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1. Introduction

Learning in Banach spaces has received considerable attention in the last two decades [1,2,6,14,16,
26,30–33,36,37,41,45,46,48]. Learning methods are often formulated as regularization problems [22,
30]. Such a problem seeks to minimize an objective function in the form of the sum of a data fidelity 
term in the norm of a Banach space, and a regularization term in the norm of another Banach space, 
which is often of infinite dimension. Due to the big data nature of recent real-world applications, 
regularization in a Banach space with a sparsity promoting norm is widely used in various practical 
fields such as statistics [34,35], machine learning [4,28], signal processing [7], image processing and 
medical imaging [24,27]. In particular, special Banach spaces related to the �1 space have proved 
useful in handwritten digit recognition [20,21]. However, effective solutions of these regularization 
problems are challenging. Especially, in the context of sparse learning [45], the norm of the Banach 
space for the regularization term is often chosen as a sparsity promoting norm, which usually is non-
differentiable. Solving regularization problems having non-differentiable objective functions is even 
more troublesome, requiring great care. Moreover, it is demanding to develop efficient numerical 
solvers to learn a function in an infinite dimensional Banach space.

The goal of this paper is to develop a duality approach for the solution of the class of regulariza-
tion problems described above that arise in machine learning, attempting to provide a mathematical 
basis for further development of efficient numerical methods. Motivated by the duality approach [11]
for solving the minimum norm interpolation problem in �1(N), we develop a duality approach to 
solve problems of this type. Specifically, we construct a direct sum space based on the Banach spaces 
for the data fidelity term and for the regularization term, and identify the objective function of the 
regularization problem as the norm of a suitable quotient space of the direct sum space. This ex-
presses the original regularization problem as a minimum norm problem on the quotient space. By 
considering the dual space of this resulting space, we further reformulate the original regularization 
problem as an equivalent problem in the dual space. By analyzing the geometry of the resulting space 
to determine the combination of parameters that will give rise to sparse solutions, we identify that 
the dual problem is to find the maximum of a linear function on a convex polytope. The resulting 
problem can be solved by linear programming. Once that problem is solved, we solve the original 
problem by using related extremal properties of norming functionals.

We proceed to describe the regularization problem to be considered in this paper. Let X be a 
real Banach space with the dual space X ∗ . For m ∈ N , we set Nm := {1, 2, . . . , m}. Suppose that ak , 
k ∈ Nm , are linearly independent elements of X ∗ , and yk , k ∈ Nm , are fixed real numbers, not all 
zero. Assume that there is a positive parameter ρ . Consider the minimization problem

inf

{
∑

k∈Nm

∣∣yk − 〈x,ak〉X
∣∣ + ρ‖x‖X : x ∈ X

}
. (1.1)

The pairs (ak, yk), k ∈ Nm , constitute a training sample. The vector x is a hypothesis. The quantity in 
(1.1) being minimized is known as a loss functional resulting from a hypothesis x and the training 
sample. This is a basic problem in machine learning. The vector x represents an estimate of the law 
underlying the training sample. The second term is the “regularizer,” intended to prevent overfitting 
the data. The positive parameter ρ controls the relative influence of this term. A related problem is 
to find x ∈ X that minimizes

inf
{
‖x‖X : 〈x,ak〉X = yk, k ∈ Nm, x ∈ X

}
. (1.2)

This is to find the minimum norm x that interpolates the data set. For this reason, (1.2) is called a 
minimum norm interpolation problem. Typical examples of the space X are the spaces �p(N), for 
1 ≤ p ≤ +∞. Besides their theoretical importance, the spaces �p(N) have numerous applications, for 
instance, to signal processing and control theory [47] and relaxation methods in linear programming 
[39]. When 1 < p < 2, the space �p(N) can be used to study the prediction of filtered symmetric-α-

stable processes; these are useful for modeling heavy-tailed phenomena [8–10,17]. The case p = 1
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gives rise to a Banach algebra, as well as a sparsity-promoting geometry [11]. It has a unique impor-

tance in spectral factorization methods in signal processing [5].
The regularization problem (1.1) may be viewed as a special case of a general problem. Suppose 

