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1. Introduction

Learning in Banach spaces has received considerable attention in the last two decades [1,2,6,14,16,
26,30-33,36,37,41,45,46,48]. Learning methods are often formulated as regularization problems [22,
30]. Such a problem seeks to minimize an objective function in the form of the sum of a data fidelity
term in the norm of a Banach space, and a regularization term in the norm of another Banach space,
which is often of infinite dimension. Due to the big data nature of recent real-world applications,
regularization in a Banach space with a sparsity promoting norm is widely used in various practical
fields such as statistics [34,35], machine learning [4,28], signal processing [7], image processing and
medical imaging [24,27]. In particular, special Banach spaces related to the ¢; space have proved
useful in handwritten digit recognition [20,21]. However, effective solutions of these regularization
problems are challenging. Especially, in the context of sparse learning [45], the norm of the Banach
space for the regularization term is often chosen as a sparsity promoting norm, which usually is non-
differentiable. Solving regularization problems having non-differentiable objective functions is even
more troublesome, requiring great care. Moreover, it is demanding to develop efficient numerical
solvers to learn a function in an infinite dimensional Banach space.

The goal of this paper is to develop a duality approach for the solution of the class of regulariza-
tion problems described above that arise in machine learning, attempting to provide a mathematical
basis for further development of efficient numerical methods. Motivated by the duality approach [11]
for solving the minimum norm interpolation problem in ¢;(N), we develop a duality approach to
solve problems of this type. Specifically, we construct a direct sum space based on the Banach spaces
for the data fidelity term and for the regularization term, and identify the objective function of the
regularization problem as the norm of a suitable quotient space of the direct sum space. This ex-
presses the original regularization problem as a minimum norm problem on the quotient space. By
considering the dual space of this resulting space, we further reformulate the original regularization
problem as an equivalent problem in the dual space. By analyzing the geometry of the resulting space
to determine the combination of parameters that will give rise to sparse solutions, we identify that
the dual problem is to find the maximum of a linear function on a convex polytope. The resulting
problem can be solved by linear programming. Once that problem is solved, we solve the original
problem by using related extremal properties of norming functionals.

We proceed to describe the regularization problem to be considered in this paper. Let 2" be a
real Banach space with the dual space 2™*. For m € N, we set N, :={1,2,...,m}. Suppose that a,
k € Np,, are linearly independent elements of 2™*, and yy, k € Ny, are fixed real numbers, not all
zero. Assume that there is a positive parameter p. Consider the minimization problem

inf{ 3 \yk—<x,ak>gg!+p||x||%:xe%}. (11)
keNp,

The pairs (ag, ¥x), k € N, constitute a training sample. The vector x is a hypothesis. The quantity in
(1.1) being minimized is known as a loss functional resulting from a hypothesis x and the training
sample. This is a basic problem in machine learning. The vector x represents an estimate of the law
underlying the training sample. The second term is the “regularizer,” intended to prevent overfitting
the data. The positive parameter p controls the relative influence of this term. A related problem is
to find x € 2" that minimizes

inf{||x||%:(x,ak)%:yk, keNp, xe 3{} (1.2)

This is to find the minimum norm X that interpolates the data set. For this reason, (1.2) is called a
minimum norm interpolation problem. Typical examples of the space 2" are the spaces £,(N), for
1 < p < +o0. Besides their theoretical importance, the spaces £,(N) have numerous applications, for
instance, to signal processing and control theory [47] and relaxation methods in linear programming
[39]. When 1 < p < 2, the space £,(N) can be used to study the prediction of filtered symmetric-o-
stable processes; these are useful for modeling heavy-tailed phenomena [8-10,17]. The case p =1
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gives rise to a Banach algebra, as well as a sparsity-promoting geometry [11]. It has a unique impor-
tance in spectral factorization methods in signal processing [5].

The regularization problem (1.1) may be viewed as a special case of a general problem. Suppose
that 27, ¢ and & are three real Banach spaces with dual spaces 27, #* and 2°*, respectively, and
there are constants p >0 and 1 < p < co. Let yp € # be a fixed nonzero vector. Suppose that A is a
bounded linear operator from 2" to ¢ and B is a bounded linear operator from 2~ to 2. Consider
the problem

inf{(lyo — Ax|l%, + plIBxI|%) /P : xe 27}, (13)

and the corresponding general interpolation problem

inf{||x]| 2~ : AX=yo, xe 2} (1.4)

(inclusion of the power p in the latter problem would have no meaningful effect). Many data science
problems fall into the setting of problem (1.3). The well-known compressed sensing problem [6,14]
may be reformulated in the form of (1.3). Regularized learning [13,15,25,48], I1-sparse regularization
[19,46] and regularization models for inverse problems [40-42] are special examples of problem (1.3).

In our approach we will introduce a normed space that is closely related to this loss functional.
Specifically, the associated loss functional itself becomes a norm on a Banach space built from %
and 2 and the “training sample,” as incorporated into yg, A and B. This reformulates the extremal
problem (1.3) into an apparently simpler one, namely, to find a vector of minimum length in a con-
vex subset of the constructed Banach space. A duality argument is used, transforming the original
extremal problem into an equivalent one in the dual Banach space. In practice, the dual extremal
problem often involves only finitely many free parameters, and thus yields to numerical methods.
A solution to the dual problem is then used to identify solutions to the original problem (1.3), by
a correspondence between their norming functionals. The extremal problems (1.3) and (1.4) respec-
tively reduce to the problems (1.1) and (1.2) above by choosing p =1, # = R™ (with suitable norms
attached) and 2 = 2. Moreover, A is the operator from 2" to % such that the kth entry of AX is
(X,ay) 2, k € N, and B is the identity operator on 2". The existence and uniqueness of solutions
will be addressed in due course.

Our approach makes use of numerous standard tools from classical functional analysis. These re-
sults are stated in the course of their usage; for reference, their proofs are gathered together in an
appendix. Throughout this paper, &/, 8, 2, % and Z will denote a separable Banach space over
the real scalars. All subspaces are understood to be closed in the norm topology. If p is a parameter
satisfying 1 < p < oo, then p’ will denote its Holder conjugate, so that 1/p +1/p’ =1.

This paper is organized as follows. In the section to follow we review classical results of functional
analysis connecting an extremal problem in a Banach space and its dual extremal problem. The notion
of the norming functional is also covered. In Section 3, we develop a duality approach for solving the
regularized extremal problem (1.3). We begin reviewing the concept of a direct sum of two Banach
spaces, and a family of norms that can be placed on the direct sum. A duality argument is then used
to recast the original extremal problem (1.3) into an equivalent dual problem. The solution to the
original problem is then obtained via norming functionals. In Section 4, we consider regularization in
a specific Banach space ¢1(N) of sequences defined on N. We show that the dual problem is indeed
a finite dimensional optimization problem, which can be solved by linear programming. The result-
ing dual solution leads us to reformulate the original infinite optimization problem as an equivalent
finite dimensional one. The later can be solved by numerical methods such as the fixed point prox-
imity algorithm (FPPA) developed in [18,24]. We present three numerical experiments in Section 5 to
demonstrate the effectiveness of the proposed duality approach. There follows an appendix containing
proofs of standard results from functional analysis.

2. A duality approach to extremal problems

To prepare for developing a duality approach for solving the regularized extremal problems, we
consider in this section an abstract extremal problem which may be taken as a best approximation
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problem in a Banach space. By using the characterizations of a general best approximation problem
in functional analysis and convex analysis, we transform the extremal problem into an equivalent
dual problem. The relation between the solutions of the original problem and its dual problem is
characterized by the norming functionals. We also consider a special case that the Banach spaces
involving in the extremal problem have pre-duals.

We begin with describing the extremal problem under investigation. Suppose that <7 and % are
two real Banach spaces and H is a bounded linear operator from </ to %. Let by € % be a fixed
vector. We consider the extremal problem

inf{||bo — Hallz: ac </}. 2.1)

By introducing a closed subspace .# of & as

M ={Ha: ae 4}, (2.2)

the extremal problem (2.1) seeks a best approximation to by from the closed subspace .Z. We will
apply the theory of the best approximation to problem (2.1). Most proofs of the results in this section
are standard. For convenience to readers, we include the proofs in this section and the appendix.

