer theorem established in the last
section for the MNI problem to regularization problems via the connection between the
solutions of these problems. Unlike the MNI problem, the regularization problem involves
a regularization parameter which allows us to further promote the sparsity level of the
solution. Specifically, we convert the regularization problem in the infinite dimensional
RKBS to a finite dimensional one by using the sparse representer theorem. We then obtain
choices of the regularization parameter for sparse solutions of the regularization problem in
the RKBS by using the existing results for the finite dimensional regularization problem.

Throughout this section, we suppose that B and B′ are a pair of RKBSs and K :
X×X ′ → R is the reproducing kernel for B. Let B∗ be a pre-dual space of B and νj , j ∈ Nn,
be linearly independent elements in B∗. We also assume that for any given y ∈ R

n, both
Qy : Rn → R+ and ϕ : R+ → R+ are lower semi-continuous and moreover, ϕ is increasing
and coercive. It is known (Unser (2021)) that the solution set R(y) of the regularization
problem (14) with y ∈ R

n and λ > 0 is nonempty and weakly∗ compact, and moreover, if
both Qy and ϕ are convex, then R(y) is also convex.

We begin with recalling the relation between a solution of the MNI problem (13) and
that of the regularization problem (14) which was put forward in Wang and Xu (2021).
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Recalling L : B → R
n defined by (10), we introduce a subset Dλ,y of Rn by

Dλ,y := L(R(y)). (28)

In this notation, Proposition 41 in Wang and Xu (2021) shows that
⋃

z∈Dλ,y

S(z) ⊂ R(y), (29)

and if ϕ is further assumed to be strictly increasing, then
⋃

z∈Dλ,y

S(z) = R(y). (30)

The next lemma concerns a relation between the extreme points of the solution sets of
problems (13) and (14).

Lemma 11 Suppose that y0 ∈ R
n and λ > 0. Let Dλ,y0 be defined by (28) with y := y0.

If both Qy0 , ϕ are convex and moreover, ϕ is strictly increasing, then

ext (R(y0)) ⊂
⋃

z∈Dλ,y0

ext (S(z)) . (31)

Proof We first note that the Krein-Milman theorem ensures that the extreme point sets
appearing in inclusion (31) are all nonempty.

We next prove that inclusion (31) holds true. We assume that

f̂ ∈ ext(R(y0)), (32)

and proceed to show that f̂ belongs to the set on the right-hand-side of (31). To this end,
we choose ẑ := L(f̂) and clearly, ẑ ∈ Dλ,y0 . It suffices to show that f̂ ∈ ext(S(ẑ)). It follows
from (30) with y := y0 that

S(ẑ) ⊂ R(y0), (33)

and f̂ ∈ S(ẑ). For any f1, f2 ∈ S(ẑ) satisfying f̂ = (f1 + f2)/2, according to (33), it follows
that f1, f2 ∈ R(y0). This combined with (32) and the definition of extreme points leads to
f1 = f2 = f̂ . Again using the definition of extreme points, we obtain that f̂ ∈ ext(S(ẑ)).

Through the connection between the solutions of these two problems, we translate the
sparse representer theorem 10 for the MNI problem (13) to the regularization problem (14).

Theorem 12 Suppose that y0 ∈ R
n and λ > 0. Let V be defined by (9) and Dλ,y0 be

defined by (28) with y := y0. If Assumptions (A1) and (A2) hold with a positive constant
C, then the following statements hold.

1. If Dλ,y0 6= {0}, then there exists f̂ ∈ R(y0) such that

f̂ =
∑

j∈NM

α̂jK(·, x′j), (34)

for some ν̂ ∈ V, positive integer M ≤ rank(Lν̂), x′j ∈ X ′
ν̂ , j ∈ NM , and α̂j 6= 0,

j ∈ NM , with
∑

j∈NM
|α̂j | = ‖ν̂‖B∗

/C.
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2. If both Qy0 and ϕ are convex and ϕ is strictly increasing, then every nonzero extreme

point f̂ of R(y0) satisfies (34) for some ν̂ ∈ V, positive integer M ≤ rank(Lν̂),
x′j ∈ X ′

ν̂ , j ∈ NM , and α̂j 6= 0, j ∈ NM , with
∑

j∈NM
|α̂j | = ‖ν̂‖B∗

/C.

Proof We first prove Statement 1. Since R(y0) is nonempty and Dλ,y0 6= {0}, there
exists ĝ ∈ R(y0) such that ẑ := L(ĝ) 6= 0. It follows from (29) that S(ẑ) ⊂ R(y0). As a
result, ext (S(ẑ)) ⊂ R(y0). Noting that ext (S(ẑ)) is nonempty, we choose f̂ ∈ ext (S(ẑ))
and clearly, f̂ ∈ R(y0). It suffices to represent f̂ as in (34). According to Proposition 37,
we select ν̂ ∈ V satisfying (18) with y := ẑ. Then Theorem 10 guarantees that f̂ , as an
element of ext (S(ẑ)), can be represented as in (34) for some positive integer M ≤ rank(Lν̂),
x′j ∈ X ′

ν̂ , j ∈ NM , and α̂j 6= 0, j ∈ NM , with
∑

j∈NM
|α̂j | = ‖ν̂‖B∗

/C.

We next verify Statement 2. Suppose that f̂ is a nonzero extreme point of R(y0) and
set ẑ := L(f̂). We will show that ẑ 6= 0. It follows from Lemma 11 that f̂ ∈ ext (S(ẑ)). If
ẑ = 0, we obtain that S(ẑ) = {0} and thus f̂ = 0. This is a contradiction. Again, we choose
ν̂ ∈ V satisfying (18) with y := ẑ by Proposition 37. Theorem 10 enables us to represent
f̂ ∈ ext (S(ẑ)) as in (34) for some positive integer M ≤ rank(Lν̂), x

′
j ∈ X ′

ν̂ , j ∈ NM , and
α̂j 6= 0, j ∈ NM , with

∑
j∈NM

|α̂j | = ‖ν̂‖B∗
/C.

The regularization parameters play an important role in promoting the sparsity of the
regularized solutions. Based upon the sparse representer theorem 12, we reveal in the
following how the regularization parameter can further promote the sparsity level of the
solution. For this purpose, we convert the regularization problem (14) to a finite dimensional
regularization problem with the `1 norm. For given y ∈ R

n and λ > 0, we choose ẑ ∈
Dλ,y\{0} and ν̂ ∈ V satisfying (18) with y := ẑ. We then introduce the regularization
problem in R

n(ν̂) by

inf
{
Qy(Lν̂α) + λϕ (C‖α‖1) : α ∈ R

n(ν̂)
}
. (35)

Denote by Rν̂(y) the solution set of problem (35). We show in the following lemma the
relation between the solutions of the regularization problems (14) and (35).

Lemma 13 Suppose that y0 ∈ R
n and λ > 0. Let V be defined by (9), Dλ,y0 be defined by

(28) with y := y0, and let ẑ ∈ Dλ,y0\{0}, ν̂ ∈ V satisfy (18) with y := ẑ. If Assumptions

(A1) and (A2) hold, X ′
ν̂ and Lν̂ are defined by (20) and (21), respectively, then f̂ :=∑

j∈Nn(ν̂)
α̂jK(·, x′j) ∈ R(y0) if and only if α̂ := [α̂j : j ∈ Nn(ν̂)] ∈ Rν̂(y0).

Proof We suppose that f̂ :=
∑

j∈Nn(ν̂)
α̂jK(·, x′j) ∈ R(y0) and proceed to prove that

α̂ := [α̂j : j ∈ Nn(ν̂)] ∈ Rν̂(y0). It suffices to show that

Qy0(Lν̂α̂) + λϕ(C‖α̂‖1) ≤ Qy0(Lν̂α) + λϕ (C‖α‖1) , (36)

for any α ∈ R
n(ν̂). Let α := [αj : j ∈ Nn(ν̂)] ∈ R

n(ν̂) and set f :=
∑

j∈Nn(ν̂)
αjK(·, x′j).

Since f̂ ∈ R(y0), we get that

Qy0(L(f̂)) + λϕ(‖f̂‖B) ≤ Qy0(L(f)) + λϕ (‖f‖B) . (37)
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Substituting equations (23) and (24) with the pair f,α and the same equations with the
pair f̂ , α̂ into inequality (37), we get the desired inequality (36). Conversely, suppose that
α̂ := [α̂j : j ∈ Nn(ν̂)] ∈ Rν̂(y0) and set f̂ :=

∑
j∈Nn(ν̂)

α̂jK(·, x′j). Noting that Dλ,y0 6= {0},
statement 1 of Theorem 12 ensures that there exists α̃ := [α̃j : j ∈ Nn(ν̂)] ∈ R

n(ν̂) such that

f̃ :=
∑

j∈Nn(ν̂)
α̃jK(·, x′j) ∈ R(y0). Since α̂ ∈ Rν̂(y0), inequality (36) holds with α := α̃.

Again substituting equations (23) and (24) with the pair f̃ , α̃ and the same equations with
the pair f̂ , α̂ into inequality (36) with α := α̃, we obtain inequality (37) with f := f̃ . This
together with f̃ ∈ R(y0) leads to f̂ ∈ R(y0).

The role of the regularization parameter on the sparsity of the solutions of the finite
dimensional regularization problem with the `1 norm has been studied in Liu et al. (2023).
By similar arguments in Liu et al. (2023), we present a sparsity characterization of the
solutions of problem (35) as follows. For each j ∈ Nn(ν̂), we denote by ej the unit vector
with 1 for the jth component and 0 otherwise. Using these vectors, we define n(ν̂) numbers
of subsets of Rn(ν̂) by

Ωl :=





∑

j∈Nl

αkjekj : αkj ∈ R \ {0}, for 1 ≤ k1 < k2 < · · · < kl ≤ n(ν̂)



 , for all l ∈ Nn(ν̂).

Proposition 14 Suppose that y0 ∈ R
n, λ > 0, both Qy0 : Rn → R+ and ϕ : R+ → R+

are convex, and moreover, ϕ is differentiable and strictly increasing. Let V be defined by
(9), Dλ,y0 be defined by (28) with y := y0, and let ẑ ∈ Dλ,y0\{0}, ν̂ ∈ V satisfy (18) with
y := ẑ. If Assumptions (A1) and (A2) hold with a positive constant C and Lν̂ be defined
by (21), then problem (35) with y := y0 has a solution α̂ =

∑
i∈Nl

α̂kieki ∈ Ωl for some
l ∈ Nn(ν̂) if and only if there exists a ∈ ∂Qy0(Lν̂α̂) such that

λ = −(L>
ν̂ a)kisign(α̂ki)/(Cϕ′(C‖α̂‖1)), i ∈ Nl, (38)

λ ≥ |(L>
ν̂ a)j |/(Cϕ′(C‖α̂‖1)), j ∈ Nn(ν̂)\{ki : i ∈ Nl}. (39)

Proof Due to the convexity of Qy0 and the linearity of Lν̂ , the fidelity term Qy0 ◦ Lν̂

is convex. Moreover, since ϕ is increasing, convex and the norm function ‖ · ‖1 is convex,
we claim that the regularization term ϕ(C‖ · ‖1) is also convex. By using the Fermat rule
(Zălinescu (2002)) and the continuity of ϕ(C‖ · ‖1), we conclude that α̂ is a solution of
problem (35) with y := y0 if and only if

0 ∈ ∂(Qy0 ◦ Lν̂)(α̂) + λ∂(ϕ(C‖ · ‖1))(α̂). (40)

According to the chain rule of the subdifferential and the differentiability of ϕ, inclusion
(40) can be rewritten as

0 ∈ L>
ν̂ ∂Qy0(Lν̂α̂) + λCϕ′(C‖α̂‖1)∂‖ · ‖1(α̂).