that X , Y and Z are three real Banach spaces with dual spaces X ∗, Y ∗ and Z ∗ , respectively, and 
there are constants ρ > 0 and 1 ≤ p < ∞. Let y0 ∈ Y be a fixed nonzero vector. Suppose that A is a 
bounded linear operator from X to Y and B is a bounded linear operator from X to Z . Consider 
the problem

inf
{
(‖y0 − Ax‖

p
Y

+ ρ‖Bx‖
p
Z

)1/p : x ∈ X
}
, (1.3)

and the corresponding general interpolation problem

inf
{
‖x‖X : Ax = y0, x ∈ X

}
(1.4)

(inclusion of the power p in the latter problem would have no meaningful effect). Many data science 
problems fall into the setting of problem (1.3). The well-known compressed sensing problem [6,14]
may be reformulated in the form of (1.3). Regularized learning [13,15,25,48], l1-sparse regularization 
[19,46] and regularization models for inverse problems [40–42] are special examples of problem (1.3).

In our approach we will introduce a normed space that is closely related to this loss functional. 
Specifically, the associated loss functional itself becomes a norm on a Banach space built from Y
and Z and the “training sample,” as incorporated into y0 , A and B . This reformulates the extremal 
problem (1.3) into an apparently simpler one, namely, to find a vector of minimum length in a con-
vex subset of the constructed Banach space. A duality argument is used, transforming the original 
extremal problem into an equivalent one in the dual Banach space. In practice, the dual extremal 
problem often involves only finitely many free parameters, and thus yields to numerical methods. 
A solution to the dual problem is then used to identify solutions to the original problem (1.3), by 
a correspondence between their norming functionals. The extremal problems (1.3) and (1.4) respec-

tively reduce to the problems (1.1) and (1.2) above by choosing p = 1, Y = Rm (with suitable norms 
attached) and Z = X . Moreover, A is the operator from X to Y such that the kth entry of Ax is 
〈x, ak〉X , k ∈ Nm , and B is the identity operator on X . The existence and uniqueness of solutions 
will be addressed in due course.

Our approach makes use of numerous standard tools from classical functional analysis. These re-
sults are stated in the course of their usage; for reference, their proofs are gathered together in an 
appendix. Throughout this paper, A , B, X , Y and Z will denote a separable Banach space over 
the real scalars. All subspaces are understood to be closed in the norm topology. If p is a parameter 
satisfying 1 ≤ p ≤ ∞, then p′ will denote its Hölder conjugate, so that 1/p + 1/p′ = 1.

This paper is organized as follows. In the section to follow we review classical results of functional 
analysis connecting an extremal problem in a Banach space and its dual extremal problem. The notion 
of the norming functional is also covered. In Section 3, we develop a duality approach for solving the 
regularized extremal problem (1.3). We begin reviewing the concept of a direct sum of two Banach 
spaces, and a family of norms that can be placed on the direct sum. A duality argument is then used 
to recast the original extremal problem (1.3) into an equivalent dual problem. The solution to the 
original problem is then obtained via norming functionals. In Section 4, we consider regularization in 
a specific Banach space �1(N) of sequences defined on N . We show that the dual problem is indeed 
a finite dimensional optimization problem, which can be solved by linear programming. The result-
ing dual solution leads us to reformulate the original infinite optimization problem as an equivalent 
finite dimensional one. The later can be solved by numerical methods such as the fixed point prox-
imity algorithm (FPPA) developed in [18,24]. We present three numerical experiments in Section 5 to 
demonstrate the effectiveness of the proposed duality approach. There follows an appendix containing 
proofs of standard results from functional analysis.

2. A duality approach to extremal problems

To prepare for developing a duality approach for solving the regularized extremal problems, we 
consider in this section an abstract extremal problem which may be taken as a best approximation 
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problem in a Banach space. By using the characterizations of a general best approximation problem 
in functional analysis and convex analysis, we transform the extremal problem into an equivalent 
dual problem. The relation between the solutions of the original problem and its dual problem is 
characterized by the norming functionals. We also consider a special case that the Banach spaces 
involving in the extremal problem have pre-duals.