We next establish the duality problem of problem (2.1) via a functional analytic approach. To
this end, we recall some notions in Banach spaces. The dual space 2/* of a Banach space .7 is the
collection of all continuous linear functionals on 7. For a € &/ and A € &/*, we may write (a, 1) oy in
place of A(a), to emphasize that the functional is operating on a vector in <. We also recall that .&/*
is itself a Banach space under the norm

(@, 2) |

———:ae\{0}}, forall A € &7*.
lall o

||)\.||yj* =Ssup

We use the notation .4+ to mean the annihilator of a subset .4 in ., that is, the subspace of <7*
given by AL := {A ed*: (@, )y =0, forall ae </V} If A4 is a closed subspace of <, then the
quotient space <7 /.4 is defined to be the collection of cosets a+ .4, for all a € o/ The quotient space
is also a Banach space when endowed with the norm |a+ A ||y :=inf{lla—¢|ly: c€ AN} =
dist,/(a, .#"). We denote by ker T the kernel ker T :={a € &/ : Ta =0} of the linear operator T : &/ —
2 and by RanT the range RanT :={be % :b=Ta, ac </} of the operator T.

The following lemma identifies the dual of a closed subspace of a Banach space, and the dual of a
quotient space. For its proof we refer to [12, Section IIL.10].

Lemma 2.1. Let .4/ be a closed subspace of a Banach space <. Then (& /] 4 )* is isometrically isomorphic to
AL, and A* is isometrically isomorphic to o7* ] A L.

The above lemma enables us to transform the extremal problem (2.1) into an equivalent dual
problem.

Theorem 2.2. Suppose that <7 and % are real Banach spaces and bg € 4. Let H be a bounded linear operator
from o7 to 98 and H* its adjoint operator. Then there holds

inf{|lbo — Ha|| : a€ &/} =sup {|(bo,k)@| D [Allgs <1, AekerH* }. (2.3)

Proof. Let ./ be the subspace of % defined by (2.2). It follows that

inf{|lbo — Hal|z:a€ @/} = |bo + 4 2.0 - (2.4)

Lemma 2.1 ensures that
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Ibo + .7l .20 = sup {I(boyk)@l e =1, A€ ///l}.

Substituting the above equation into equation (2.4), we get that
inf {||bp — Hal|z : a € &/} = sup {I(bo, Mal: Ala <1, 1€ (///l}.

It suffices to identify .4 with the kernel of the adjoint operator H*. Note that A € .Z~ is equivalent
to (Ha,A)g =0, for all a € &7. It follows from (Ha, 1)y = (a, H*A) ., for all a e &7/, A € #*, that
X e.#* if and only if (a, H*A), =0 for all a € «7. The latter is equivalent to H*A = 0, which is in
turn equivalent to A € ker H*. Therefore, the desired duality formula of the theorem holds. O

The duality result stated in Theorem 2.2 can even be extended to the cases when ./ is replaced by
certain convex sets [38,43,44]. This result can also be obtained by using a convex analytic approach.
By using the Fenchel duality theorem, the best approximation problem can be characterized in the
next lemma [3].

Lemma 2.3. Let % be a real Banach space. Suppose that .# is a nonempty closed convex set in % and by €
B\ A . Then there holds

inf{bo —bllz:be.#}= sup inf (bo—b,2)z.
|2l gz <1 bEA

We now apply Lemma 2.3 to the extremal problem (2.1) and obtain its dual problem described in
Theorem 2.2. When the closed convex set .# coincides with the closure of the range of the operator
H defined by (2.2), we represent problem (2.1) as a best approximation problem

inf{|lbo — Ha|l s : a€ &} =inf{|lbo —b| s :be.#}.

This together with Lemma 2.3 ensures that

inf{||bp — Ha|l: ae«{= sup inf (bg—b,L)s. (2.5)
{lbo } 1]l gg= <1 beA °

We next rewrite the right hand side of equation (2.5) as that of equation (2.3). It follows that
sup inf (bg —b,A) = sup {(bo,k)@ + inf (—b,)»)gg} . (2.6)
1] gg <1 bE-A 1]l g <1 be.
Since ./ is a closed subspace, we have that

0, re.t,

pinf (=B A = { —oo, Mgt

Substituting the above equation into equation (2.6), we obtain that

sup_inf (bo — b, A}z =sup | (bo, 1)z : 2l 1.5 ™.
|1l gg= <1 beA

Again substituting the above equation into equation (2.5), we have that
inf{[1bo — Hallzs : a€ o} =sup | (bo, 2}z : 2 < 1.5 € ],
which together with .# - = ker H* leads to equation (2.3).
We now turn to characterizing the relation between the solutions of the extremal problem (2.1)

and its dual problem by utilizing the notion of a norming functional. Recall that if a € o/ is a nonzero
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vector, a norming functional A of a is an element of &/* satisfying ||A|| o+ =1 and (a, A) oy = ||a]| o7
The existence of such A is ensured by the Hahn-Banach theorem, though generally it need not be
unique. Similarly, if A € &*, and a € &/ is a unit vector satisfying (a, A) ov = ||| oz+, then we say that
a is norming for A. Such a vector a always exists if the space .« is reflexive; more generally, we
can always find a sequence of vectors that are approximately norming. The norming functionals are
related to the duality mapping &, from .« to the collection of all subsets in «*, defined for all
aco/ by @) :={red*:||A|lg = llalley, (@A) oz = ||A]l ez+ll@ll oz} The norming functionals of
a € &/, multiplied by ||a| o, are precisely the elements of the set ® . (a).

The solutions of the original extremal problem (2.1) and its dual problem described in Theorem 2.2
are closely related as follows.

Proposition 2.4. Suppose that <7 and % are real Banach spaces and by € 8. Let H be a bounded linear
operator from </ to % and H* its adjoint operator. If a € </ has the property that

[bo — Ha||z = inf{|lbp — Hal|z: a€ &/} >0, (2.7)

and X € ker H* satisfies \|i||gg* =1 and the condition
(bo, 1)z = sup {I(bo, Mal: ke <1, e l<erH*} >0, (2.8)

then (bg — Ha)/||bg — Ha|| & is norming for A and A is norming for bg — Ha.

Proof. It is clear that the proposed norming vectors are of unit norm. It follows that
(bo — Ha, &) = (bo, A) 55 — (Ha, 35 = (bo, \) o — (&, H*}) .

Noting that % € ker H*, we observe from the above equation that (by — Ha, i) 2 = (bo, X) 2, which,
together with equation (2.8), further leads to

(bo — Ha, &) 55 = sup{|(bo, 1) 2| : | All - <1, A € ker H*}.

Substituting equations (2.3) and (2.7) into the above equation, we get that (bg — Ha, i)gg = ||bg —
Ha| . It is obvious that i is norming for by — HA. Moreover, the conclusion that (bg — Ha)/||bg —
Ha| & is norming for A can be obtained by dividing both sides of the above equation by ||by — Ha| 4
and noting that ||)AL||@* =1. O

In the rest of this section, we consider the special case that the Banach spaces &/ and % have
pre-dual spaces. A normed space < is called a pre-dual space of a Banach space & if (@%)* = o
Since the natural map is the isometrically imbedding map from 7 into «/*, any element in <7
can be viewed as a bounded linear functional on <7, that is, an element in </* and there holds
(€,a) o7, = (a,€) g, for all £ € o/ and all a € o/. The pre-dual space o7 guarantees that the Banach
space </ enjoys the weak* topology. The weak* topology of <7 is the smallest topology for ./ such
that, for each ¢ € ., the linear functional a — (a,¢), on &/ is continuous with respect to the

topology. For a subset A of o/, we denote by NW* the closure of A/ in the weak* topology of 7.
We also give the name .4 to the subspace of o7
No={led,: (@ t)y=0, foralac.r}.

In the special case that the Banach spaces .« and % have pre-duals <% and %, respectively, a
similar result to Theorem 2.2 holds.