Equivalently, there exists a ∈ ∂Qy0(Lν̂α̂) such that

−L>
ν̂ a ∈ λCϕ′(C‖α̂‖1)∂‖ · ‖1(α̂). (41)
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Noting that α̂ =
∑

i∈Nl
α̂kieki ∈ Ωl with α̂ki ∈ R \ {0}, i ∈ Nl, we obtain that

∂‖ · ‖1(α̂) =
{
z ∈ R

n(ν̂) : zki = sign(α̂ki), i ∈ Nl and |zj | ≤ 1, j ∈ Nn(ν̂) \ {ki : i ∈ Nl}
}
.

By using the above equation and noting that ϕ′(t) > 0 for all t ∈ (0,+∞), we rewrite
inclusion (41) as (38) and (39). This completes the proof of this proposition.

Combining Lemma 13 with Proposition 14, we are ready to obtain choices of the regu-
larization parameter for sparse solutions of the regularization problem (14).

Theorem 15 Suppose that y0 ∈ R
n, λ > 0, both Qy0 : Rn → R+ and ϕ : R+ → R+ are

convex, and moreover, ϕ is differentiable and strictly increasing. Let V be defined by (9),
Dλ,y0 be defined by (28) with y := y0, and let ẑ ∈ Dλ,y0\{0}, ν̂ ∈ V satisfy (18) with
y := ẑ. If Assumptions (A1) and (A2) hold, X ′

ν̂ and Lν̂ are defined by (20) and (21),

respectively, then problem (14) with y := y0 has a solution f̂ =
∑

i∈Nl
α̂kiK(·, x′ki) with

α̂ki ∈ R\{0}, x′ki ∈ X ′
ν̂ , i ∈ Nl for some l ∈ Nn(ν̂) if and only if there exists a ∈ ∂Qy0(Lν̂α̂)

with α̂ :=
∑

i∈Nl
α̂kieki such that (38) and (39) hold.

Proof It follows from Lemma 13 that f̂ :=
∑

i∈Nl
α̂kiK(·, x′ki) with α̂ki ∈ R\{0}, x′ki ∈ X ′

ν̂ ,
i ∈ Nl, is a solution of problem (14) with y := y0 if and only if α̂ :=

∑
i∈Nl

α̂kieki ∈ Ωl is a
solution of problem (35) with y := y0. Proposition 14 ensures that the latter is equivalent
to that there exists a ∈ ∂Qy0(Lν̂α̂) such that (38) and (39) hold. This completes the proof
of this theorem.

Observing from Theorem 15, the choice of the regularization parameter can influence
the sparsity of the solution. Specifically, the equalities in (38) and the inequalities in (39)
correspond to the nonzero components and the zero components of the solution, respectively.
As the number of the inequalities increases, the solution becomes more sparse. Such a
characterization of the sparsity of the solutions also benefits from Assumptions (A1) and
(A2) satisfied by the RKBS.

5. Sparse Learning in `1(N)

In this section, we consider the MNI problem and the regularization problem in the sequence
space `1(N) which is a typical RKBS. We first verify that `1(N) satisfies Assumptions (A1)
and (A2). We then specialize Theorems 10 and 12 to the RKBS `1(N) and establish sparse
representer theorems for the solutions of the MNI problem and the regularization problem
in this space. For the regularization problem in `1(N), we further study the influence of
the regularization parameter on the sparsity of the solutions. Finally, we show that unlike
`1(N), the RKBSs `p(N), for all 1 < p < +∞, cannot promote sparsity of a learning solution
in them.

We first recall the sequence space `1(N). The Banach space `1(N) consists of all real
sequences x := [xj : j ∈ N] such that ‖x‖1 :=

∑
j∈N |xj | < +∞. It is known that `1(N)

has c0(N) as its pre-dual space, where c0(N) denotes the space of all real sequences v :=

19



Wang, Xu and Yan

[vj : j ∈ N] converging to 0 as j → ∞, endowed with ‖v‖∞ := sup{|vj | : j ∈ N} < +∞.
The dual bilinear form 〈·, ·〉`1(N) on c0(N) × `1(N) is defined by 〈v,x〉`1(N) :=

∑
j∈N vjxj ,

for all v := [vj : j ∈ N] ∈ c0(N) and all x := [xj : j ∈ N] ∈ `1(N). It has been established
in Xu (2023) that `1(N) is an RKBS composed of functions defined on N and its δ-dual is
isometrically isomorphic to c0(N) which is also the adjoint RKBS of `1(N). That is, `1(N)
and c0(N) are a pair of RKBSs. Moreover, the function K : N× N → R defined by

K(i, j) :=

{
1, i = j,

0, i 6= j,
for any (i, j) ∈ N× N, (42)

is the reproducing kernel for `1(N).
We next describe the MNI problem and the regularization problem in `1(N). We suppose

that vi := [vi,j : j ∈ N], i ∈ Nn, are a finite number of linearly independent elements in
c0(N) and set

V := span{vj : j ∈ Nn}. (43)

The operator L : `1(N) → R
n with the form (10) may be taken as a semi-infinite matrix

V := [vi,j : i ∈ Nn, j ∈ N]. (44)

For a given vector y ∈ R
n, the hyperplane My, defined by (12), has the form

My := {x ∈ `1(N) : Vx = y}. (45)

With the notation above, the MNI problem in `1(N) is formulated as

inf {‖x‖1 : x ∈ My} . (46)

By introducing a loss function Qy : Rn → R+ and a regularization parameter λ > 0, the
regularization problem in `1(N) has the form

inf {Qy(Vx) + λ‖x‖1 : x ∈ `1(N)} . (47)

In this section, we still denote by S(y) and R(y) the solution sets of the MNI problem (46)
and the regularization problem (47), respectively.

We now turn to establishing the sparse representer theorem for the solutions of problems
(46) and (47). We begin with verifying that the RKBS `1(N) satisfies Assumptions (A1)
and (A2). To this end, we need a result about the subdifferential of the `∞ norm at any
v ∈ c0(N). For each v := [vj : j ∈ N] ∈ c0(N), by N(v) we denote the index set where the
sequence v achieves its supremum norm ‖v‖∞, namely,

N(v) := {j ∈ N : |vj | = ‖v‖∞} . (48)

Note that the sequence v ∈ c0(N) goes to 0 while j approaches to infinity and hence the
index set N(v) is of finite cardinality. Let n(v) denote the cardinality of N(v). We also
introduce for each v := [vj : j ∈ N] ∈ c0(N) a subset of `1(N) as

Ω(v) := {sign(vj)K(·, j) : j ∈ N(v)} . (49)
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As has been shown in Cheng and Xu (2021), it holds for any v ∈ c0(N)\{0} that

∂‖ · ‖∞(v) = co(Ω(v)). (50)

This together with noting that Ω(v) is a finite set further leads to

ext (∂‖ · ‖∞(v)) = Ω(v). (51)

The next lemma shows that the RKBS `1(N) satisfies Assumptions (A1) and (A2).

Lemma 16 If vj , j ∈ Nn, are linearly independent elements in c0(N) and V is defined by
(43), then the space `1(N) satisfies Assumption (A1) with X ′

v
:= N(v) for any v ∈ V and

Assumption (A2) with C := 1.

Proof We first show that Assumption (A1) holds. It follows from definition (49) and
equation (51) that for any nonzero v ∈ V, there holds

ext (∂‖ · ‖∞(v)) = {sign(vj)K(·, j) : j ∈ N(v)} .
That is, for any nonzero v ∈ V, there exists a finite subset X ′

v
:= N(v) of X ′ := N such

that
ext (∂‖ · ‖∞(v)) ⊂ {−K(·, j),K(·, j) : j ∈ X ′

v
}.

Thus, the RKBS `1(N) satisfies Assumption (A1) with X ′
v
:= N(v) for any v ∈ V.

We next verify that Assumption (A2) holds. Note that for each j ∈ N, the kernel session
K(·, j) coincides with the vector ej . As a result, for any m ∈ N, distinct points lj ∈ N,
j ∈ Nm, and α = [αj : j ∈ Nm] ∈ R

m, there holds
∥∥∥∥∥∥

∑

j∈Nm

αjK(·, lj)

∥∥∥∥∥∥
1

= ‖α‖1.

Clearly, the RKBS `1(N) satisfies Assumption (A2) with C := 1.

We are ready to specialize the sparse representer theorem 10 to the MNI problem (46).
For each v := [vj : j ∈ N] ∈ c0(N), we define a truncation matrix of V as follows. Suppose
that N(v) = {kj ∈ N : j ∈ Nn(v)}. We truncate the semi-infinite matrix V with the form
(44) by throwing away the columns with index not appearing in N(v). Specifically, we
define the truncation matrix

Vv := [vi,kj : i ∈ Nn, j ∈ Nn(v)] ∈ R
n×n(v). (52)

Theorem 17 Suppose that vj, j ∈ Nn, are linearly independent elements in c0(N) and
y ∈ R

n\{0}. Let V and My be defined by (43) and (45), respectively. If v̂ ∈ V satisfies

(‖v̂‖∞co(Ω(v̂))) ∩My 6= ∅, (53)

N(v̂) and Vv̂ are defined by (48) and (52) with v := v̂, respectively, then for any x̂ ∈
ext (S(y)), there exist α̂j 6= 0, j ∈ NM , with

∑
j∈NM

|α̂j | = ‖v̂‖∞ and kj ∈ N(v̂), j ∈ NM ,
such that

x̂ =
∑

j∈NM

α̂jK(·, kj). (54)

for some positive integer M ≤ rank(Vv̂).
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Proof We prove this result by specializing Theorem 10 to the MNI problem in `1(N). We
first note that `1(N) and c0(N) are a pair of RKBSs and K defined by (42) is the repro-
ducing kernel for `1(N). Moreover, `1(N) has c0(N) as its pre-dual space. We next show
that v̂ satisfies (18). Substituting equation (50) with v being replaced by v̂ into assump-
tion (53) leads directly to (‖v̂‖∞∂‖ · ‖∞(v̂)) ∩My 6= ∅. That is, v̂ satisfies (18). Finally,
Lemma 16 guarantees that both Assumption (A1) holds with X ′

v
:= N(v) for any v ∈ V

and Assumption (A2) holds with C := 1. Consequently, the hypotheses of Theorem 10 are
satisfied. By Theorem 10 with noting that X ′

v̂
:= N(v̂), C := 1 and the matrix Lv̂, defined

by (21), coincides exactly with the truncation matrix Vv̂, any extreme point x̂ of S(y) can
be expressed as in equation (54).