We begin with describing the extremal problem under investigation. Suppose that A and B are 
two real Banach spaces and H is a bounded linear operator from A to B. Let b0 ∈ B be a fixed 
vector. We consider the extremal problem

inf {‖b0 − Ha‖B : a ∈ A } . (2.1)

By introducing a closed subspace M of B as

M := {Ha : a ∈ A }, (2.2)

the extremal problem (2.1) seeks a best approximation to b0 from the closed subspace M . We will 
apply the theory of the best approximation to problem (2.1). Most proofs of the results in this section 
are standard. For convenience to readers, we include the proofs in this section and the appendix.

We next establish the duality problem of problem (2.1) via a functional analytic approach. To 
this end, we recall some notions in Banach spaces. The dual space A ∗ of a Banach space A is the 
collection of all continuous linear functionals on A . For a ∈ A and λ ∈ A ∗ , we may write 〈a, λ〉A in 
place of λ(a), to emphasize that the functional is operating on a vector in A . We also recall that A ∗

is itself a Banach space under the norm

‖λ‖A ∗ := sup

{
|〈a, λ〉A |

‖a‖A

: a ∈ A \ {0}

}
, for all λ ∈ A

∗.

We use the notation N ⊥ to mean the annihilator of a subset N in A , that is, the subspace of A ∗

given by N ⊥ :=
{
λ ∈ A ∗ : 〈a, λ〉A = 0, for all a ∈ N

}
. If N is a closed subspace of A , then the 

quotient space A /N is defined to be the collection of cosets a +N , for all a ∈ A . The quotient space 
is also a Banach space when endowed with the norm ‖a + N ‖A /N := inf {‖a− c‖A : c ∈ N } =

distA (a, N ). We denote by ker T the kernel ker T := {a ∈ A : Ta = 0} of the linear operator T : A →

B and by Ran T the range Ran T := {b ∈ B : b = Ta, a ∈ A } of the operator T .
The following lemma identifies the dual of a closed subspace of a Banach space, and the dual of a 

quotient space. For its proof we refer to [12, Section III.10].

Lemma 2.1. Let N be a closed subspace of a Banach space A . Then (A /N )∗ is isometrically isomorphic to 
N ⊥ , and N ∗ is isometrically isomorphic to A ∗/N ⊥ .

The above lemma enables us to transform the extremal problem (2.1) into an equivalent dual 
problem.

Theorem 2.2. Suppose that A and B are real Banach spaces and b0 ∈ B. Let H be a bounded linear operator 
from A to B and H∗ its adjoint operator. Then there holds

inf
{
‖b0 − Ha‖B : a ∈ A

}
= sup

{
|〈b0, λ〉B| : ‖λ‖B∗ ≤ 1, λ ∈ ker H∗

}
. (2.3)

Proof. Let M be the subspace of B defined by (2.2). It follows that

inf
{
‖b0 − Ha‖B : a ∈ A } = ‖b0 + M ‖B/M . (2.4)

Lemma 2.1 ensures that
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‖b0 + M ‖B/M = sup

{
|〈b0, λ〉B| : ‖λ‖B∗ ≤ 1, λ ∈ M

⊥

}
.

Substituting the above equation into equation (2.4), we get that

inf
{
‖b0 − Ha‖B : a ∈ A } = sup

{
|〈b0, λ〉B| : ‖λ‖B∗ ≤ 1, λ ∈ M

⊥

}
.

It suffices to identify M ⊥ with the kernel of the adjoint operator H∗ . Note that λ ∈ M ⊥ is equivalent 
to 〈Ha, λ〉B = 0, for all a ∈ A . It follows from 〈Ha, λ〉B = 〈a, H∗λ〉A , for all a ∈ A , λ ∈ B∗ , that 
λ ∈ M ⊥ if and only if 〈a, H∗λ〉A = 0 for all a ∈ A . The latter is equivalent to H∗λ = 0, which is in 
turn equivalent to λ ∈ ker H∗ . Therefore, the desired duality formula of the theorem holds. �

The duality result stated in Theorem 2.2 can even be extended to the cases when M is replaced by 
certain convex sets [38,43,44]. This result can also be obtained by using a convex analytic approach. 
By using the Fenchel duality theorem, the best approximation problem can be characterized in the 
next lemma [3].