Theorem 2.5. Suppose that </ and A are real Banach spaces having the respective pre-dual spaces <, and
By, bg € B. Let H be the adjoint operator of a bounded linear operator H,. from 2, to <. If ./ defined by

(2.2) satisfies %W* = ./, then there holds
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inf{|lbo — Ha|l: a€ &/} =sup {|(b0,£),@| :llellm, <1, £ ekerH, ¢. (2.9)

Proof. Again, associated with the closed subspace .# of % defined by (2.2), there holds equation
(2.4). We apply the second part of Lemma 2.1 to the right hand side of equation (2.4). To this
end, we need to show that (ker H,)t = .#. We first identify .#, with the kernel of the opera-
tor H,. Specifically, by the definition of .#,, we have that ¢ € .#, if and only if (Ha,¢) =0,
for all a € &/. The latter is equivalent to (a, H.{), = 0, for all a € «/. That is, ¢ € ker H,. Thus,
we conclude that .#, = ker H,, which further leads to (ker H,)* = (.#,)*. It follows from Propo-
sition 2.6.6 of [23] that (*///l)l =_#"". We then get that (ker Hy)L = _#Z"". This together with
the assumption that a" = yields that (ker H,)! = .#. By employing Lemma 2.1, we get that

lbo + .2\ /.0 = sup{l{bo, L) | : [I£]lm, <1, £<kerH,}. Substituting the above equation into equa-
tion (2.4), we obtain the desired equation (2.9). O

We note that when & is an finite-dimensional Banach space, the assumption 7" =.# holds.
The added advantage in this particular situation is that the pre-dual of a space <7 is often a simpler or
smaller space than its dual. For example, if 27 = ¢!(N), the space of absolutely summable sequences,
then its dual is .&7* = ¢°°(N); however, its pre-dual is .2, = co(N), the space of sequences convergent
to zero.

For the special case when </ and % have pre-duals, we can also characterize the relation between
the solutions of the original problem and its dual problem. The proof of the following proposition is
similar to that of Proposition 2.4 and thus is omitted.

Proposition 2.6. Suppose that the assumptions in Theorem 2.5 hold. If a € </ has the property that
[bo — Ha||z = inf{|lbo — Hal|z: a€ &/} >0,

and ¢ € ker H, satisfies ||@||,@* =1 and the condition
(bo. £):2 = sup {I(bo. )51 el s, < 1. £ € kerH. | >0,

then (bg — HA)/||bo — Ha|| & is norming for £, and £ is norming for by — HA.

Another advantage of the case in which the pre-duals <% and %, exist is that the extreme solution
is generally attained. This is a result of the following statement.

Proposition 2.7.If ./ is a subspace of <, and a € <7 with a ¢ ¥ L, then there exists a' € .41 such that
la—a'| o =dist(a, #1).

As ever, see Appendix for a proof of the case 7 is separable. A quick consequence of Proposi-
tion 2.7 is that the extreme value in (2.1) is attained.

Corollary 2.8. Under the conditions of Theorem 2.5, there exists a € &/ such that the infimum in (2.9) is
attained.

3. The regularized extremal problem

The objective of this section is to develop a duality approach for solving the regularized extremal
problem (1.3). The expression (||y0 — Ax||’?}, +p||Bx||?g)1/p, which appears in the regularized extremal

problem (1.3), is a monotone function of the loss function |yg — Ax||%, + p||Bx||?g and itself defines
a norm on a direct sum space constructed from % and 2. Motivated by this observation, we refor-
mulate the regularized extremal problem (1.3) as in (2.1) and apply a duality argument to transform
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(1.3) into an equivalent dual problem. In practice, the dual problem, containing only finitely many
free parameters, can be solvable by numerical methods. We then leverage the dual solution into a
solution of the original problem. Throughout the rest of this paper, we always assume that the regu-
larized extremal problem (1.3) has a solution without further mention. In particular, it is guaranteed
by Corollary 2.8 that this assumption holds when 2", % and % have pre-dual spaces.

We start with recalling the notion of the direct sum of two Banach spaces. The direct sum <« & %
of two Banach spaces &/ and 4 is the Cartesian product &/ x %, made into a vector space via
componentwise addition (a1, by) + (a2, b2) := (a; + a2, by + by) and scalar multiplication c(aj, b1) =
(cay, cbq). There are numerous ways to place a norm on a direct sum. We lay out a family of norms
that could be placed on the direct sum, depending on the parameter p € [1, +oc]. The associated
dual spaces are also identified. For p € [1,+0c0), we denote by &/ @, # the direct sum of ./ and
% endowed with the norm ||@, b)[lve,% := (lal”, + b]%;)""". We also denote by o @« % the
direct sum of &/ and % endowed with the norm [|(a,b)| g 2 = max{HalW, ||b||gg}. It is easy to
see that the spaces &/ @, %, p € [1, +o0], are all Banach spaces. Let p’ be the Hélder conjugate of p
satisfying 1/p 4+ 1/p’ = 1. Then the dual space of &7 @, % is isometrically isomorphic to &* @, %*.

We next identify the norming functionals for a nonzero element of the direct sum space .« @, %,
p € (1, +00]. Some function-theoretic preliminaries follow below, with the proofs being supplied in
the appendix. We first consider the case that p, p’ € (1, +00).

Proposition 3.1. Let <7, & be real Banach spaces and p, p’ € (1, +00) satisfy 1/p + 1/p’ = 1. Suppose that
(A, ) € % @y B*\{(0,0)} is norming for (a,b) € &7 ®, %\ {(0, 0)}. Then the following statements hold.

1. Ifb=0, then n = 0 and A is norming for a;
2. Ifa=0, then » =0 and p is norming for b;

3. Ifa and b are both nonzero vectors, then A # 0,  # 0, and (1 + ||b||f;§/\|a||fz{)l/p A is norming for a and
1/p . .
(1+lal%,/1b17) /P11 is norming for b.

When p = oo, p’ =1, the norming functionals for a nonzero element of the direct sum space are
characterized as follows.

Proposition 3.2. Let <7 and % be real Banach spaces. Suppose that (A, (1) € o/* &1 $*\ {(0, 0)} is norming
for (@a,b) € & ®oc £\ {(0, 0)}. Then the following statements hold.

1. If |a]l oz > |Ibll g, then . = 0 and X is norming for a;

2. Ifllallez < ||b|l g, then A =0 and u is norming for b;

3. If|lalle = |Ibll &, then A, w satisfy one of the following three conditions: (i) i = 0 and A is norming for a;
(ii) » = 0 and p is norming for b; (iii) A #0, it # 0, L/||A|| oz+ is norming for a, and (4 /|| i1 || 2+ is norming
forb.

We now turn to rewriting (1.3) as in (2.1). We choose &7 := 2" and & :=% &, Z for p € [1, +00).
Associated with the bounded linear operators A, B and the regularization parameter p, we define an
operator H: 2" — % &, £ by

Hx:= (Ax, p'/PBx), forallxe 2. (3.1)

It is obvious that H is a bounded linear operator on 2. The following lemma gives the adjoint
operator of the operator H.

Lemma 3.3. Suppose that 2", % and & are real Banach spaces with the respective dual spaces 2™*, %* and
A X — Y, B: X — & are bounded linear operators with the respective adjoint operators A*, B*.
Let p > 0and p € [1,+00), p’ € (1, +00] satisfy % + % = 1. If the operator H is defined by (3.1), then the
adjoint operator H* of H has the form
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H*(\, ) := A*A+ p"/PB*u, forall (A, ) e Z* @y Z*.

Proof. We first note that

(X, H*(\, ) 20 = (HX, (A, W)@, 2, forallxe 27, (A, w) e ¥ @ Z*. (3.2)

By the definition (3.1) of H, we have that (HX, (A, W)@ e, = (AX, A)a + p'/P(BX, j1) 2z, which
further leads to

(HX, (A, 1)) e, 2 = (X, A*A) 2 + p' /P (X, B* ) o = (X, A*A + p'/PB* 1) .