Since the kernel session K(·, kj) appearing in equation (54) has merely one nonzero
entry at kj for each j ∈ NM , Theorem 17 shows that any extreme point of the solution
set S(y) of the MNI problem (46) has at most rank(Vv̂) nonzero components. Obviously,
rank(Vv̂) ≤ n. According to Proposition 37 in Appendix B, the sequence v̂ ∈ V satisfying
(53) can be obtained by solving the dual problem (113) with B∗ := c0(N) and νj := vj ,
j ∈ Nn. It has been proved in Cheng and Xu (2021) that the resulting dual problem, as a
finite dimensional optimization problem, may be solved by linear programming. Admittedly,
the solutions of the dual problem may not be unique and the quantity rank(Vv̂) hinges on
the choice of v̂ ∈ V, or the choice of the solution of the corresponding dual problem.
We further remark that a data-independent representer theorem for MNI problem (46),
established in Unser et al. (2016), expresses the extreme point x̂ of the solution set in
terms of a linear combination of n extreme points of the unit ball in `1(N), which is data-
independent. Theorem 17 differs from the data-independent representer theorem of Unser
et al. (2016) in the kernel representation (54), where kj , j ∈ NM , depend on the element
v̂, which is a linear combination of the given data vj , j ∈ Nn. Moreover, it follows from
definition (48) that the set N(v̂) has a finite cardinality while there are infinitely many
extreme points of the unit ball in `1(N).

Below, we present a specific example to demonstrate that the quantity rank(Vv̂) could
be equal or strictly less than n depending on the distinct solution of the dual problem. We
choose the functionals v1,v2 ∈ c0(N) as

v1 :=

[
1

n
: n ∈ N

]
, v2 :=

[
1

(−2)n−1
: n ∈ N

]
,

and consider the MNI problem (46) with y := [1, 1]>. In this case, the solution set of the
dual problem (113) can be characterized as

{
ĉ := [ĉ1, ĉ2]

> ∈ R
2 : ĉ1 + ĉ2 = 1,−1

2
≤ ĉ1 ≤

3

2

}
,

and the optimal value is m0 = 1. We choose the vector v̂ satisfying (53) according to two
distinct elements in the above solution set. We first select ĉ1 := [−1

2 ,
3
2 ]

> as a solution of
the dual problem. Proposition 37 in Appendix B ensures that v̂1 = −1

2v1 +
3
2v2 satisfies

(53). Clearly, N(v̂1) = {1, 2} and n(v̂1) = 2. It follows that the matrix Vv̂1
has the form

Vv̂1
:=

[
1 1

2
1 −1

2

]
,
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and rank(Vv̂1
) = 2. We next select an alternative solution of the dual problem, that is,

ĉ2 := [0, 1]>. Accordingly, v̂2 = v2 satisfies (53). It follows from N(v̂2) = {1}, n(v̂2) = 1
that Vv̂2

= [1, 1]> and rank(Vv̂2
) = 1. Notice that rank(Vv̂1

) is equal to the number of
the given data points while rank(Vv̂2

) is strictly less than the number. In this example,
the MNI problem (46) with y := [1, 1]> has a unique solution x̂ = [1, 0, 0, . . .] ∈ `1(N) with
sparsity level l = 1. Clearly, the quantity rank(Vv̂1

) provides a precise characterization for
the sparsity of the solution.

By applying Theorem 12 to the regularization problem (47), we get the following sparse
representer theorem for the solutions.

Theorem 18 Suppose that vj , j ∈ Nn, are linearly independent elements in c0(N), y0 ∈ R
n

and λ > 0. Let V be defined by (43). If Qy0 is lower semi-continuous and convex, then every
nonzero x̂ ∈ ext (R(y0)) has the form (54) for some v̂ ∈ V, positive integer M ≤ rank(Vv̂),
αj 6= 0, j ∈ NM , with

∑
j∈NM

|αj | = ‖v̂‖∞ and kj ∈ N(v̂), j ∈ NM .

Proof Again, we point out that `1(N) and c0(N) are a pair of RKBSs, K defined by (42)
is the reproducing kernel for `1(N) and in addition, `1(N) has c0(N) as its pre-dual space.
The space `1(N), guaranteed by Lemma 16, satisfies Assumption (A1) with X ′

v
:= N(v) for

any v ∈ V and Assumption (A2) with C := 1. In this case, the function ϕ(t) := t, t ∈ R+,
is continuous, convex and strictly increasing. That is, the hypotheses of Theorem 12 are
all satisfied. Hence, by Theorem 12 with X ′

v̂
:= N(v̂), C := 1 and Lv̂ := Vv̂, any nonzero

extreme point x̂ of R(y0) has the form (54) for some v̂ ∈ V, positive integer M ≤ rank(Vv̂),
αj 6= 0, j ∈ NM , with

∑
j∈NM

|αj | = ‖v̂‖∞ and kj ∈ N(v̂), j ∈ NM .

The regularization parameter λ involved in the regularization problem (47) can be used
to further promote the sparsity level of the solution. As a consequence of Theorem 15, we
get the following choices of the regularization parameter for sparse solutions of problem
(47). For each y ∈ R

n and each λ > 0, the subset Dλ,y, defined by (28), takes the form

Dλ,y := {Vx : x ∈ R(y)}. (55)

Theorem 19 Suppose that vj , j ∈ Nn, are linearly independent elements in c0(N), y0 ∈ R
n,

λ > 0 and that Qy0 is lower semi-continuous and convex. Let Dλ,y0 be defined by (55) with
y := y0, ẑ ∈ Dλ,y0\{0} and let V be defined by (43), v̂ ∈ V satisfy (53) with y := ẑ and
N(v̂), Vv̂ be defined by (48) and (52) with v := v̂, respectively. Then problem (47) with
y := y0 has a solution x̂ =

∑
i∈Nl

α̂kiK(·, ki) with α̂ki ∈ R \ {0}, ki ∈ N(v̂), i ∈ Nl for some
l ∈ Nn(v̂) if and only if there exists a ∈ ∂Qy0(Vv̂α̂) with α̂ :=

∑
i∈Nl

α̂kieki such that

λ = −(V>
v̂
a)kisign(α̂ki), i ∈ Nl, and λ ≥ |(V>

v̂
a)j |, j ∈ Nn(v̂)\{ki : i ∈ Nl}. (56)

Proof Lemma 16 ensures that the RKBS `1(N) satisfies Assumption (A1) with X ′
v
:= N(v)

for any v ∈ V and Assumption (A2) with C := 1. As has been shown in the proof of Theorem
17, assumption (53) yields that v̂ satisfies (18) with y := ẑ. Note that ϕ(t) := t, t ∈ R+,
is continuous, convex and strictly increasing. The hypotheses of Theorem 15 are satisfied.
Thus, by Theorem 15 with noting that Lv̂ := Vv̂ and X ′

v̂
:= N(v̂), problem (47) with
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y := y0 has a solution x̂ =
∑

i∈Nl
α̂kiK(·, ki) with α̂ki ∈ R \ {0}, ki ∈ N(v̂), i ∈ Nl for some

l ∈ Nn(v̂) if and only if there exists a ∈ ∂Qy0(Vv̂α̂) with α̂ :=
∑

i∈Nl
α̂kieki such that

λ = −(V>
v̂
a)kisign(α̂ki)/(ϕ

′(C‖α̂‖1)), i ∈ Nl, (57)

λ ≥ |(V>
v̂
a)j |/(Cϕ′(C‖α̂‖1)), j ∈ Nn(v̂)\{ki : i ∈ Nl}. (58)

Substituting ϕ′(t) = 1, t ∈ R+ and C = 1 into (38) and (39), we get the desired characteri-
zation (56).

Theorems 17 and 18 provide sparse representations for the solutions of the MNI problem
and the regularization problem in `1(N), respectively. The sparsity of the solutions benefits
from the capacity of `1(N) in promoting sparsity, that is, `1(N) satisfies Assumptions (A1)
and (A2). To close this section, we show that in general the sequence spaces `p(N), for
1 < p < +∞, will not promote sparsity. Recall that `p(N) with 1 < p < +∞ is the Banach

space of all real sequences x := [xj : j ∈ N] such that ‖x‖p :=
(∑

j∈N |xj |p
)1/p

< +∞. It

is known that `p(N) is reflexive and then the dual space `q(N) is its pre-dual space, where
1/p+1/q = 1. The dual bilinear form 〈·, ·〉`p(N) on `q(N)× `p(N) is defined by 〈v,x〉`p(N) :=∑

j∈N vjxj , for all v := [vj : j ∈ N] ∈ `q(N) and all x := [xj : j ∈ N] ∈ `p(N). Clearly, `p(N),
`q(N) are a pair of RKBSs and the function K defined by (42) is also the reproducing kernel
of `p(N). We claim that `p(N) with 1 < p < +∞ does not satisfy Assumptions (A1) and
(A2). Indeed, the subdifferential of the norm ‖ · ‖q at any v := [vk : k ∈ N] ∈ `q(N) is a
singleton, that is,

∂‖ · ‖q(v) :=
{
u :=

[
vk |vk|q−2 /‖v‖q−1

q : k ∈ N

]}
. (59)

The vector u usually does not have the form αK(·, j) for some α ∈ {−1, 1} and j ∈ N unless
v is in such a form. That is, Assumption (A1) does not hold. For any m ∈ N, distinct
points lj ∈ N, j ∈ Nm, and α = [αj : j ∈ Nm] ∈ R

m, there holds

∥∥∥∥∥∥

∑

j∈Nm

αjK(·, lj)

∥∥∥∥∥∥
p

= ‖α‖p,

which yields that Assumption (A2) is not satisfied either for `p(N) with 1 < p < +∞.

We remark that Assumptions (A1) and (A2) are sufficient conditions for an RKBS to
enjoy the ability of promoting the sparsity of the learning solutions. Even though the spaces
`p(N) for 1 < p < +∞ do not satisfy these assumptions, we still need to understand why
these RKBSs cannot promote sparsity. To this end, we consider the MNI problem in `p(N)
with 1 < p < +∞. Suppose that vj := [vj,k : k ∈ N], j ∈ Nn, are a finite number of linearly
independent elements in `q(N). The operator L : `p(N) → R

n, defined by (10), can also
be taken as the semi-infinite matrix V with the form (44). For a given vector y ∈ R

n, the
subset My of `p(N), defined by (12), has the form

My := {x ∈ `p(N) : Vx = y}. (60)
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The MNI problem with y in `p(N) with 1 < p < +∞ is formulated as

inf
{
‖x‖p : x ∈ My

}
, (61)

and its dual problem has the form

sup





∑

j∈Nn

cjyj :

∥∥∥∥∥∥

n∑

j=1

cjvj

∥∥∥∥∥∥
q

= 1



 . (62)

Note that problem (61) has a unique solution. By employing Propositions 7 and 37, we
represent the unique solution as follows.

Proposition 20 Let p, q ∈ (1,+∞) be such that 1/p + 1/q = 1. Suppose that vj, j ∈ Nn,
are linearly independent elements in `q(N) and y ∈ R

n\{0}. If ĉ := [ĉj : j ∈ Nn] ∈ R
n is

the solution of the dual problem (62) and v̂p := (y>ĉ)
∑

j∈Nn
ĉjvj, then the unique solution

of problem (61) with y has the form x̂p := [x̂k : k ∈ N] with x̂k := (v̂p)k |(v̂p)k|q−2 /‖v̂p‖q−2
q ,

k ∈ N.