Lemma 2.3. Let B be a real Banach space. Suppose that M is a nonempty closed convex set in B and b0 ∈

B \ M . Then there holds

inf
{
‖b0 − b‖B : b ∈ M } = sup

‖λ‖B∗≤1
inf

b∈M

〈b0 − b, λ〉B.

We now apply Lemma 2.3 to the extremal problem (2.1) and obtain its dual problem described in 
Theorem 2.2. When the closed convex set M coincides with the closure of the range of the operator 
H defined by (2.2), we represent problem (2.1) as a best approximation problem

inf
{
‖b0 − Ha‖B : a ∈ A

}
= inf

{
‖b0 − b‖B : b ∈ M }.

This together with Lemma 2.3 ensures that

inf
{
‖b0 − Ha‖B : a ∈ A

}
= sup

‖λ‖B∗≤1
inf

b∈M

〈b0 − b, λ〉B. (2.5)

We next rewrite the right hand side of equation (2.5) as that of equation (2.3). It follows that

sup
‖λ‖B∗≤1

inf
b∈M

〈b0 − b, λ〉B = sup
‖λ‖B∗≤1

{
〈b0, λ〉B + inf

b∈M

〈−b, λ〉B

}
. (2.6)

Since M is a closed subspace, we have that

inf
b∈M

〈−b, λ〉B =

{
0, λ ∈ M

⊥,

−∞, λ /∈ M
⊥.

Substituting the above equation into equation (2.6), we obtain that

sup
‖λ‖B∗≤1

inf
b∈M

〈b0 − b, λ〉B = sup
{
〈b0, λ〉B : ‖λ‖B∗ ≤ 1, λ ∈ M

⊥
}

.

Again substituting the above equation into equation (2.5), we have that

inf
{
‖b0 − Ha‖B : a ∈ A

}
= sup

{
〈b0, λ〉B : ‖λ‖B∗ ≤ 1, λ ∈ M

⊥
}

,

which together with M ⊥ = ker H∗ leads to equation (2.3).
We now turn to characterizing the relation between the solutions of the extremal problem (2.1)

and its dual problem by utilizing the notion of a norming functional. Recall that if a ∈ A is a nonzero 
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vector, a norming functional λ of a is an element of A ∗ satisfying ‖λ‖A ∗ = 1 and 〈a, λ〉A = ‖a‖A . 
The existence of such λ is ensured by the Hahn-Banach theorem, though generally it need not be 
unique. Similarly, if λ ∈ A ∗ , and a ∈ A is a unit vector satisfying 〈a, λ〉A = ‖λ‖A ∗ , then we say that 
a is norming for λ. Such a vector a always exists if the space A is reflexive; more generally, we 
can always find a sequence of vectors that are approximately norming. The norming functionals are 
related to the duality mapping �A from A to the collection of all subsets in A ∗ , defined for all 
a ∈ A by �A (a) := {λ ∈ A ∗ : ‖λ‖A ∗ = ‖a‖A , 〈a, λ〉A = ‖λ‖A ∗‖a‖A }. The norming functionals of 
a ∈ A , multiplied by ‖a‖A , are precisely the elements of the set �A (a).

The solutions of the original extremal problem (2.1) and its dual problem described in Theorem 2.2

are closely related as follows.

Proposition 2.4. Suppose that A and B are real Banach spaces and b0 ∈ B. Let H be a bounded linear 
operator from A to B and H∗ its adjoint operator. If â ∈ A has the property that

‖b0 − H â‖B = inf
{
‖b0 − Ha‖B : a ∈ A

}
> 0, (2.7)

and λ̂ ∈ ker H∗ satisfies ‖λ̂‖B∗ = 1 and the condition

〈b0, λ̂〉B = sup

{
|〈b0, λ〉B| : ‖λ‖B∗ ≤ 1, λ ∈ ker H∗

}
> 0, (2.8)

then (b0 − H â)/‖b0 − H â‖B is norming for λ̂ and λ̂ is norming for b0 − H â.