Substituting the above equation into the right hand side of (3.2), we obtain for all x € 2" and all
(A ) € D* @y Z* that (X, H* (A, w)) 2~ = (X, A*A + p!/PB*11) -, which leads to the desired repre-
sentation of H*. O

By using the direct sum % @, 2, p € [1,+00), and the operator H defined by (3.1), we rewrite
the objective function of the regularized extremal problem (1.3) as

(Ilyo — AxII5, + plIBxI%) P = |y — A%, —=p /P BX) | 7, 2 = | (V0, 0) — HXl| w e, -
Thus, we rewrite the regularized extremal problem (1.3) as
inf {||(yo, 0) — HXllz g, 2 : X € 2} (3.3)

Applying Theorem 2.2 to problem (3.3), we get the dual problem of (1.3).

Theorem 3.4. Suppose that 2", % and % are real Banach spaces with the respective dual spaces 2 *, #* and
FA X > Y, B: X — Z are bounded linear operators with the adjoint operators A*, B*, respectively.
Letyo € % and p > 0. Then there holds

inf{llyo — Axllo + pl|BxX|| 2 : x€ 27}
= 5UP{|<Y0»)¥>‘7J| smax{[[Allas, [z} <1, A*)»Jr,OB*M:O}- (34)

If p, p’ € (1, +00) such that 1/p + 1/p’ = 1, then there holds

inf{(llyo — AxIl%, + pllBxII%) " : x e 27}

’ ’ 1 /
= SUDiI(yo,M@I: (A5 + 1el%) P <1, A*k+p1/”3*u:0]. (3.5)

Proof. The regularized extremal problem (1.3) with p € [1,400) can be reformulated as in (3.3),
which has the form (2.1) with &/, % and by being replaced by 2", # &, £ and (yo, 0), respectively,
and H being defined by (3.1). We then apply Theorem 2.2 to problem (3.3) and obtain that

inf{||(yo.0) — HX||z g, : X € 2} = sup {|<YO7}\)”J/| A g,z <1, () € kerH*].

(3.6)

Lemma 3.3 ensures that (i, ) € ker H* if and only if A € #*, € 2* satisfy A*A+ p!/PB*1 = 0.
Substituting the above equation into equation (3.6), noting that problems (1.3) and (3.3) are equiva-
lent, we get that



R. Cheng, R. Wang and Y. Xu Journal of Complexity 81 (2024) 101818
. 1
inf{(llyo — AxIl%, + plBxII%) 7 : x e 2}
— . * 1/pp*,, —
= supy [(Yo. M| [|(A, Wl o+, 2+ <1, A"A+p /"B M—0}~

When p =1 and p’ = +oo, substituting the norm | - [|#+g, 2+ into the above equation leads to
equation (3.4). Likewise, when p, p’ € (1, +00), substituting the norm | - ||oy*@p,g* into the above
equation leads to equation (3.5). O

In practice, such as in the machine learning problem (1.1), the space ¢ is finite dimensional. As
a result, the dual extremal problem (that is, the suprema in (3.4) or (3.5)) has only finitely many
parameters, namely, the components of the vector A € #/*. The dual problem which is of finite di-
mension can therefore be solved using numerical methods. In this way, the duality argument offers
a useful reduction. We describe this practical case as follows. Let % = R™ endowed with a norm
|- lrm and yo = (y;: j € Nyy) € R™. We denote by || - [km the dual norm of || - [|[gm. Suppose that
Z is a real Banach space with the dual space Z* and aj, j € Ny, are a finite number of linearly
independent elements of 2™* and the operator A: 2" — R™ is defined by Ax := ((x, Aj)g 1 je Nm),
for all xe 2. It follows from the definition of A that for all xe 2" and all A := (% : j € Ny) e R™,

XA N =3 N, MR Ay = <x, D ieNy, kjaj>9f, which leads to

A\ = Z rjaj, foralld:=(j: j € Np) e R™. (3.7)
jeNm
We also let 2 be a real Banach space with the dual space 2°*. Suppose that B: 2" — £ is a

bounded linear operator satisfying Ran B = %, that is, B* is injective. It follows from equation (3.7)
and A*A + p/PB*p =0 that

p=—p-1/p Z 2j(BH) aj. (3.8)
jeNp

Consequently, we conclude by Theorem 3.4 that

inf {(lyo — Ax[%., + plIBxI%) P : x € 27}

= sup{ Z Yirj: H ((}»j:jGNmL_p—l/P Z }»j(B*)—1aj

jeNp jeNp

) <1 } (3.9)
Rm@p/fg*

The dual extremal problem in (3.9) has only a finite number of real parameters, namely the m compo-
nents of A. Notice that the expression | ((x;: j € Np), —p~1/P > jeNm kj(B*)‘1aj)||Rm®p/g* defines

a norm on R™, which must be equivalent to the Euclidean norm. Consequently, the dual problem is
to maximize a linear function of m variables over some compact set in R™. The maximum must be
attained, though not necessarily uniquely. The fact that the solution (%, /) to the dual problem (3.9)
takes the form (3.8) can be viewed as a representer theorem. The original representer theorem [29]
for a learning method was in the setting of a Hilbert space, which is self-dual. Representer theorems
for solutions of regularization problems in Banach spaces have received considerable attention in the
literature. A systematic study of this topic was conducted in [41]. The resulting representer theorem
states that the solution lies in a subdifferential set of the norm function evaluated at a finite linear
combination of given functionals. The regularization problem in an infinite dimensional Banach space
was then reduced to a finite dimensional optimization problem of the coefficients of the linear com-
bination. The dual problem (3.9) coincides with the resulting finite dimensional optimization problem
in the representer theorem.

By combining Propositions 2.4 and 3.1, we can characterize the solution of the regularized extremal
problem (1.3) with p € (1, +00) by using the norming functionals of the solution of the dual problem
stated in Theorem 3.4.

10
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Proposition 3.5. Suppose that 2", % and & are real Banach spaces with the respective dual spaces 2™, %'*
and Z*, A: X — %, B: 2 — % are bounded linear operators with the adjoint operators A*, B*, respec-
tively. Letyo € %, p > 0 and p, p’ € (1, +00) satisfy 1/p + 1/p’ = 1. If X € 2" has the property that

~ N 1 . 1
(Ilyo — AI%, + plIBRI%,) P =inf{(llyo — AxI%, + plBxI%) P : xe 27} >0,  (3.10)

1/p

and (i, 1) € @* @, 2 satisfies (1715, + 121%.)""" =1, A*i + p"/PB*i = 0 and

A ’ ’ l ’
(Yo, Ao = sup {|<yo,x>@| (5. + Il P <1, AR p PR =0> >0,

then the following statements hold.

1 If i =0, then BR=0and |lyo — ARl = (Yo. M) o R
2. If A and i are both nonzero, thenyg — AX # 0, BX # 0, and o (Yo — AX) is norming for A and BBX is norming

~ ~ ’ ~ / ‘l A A a ~ / ] ~
for fu, where a := (141111 %. /131%.) """ /ty0, ) and p:=—p"/P (111315, /1 01.) P /Y0, R

Proof. As pointed out earlier, the regularized extremal problem (1.3) with p € (1, +00) can be refor-
mulated as in (2.1) with &/, % and by being replaced by 2°, # @, 2 and (yo,0), respectively,
and H being defined by (3.1). We conclude by Proposition 2.4 that (yo — AX, —p!/PBR)/| (Yo —
AX, —pl/PBﬁ)Hg@pgg is norming for (A, ) € #* ®p Z*. According to statement 1 of Proposition 3.1,
we have that if i =0, then BX = 0. This, together with

(Ivo — AXII, + plIBRI%)P = (yo. M), (3.11)
leads to |yo — AX|w = (yo,i)oy. For the case that i,ﬂ are both nonzero, we get by state-
ment 3 of Proposition 3.1 that yo — A% # 0, BX # 0. Moreover, (1 + [Itl%./l%1%.)""" (o —
AR)/|| (Yo — AR, —p"/PBR)|l g, 2 is norming for & and (1 + A1 /I2l5,.)"P (—p'/PBR)/|l(yo —

A%, —p'PBR)| 2, 2 is norming for fi. By setting o, 8 as in this proposition and equation (3.11), we
get the desired result. O

The next proposition concerns the characterization of the solution of the regularized extremal
problem (1.3) with p =1, which can be obtained by employing Propositions 2.4 and 3.2.