Proof Since ĉ := [ĉj : j ∈ Nn] ∈ R
n is the solution of the dual problem (62), Proposition 37

ensures that v̂p := (y>ĉ)
∑

j∈Nn
ĉjvj satisfies (18) with B∗ = `q(N). That is, the hypothesis

of Proposition 7 is satisfied. By Proposition 7, the unique solution x̂p := [x̂k : k ∈ N] of
problem (61) can be represented as

x̂p =
∑

j∈Nn

γjuj , (63)

for some γj ∈ R, j ∈ Nn, with
∑

j∈Nn
γj = ‖v̂p‖q and uj ∈ ext (∂‖ · ‖q(v̂p)), j ∈ Nn. Noting

that the set ∂‖ · ‖q(v̂p) is a singleton, representation (63) reduces to

x̂p = ‖v̂p‖qu, (64)

with u := [uk : k ∈ N] ∈ ∂‖ · ‖q(v̂p). It follows from equation (59) with v := v̂p

that uk = (v̂p)k |(v̂p)k|q−2 /‖v̂p‖q−1
q , k ∈ N. Hence, we get for each k ∈ N that x̂k =

(v̂p)k |(v̂p)k|q−2 /‖v̂p‖q−2
q , which completes the proof.

Although there is only one term involved in it, representation (64) cannot lead to sparsity
of the solution x̂p, since u may not be sparse under the kernel representation. In what
follows, we give a necessary condition on the elements vj , j ∈ Nn, such that the solution
x̂p has finite nonzero components. For each N ∈ N, we define a truncation operator TN :
`p(N) → `p(N) by TN (x) := [xN+k : k ∈ N] for all x = [xk : k ∈ N] ∈ `p(N). For each
x := [xj : j ∈ N], the support of x, denoted by supp(x), is defined to be the index set on
which x is nonzero, that is, supp(x) := {j ∈ N : xj 6= 0} .

Proposition 21 Let p, q ∈ (1,+∞) be such that 1/p + 1/q = 1. Suppose that vj , j ∈ Nn,
are linearly independent elements in `q(N), y ∈ R

n\{0} and x̂p is the unique solution of
the MNI problem (61) with y in `p(N). If there exists N ∈ N such that supp(x̂p) ⊂ NN ,
then TN (vj), j ∈ Nn, are linearly dependent.
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Proof Let ĉ := [ĉj : j ∈ Nn] ∈ R
n be the solution of the dual problem (62) and set

v̂p := (y>ĉ)
∑

j∈Nn
ĉjvj . Proposition 20 guarantees that x̂p = [x̂k : k ∈ N] with x̂k :=

(v̂p)k |(v̂p)k|q−2 /‖v̂p‖q−2
q , k ∈ N. This together with the assumption that supp(x̂p) ⊂ NN

leads to supp(v̂p) ⊂ NN . This implies that TN (v̂p) = 0. Substituting the definition of v̂p

into this equation, we get that

(y>ĉ)
∑

j∈Nn

ĉjTN (vj) = 0. (65)

Since y 6= 0, the infimum of the MNI problem (61) is nonzero. Then by Proposition 36,
the quantity y>ĉ, as the supremum of the dual problem (62), is also nonzero. As a result,
we have that ĉ 6= 0. Hence, it follows from (65) that

∑
j∈Nn

ĉjTN (vj) = 0 for ĉ 6= 0. This
ensures that TN (vj), j ∈ Nn, are linearly dependent.

Proposition 21 indicates that in general the solution x̂p of the MNI problem in the se-
quence spaces `p(N), for 1 < p < +∞, will not have a finite number of nonzero components,
unless strict conditions are imposed to the elements vj , j ∈ Nn. This has been demonstrated
in an example presented in Cheng and Xu (2021), where the solution of the MNI problem
in `2(N) has infinite nonzero components, that is, the solution can only be expressed by
infinitely many kernel sessions. Indeed, for the elements v1 and v2 chosen in the example,
TN (v1) and TN (v2) will never be linearly dependent for any choice of N ∈ N.

6. Sparse Learning in the Measure Space

We study in this section the MNI problem and the regularization problem in an RKBS
constructed by the measure space. This RKBS is proved to have the space of continuous
functions as both the adjoint RKBS and the pre-dual space. By verifying Assumptions (A1)
and (A2) for the RKBS, we specialize Theorems 10 and 12 to this space and obtain the
sparse representer theorems for the solutions of the MNI problem and the regularization
problem in this space.

We begin with introducing an RKBS, which has been considered in Bartolucci et al.
(2023); Lin and Xu (2022); Lin et al. (2022); Spek et al. (2023). Let X be a prescribed set
and X ′ be a locally compact Hausdorff space. Denote by C0(X

′) the space of all continuous
functions f : X ′ → R such that for any ε > 0, the set {x′ ∈ X ′ : |f(x′)| ≥ ε} is compact. We
equip the maximum norm on C0(X

′), namely ‖f‖∞ := supx′∈X′ |f(x′)| for all f ∈ C0(X
′).

The Riesz-Markov representation theorem (Conway (1990)) states that the dual space of
C0(X

′) is isometrically isomorphic to the space M(X ′) of real-valued regular Borel measures
on X ′ endowed with the total variation norm ‖·‖TV. Suppose that K : X×X ′ → R satisfies
K(x, ·) ∈ C0(X

′) for all x ∈ X and the density condition

span{K(x, ·) : x ∈ X} = C0(X
′). (66)

Associated with the function K, we introduce a space of functions on X by

BK :=

{
fµ :=

∫

X′

K(·, x′)dµ(x′) : µ ∈ M(X ′)

}
, (67)
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equipped with

‖fµ‖BK
:= ‖µ‖TV. (68)

In passing, we provide an example of a kernel K that satisfies the density condition (66).
We choose X = X ′ := R

d and consider the Gaussian kernel defined by

K(x, y) := e−
‖x−y‖2

2σ2 , x, y ∈ R
d, (69)

with σ > 0. To show that the Gaussian kernel K satisfies the density condition (66), we
establish that for ν ∈ M(Rd) satisfying

∫

Rd

K(x, y)dν(y) = 0, for all x ∈ R
d, (70)

we must have that ν = 0. For this purpose, we re-express the Gaussian kernel K as

K(x, y) =

∫

Rd

p(t)ei〈t,x−y〉dt, x, y ∈ R
d, (71)

where

p(t) :=

(
σ√
2π

)d

e−
σ2‖t‖2

2 , t ∈ R
d.

Substituting representation (71) into equation (70) yields

∫

Rd

∫

Rd

p(t)ei〈t,x−y〉dtdν(y) = 0, x ∈ R
d,

which further leads to

∫

Rd

∫

Rd

∫

Rd

p(t)ei〈t,x−y〉dtdν(y)dν(x) = 0.

By the Fubini theorem, we get that

∫

Rd

p(t) |ν̂(t)|2 dt = 0, where ν̂(t) :=

∫

Rd

ei〈t,x〉dν(x), t ∈ R
d.

Since p(t) > 0 for all t ∈ R
d, the above equation yields that ν̂(t) = 0 for all t ∈ R

d and
hence ν = 0.

We now return to the investigation of the space BK defined by (67) and (68). We first
show that it is an RKBS on X which has C0(X

′) as a pre-dual space.

Proposition 22 Let X be a prescribed set and X ′ be a locally compact Hausdorff space.
If the function K : X ×X ′ → R satisfies K(x, ·) ∈ C0(X

′) for any x ∈ X and the density
condition (66), then the space BK defined by (67) endowed with the norm (68) is an RKBS
on X and C0(X

′) is a pre-dual space of BK .
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Proof We first establish that BK is an RKBS of functions on X. It follows from the density
condition (66) that the mapping Φ : M(X ′) → BK , defined by

Φ(µ) :=

∫

X′

K(·, x′)dµ(x′), for all µ ∈ M(X ′), (72)

is an isometric isomorphism from M(X ′) to BK . Thus, BK is a Banach space of functions
on X. By Definition 1, it suffices to verify that δx, x ∈ X, are all continuous on BK . For
all x ∈ X and all f ∈ BK , by (67), we have that

f(x) =

∫

X′

K(x, x′)dµ(x′), for some µ ∈ M(X ′).

It follows from the definition of the total variation norm and (68) that

|δx(f)| =
∣∣∣∣
∫

X′

K(x, x′)dµ(x′)

∣∣∣∣
≤ ‖K(x, ·)‖∞‖µ‖TV

= ‖K(x, ·)‖∞‖f‖BK
.

That is, δx is continuous on BK .
It remains to show that

(C0(X
′))∗ = BK . (73)

It is known from the Riesz-Markov representation theorem (Conway (1990)) that

(C0(X
′))∗ = M(X ′). (74)

Moreover, the mapping Φ : M(X ′) → BK defined by (72) is an isometric isomorphism.
Thus, the measure space M(X ′) is isometrically isomorphic to BK . This together with (74)
leads to (73).

We next reveal that the δ-dual space B′
K of BK is isometrically isomorphic to C0(X

′),
a Banach space of functions, and the function K coincides with the reproducing kernel of
BK .

Proposition 23 Let X be a prescribed set and X ′ be a locally compact Hausdorff space.
Suppose that the function K : X ×X ′ → R satisfies K(x, ·) ∈ C0(X

′) for any x ∈ X and
the density condition (66). If BK is an RKBS on X defined by (67) endowed with the norm
(68), then the δ-dual space B′

K of BK is isometrically isomorphic to C0(X
′) and the function

K is the reproducing kernel of BK .

Proof We first prove that B′
K is isometrically isomorphic to C0(X

′). According to the
definition of B′

K and the density condition (66), it suffices to verify that ∆ := span{δx :
x ∈ X} is isometrically isomorphic to the linear span KX := span{K(x, ·) : x ∈ X}. We
introduce a mapping Ψ : ∆ → KX by

Ψ


 ∑

j∈Nm

αjδxj


 :=

∑

j∈Nm

αjK(xj , ·), for all m ∈ N, αj ∈ R, xj ∈ X, j ∈ Nm, (75)
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and proceed to prove that Ψ is an isometric isomorphism between ∆ and KX . Clearly, Ψ
is linear and surjective. It remains to prove that Ψ is isometric, that is, ‖`‖B∗

K
= ‖Ψ(`)‖∞,

for all ` ∈ ∆. For any ` :=
∑

j∈Nm
αjδxj

∈ ∆ with m ∈ N, αj ∈ R, xj ∈ X, j ∈ Nm and any

fµ :=
∫
X′ K(·, x′)dµ(x′) ∈ BK with µ ∈ M(X ′), it holds that

`(fµ) =

∫

X′


 ∑

j∈Nm

αjK(xj , x
′)


 dµ(x′),

which together with definition (75) further leads to

`(fµ) =

∫

X′

(Ψ(`))(x′)dµ(x′). (76)

It follows from the definition of the total variation norm that |`(fµ)| ≤ ‖Ψ(`)‖∞‖µ‖TV. By
definition (68), we rewrite the above inequality as |`(fµ)| ≤ ‖Ψ(`)‖∞‖fµ‖BK

for all fµ ∈ BK

which implies that ‖`‖B∗
K

≤ ‖Ψ(`)‖∞. To prove ‖`‖B∗
K

= ‖Ψ(`)‖∞, it suffices to identify a
specific function fµ in BK such that |`(fµ)| = ‖Ψ(`)‖∞‖fµ‖BK

. Since Ψ(`) ∈ C0(X
′), there

exists z ∈ X ′ at which the function Ψ(`) attains its norm, that is, |Ψ(`)(z)| = ‖Ψ(`)‖∞. By
noting that δz ∈ M(X ′) satisfies ‖δz‖TV = 1, we obtain that fδz ∈ BK and ‖fδz‖BK

= 1. It
follows from equation (76) that

`(fδz) =

∫

X′

(Ψ(`))(x′)dδz(x
′) = Ψ(`)(z).