Proof. It is clear that the proposed norming vectors are of unit norm. It follows that

〈b0 − H â, λ̂〉B = 〈b0, λ̂〉B − 〈H â, λ̂〉B = 〈b0, λ̂〉B − 〈â, H∗λ̂〉A .

Noting that λ̂ ∈ ker H∗ , we observe from the above equation that 〈b0 − H â, ̂λ〉B = 〈b0, ̂λ〉B , which, 
together with equation (2.8), further leads to

〈b0 − H â, λ̂〉B = sup{|〈b0, λ〉B| : ‖λ‖B∗ ≤ 1, λ ∈ ker H∗}.

Substituting equations (2.3) and (2.7) into the above equation, we get that 〈b0 − H â, ̂λ〉B = ‖b0 −

H â‖B . It is obvious that λ̂ is norming for b0 − H â. Moreover, the conclusion that (b0 − H â)/‖b0 −
H â‖B is norming for λ̂ can be obtained by dividing both sides of the above equation by ‖b0 − H â‖B

and noting that ‖λ̂‖B∗ = 1. �

In the rest of this section, we consider the special case that the Banach spaces A and B have 
pre-dual spaces. A normed space A∗ is called a pre-dual space of a Banach space A if (A∗)

∗ = A . 
Since the natural map is the isometrically imbedding map from A∗ into A ∗ , any element in A∗

can be viewed as a bounded linear functional on A , that is, an element in A ∗ and there holds 
〈�, a〉A∗

= 〈a, �〉A , for all � ∈ A∗ and all a ∈ A . The pre-dual space A∗ guarantees that the Banach 
space A enjoys the weak∗ topology. The weak∗ topology of A is the smallest topology for A such 
that, for each � ∈ A∗ , the linear functional a → 〈a, �〉A on A is continuous with respect to the 

topology. For a subset N of A , we denote by N
w∗

the closure of N in the weak∗ topology of A . 
We also give the name N⊥ to the subspace of A∗

N⊥ :=
{
� ∈ A∗ : 〈a, �〉A = 0, for all a ∈ N

}
.

In the special case that the Banach spaces A and B have pre-duals A∗ and B∗ , respectively, a 
similar result to Theorem 2.2 holds.

Theorem 2.5. Suppose that A and B are real Banach spaces having the respective pre-dual spaces A∗ and 
B∗ , b0 ∈ B. Let H be the adjoint operator of a bounded linear operator H∗ from B∗ to A∗ . If M defined by 

(2.2) satisfies M
w∗

= M , then there holds
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inf
{
‖b0 − Ha‖B : a ∈ A

}
= sup

{
|〈b0, �〉B| : ‖�‖B∗ ≤ 1, � ∈ ker H∗

}
. (2.9)

Proof. Again, associated with the closed subspace M of B defined by (2.2), there holds equation 
(2.4). We apply the second part of Lemma 2.1 to the right hand side of equation (2.4). To this 
end, we need to show that (ker H∗)

⊥ = M . We first identify M⊥ with the kernel of the opera-
tor H∗ . Specifically, by the definition of M⊥ , we have that � ∈ M⊥ if and only if 〈Ha, �〉B = 0, 
for all a ∈ A . The latter is equivalent to 〈a, H∗�〉A = 0, for all a ∈ A . That is, � ∈ ker H∗ . Thus, 
we conclude that M⊥ = ker H∗ , which further leads to (ker H∗)

⊥ = (M⊥)⊥ . It follows from Propo-
sition 2.6.6 of [23] that (M⊥)⊥ = M

w∗
. We then get that (ker H∗)

⊥ = M
w∗

. This together with 

the assumption that M
w∗

= M yields that (ker H∗)
⊥ = M . By employing Lemma 2.1, we get that 

‖b0 +M ‖B/M = sup{|〈b0, �〉B| : ‖�‖B∗
≤ 1, � ∈ ker H∗}. Substituting the above equation into equa-

tion (2.4), we obtain the desired equation (2.9). �

We note that when B is an finite-dimensional Banach space, the assumption M
w∗

= M holds. 
The added advantage in this particular situation is that the pre-dual of a space A is often a simpler or 
smaller space than its dual. For example, if A = �1(N), the space of absolutely summable sequences, 
then its dual is A ∗ = �∞(N); however, its pre-dual is A∗ = c0(N), the space of sequences convergent 
to zero.