Proposition 3.6. Suppose that 2, % and % are real Banach spaces with the respective dual spaces Z™*, %'*
and Z*, A: X — %, B: 2 — % are bounded linear operators with the adjoint operators A*, B*, respec-
tively. Let yo € % and p > 0. If X € 2" has the property that

Iyo — ARl + plIBX|l 2 = inf {lyo — AXll& + p||BX]| - : X € 27} > 0, (312)

and (A, L) € F* @oo Z* satisfies max{||Alla«, |l 2+} =1, A*A + pB*fi =0 and

(Vo. M) = sup | |(¥o. M| : max{|Alla, |l =) <1, A*h+ pB*u =01 >0,

then the following statements hold.

1 If [l g+ > l|ftll 2+, then BX = 0 and [lyo — AX[lz = (¥g. M) a;

2. IflIMllg+ < )l g+, then AX =Yg and p||BX|| 2 = (Yo. L)z

3. If IAllgs = [|2]| 2+, then X satisfies one of the following three conditions: (i) BXx=0and |lyo — AX||oy =
(Yo, M) ey (ii) AX =Yo and p||BX|l = (Yo, A)a; (iii) yo — AX # 0, BX # 0, (Yo — AX)/Ilyo — AXllo is
norming for A and —BX/ | BX|| ¢ is norming for 1.

11
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Proof. Note that the regularized extremal problem (1.3) can be reformulated as in (2.1) with &7, &
and by being replaced by 2, # @, 2 and (yo, 0), respectively, and H being defined by (3.1). Proposi-
tion 2.4 ensures that (yo — AX, —pBX)/||(Yo — AX, —pBX)| 2 g, 2 is norming for A ) €ET* Do .
We characterize the norming vector by Proposition 3.2 with o7 := #* and % := Z*. If |A||la~ >
lliL]l 2+, statement 1 of Proposition 3.2 leads directly to BX = 0. Moreover, Theorem 3.4 guarantees
that

o — ARlla + plIBX]| 2 = (0, 1), (313)

which together with BX = 0 leads to |lyo — AX[la = (o, M)z If | Alla« < || fL]l 2+, we get by statement
2 of Proposition 3.2 that AX =yp. Again by equation (3.13), we obtain that p||BX| ¢ = (yo,i)@/.
It suffices to consider the case that ||X||g* = |||l &=+. In this case, Statement 3 of Proposition 3.2
shows that the norming vector (yo — AX, —pBX)/|(Yo — AX, —pBX)||% e, 2 may satisfy one of three
conditions. By similar arguments as above, the first one leads to BX =0 and |yo — AR|l% = (o, A)a
and the second one ensures that AX =yg and p||BX| & = (yo, i)g. In addition, the third condition
coincides with yg — AX # 0, BX # 0, (Yo — AX)/|lyo — AX|l# is norming for A and —BX/|BX| g is
norming for fi. This completes the proof of this proposition. O

In the special case that 27, % and 2 have pre-dual spaces, there is a similar dual problem.

Theorem 3.7. Suppose that 2, % and <& are real Banach spaces with the respective pre-dual spaces 2, %;
and Z,, Ay : % — 2, By : & — 2 are bounded linear operators with the adjoint operators A, B, respec-
tively. Let yo € % and p > 0. If % is finite dimensional and Ran B = %, then there holds

inf{|lyo — AXllz + plIBX|l» : x€ 2}
= sup{uyo,mm s max{llag, Il 2} <1, Ak + pBapt =0}. (314)

If p,p’ € (1, +00) such that 1/p 4+ 1/p’ = 1, then there holds

inf{(Ilyo — AXII%, + plIBx|1%,) """ : xe 27)

/ ’ ‘l /
= sup{uyo,mm (I35, + 1% ) P <1, At pV/PBap = 0}. (3.15)

Proof. As pointed out earlier, the regularized extremal problem (1.3) can be rewritten as in (2.1) with
</, % and bg being replaced by 2", # ®, 2 and (yo, 0), respectively, and H being defined by (3.1).
We prove this theorem by using Theorem 2.5. Note that & @, 2 has the pre-dual space %, @, Z,
and H is the adjoint operator of H, : % @&, 2 — 2 defined by H,(x, ) := AxA + p/PB,p, for all

A, ) € % ®p Z. By setting A = {(Ax, p1/PBx): x € £}, we have that

7" =TAx: xe %}W* x {p/PBx: xe 2} ,

which, together with the assumptions that % is finite dimensional and RanB = %, yields that
—w*

M = .. That is, the hypotheses of Theorem 2.5 are satisfied. Hence, Theorem 2.5 ensures that
. 1
inf {(Ilyo — Ax|I%, + pl1Bx|%)"P: xe 27}
= sup 1 [(Yo. M) | |0 Wl 2, 22 <1, (A, 1) €kerHy ¢

Substituting the kernel of H, and the definition of the norm of the direct sum %, @, %, p’ <
(1, 4o¢], into the above equation leads to the desired equations (3.14) and (3.15). O

12
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By specializing Proposition 2.6 to the regularized extremal problem (1.3) when 2", # and Z have
pre-dual spaces, we relate the solution of (1.3) to the dual solution. The proofs of the following two
propositions are similar to those of Propositions 3.5 and 3.6 and thus are omitted.

Proposition 3.8. Suppose that 2", % and % are real Banach spaces with the respective pre-dual spaces
Xy Y and %, Ay 0 Y —> 2, By 1 2 — 2 are bounded linear operators with the adjoint operators
A, B, respectively. In addition, suppose that %' is finite dimensional and RanB = % Let yo € ¢/, p > 0 and
p,p’ € (1, +00), satisfy % + % =1.IfX € 2 has the property (3.10) and (i, ) € % ®, Z. satisfies

A~ ’ R 1/ ~ R
(1315, + 121%) """ =1, Ad+ p'/PB, i =0 and

1/p’

(Vo. A)a = sup {l(YO,)»M/l (U5, + llBy) ™" <1, Ak +pPBu=0¢ >0,

then the following statements hold.

1 If i =0, then BR =0 and |lyo — ARllw = (Yo. M) o R
2. If A and [i are both nonzero, then yg — AX # 0, BX # 0, and o (Yo — AX) is norming for A and 8BX is norming

~ ~ ’ A ’ ‘l A A ’ ~ ’ ‘l A
for 1, where o := (1+ 11211%. /1315,) """ /Vo. B and B := —pV/P (1 4+ 1415, /121%) " /¥0. R .

Proposition 3.9. Suppose that 2", % and % are real Banach spaces with the respective pre-dual spaces
XY and %, Ay 0 Y — 2, By 0 2 — 2 are bounded linear operators with the adjoint operators
A, B, respectively. In addition, suppose that % is finite dimensional and RanB = % . Letyo € % and p > 0. If
K€ 2 has the property (3.12) and (., 1) € %, ®oo Z, satisfies max{||i||@*, lale)=1, Auh+ pBoft =0
and

(Yo, M) =sup { [(yo, Mo | : max{llrlla, il 22} <1, Auh+ pBapt=0¢ >0,

then the following statements hold.

1 If Al > ] 2., then Bk =0 and Yo — AXllzr = (¥o. A)ow;
2. IfIXllz, < It 2, then AX=yo and pl|BX|l 2 = (Yo, A
3. If IAlla, = Ilfll z,, then X satisfy one of the following three conditions: (i) BXx = 0 and ||yo — AX|l@ =

(o, M ey ; (ii) AX = yo and p||BX|| z = (Yo, A)a; (iii) yo — AR # 0, BR # 0, (Yo — AX)/lyo — AXl|o is
norming for A and —BX/||BX|| ¢ is norming for [L.

4. Regularized extremal problem in ¢, (N)

In this section, we illustrate the duality approach developed in the previous section with the reg-
ularized extremal problem in £1(N).