Noting that |Ψ(`)(z)| = ‖Ψ(`)‖∞ and ‖fδz‖BK
= 1, we get from above equation that

|`(fδz)| = ‖Ψ(`)‖∞‖fδz‖BK
. Consequently, we conclude that ‖`‖B∗

K
= ‖Ψ(`)‖∞ for all ` ∈ ∆

and hence, Ψ is an isometric isomorphism between ∆ and KX .
We next identify the reproducing kernel of BK . Since the δ-dual space B′

K is isometrically
isomorphic to a Banach space of functions on X ′, Proposition 4 ensures that there exists
a unique reproducing kernel. To prove that K is the reproducing kernel, we need to verify
the reproducing property. According to the isometric isomorphism Ψ defined by (75), the
bilinear form on C0(X

′)× BK can be defined by

〈f, fµ〉C0(X′)×BK
:=

〈
Ψ−1(f), fµ

〉
BK

, (77)

for all f ∈ C0(X
′) and fµ ∈ BK . By equation (77) with noting that Ψ−1(K(x, ·)) = δx for

all x ∈ X, we obtain for any x ∈ X and any fµ ∈ BK that

fµ(x) = 〈δx, fµ〉BK
= 〈K(x, ·), fµ〉C0(X′)×BK

.

That is, the reproducing property holds. Thus, we get the conclusion that K is the repro-
ducing kernel of BK .

In the next result, we show that C0(X
′) is the adjoint RKBS of BK .

Proposition 24 Let X be a prescribed set and X ′ be a locally compact Hausdorff space.
Suppose that the function K : X ×X ′ → R satisfies K(x, ·) ∈ C0(X

′) for any x ∈ X and
the density condition (66). If BK is an RKBS on X defined by (67) endowed with the norm
(68), then C0(X

′) is the adjoint RKBS of BK .
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Proof We first establish that C0(X
′) is an RKBS. It is clear that C0(X

′) is a space of
functions. For any g ∈ C0(X

′) and x′ ∈ X ′, there holds |δx′(g)| = |g(x′)| ≤ ‖g‖∞ which
implies that the point evaluation functionals are continuous and hence C0(X

′) is an RKBS.
We then show that K(·, x′) ∈ BK for all x ∈ X ′. It follows for each x ∈ X, x′ ∈ X ′ that

K(x, x′) =

∫

X′

K(x, y′)dδx′(y′), (78)

which together with definition (67) of BK yields that K(·, x′) ∈ BK . It remains to verify
the reproducing property (4) in C0(X

′). As pointed out in the proof of Proposition 22, the
mapping Φ : M(X ′) → BK defined by (72) is an isometric isomorphism from M(X ′) to BK .
Moreover, it follows from equation (78) that Φ(δx′) = K(·, x′) for all x′ ∈ X ′. Then we have
for any g ∈ C0(X

′) and x′ ∈ X ′ that

g(x′) = 〈g, δx′〉M(X′) = 〈g,K(·, x′)〉BK
,

which proves (4) with B′ := C0(X
′). Consequently, the desired result follows from the defi-

nition of the adjoint RKBS.

We now turn to describing the MNI problem and the regularization problem in BK .
In this section, we consider learning a target function in BK from the point-evaluation
functional data. Specifically, suppose that xj ∈ X, j ∈ Nn, are n distinct points in X
and K(xj , ·), j ∈ Nn, are linearly independent elements in C0(X

′). Associated with these
point-evaluation functionals, we set

V := span {K(xj , ·) : j ∈ Nn} . (79)

The operator L : BK → R
n, defined by (10), is specialized as

L(fµ) := [fµ(xj) : j ∈ Nn] , for all fµ ∈ BK . (80)

For a given vector y ∈ R
n, the subset My of BK , defined by (12), has the form

My := {fµ ∈ BK : L(fµ) = y}. (81)

With the notation above, we formulate the MNI problem in BK as

inf
{
‖fµ‖BK

: fµ ∈ My

}
, (82)

and the regularization problem in BK as

inf {Qy(L(fµ)) + λ‖fµ‖BK
: fµ ∈ BK} , (83)

where Qy : Rn → R+ is a loss function and λ is a positive regularization parameter.
Before establishing the sparse representer theorems for the solutions of problems (82) and

(83), we verify Assumptions (A1) and (A2) for the RKBS BK . To this end, we characterize
the extreme points of the subdifferential set of the maximum norm at any g ∈ C0(X

′). We
start from the result concerning the extreme points of the unit ball in BK .
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Lemma 25 Let X be a prescribed set and X ′ be a locally compact Hausdorff space. Suppose
that the function K : X ×X ′ → R satisfies K(x, ·) ∈ C0(X

′) for any x ∈ X and the density
condition (66). If BK is an RKBS on X defined by (67) endowed with the norm (68) and
B0

K is the closed unit ball of BK with center at the origin, then

ext
(
B0

K

)
=

{
−K(·, x′),K(·, x′) : x′ ∈ X ′

}
. (84)

Proof Recall that the mapping Φ : M(X ′) → BK defined by (72) is an isometric iso-
morphism from M(X ′) to BK . Let M

0(X ′) denote the closed unit ball of M(X ′) with
center at the origin. Clearly, Ψ is also an isometric isomorphism from M

0(X ′) to B0
K . Note

that isometric isomorphisms from one normed space onto another preserve extreme points
(Megginson (1998)). Hence, we have that

ext(B0
K) = Φ(ext(M0(X ′))). (85)

It is known (Bredies and Carioni (2020)) that ext
(
M

0(X ′)
)
= {−δx′ , δx′ : x′ ∈ X ′}, which

together with equation (85) leads to

ext(B0
K) = {−Φ(δx′),Φ(δx′) : x′ ∈ X ′}. (86)

Substituting Φ(δx′) = K(·, x′) for all x′ ∈ X ′ into (86), we get the desired result (84) of this
lemma.

Next, we characterize the extreme points of the subdifferential set ∂‖·‖∞(g) for a nonzero
g ∈ C0(X

′). For each g ∈ C0(X
′), let N (g) denote the subset of X ′ where the function g

attains its supremum norm ‖g‖∞, namely

N (g) :=
{
x′ ∈ X ′ : |g(x′)| = ‖g‖∞

}
. (87)

For each g ∈ C0(X
′), we introduce a subset of BK by

Ω(g) :=
{
sign(g(x′))K(·, x′) : x′ ∈ N (g)

}
. (88)

We show in the next lemma that for each nonzero g ∈ C0(X
′), the set of the extreme points

of the subdifferential set ∂‖ · ‖∞(g) coincides with Ω(g).

Lemma 26 Let X ′ be a locally compact Hausdorff space. If g ∈ C0(X
′)\{0} and Ω(g) is

defined by (88), then
ext (∂‖ · ‖∞(g)) = Ω(g). (89)

Proof We first prove that Ω(g) ⊂ ext (∂‖ · ‖∞(g)). We assume that f ∈ Ω(g) and proceed
to show f ∈ ext (∂‖ · ‖∞(g)). It follows from definition (88) of Ω(g) that there exists
x′ ∈ N (g) such that

f = sign(g(x′))K(·, x′). (90)

We start with proving f ∈ ∂‖ · ‖∞(g). Recall Φ defined by (72) provides an isometric
isomorphism from M(X ′) to BK and Φ(δx′) = K(·, x′). Noticing that δx′ ∈ M(X ′) sat-
isfies ‖δx′‖TV = 1, we obtain that ‖K(·, x′)‖BK

= 1. This together equation (90) leads
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directly to ‖f‖BK
= 1. According to the reproducing property (4), we have that 〈g, f〉BK

=
sign(g(x′))g(x′). Noting that x′ ∈ N (g), the above equation implies 〈g, f〉BK

= ‖g‖∞.
Hence, we conclude by equation (15) that f ∈ ∂‖ · ‖∞(g). It suffices to show that for any
f1, f2 ∈ ∂‖ · ‖∞(g) satisfying f = (f1 + f2)/2, there holds f = f1 = f2. Since g 6= 0 and
x′ ∈ N (g), we get that g(x′) 6= 0. Lemma 25 ensures that function f with the form (90)
satisfies f ∈ ext(B0

K). Moreover, it follows from ∂‖ · ‖∞(g) ⊂ B0
K that f1, f2 ∈ B0

K . This
combined with f ∈ ext(B0

K) and the definition of extreme points leads to f = f1 = f2.
Again, using the definition of extreme points, we obtain that f ∈ ext (∂‖ · ‖∞(g)).

It remains to show that ext (∂‖ · ‖∞(g)) ⊂ Ω(g). Assume that f ∈ ext (∂‖ · ‖∞(g)).
It follows from Proposition 35 that ext (∂‖ · ‖∞(g)) ⊂ ext

(
B0

K

)
. Hence, f ∈ ext

(
B0

K

)
.

Lemma 25 ensures that there exist α ∈ {−1, 1} and x′ ∈ X ′ such that

f = αK(·, x′). (91)

Since f ∈ ext (∂‖ · ‖∞(g)), we get by equation (15) that 〈g, f〉BK
= ‖g‖∞. Substituting

representation (91) into the above equation, we get that ‖g‖∞ = α〈g,K(·, x′)〉BK
, which

together with the reproducing property (4) leads to ‖g‖∞ = αg(x′). Clearly, x′ ∈ N (g) and
α = sign(g(x′)). Due to the definition (88) of Ω(g), we conclude that f ∈ Ω(g).

Note that for any g ∈ C0(X
′), the set N (g) is bounded in X ′ but its cardinality may

not be finite. To ensure that the RKBS BK satisfies Assumption (A1), we need to impose
the following assumption on the reproducing kernel K.

(A3) For any nonzero g ∈ V, with V being defined by (79), the cardinality of N (g) is
finite.

Below, we present an example of kernel K which satisfies Assumption (A3). Let X =
X ′ = R and K be the Gaussian kernel defined by (69) with d = 1. Suppose that xj ,
j ∈ Nn, are n distinct points in R. We will show that for any nonzero g ∈ C0(R) having
the form g :=

∑
j∈Nn

αjK(xj , ·) with αj ∈ R, j ∈ Nn, the subset N (g), defined by (87),
has a finite cardinality. By the definition (69) of K, g is differentiable. We denote by Z(g)
the set of the zeros of the derivative g′, that is, Z(g) := {x ∈ R : g′(x) = 0}. Clearly,
N (g) ⊂ Z(g). We next show that N (g) has a finite cardinality. Assume to the contrary
that N (g) is infinite. We let xj , j ∈ N, be a sequence of distinct points in N (g). It follows
from N (g) ⊂ Z(g) that xj ∈ Z(g), j ∈ N. Since N (g) is bounded, the sequence xj , j ∈ N,
is also bounded. Hence, Bolzano-Weierstrass theorem ensures that there is a subsequence
xjk , k ∈ N, which converges to some x ∈ R. According to the continuity of g′, we obtain
that limk→∞ g′(xjk) = g′(x), which together with xjk ∈ Z(g), k ∈ N, implies that x ∈ Z(g).
Consequently, we conclude that x is a cumulative point of Z(g). However, the set Z(g), as
the set of the zeros of the analytic function g′, has no cumulative points, a contradiction.
Therefore, the set N (g) must have a finite cardinality. That is, the Gaussian kernel with
the form (69) satisfies Assumption (A3).

Below, we validate that the RKBS BK satisfies Assumptions (A1) and (A2) when the
kernel K satisfies Assumption (A3).