For the special case when A and B have pre-duals, we can also characterize the relation between 
the solutions of the original problem and its dual problem. The proof of the following proposition is 
similar to that of Proposition 2.4 and thus is omitted.

Proposition 2.6. Suppose that the assumptions in Theorem 2.5 hold. If â ∈ A has the property that

‖b0 − H â‖B = inf
{
‖b0 − Ha‖B : a ∈ A

}
> 0,

and �̂ ∈ ker H∗ satisfies ‖�̂‖B∗
= 1 and the condition

〈b0, �̂〉B = sup
{
|〈b0, �〉B| : ‖�‖B∗ ≤ 1, � ∈ ker H∗

}
> 0,

then (b0 − H â)/‖b0 − H â‖B is norming for �̂, and �̂ is norming for b0 − H â.

Another advantage of the case in which the pre-duals A∗ and B∗ exist is that the extreme solution 
is generally attained. This is a result of the following statement.

Proposition 2.7. If N is a subspace of A∗ , and a ∈ A with a /∈ N ⊥ , then there exists a′ ∈ N ⊥ such that 
‖a − a′‖A = dist(a, N ⊥).

As ever, see Appendix for a proof of the case A is separable. A quick consequence of Proposi-
tion 2.7 is that the extreme value in (2.1) is attained.

Corollary 2.8. Under the conditions of Theorem 2.5, there exists â ∈ A such that the infimum in (2.9) is 
attained.

3. The regularized extremal problem

The objective of this section is to develop a duality approach for solving the regularized extremal 
problem (1.3). The expression 

(
‖y0 − Ax‖

p

Y
+ρ‖Bx‖

p

Z

)1/p
, which appears in the regularized extremal 

problem (1.3), is a monotone function of the loss function ‖y0 − Ax‖
p

Y
+ ρ‖Bx‖

p

Z
and itself defines 

a norm on a direct sum space constructed from Y and Z . Motivated by this observation, we refor-
mulate the regularized extremal problem (1.3) as in (2.1) and apply a duality argument to transform 
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(1.3) into an equivalent dual problem. In practice, the dual problem, containing only finitely many 
free parameters, can be solvable by numerical methods. We then leverage the dual solution into a 
solution of the original problem. Throughout the rest of this paper, we always assume that the regu-
larized extremal problem (1.3) has a solution without further mention. In particular, it is guaranteed 
by Corollary 2.8 that this assumption holds when X , Y and Z have pre-dual spaces.

We start with recalling the notion of the direct sum of two Banach spaces. The direct sum A ⊕B

of two Banach spaces A and B is the Cartesian product A × B, made into a vector space via 
componentwise addition (a1, b1) + (a2, b2) := (a1 + a2, b1 + b2) and scalar multiplication c(a1, b1) =
(ca1, cb1). There are numerous ways to place a norm on a direct sum. We lay out a family of norms 
that could be placed on the direct sum, depending on the parameter p ∈ [1, +∞]. The associated 
dual spaces are also identified. For p ∈ [1, +∞), we denote by A ⊕p B the direct sum of A and 

B endowed with the norm ‖(a, b)‖A ⊕pB :=
(
‖a‖

p

A
+ ‖b‖

p

B

)1/p
. We also denote by A ⊕∞ B the 

direct sum of A and B endowed with the norm ‖(a, b)‖A ⊕∞B := max
{
‖a‖A , ‖b‖B

}
. It is easy to 

see that the spaces A ⊕p B, p ∈ [1, +∞], are all Banach spaces. Let p′ be the Hölder conjugate of p
satisfying 1/p + 1/p′ = 1. Then the dual space of A ⊕p B is isometrically isomorphic to A ∗ ⊕p′ B∗ .