We describe the regularized extremal problem in ¢1(N). Let 2" = 2 = ¢1(N), the Banach space
consisting of all real sequences X := (x; : j € N) such that ||x]|; := ZjEN |xj| < 4o0. It is known that
£1(N) has co(N) as its pre-dual space, where co(NN) denotes the Banach space of all real sequences
a:=(aj: j € N) converging to 0 as j — oo, endowed with ||allo := sup{|a;| : j € N} < +o0. For
meN, let  =R™ endowed with a norm | - [grm and yo = (y; : j € Np) € R™. For a norm || - [[gm
on R™, we denote by | - km its dual norm. Suppose that a; := (ajx : k € N), j € Ny, are a finite
number of linearly independent elements of co(N) and let A be the semi-infinite matrix whose m
rows are ai,ay,...,am. It is easy to see that A determines a bounded linear operator from ¢;(N) to
R™, We also choose the operator B as the identity operator on ¢;(N). Let p € [1, +00) and p > 0.
We then consider the regularized extremal problem

inf{(lyo — AX||fm + pIIXII))VP: x € 61 (N)}. (41)

13
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We now solve the regularized extremal problem (4.1) by applying the duality approach developed
in section 3. To this end, we first establish the dual problem of (4.1) by using Theorem 3.7. It is easy
to see that the operator A is the adjoint operator of A, : R™ — co(N) defined by

Ashi= Y hjaj, forallh:=(4;: j € Np). (4.2)
jeNp

Theorem 3.7 ensures that the dual problem of problem (4.1) has the form

sup{ > yjrj: (A,—,O_]/p ZAjaj> <1, A,:=(j:jeNy eR"
JjeNm JeNm Rm®p/C0(N)

(4.3)

We next show that the dual problem (4.3) is indeed a finite dimensional optimization problem.
We first consider the case that p =1, p’ = +o0, in which the dual problem can be represented as

supd D yjrji G jeNmlgm <1.{ D Ajaj| <p.rjeR. jeNg . (44)

jeNp jeNp 00

Although this optimization problem has only finitely many parameters A;, j € Ny, a certain infi-
nite dimensional aspect is hidden in the resulting finite dimensional problem. In fact, the constraint

; Aiaj| < p involves infinitely many constraints . Aiaik| < p, ke N. To overcome
jeNy e o jeNpy M%),
this obstacle, we define for each k € N

U, = XZZ(XjIjGNm)GRmI—,Of Z)\‘ja]”kfp , (4.5)
jeNm
and set U := (g Uk. It has been proved in [11] that the set U is the intersection of finitely many
of the regions Uy. That is to say, the dual problem (4.4) is an optimization problem with finitely many
constraints. Hence, we can obtain a solution of (4.4) by using standard numerical methods. Likewise,
when p, p’ € (1, +00), the dual problem

%

supd > yidj (10 €Nm)llpn)” + 0P | Y ajaj| <1, 2,€R. jeNgy (46)
jeNp jeNp 0
also has infinitely many constraints (||(A;: j € Nm)lqgm)p/ + ot ‘ZjeNm rjajk b <1, ke N. How-
ever, by similar arguments as in [11], we can reduce the above constraints to finite number of
constraints. Accordingly, the dual problem (4.6) can also be solved by numerical methods.

Finally, we consider solving the original regularized extremal problem (4.1). According to the re-
lation between the solutions of the regularized extremal problem (4.1) and its dual problem (4.3),
we can obtain the solution of (4.1) by solving an equivalent finite dimensional optimization prob-
lem. To see this, we introduce some notation. For each ¢ := (cj: j € N) € ¢o(N), we denote by
N(c) the index set on which the sequence ¢ achieves its supremum norm ||c||o, that is, N(c) :=
{j eN:cj|= ||c\|oo}. It follows from lim;j_, ;o cj = 0 that the cardinality of index set N(c), denoted
by nc, is finite. It has been proved in [11] that there holds for any norming functional x € £1(N) of
cecop(N) \ {0} that supp (x) € N(c). Here, the support supp (X) of x is defined to be the index set
on which x is nonzero. For ¢ € co(N) with N(c) := {kj e N : j € Ny}, we truncate the semi-infinite
matrix A to obtain a matrix Ac:=[h;j:i € Ny, j € N, ] € R™%e by

hij = (1,"kj, i€ Nn, ] S Nnc- (4-7)

14
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Proposition 4.1. Suppose that a;, j € Ny, are a finite number of linearly independent elements of co(N), A
is the infinite matrix whose m rows are aj, j € Ny, yo = (yj: j€ Np) e R™, p > 0and p € [1, +00). Let &
be a solution of the dual problem (4.3), i := Ash and N(f1) := {kieN:je Nnﬂ}. Ifz:=(zj:je Nnﬂ) isa
solution of the optimization problem

inf{(lyo — Apzl%n + pllzI§)/P : ze R}, (4.8)

then X := (X; : j € N) with )?kj =2j,je€ Nnﬂ, and Xj:=0, j ¢ N({1), is a solution of (4.1).

Proof. By employing Propositions 3.8 and 3.9, we have that for any solution X of (4.1), there holds
that X =0 or —X/|Xll, () is norming for —p~1/P . Note that supp (X) € N (/1) holds in both cases.
Hence, we rewrite (4.1) as an equivalent form

inf{(llyo — AX|l&m + £ IXIT)/P : supp(x) S N(R), x € £1(N)}. (4.9)

By use of the matrix Ap, the optimization problem (4.9) can be further represented by (4.8). More-
over, we can obtain a solution X := (X : j € N) of (4.9) through augmenting a solution Z2:=(z;: j €
Ny, ) of (4.8) by setting X i=2j,]€ Ny, and =0 j¢N@. O

Based on Propositions 3.9 and 4.1, we develop a scheme for finding a solution of the infinite
dimensional regularized extremal problem (4.1) with p =1.

Step 1: Solve the dual problem (4.4) and obtain a solution A

Step 2: Compute p||A|[rm and [|A«A]so-

Step 3: If p||i||Rm > | A lloo, Obtain a solution of (4.1) by X :=0.

Step 4: If p||A]lgm < ||AxAllco, determine the index set N (/i) := {kjeN:je Nnﬂ} and generate the
matrix Ay with o= A, Solve the finite dimensional optimization problem (4.8) and obtain
a solution z.

Step 5: Obtain a solution of (4.1) by setting X := (% : j € N) with )?kj =2, je Nnﬂ, and X;:=0,
J¢ N@.

Propositions 3.8 and 4.1 may also provide a scheme for solving the regularized extremal problem
(4.1) with p € (1, +00).

Step 1: Solve the dual problem (4.6) and obtain a solution A.

Step 2: Compute L := A,

Step 3: If 1 =0, obtain a solution of (4.1) by X:=0.

Step 4: If i # 0, determine the index set N(fi) :={kje N:je Nnﬁ} and generate the matrix Ag.
Solve the finite dimensional optimization problem (4.8) and obtain a solution z.

Step 5: Obtain a solution of (4.1) by setting X := (%; : j € N) with &, :=2j, j€ Np,, and Xj:=0,
J¢ N().

5. Numerical experiments

This section is devoted to the presentation of three numerical experiments which illustrate the
feasibility of the dual approach developed in this paper. In the first experiment, we consider a small
size problem to illustrate every key step of the proposed approach, and in the last two experiments,
we consider relatively large size problems to demonstrate the effectiveness of the method. All the
experiments are performed with Matlab R2018a on an Intel Core I5 (8-core) with 1.80 GHz and 8 GB
RAM.

We consider solving the regularized extremal problem

inf{llyo — AX|l1 + plIx]l1 : X € £1(N)}. (51)
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Note that the space ¢1(N) is of infinite dimension and thus, numerical methods used in compress-
sensing or image processing are not directly applicable to problem (5.1). We will employ the duality
approach developed in this paper to solve problem (5.1). We first describe the choice of the data yg
and the semi-infinite matrix A to be used in the experiments. Let m be a positive even integer. We
choose A as a semi-infinite matrix whose rows a; := (ajy : k € N), j € Ny, are m linearly independent
elements of ¢o(N), defined by

cos(jk sin(jk
aj,k;:%, Qjmyase = 1(<] ) forall j € Npyz andall k € N.