Lemma 27 Let X be a prescribed set and X ′ be a locally compact Hausdorff space. Suppose
that the function K : X ×X ′ → R satisfies K(x, ·) ∈ C0(X

′) for any x ∈ X and the density
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condition (66). Let xj ∈ X, j ∈ Nn, be n distinct points in X and K(xj , ·), j ∈ Nn,
be linearly independent elements in C0(X

′), and let V be defined by (79). If K satisfies
Assumption (A3), then the RKBS BK defined by (67) endowed with the norm (68) satisfies
Assumption (A1) with X ′

g := N (g) for any g ∈ C0(X
′) and Assumption (A2) with C := 1.

Proof We first show that Assumption (A1) holds. For a nonzero g ∈ V, Lemma 26 ensures
that ext (∂‖ · ‖∞(g)) = Ω(g), which together with definition (88) of Ω(g) leads to

ext(∂‖ · ‖∞(g)) =
{
sign(g(x′))K(·, x′) : x′ ∈ N (g)

}
.

Note that for any x′ ∈ N (g), we have that g(x′) 6= 0 as g is nonzero. Hence, we get from
the above equation that

ext(∂‖ · ‖∞(g)) ⊂
{
−K(·, x′j),K(·, x′j) : x′j ∈ N (g)

}
.

Assumption (A3) guarantees the finite cardinality of the set N (g). Thus, Assumption (A1)
holds with X ′

g := N (g) for any g ∈ V.
We next prove that Assumption (A2) holds. For any m ∈ N, distinct points x′j ∈ X ′,

j ∈ Nm, and α = [αj : j ∈ Nm] ∈ R
m, it follows from definition (68) of the norm of BK that

∥∥∥∥∥∥

∑

j∈Nm

αjK(·, x′
j)

∥∥∥∥∥∥
BK

=

∥∥∥∥∥∥

∑

j∈Nm

αjδx′

j

∥∥∥∥∥∥
TV

.

It is clear that ‖∑j∈Nm
αjδx′

j
‖TV = ‖α‖1, which together with the above equation leads

to ‖∑j∈Nm
αjK(·, x′j)‖BK

= ‖α‖1. Therefore, Assumption (A2) holds with C := 1.

We are ready to establish the sparse representation theorems for the solutions of the
MNI problem (82) and the regularization problem (83). Suppose that kernel K satisfies
Assumption (A3). For each g ∈ V , we denote by n(g) the cardinality of N (g) and suppose
that N (g) = {x′j ∈ X ′ : j ∈ Nn(g)}. For each g ∈ V, we introduce a kernel matrix by

Vg := [K(xi, x
′
j) : i ∈ Nn, j ∈ Nn(g)] ∈ R

n×n(g). (92)

In the following theorems, we always let X be a prescribed set and X ′ be a locally compact
Hausdorff space. Suppose that the function K : X ×X ′ → R satisfies K(x, ·) ∈ C0(X

′) for
any x ∈ X and the density condition (66) and that BK is the RKBS on X defined by (67)
endowed with the norm (68). In addition, let xj ∈ X, j ∈ Nn, be n distinct points in X
and K(xj , ·), j ∈ Nn, be linearly independent elements in C0(X

′).

For the MNI problem (82), we get the following sparse representer theorem by employing
Theorem 10.

Theorem 28 Let y ∈ R
n\{0}, V, and My be defined by (79) and (81), respectively.

Suppose that ĝ ∈ V satisfy

(‖ĝ‖∞co(Ω(ĝ))) ∩My 6= ∅. (93)
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If Assumption (A3) holds, N (ĝ) and Vĝ are defined by (87) and (92) with g := ĝ, respec-

tively, then for any f̂ ∈ ext (S(y)), there exist α̂j 6= 0, j ∈ NM , with
∑

j∈NM
|α̂j | = ‖ĝ‖∞

and x′j ∈ N (ĝ), j ∈ NM , such that

f̂ =
∑

j∈NM

α̂jK(·, x′j), (94)

for some positive integer M ≤ rank(Vĝ),

Proof We prove this result by employing Theorem 10. We first point out that the hypothe-
ses about the RKBS in Theorem 10 are satisfied. The RKBS BK guaranteed by Proposition
23 has C0(X

′) as its pre-dual space and K as its reproducing kernel. In addition, according
to Proposition 24, BK and C0(X

′) are a pair of RKBSs. We next verify that ĝ satisfies
(18). Lemma 26 ensures that ext (∂‖ · ‖∞(ĝ)) = Ω(ĝ), which together with Krein-Milman
theorem leads to ∂‖ · ‖∞(ĝ) = co(Ω(ĝ)). It follows from Assumption (A3) that Ω(ĝ) is of
finite cardinality. Thus, the above equation reduces to ∂‖ · ‖∞(ĝ) = co(Ω(ĝ)). Substituting
this equation into relation (93) leads to (‖ĝ‖∞∂‖·‖∞(ĝ))∩My 6= ∅. That is, ĝ satisfies (18).
Finally, according to Lemma 27, we have that Assumption (A1) holds with X ′

g := N (g) for
any g ∈ V and Assumption (A2) holds with C := 1. Thus, the hypotheses in Theorem 10
are all satisfied. By the reproducing property (4), there holds for each i ∈ Nn, j ∈ Nn(ĝ),
that 〈K(xi, ·),K(·, x′j)〉BK

= K(xi, x
′
j), which shows that the matrix Lĝ defined by (21) co-

incides with the matrix Vĝ. Hence, Theorem 10 combined with X ′
ĝ := N (ĝ) and Lĝ := Vĝ

guarantees that any extreme point f̂ of S(y) can be expressed in the form of (94).

Theorem 28 is again data-dependent, similar to Theorem 17. It improves the data-
independent representer theorem, presented in Bartolucci et al. (2023), which expresses the
extreme point of the solution set of the MNI problem (82) in terms of a linear combination
of n elements from the set ext(B0

K), where B0
K is the closed unit ball in BK , independent

of the given data. While Theorem 28 expresses an extreme point of the solution set of the
MNI problem (82) as a linear combination of at most M elements of ext(∂‖ · ‖∞(ĝ)), which
is a much smaller data-dependent subset of ext(B0

K).

By specializing Theorem 12 to the RKBS BK , we establish below the sparse representer
theorem for the solutions of the regularization problem (83).

Theorem 29 Suppose that y0 ∈ R
n, λ > 0 and that Qy0 is lower semi-continuous and

convex. Let V be defined by (79). If Assumption (A3) holds, then every nonzero f̂ ∈
ext (R(y0)) has the representation (94) for some ĝ ∈ V, positive integer M ≤ rank(Vĝ),
αj 6= 0, j ∈ NM , with

∑
j∈NM

|αj | = ‖ĝ‖∞ and x′j ∈ N (ĝ), j ∈ NM .

Proof As has been shown in Propositions 23 and 24, BK and C0(X
′) are a pair of RKBSs

with K being the reproducing kernel of BK and moreover, BK takes C0(X
′) as its pre-dual.

Since Assumption (A3) holds, Lemma 27 ensures that Assumption (A1) is satisfied with
X ′

g := N (g) for any g ∈ V and Assumption (A2) is satisfied with C := 1. We notice that the
regularizer having the form ϕ(t) := t, t ∈ R+, is continuous, convex and strictly increasing.
That is, the hypotheses of Theorem 12 are satisfied. We then obtain the desired result by
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using Theorem 12 and replacing X ′
ĝ and Lĝ by N (ĝ) and Vĝ, respectively.

Remarks on the relation of Theorems 28 and 29 with the result of Song et al. (2013)
are in order. The RKBS with the `1 norm considered in Song et al. (2013) is a subspace
of the RKBS defined by (67) and (68). Representer theorems for the MNI and the regular-
ization problems were also obtained in Song et al. (2013) under an additional admissibility
condition. Our results differ from those of Song et al. (2013) in several aspects. First of
all, the sparse representer theorems presented in Theorems 28 and 29 do not require the
admissibility condition on the kernel function as Song et al. (2013) requires. Second, Song
et al. (2013) represented solutions as in (94) with x′j , j ∈ Nn, being given training samples,
while we represent the extreme points of the solution sets in the form (94), with the points
x′j , j ∈ NM , not necessarily training samples. We also provide a precise characterization for
the points x′j , j ∈ NM , which belong to the data-dependent set N (ĝ). Finally, the number n
of the kernel sections in the solution representation of Song et al. (2013) coincides with the
number of the training samples, while the number M of the kernel sections in representation
(94) may be smaller than the number of the training samples.

The regularization parameter λ in (83) allows to further promote the sparsity level of
the regularized solutions. We show in the next theorem how the choice of the parameter λ
can accomplish it by employing Theorem 15.

Theorem 30 Suppose that y0 ∈ R
n, λ > 0 and that Qy0 is lower semi-continuous and

convex. Let Dλ,y0 be defined by (28) with y := y0, ẑ ∈ Dλ,y0\{0} and let V be defined by
(79), ĝ ∈ V satisfy (93) with y := ẑ. If Assumption (A3) holds, N (ĝ) and Vĝ be defined
by (87) and (92) with g := ĝ, respectively, then problem (83) with y := y0 has a solution
f̂ =

∑
i∈Nl

α̂kiK(·, xki) with α̂ki ∈ R \ {0}, xki ∈ N (ĝ), i ∈ Nl for some l ∈ Nn(ĝ) if and
only if there exists a ∈ ∂Qy(Vĝα̂) for α̂ :=

∑
i∈Nl

α̂kieki such that

λ = −(V>
ĝ a)kisign(α̂ki), i ∈ Nl, and λ ≥ |(V>

ĝ a)j |, j ∈ Nn(ĝ)\{ki : i ∈ Nl}. (95)

Proof We prove this theorem by specializing Theorem 15 to problem (83). Once again, as
has been shown in Propositions 23 and 24, BK and C0(X

′) are a pair of RKBSs withK being
the reproducing kernel of BK and moreover, BK takes C0(X

′) as its pre-dual. Moreover,
Assumption (A3) ensures that Assumption (A1) holds with X ′

g := N (g) for any g ∈ V and
Assumption (A2) holds with C := 1. As in the proof of Theorem 28, one can see that
assumption (93) ensures that ĝ satisfies (18) with y := ẑ. We also notice that ϕ(t) := t,
t ∈ R+ in the regularization problem (83), is continuous, convex and strictly increasing.
The hypotheses of Theorem 15 are all fulfilled. Therefore, by Theorem 15 with Lĝ := Vĝ

and X ′
ĝ := N (ĝ), problem (83) with y := y0 has a solution f̂ =

∑
i∈Nl

α̂kiK(·, xki) with
α̂ki ∈ R\{0}, xki ∈ N (ĝ), i ∈ Nl for some l ∈ Nn(ĝ) if and only if there exists a ∈ ∂Qy(Vĝα̂)
with α̂ :=

∑
i∈Nl

α̂kieki ∈ Ωl such that

λ = −(V>
ĝ a)kisign(α̂ki)/(ϕ

′(C‖α̂‖1)), i ∈ Nl, (96)

λ ≥ |(V>
ĝ a)j |/(Cϕ′(C‖α̂‖1)), j ∈ Nn(ĝ)\{ki : i ∈ Nl}. (97)

Substituting ϕ′(t) = 1, t ∈ R+ and C = 1 into (96) and (97) yields the desired result (95).
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7. Conclusion

We have studied attributes of RKBSs that can promote sparsity of learning solutions in
the spaces. We have proposed sufficient conditions on RKBSs which give rise to explicit
and data-dependent sparse representer theorems for solutions of the MNI problem and
the regularization problem in the spaces. Following the established general sparse repre-
senter theorems, we have shown that two specific RKBSs, the sequence space `1(N) and
the measure space, have sparse representations for solutions of the MNI problem and the
regularization problem in these spaces.
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Appendix A. Explicit Representer Theorems for MNI in Banach Spaces

An explicit representer theorem for the solutions of the MNI problem in a general Banach
space having a pre-dual space is stated in Proposition 7 of Section 3. In this appendix, we
give a complete proof for the proposition.