We next identify the norming functionals for a nonzero element of the direct sum space A ⊕p B, 
p ∈ (1, +∞]. Some function-theoretic preliminaries follow below, with the proofs being supplied in 
the appendix. We first consider the case that p, p′ ∈ (1, +∞).

Proposition 3.1. Let A , B be real Banach spaces and p, p′ ∈ (1, +∞) satisfy 1/p + 1/p′ = 1. Suppose that 
(λ, μ) ∈ A ∗ ⊕p′ B∗ \ {(0, 0)} is norming for (a, b) ∈ A ⊕p B \ {(0, 0)}. Then the following statements hold.

1. If b = 0, then μ = 0 and λ is norming for a;
2. If a = 0, then λ = 0 and μ is norming for b;

3. If a and b are both nonzero vectors, then λ 
= 0, μ 
= 0, and 
(
1 + ‖b‖

p

B
/‖a‖

p

A

)1/p′

λ is norming for a and 
(
1 + ‖a‖

p

B
/‖b‖

p

A

)1/p′

μ is norming for b.

When p = ∞, p′ = 1, the norming functionals for a nonzero element of the direct sum space are 
characterized as follows.

Proposition 3.2. Let A and B be real Banach spaces. Suppose that (λ, μ) ∈ A ∗ ⊕1 B∗ \ {(0, 0)} is norming 
for (a, b) ∈ A ⊕∞ B \ {(0, 0)}. Then the following statements hold.

1. If ‖a‖A > ‖b‖B , then μ = 0 and λ is norming for a;
2. If ‖a‖A < ‖b‖B , then λ = 0 and μ is norming for b;
3. If ‖a‖A = ‖b‖B , then λ, μ satisfy one of the following three conditions: (i) μ = 0 and λ is norming for a; 

(ii) λ = 0 and μ is norming for b; (iii) λ 
= 0, μ 
= 0, λ/‖λ‖A ∗ is norming for a, and μ/‖μ‖B∗ is norming 
for b.

We now turn to rewriting (1.3) as in (2.1). We choose A := X and B := Y ⊕p Z for p ∈ [1, +∞). 
Associated with the bounded linear operators A, B and the regularization parameter ρ , we define an 
operator H : X → Y ⊕p Z by

Hx := (Ax,ρ1/pBx), for all x ∈ X . (3.1)

It is obvious that H is a bounded linear operator on X . The following lemma gives the adjoint 
operator of the operator H .

Lemma 3.3. Suppose that X , Y and Z are real Banach spaces with the respective dual spaces X ∗, Y ∗ and 
Z ∗ , A : X → Y , B : X → Z are bounded linear operators with the respective adjoint operators A∗, B∗ . 
Let ρ > 0 and p ∈ [1, +∞), p′ ∈ (1, +∞] satisfy 1

p
+ 1

p′ = 1. If the operator H is defined by (3.1), then the 
adjoint operator H∗ of H has the form

8
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H∗(λ,μ) := A∗λ + ρ1/pB∗μ, for all (λ,μ) ∈ Y
∗ ⊕p′ Z

∗.

Proof. We first note that

〈x, H∗(λ,μ)〉X = 〈Hx, (λ,μ)〉Y ⊕pZ , for all x ∈ X , (λ,μ) ∈ Y
∗ ⊕p′ Z

∗. (3.2)

By the definition (3.1) of H , we have that 〈Hx, (λ, μ)〉Y ⊕pZ = 〈Ax, λ〉Y + ρ1/p〈Bx, μ〉Z , which 
further leads to

〈Hx, (λ,μ)〉Y ⊕pZ = 〈x, A∗λ〉X + ρ1/p〈x, B∗μ〉X = 〈x, A∗λ + ρ1/pB∗μ〉X .