We take Xg := (X, : k € N) € £1(N) with x;, = 10%, k € N and generate the noise free data y := Axg.
The noisy data is modeled as yp :=y + 1, where 1 is the Gaussian noise with the standard deviation
o = 1.0 x 1073 (maxy — miny).

Following the scheme described in section 4, we need to solve the dual problem

supd Yy llOgiieNmloo <1, Y Ajaj| <pt. (5.2)

jeNp jeNp 00

Note that the constraint H D jeNy, Ajdj H < p of problem (5.2) involves m infinite dimensional vectors
(o]

a;. It is equivalent to the constraints ZjeNm )»jaj,k’ < p, ke N, which defines a polytope in R™. To

describe the polytope precisely, we define the sets Uy, k € N as in (4.5). It is known [11] that the set
U :=(ken Uk is the intersection of finitely many of the regions Uy, that is, U = ﬂkeNnO Uy for some
np € N. We need to identify the number ng. To this end, we propose two ideas. When m is small,
we set for each ne N, U, := mkeNn Uk and compute the vertices of the regions Up, neN, in the
increasing order of n. The computation stops at np € N when Uno and ﬁn0+1 have the same vertices.
Note that the number of the vertices increases exponentially as the dimension m of the space R™
increases. Hence, when m is large, this idea is not practical. In this case, for | € N we may instead
define

Sty=supy > yjrj:lrjl<1.jeNm | Y Ajaji| <p.keN
jeNp jeNm

and empirically choose ng € N such that S(ng) = S(ng + 1). Computing S(I) may be done by using
linear programming software. In the following three numerical experiments we use these two ideas
respectively.

In the first experiment, we solve problem (5.1) with m = 12. In this case, we identify the number
of the effective constraints in the dual problem by computing the vertices of the regions Up ne
N, in the increasing order of n. Due to the large number of the vertices we do not report all of
them. Instead, we report in Table I the selected values of n and the number V), of the vertices of ﬁn
when p = 1. The numerical results show that ng = 19 for this case. In our experiment, we begin the
computation with an initial integer equal to 12. Note that associated with different parameters p > 0,
the polytopes are similar, and thus, the values of ng for the polytopes are the same. With the number
no =19, we now rewrite the dual problem (5.2) as

sup Z Yijrj:lAjl <1, jeNyg, Z rjajk|<p,keNg¢. (5.3)
jeNp2 jeNp
Problem (5.3) is a typical linear programming problem. We then solve (5.3) by using the function
“linprog” available in Matlab to obtain its numerical solution % and the supremum S of (5.3).
With a dual solution A at hand, we then solve the original problem (5.1) according to Proposi-
tions 3.9 and 4.1. To this end, we compute p||i\|w and ||A>,<)AL||Oo with A, being defined by (4.2), and
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Table I
The number of the vertices.

n 14 16 18 19 20 21 25 30
Wn 10,256 21,070 44,134 59,930 59,930 59,930 59,930 59,930

compare their values. If p||k||oc > ||Axhlloo, We take X =0 as the solution of (5.1) by (1) of Proposi-
tion 3.9. If /o||)»||Oo < | Ashlloo, We identify the index set N (/1) of i := A, %, on which the sequence
[ achieves its supremum norm, the cardinality ng of N(ft), and generate the matrix Ap defined
by (4.7) with ¢ being replaced by fi. According to Proposition 4.1, we solve the finite dimensional
optimization problem

inf{llyo — Apzll1 + plizll1 : ze R}, (54)

by employing the FPPA originally developed in [18,24]. We describe the FPPA as follows: Let f:RY —
R U {+o0} be a convex function such that dom(f) := {w e R?: f(w) < 400} # #. The proximity
operator prox s : RY — R? of a convex function f is defined for w e R¢ by

1
prox f(w) := argmin {5”“ — w||§ + f(w):ue Rd} .

Set ¢ :=pll - |l1 and ¥ := |lyo — -|l1- By choosing positive constants 8, y and initial points 2% e R,
v? € R™, we solve (5.4) by the FPPA

21 = proxg, (zk — ﬂA;v") ,

Ve — (I _ prox%‘/’) (%vk +Ap (221 - zk)> ’ (5.5)

to obtain a numerical solution z. In Algorithm (5.5), parameters 8 and y are chosen so that the

algorithm converges, and proxg, and prox v have closed-forms that we present below. The proximity
Y

operator proxg, at w:=(wj:je Nnﬂ) € R" has the form prox g, (W) := (uj: j € Nnﬂ), where for

all je Nnﬂ

—Bp., ifw;>pBp,
uj:=4 wj+pp, ifwj<—pgp,
0, ifwje[-Bp, Bpl.

Likewise, the proximity operator prox 1, At w:= (wj:jeNy) eR™ has the form prox lw(w) =
Y Y
(uj: j € Np), where for all j € Ny

wi—1/y, ifwj>y;j+1/y,
uj:=3 wj+1/y, ifwj<y;—-1/y,
Vi, ifwjely;—1/y.y;+1/y1].

Algorithm FPPA generates a numerical solution z of (5.4), with which a numerical solution X of the
original problem (5.1) is obtained by augmenting z as described in Proposition 4.1.

For convenience, we use f- to denote the value of the objective function f := |lyo—A() |1+ ol - ll1
at the numerical solution X of (5.1), which is a computed infimum of (5.1). We define ERR := ||X —
x'|l2, where x' = argmin {||x||1 : AX =Yy, X € £1(N)}. Here, we solve the minimum norm interpolation
problem by the duality approach developed in [11]. In Table II we report the selected values of p, the
corresponding values of pl|Allsc, |AsAlloos S, fr. ERR, |ly — AX||2 and the sparsity levels SL of X. From
the numerical results, we observe that the value of f. approximates the supremum S (which is equal
to the infimum of (5.1)) very well. This shows that the proposed dual approach provides an effective
numerical method for solving the regularized extremal problem (5.1).
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Table II

Numerical results for regularized extremal problem with m =12.
o Plill 1Al S fr SL ERR ly — A%ll2
12.0000 12.0000 7.7309 0.7637 0.7637 0 0.1039 0.2451
10.0000 10.0000 7.7309 0.7637 0.7637 0 0.1039 0.2451
8.0000 8.0000 7.7309 0.7637 0.7637 0 0.1039 0.2451
7.0000 7.0000 7.0000 0.7180 0.7180 1 0.0336 0.0525
5.0000 5.0000 5.0000 0.5498 0.5498 1 0.0316 0.0449
1.0000 1.0000 1.0000 0.1407 0.1411 3 0.0103 0.0070
0.8000 0.8000 0.8000 0.1145 0.1147 4 0.0076 0.0044
0.5000 0.5000 0.5000 0.0736 0.0737 5 0.0055 0.0025
0.3000 0.3000 0.3000 0.0455 0.0458 6 0.0049 0.0021
0.2500 0.2500 0.2500 0.0384 0.0387 7 0.0051 0.0020
0.2000 0.2000 0.2000 0.0310 0.0310 9 0.0031 7.2907e-4
0.1800 0.1800 0.1800 0.0279 0.0279 10 0.0030 7.4563e-4
0.1000 0.0660 0.1000 0.0155 0.0155 12 0.0032 5.4190e-4
0.0100 6.6010e-4 0.0100 0.0016 0.0016 12 0.0032 5.4190e-4

0.0010 6.6010e-6  0.0010 1.5550e-4  1.5550e-4 12 0.0032  5.4190e-4

Table III
Numerical results for regularized extremal problem with m = 200.