We first present several useful properties of the solution set S(y) of problem (13) with
y ∈ R

n. For this purpose, we recall two well-known results. The generalized Weierstrass
Theorem (Kurdila and Zabarankin (2005)) shows that if X is a compact topological space
and a functional T : X → R is lower semi-continuous, then there exists f0 ∈ X such that

T f0 = inf{T (f) : f ∈ X}.

A consequence of the Banach-Alaoglu Theorem (Megginson (1998)) ensures that any bounded
and weakly∗ closed subset of B∗ is weakly∗ compact.

Lemma 31 If the Banach space B has a pre-dual space B∗ and νj ∈ B∗, j ∈ Nn, are linearly
independent, then for any y ∈ R

n, the solution set S(y) of problem (13) is nonempty, convex
and weakly∗ compact.

Proof We first show that S(y) is nonempty. Note that the linear independence of νj ,
j ∈ Nn, guarantees that My is nonempty. Pick g ∈ My and set r := ‖g‖B + 1. It follows
that Br ∩ My 6= ∅, where Br denotes the closed ball centered at the origin with radius r
under the norm ‖ · ‖B. Accordingly, we rewrite the MNI problem (13) as

inf {‖f‖B : f ∈ Br ∩My} . (98)

We prove that problem (98) has at least one solution by using the generalized Weierstrass
Theorem. Note that the norm ‖ · ‖B is weakly∗ lower semi-continuous on B. It suffices to
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verify that Br ∩My is weakly∗ compact. We first claim that Br ∩My is weakly∗ closed.
Indeed, suppose that the sequence fm, m ∈ N, in Br ∩ My converges weakly∗ to f . We
then get that limm→+∞ 〈fm, νj〉B∗

= 〈f, νj〉B∗ , for all j ∈ N, which together with equation
(2) leads to limm→+∞ 〈νj , fm〉B = 〈νj , f〉B, for all j ∈ N. Noting that 〈νj , fm〉B = yj , for all
m ∈ N and all j ∈ Nn, the above equation yields that 〈νj , f〉B = yj , for all j ∈ Nn. That is
to say, f ∈ My. According to the weakly∗ lower semi-continuity of the norm ‖ · ‖B on B,
we have that

‖f‖B ≤ lim inf
m

‖fm‖B ≤ r. (99)

We get the conclusion that f ∈ Br ∩My and hence Br ∩My is weakly∗ closed. Obviously,
Br ∩ My is bounded in B. Consequently, the Banach-Alaoglu Theorem guarantees that
Br ∩ My is weakly∗ compact. By virtue of the generalized Weierstrass theorem, there
exists an f0 ∈ Br ∩My such that ‖f0‖B = inf {‖f‖B : f ∈ Br ∩My} . That is, f0 ∈ S(y).

We next verify that S(y) is convex. It is clear that for any f1, f2 ∈ S(y) and any
θ ∈ [0, 1], there holds θf1 + (1− θ)f2 ∈ My. Moreover, we also have that

‖θf1 + (1− θ)f2‖B ≤ θ‖f1‖B + (1− θ)‖f2‖B,

which together with f1 and f2 both attaining the infimum in (13) yields that θf1+(1−θ)f2
is also a solution of (13). That is, θf1 + (1− θ)f2 ∈ S(y). Thus, S(y) is a convex set.

We finally prove that S(y) is weakly∗ compact. Again by the Banach-Alaoglu theorem,
it suffices to prove that S(y) is bounded and weakly∗ closed. Since all the elements in
S(y) have the infimum in (13) as their norms, the set S(y) is obviously bounded. Suppose
that the sequence fm, m ∈ N, in S(y) converges weakly∗ to f . As pointed out earlier,
we have that f ∈ My. It follows from the weakly∗ lower semi-continuity of ‖ · ‖B that
‖f‖B ≤ lim infm ‖fm‖B = ‖f0‖B. Note that ‖f‖B = ‖f0‖B otherwise it will contradict to
the fact that f0 is a solution. Consequently, we conclude that f ∈ S(y) and thus S(y) is
weakly∗ closed.

We next express the solution set S(y) by using the elements in the set V defined by (9).
For any f ∈ B, we introduce a subset of V by

J (f) := {ν ∈ V : f ∈ ‖ν‖B∗∂‖ · ‖B∗(ν)} . (100)

Theorem 12 in Wang and Xu (2021) guarantees that for any solution f̂ of problem (13),
the set J (f̂) is nonempty. The next lemma shows that the sets defined by (100) associated
with different solutions of problem (13) are exactly the same.

Lemma 32 If B is a Banach space having a pre-dual space B∗ and νj ∈ B∗, j ∈ Nn,

are linearly independent, then for any two solutions f̂ , ĝ of the MNI problem (13) with
y ∈ R

n\{0}, there holds J (f̂) = J (ĝ).

Proof It suffices to show that J (f̂) ⊆ J (ĝ). Suppose that µ ∈ J (f̂). That is, µ ∈ V and
f̂ ∈ ‖µ‖B∗∂‖ · ‖B∗(µ). It is clear that µ 6= 0 since f̂ 6= 0. By equation (15) with B being
replaced by B∗ and equation (2), we have that

‖f̂‖B = ‖µ‖B∗ and 〈µ, f̂〉B = ‖f̂‖B‖µ‖B∗ . (101)
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Since both f̂ and ĝ are solutions of the MNI problem (13) with y, it holds that ‖f̂‖B = ‖ĝ‖B
and 〈νj , f̂〉B = 〈νj , ĝ〉B, for all j ∈ Nn, which together with µ ∈ V lead to

‖f̂‖B = ‖ĝ‖B and 〈µ, f̂〉B = 〈µ, ĝ〉B. (102)

Combining equations (101) with (102), we obtain that ‖ĝ‖B = ‖µ‖B∗ and 〈µ, ĝ〉B = ‖ĝ‖B‖µ‖B∗ .
This implies µ ∈ J (ĝ). Consequently, we conclude that J (f̂) ⊆ J (ĝ).

As we have seen in Lemma 32, the set J (f̂) is independent of the choice of the solution
f̂ . This result allows us to express the solution set S(y) by using any fixed ν̂ ∈ J (f̂).

Proposition 33 Suppose that B is a Banach space having a pre-dual space B∗, νj ∈ B∗,
j ∈ Nn, are linearly independent and y ∈ R

n\{0}. If V and My are defined by (9) and
(12), respectively, and ν̂ ∈ V satisfies (18), then

S(y) = (‖ν̂‖B∗∂‖ · ‖B∗(ν̂)) ∩My. (103)

Proof We first assume that f̂ ∈ (‖ν̂‖B∗∂‖ · ‖B∗(ν̂)) ∩ My. That is, f̂ ∈ My and there
exists ν̂ ∈ V satisfying the inclusion relation (16). Theorem 12 in Wang and Xu (2021)
ensures that f̂ ∈ S(y). Hence, we have that (‖ν̂‖B∗∂‖ · ‖B∗(ν̂)) ∩My ⊆ S(y). Conversely,

assume that f̂ ∈ S(y). We choose ĝ ∈ (‖ν̂‖B∗∂‖ · ‖B∗(ν̂)) ∩ My. Similar arguments show
that ĝ is also a solution of problem (13) with y and ν̂ ∈ J (ĝ). With the help of Lemma 32,
we obtain that ν̂ ∈ J (f̂). That is, f̂ ∈ ‖ν̂‖B∗∂‖ · ‖B∗(ν̂), which together with f̂ ∈ My leads

further to f̂ ∈ (‖ν̂‖B∗∂‖ · ‖B∗(ν̂))∩My. We thus get that S(y) ⊆ (‖ν̂‖B∗∂‖ · ‖B∗(ν̂))∩My,
which completes the proof of the desired result.

We will characterize the extreme points of S(y) by employing a well-known result about
the extreme points. Dubins (1962) concerns a characterization of the extreme points of
a subset, which is the intersection of a bounded, closed and convex subset with a finite
number of hyperplanes. Specifically, let X be a topological vector space over the field of
real numbers. Suppose that A is a bounded, closed and convex subset of X . Dubins (1962)
proved that every extreme point of the intersection of A with n hyperplanes is a convex
combination of at most n+ 1 extreme points of A. Below, we give a technical lemma.

Lemma 34 Suppose that B is a Banach space having a pre-dual space B∗ and νj ∈ B∗,
j ∈ Nn, are linearly independent. Let L and V be defined by (10) and (12), respectively. If
ν ∈ V\{0} and wj ∈ ∂‖ · ‖B∗(ν), j ∈ Nn+1, then there exist aj ∈ R, j ∈ Nn+1, not all zero,
such that

∑
j∈Nn+1

ajL(wj) = 0 and
∑

j∈Nn+1
aj = 0.

Proof Assume that ν :=
∑

i∈Nn
ciνi and set c := [ci : i ∈ Nn] ∈ R

n. By definition (10) of
the operator L, we have for each j ∈ Nn+1 that

〈L(wj), c〉Rn =

〈
∑

i∈Nn

civi, wj

〉

B

= 〈ν, wj〉B ,
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which together with wj ∈ ∂‖ · ‖B∗(ν) further leads to 〈L(wj), c〉Rn = ‖ν‖B∗ . It is clear that
L(wj), j ∈ Nn+1, as n+1 elements in R

n, are linearly dependent. Hence, there exist aj ∈ R,
j ∈ Nn+1, not all zero, such that

∑
j∈Nn+1

ajL(wj) = 0. By equation 〈L(wj), c〉Rn = ‖ν‖B∗ ,
we get that

0 =

〈
∑

j∈Nn+1

ajL(wj), c

〉

Rn

= ‖ν‖B∗

∑

j∈Nn+1

aj ,

which together with ν 6= 0 results that
∑

j∈Nn+1
aj = 0.

We are ready to provide a complete proof for Proposition 7.

Proof [of Proposition 7] With the help of Proposition 33, we represent the solution set S(y)
as in equation (103). It follows from equation (15) and ν̂ 6= 0 that the subset ‖ν̂‖B∗∂‖·‖B∗(ν̂)
is bounded and thus weakly∗ bounded. By the definition of subdifferential, we get that
‖ν̂‖B∗∂‖ · ‖B∗(ν̂) is also convex and weakly∗ closed. In addition, it is clear that My is
the intersection of n hyperplanes. Consequently, the solution set S(y) may be seen as
the intersection between a subset of B, which is weakly∗ bounded, weakly∗ closed and
convex, and n hyperplanes. Then Dubins (1962) ensures that any extreme point f̂ of
S(y) has the form f̂ =

∑
j∈Nn+1

γ
′

ju
′

j , with γ
′

j ≥ 0 satisfying
∑

j∈Nn+1
γ

′

j = 1 and u
′

j ∈
ext (‖ν̂‖B∗∂‖ · ‖B∗(ν̂)). By setting γ

′′

j := ‖ν̂‖B∗γ
′

j , u
′′

j := u
′

j/‖ν̂‖B∗ , j ∈ Nn+1, and noting

that ext (‖ν̂‖B∗∂‖ · ‖B∗(ν̂)) = ‖ν̂‖B∗ext (∂‖ · ‖B∗(ν̂)) , we rewrite f̂ as in

f̂ =
∑

j∈Nn+1

γ
′′

j u
′′

j , (104)

with γ
′′

j ≥ 0 satisfying
∑

j∈Nn+1
γ

′′

j = ‖ν̂‖B∗ and u
′′

j ∈ ext (∂‖ · ‖B∗(ν̂)).