0 Pl A o S fr SL ERR ly — AX|2

132.0000  132.0000 127.0107 12.8027 12.8027 0 0.1040 1.0075
130.0000  130.0000 127.0107 12.8027 12.8027 0 0.1040 1.0075
128.0000  128.0000 127.0107 12.8027 12.8027 0 0.1040 1.0075

1

1

1

2

127.0000 127.0000 127.0000 12.8026 12.8026 0.0915  0.8778
100.0000  100.0000 100.0000  10.7137 10.7137 0.0324  0.1992

80.0000 80.0000 80.0000 8.9762 8.9762 0.0306  0.1683
50.0000 50.0000 50.0000 6.2516 6.2516 0.0212  0.0979
10.0000 10.0000 10.0000 14854 1.4855 5 0.0064  0.0135
1.0000 1.0000 1.0000 0.1891 0.1894 12 0.0019  0.0020
0.1000 0.1000 0.1000 0.0413 0.0453 36 0.0077  0.0019
0.0500 0.0500 0.0500 0.0272 0.0331 67 0.0188  0.0025
0.0300 0.0300 0.0300 0.0177 0.0239 132 0.0410  0.0030
0.0100 0.0050 0.0100 0.0060 0.0060 200 0.0453  0.0031
0.0010 5.0431e-5  0.0010 5.9779%-4  59779e-4 200 0.0453  0.0031

0.0001 5.0431e-7  0.0001 5.9779%-5  5.9779e-5 200 0.0453  0.0031

In the second and the third experiments, we solve the regularized extremal problem (5.1) with
m = 200 and m = 600, respectively, by the duality approach. This time we increase the size of the
problem from m =12 to m =200 and m = 600. We choose the number ng of the constraints in the
dual problem (5.2) as ngp = 333 and ng = 710 by using the second empirical method described earlier.
The selected values of p, the values of p||i||oo, |\A*i||00, S, fr, ERR, |y — AX||2 and the sparsity levels
SL of X are reported in Table Il and Table IV. The numerical results indicate that for problems of these
sizes, the proposed duality approach works well.

The three numerical experiments presented in this section demonstrate that the proposed duality
approach is feasible for solving the regularization problem in infinite dimensional Banach spaces.

To close this section, we remark that the main purpose of this paper is to lay out the mathematical
foundation of the duality approach. Issues related to practical implementation of this approach remain
to be addressed. Addressing the issues will be our future research project.
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Table IV

Numerical results for regularized extremal problem with m = 600.
o Pl Akl S fr SL ERR llyo — ARz
385.0000 385.0000 380.3394 38.3914 38.3914 0 0.1040 1.7456
382.0000 382.0000 380.3394 38.3914 38.3914 0 0.1040 1.7456
381.0000 381.0000 380.3394 38.3914 38.3914 0 0.1040 1.7456
380.0000 380.0000 380.0000 38.3864 38.3864 1 0.0841 1.3868
300.0000 300.0000 300.0000 32.1429 32.1429 1 0.0323 0.3412
250.0000 250.0000 250.0000 27.8101 27.8101 1 0.0311 0.3070
150.0000 150.0000 150.0000 18.7604 18.7604 2 0.0216 0.1761
50.0000 50.0000 50.0000 71210 71210 3 0.0105 0.0509
10.0000 10.0000 10.0000 1.6264 1.6265 7 0.0033 0.0075
1.0000 1.0000 1.0000 0.2608 0.2616 17 0.0012 0.0014
0.1000 0.1000 0.1000 0.1071 0.1151 69 0.0121 0.0025
0.0500 0.0500 0.0500 0.0837 0.0988 150 0.0369 0.0036
0.0200 0.0200 0.0200 0.0413 0.0487 515 0.1132 0.0053
0.0100 0.0073 0.0100 0.0208 0.0208 600 0.1146 0.0054
0.0010 7.3254e-5 0.0010 0.0021 0.0021 600 0.1146 0.0054
0.0001 7.3254e-7 0.0001 2.0760e-4 2.0801e-4 600 0.1146 0.0054
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Appendix A. Proofs of auxiliary results

Throughout the paper, numerous standard or straightforward results from functional analysis are
used. Their proofs are collected here for reference.

Proof of Proposition 2.7. There exists a sequence aj, € .4+, n e N, such that

lim ||la— a} || =dist(a, /). (A1)
n—oo

The sequence {a;}2°; is bounded in norm, since there holds |la;| < ||all + lla — ay | . There-
fore the Banach-Alaoglu Theorem supplies a subsequence {a{”( :k € N} that converges in the weak*
sense to some a’ € 7. That is, limg_, o an, (¢) = a'(¢), for all £ € <. In particular, if ¢ € .4/, then
a'(0) =limy_, o a}, (¢) =0. Hence, a’ € .4+, It suffices to verify that [a—a'||,, =dist(a, .#*). By the
definition of the norm of o7, we have that for any € > 0 there exists a unit vector £ € <% such that
la(f) —a'(O)| = la—a'|s —e. (A2)

It follows from equation (A.1) that dist(a, .4 +) = lim_, « [|a — a,gk oz > limg—, o 1a(€) — aj, ()], which
further leads to dist(a, .#1) = |a(¢) — a’(£)|. Substituting inequality (A.2) into the above equation,
we obtain that dist(a, #1) > |la — a’|| — €. Since € was arbitrary, it follows that dist(a, 4 *) >
la—a’|| 7. The reverse inequality holds because a’ € .4+, and thus the claim is proved.

Proof of Proposition 3.1. Since (a,b) € & @, # is normed by (A, u) € &/* @, Z*, we have that
/ " \1/p 1
(0P + Del%) P =1, @ a)er + (b ) = (2], + IbI,) 2. (A3)

At the same time, it must be that

(@, 1) o7 + (b, 1) 2 < aller 1]l + [Ibllz | 2] 2
‘l ’ !’ -l ’
< (1all®, + 1B112%) P (NP, + llalBe) P
1
= (lall”, + IblI%,) """ (A4)
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Equality is forced throughout (A.4). In particular, the condition for equality must hold in Holder’s
inequality, as employed in the second step of (A.4). The following identifications result

(@A) =llalla | M]lars, (b, )z = |Ibllzll el 2+, (A5)

and
lall?, =clial?,.. Iblf, = Cliul?,.. (A6)

for some positive constant C. In fact, the value of C is determined from ||a||fa, + ||b||gg = C(||A||f2;* +
leel) =C.

If b =0, then the second equation in (A.6) yields that « = 0, which together with the first equation
in (A.3) leads to ||A| o+ = 1. Hence, we conclude from the first equation in (A.5) that A is norming
for a. This proves statement 1. We can prove statement 2 by similar arguments. Finally, we verify
statement 3. If a #0, b #£ 0, equations in (A.6) show that A and u are both nonzero. By normalizing
the functionals A and w, we obtain norming functionals for a and b, respectively:

—1/p’ / -1/p’
Ao = C VP PP = (1 + IIb)1%,/all?,) P,

_ ’ ’ 1 ’
el = C~ VP IR = (1 + al®, /IIb]IE,) /P

This proves the claims.

Proof of Proposition 3.2. By the hypothesis that (A, u) € &* &1 %* is norming for (a,b) € & ® £,
we have that

M+ + Ikl =1, (@,A)er + (b, £} 52 = max{llall o, [[b]l 2} (A7)
According to the first equation in (A.7), we get that

@A) + (b, 1)z < llaller | A]lor= + bl ]l ]| 2+
< (Mo + il ) max{lall o, Ibll}
= max{||a|l. [[bllz}, (A.8)

which together with the second equation in (A.7) shows that equality is forced throughout (A.8).
Hence, we obtain equations in (A.5) and

lalle Al e = 1Ml o+ max{[laller, [Dllz}. [Ibllzllie]l 2 = [l 14l 2« max{l|a]le . [bllz}. (A.9)

To prove statement 1, we suppose that ||a|| . > ||b||s. Then the second equation in (A.9) reduces
to ||bllzllitll e+ = llall o | ]l 8+, which further yields that @ = 0. We then conclude by the equations
in (A.7) that ||A]lo+ =1 and (a, 1) o = ||a]| oz, that is, A is norming for a. This completes the proof of
statement 1 and statement 2 may be proved similarly. It remains to show statement 3. We assume
that ||a]l o = [Ibll%. If =0, then equations in (A.7) lead directly to ||A|| o+ =1 and (@, 1) oz = ]| o7
That is to say, A is norming for a, likewise, if A =0, we may show that y is norming for b. Finally, if
A and u are both nonzero vectors, then we conclude by equations in (A.5) that A/||A|| o7+ iS norming
for a, and w /|||l s+ is norming for b, proving the desired results.
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