We will represent f̂ with the form (104) as in (19). Note that if there exists j0 ∈ Nn+1

such that γ′′j0 = 0, then representation (104) reduces to the desired result (19). Hence, it
remains to consider the case that γ′′j > 0 for all j ∈ Nn+1. We will show that u′′j , j ∈ Nn+1

are linearly dependent. By Lemma 34 and noting that ν̂ ∈ V\{0} and u
′′

j ∈ ∂‖ · ‖B∗(ν̂),
j ∈ Nn+1, there exist aj ∈ R, j ∈ Nn+1, not all zero, such that

∑

j∈Nn+1

ajL(u
′′

j ) = 0 and
∑

j∈Nn+1

aj = 0. (105)

By setting α :=
minj∈Nn+1

γ′′
j

maxj∈Nn+1
|aj |

, we introduce two elements f1, f2 in B by

f1 := f̂ +
α

2

∑

j∈Nn+1

aju
′′

j , f2 := f̂ − α

2

∑

j∈Nn+1

aju
′′

j .

It follows from the first equation in (105) and L(f̂) = y that L(f1) = y. That is, f1 ∈ My.
Substituting equation (104) into the representation of f1, we obtain that

f1 =
∑

j∈Nn+1

(
γ

′′

j +
αaj
2

)
u

′′

j . (106)
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According to the definition of α, the coefficient of each u′′j appearing in (106) is positive.

Moreover, combining
∑

j∈Nn+1
γ

′′

j = ‖ν̂‖B∗ with the second equation in (105), we get that

∑

j∈Nn+1

(
γ

′′

j +
αaj
2

)
=

∑

j∈Nn+1

γ
′′

j +
α

2

∑

j∈Nn+1

aj = ‖ν̂‖B∗ .

We thus conclude that f1/‖ν̂‖B∗ is a convex combination of u
′′

j , j ∈ Nn+1. Recall that

u
′′

j ∈ ext (∂‖ · ‖B∗(ν̂)) and hence f1/‖ν̂‖B∗ ∈ ∂‖ · ‖B∗(ν̂), that is, f1 ∈ ‖ν̂‖B∗∂‖ · ‖B∗(ν̂).
Above all, we obtain that f1 ∈ (‖ν̂‖B∗∂‖ · ‖B∗(ν̂)) ∩My, which guaranteed by Proposition
33 is equivalent to f1 ∈ S(y). By similar arguments we also get that f2 ∈ S(y). It is clear
that f̂ = (f1 + f2)/2, which together with the assumption that f̂ ∈ ext (S(y)) further leads
to f̂ = f1 = f2. Substituting the above relation into the representations of f1 and f2 with
noting that α > 0, we have that

∑

j∈Nn+1

aju
′′

j = 0. (107)

Since aj ∈ R, j ∈ Nn+1 are not all zero, (107) implies that u
′′

j , j ∈ Nn+1, are linearly
dependent.

Without loss of generality, we assume that an+1 6= 0. It follows from equation (107)
that

u′′n+1 = −
∑

j∈Nn

aj
an+1

u
′′

j . (108)

By substituting relation (108) into (104), we obtain that

f̂ =
∑

j∈Nn

(
γ′′j − γ′′n+1

an+1
aj

)
u′′j (109)

For each j ∈ Nn, by letting γj := γ′′j − γ′′
n+1

an+1
aj and uj := u′′j , we can rewrite (109) as (19).

In addition, due to
∑

j∈Nn+1
γ

′′

j = ‖ν̂‖B∗ and the second equation of (105), we obtain that∑
j∈Nn

γj = ‖ν̂‖B∗ . This completes the proof.

The next proposition shows that for any ν ∈ B∗\{0}, the set ext (∂‖ · ‖B∗(ν)) is smaller
than the set of extreme points of the closed unit ball B0. That is to say, Proposition 7
provides an even more precise characterization for uj , j ∈ Nn, appearing in representation
(19).

Proposition 35 If Banach space B has a pre-dual space B∗, then for any ν ∈ B∗\{0},
there holds ext (∂‖ · ‖B∗(ν)) ⊂ ext (B0) .

Proof We assume that ν ∈ B∗\{0} and f ∈ ext (∂‖ · ‖B∗(ν)). It is sufficient to present
f ∈ ext(B0). By equation (15), we get that ‖f‖B = 1 and thus f ∈ B0. For any f1, f2 ∈ B0

satisfying f = (f1 + f2)/2, we shall prove that f1 = f2 = f . We first show that ‖f1‖B =
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‖f2‖B = 1. Otherwise, without loss of generality, we suppose that ‖f1‖B < 1. Then there
holds

1 = ‖f‖B =

∥∥∥∥
f1 + f2

2

∥∥∥∥
B

≤ ‖f1‖B + ‖f2‖B
2

< 1,

which leads to a contradiction. Hence, ‖f1‖B = ‖f2‖B = 1. We next prove that 〈fi, ν〉B∗ =
‖ν‖B∗ , for i = 1, 2. If the claim is not true, without loss of generality, we suppose that
〈f1, ν〉B∗ < ‖ν‖B∗ . It follows that

‖ν‖B∗ = 〈f, ν〉B∗ =
〈f1, ν〉B∗ + 〈f2, ν〉B∗

2
< ‖ν‖B∗ ,

which is a contradiction as well. Thus, 〈fi, ν〉B∗ = ‖ν‖B∗ , for i = 1, 2. We then conclude by
equation (15) that f1, f2 ∈ ∂‖ · ‖B∗(ν). This combined with f ∈ ext (∂‖ · ‖B∗(ν)) and the
definition of extreme points leads to f1 = f2 = f . Again using the definition of extreme
point, we obtain that f ∈ ext(B0), which completes the proof.

Appendix B. A Dual Problem of MNI in Banach Spaces

In this appendix, we formulate a dual problem, a finite dimensional optimization problem,
of the MNI problem (13) in a general Banach space having a pre-dual space. We then show
that the element ν̂ ∈ V appearing in Proposition 7 can be obtained by solving the resulting
dual problem. Throughout this appendix, we suppose that B is a Banach space having the
pre-dual space B∗ and νj ∈ B∗, j ∈ Nn, are linearly independent.

We establish the dual problem of problem (13) via a functional analysis approach. For
this purpose, we recall the notion of the quotient space. If M is a closed subspace of a
Banach space B, then the quotient space B/M is defined to be the collection of cosets
f +M, for all f ∈ B. The quotient space is a Banach space when endowed with the norm

‖f +M‖B/M := inf {‖f + g‖B : g ∈ M} .

It is known (Conway (1990)) that M∗ is isometrically isomorphic to B∗/M⊥.
We now transform the MNI problem (13) into an equivalent dual problem.

Proposition 36 For y := [yj : j ∈ Nn] ∈ R
n\{0}, let My be defined by (12). Then

inf {‖f‖B : f ∈ My} = sup





∑

j∈Nn

cjyj :

∥∥∥∥∥∥

∑

j∈Nn

cjνj

∥∥∥∥∥∥
B∗

= 1



 . (110)

Proof By setting M0 to be My with y = 0, we represent My as a translation of M0,
that is, My := M0 + f0 for some f0 ∈ My. Then the MNI problem (13) may be rewritten
as

inf {‖f‖B : f ∈ My} = inf {‖f0 + g‖B : g ∈ M0} ,
which further leads to

inf {‖f‖B : f ∈ My} = ‖f0 +M0‖B/M0
. (111)
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By the isometric isomorphism between (B∗)
∗/V⊥ and V∗, with noting that B = (B∗)

∗ and
M0 = V⊥, we have that

‖f0 +M0‖B/M0
= sup





〈
∑

j∈Nn

cjνj , f0

〉

B

:

∥∥∥∥∥∥

∑

j∈Nn

cjνj

∥∥∥∥∥∥
B∗

= 1



 . (112)

Substituting 〈νj , f0〉B = yj , j ∈ Nn, into the right-hand-side of equation (112), we get that

‖f0 +M0‖B/M0
= sup





∑

j∈Nn

cjyj :

∥∥∥∥∥∥

∑

j∈Nn

cjνj

∥∥∥∥∥∥
B∗

= 1



 .

Again substituting the above equation into (111), we get the desired equation (110).

As a finite dimensional optimization problem, the dual problem

sup





∑

j∈Nn

cjyj :

∥∥∥∥∥∥

∑

j∈Nn

cjνj

∥∥∥∥∥∥
B∗

= 1



 , (113)

shares the same optimal value with the MNI problem (13). We remark that such a dual
problem was considered in Cheng and Xu (2021) for the MNI problem with B := `1(N) and
in Cheng et al. (2024) for a class of regularization problems.

The next result concerns how to obtain an element ν̂ ∈ V satisfying (18) once we have
a solution of the dual problem (113) at hand.

Proposition 37 For y := [yj : j ∈ Nn] ∈ R
n\{0}, let My be defined by (12). If m0 is the

infimum of the MNI problem (13) with y and ĉ := [ĉ1, ĉ2, . . . , ĉn] ∈ R
n is a solution of the

dual problem (113) with y, then ν̂ := m0
∑

j∈Nn
ĉjνj satisfies (18).

Proof Noting that S(y) is nonempty, we choose f̂ ∈ S(y) and proceed to prove that
f̂ ∈ ‖ν̂‖B∗∂‖ · ‖B∗(ν̂)∩My. Clearly, f̂ ∈ My. It suffices to show that f̂ ∈ ‖ν̂‖B∗∂‖ · ‖B∗(ν̂).
Since ĉ is a solution of problem (113), we get that ‖∑j∈Nn

ĉjνj‖B∗ = 1. This together

with the definition of ν̂ leads to ‖ν̂‖B∗ = m0. By noting that ‖f̂‖B = m0, we obtain that∥∥∥ f̂
‖ν̂‖B∗

∥∥∥
B
= 1. It follows that

〈
f̂

‖ν̂‖B∗

, ν̂

〉

B∗

=
∑

j∈Nn

ĉj〈f̂ , νj〉B∗ .

Substituting 〈f̂ , νj〉B∗ = yj , j ∈ Nn, into the above equation, we have that

〈
f̂

‖ν̂‖B∗

, ν̂

〉

B∗

=
∑

j∈Nn

ĉjyj .
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Noting that ĉ is a solution of problem (113), the above equation, guaranteed by Proposition
36, yields that 〈f̂/‖ν̂‖B∗ , ν̂〉B∗ = m0. This together with ‖ν̂‖B∗ = m0 leads directly to
〈f̂/‖ν̂‖B∗ , ν̂〉B∗ = ‖ν̂‖B∗ . Consequently, we conclude that f̂/‖ν̂‖B∗ ∈ ∂‖ · ‖B∗(ν̂), that is,
f̂ ∈ ‖ν̂‖B∗∂‖ · ‖B∗(ν̂). This completes the proof of this proposition.

Proposition 37 ensures that the element ν̂ ∈ V appearing in Proposition 7 can be
obtained by solving the dual problem (113).
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