Substituting the above equation into the right hand side of (3.2), we obtain for all x ∈ X and all 
(λ, μ) ∈ Y ∗ ⊕p′ Z ∗ that 〈x, H∗(λ, μ)〉X = 〈x, A∗λ + ρ1/pB∗μ〉X , which leads to the desired repre-
sentation of H∗ . �

By using the direct sum Y ⊕p Z , p ∈ [1, +∞), and the operator H defined by (3.1), we rewrite 
the objective function of the regularized extremal problem (1.3) as

(‖y0 − Ax‖
p
Y

+ ρ‖Bx‖
p
Z

)1/p = ‖(y0 − Ax,−ρ1/pBx)‖Y ⊕pZ = ‖(y0,0) − Hx‖Y ⊕pZ .

Thus, we rewrite the regularized extremal problem (1.3) as

inf
{
‖(y0,0) − Hx‖Y ⊕pZ : x ∈ X

}
. (3.3)

Applying Theorem 2.2 to problem (3.3), we get the dual problem of (1.3).

Theorem 3.4. Suppose that X , Y and Z are real Banach spaces with the respective dual spaces X ∗, Y ∗ and 
Z ∗ , A : X → Y , B : X → Z are bounded linear operators with the adjoint operators A∗, B∗ , respectively. 
Let y0 ∈ Y and ρ > 0. Then there holds

inf
{
‖y0 − Ax‖Y + ρ‖Bx‖Z : x ∈ X

}

= sup

{
|〈y0, λ〉Y | : max{‖λ‖Y ∗ ,‖μ‖Z ∗} ≤ 1, A∗λ + ρB∗μ = 0

}
. (3.4)

If p, p′ ∈ (1, +∞) such that 1/p + 1/p′ = 1, then there holds

inf
{(

‖y0 − Ax‖
p
Y

+ ρ‖Bx‖
p
Z

)1/p
: x ∈ X

}

= sup

{
|〈y0, λ〉Y | :

(
‖λ‖

p′

Y ∗ + ‖μ‖
p′

Z ∗

)1/p′

≤ 1, A∗λ + ρ1/pB∗μ = 0

}
. (3.5)

Proof. The regularized extremal problem (1.3) with p ∈ [1, +∞) can be reformulated as in (3.3), 
which has the form (2.1) with A , B and b0 being replaced by X , Y ⊕p Z and (y0, 0), respectively, 
and H being defined by (3.1). We then apply Theorem 2.2 to problem (3.3) and obtain that

inf
{
‖(y0,0) − Hx‖Y ⊕pZ : x ∈ X

}
= sup

{
|〈y0, λ〉Y | : ‖(λ,μ)‖Y ∗⊕p′Z ∗ ≤ 1, (λ,μ) ∈ ker H∗

}
.

(3.6)

Lemma 3.3 ensures that (λ, μ) ∈ ker H∗ if and only if λ ∈ Y ∗ , μ ∈ Z ∗ satisfy A∗λ + ρ1/pB∗μ = 0. 
Substituting the above equation into equation (3.6), noting that problems (1.3) and (3.3) are equiva-
lent, we get that

9
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inf
{(

‖y0 − Ax‖
p
Y

+ ρ‖Bx‖
p
Z

)1/p
: x ∈ X

}

= sup

{
|〈y0, λ〉Y | : ‖(λ,μ)‖Y ∗⊕p′Z ∗ ≤ 1, A∗λ + ρ1/pB∗μ = 0

}
.

When p = 1 and p′ = +∞, substituting the norm ‖ · ‖Y ∗⊕∞Z ∗ into the above equation leads to 
equation (3.4). Likewise, when p, p′ ∈ (1, +∞), substituting the norm ‖ · ‖Y ∗⊕p′Z ∗ into the above 
equation leads to equation (3.5). �

In practice, such as in the machine learning problem (1.1), the space Y is finite dimensional. As 
a result, the dual extremal problem (that is, the suprema in (3.4) or (3.5)) has only finitely many 
parameters, namely, the components of the vector λ ∈ Y ∗ . The dual problem which is of finite di-
mension can therefore be solved using numerical methods. In this way, the duality argument offers 
a useful reduction. We describe this practical case as follows. Let Y = Rm endowed with a norm 
‖ · ‖Rm and y0 = (y j : j ∈ Nm) ∈ Rm . We denote by ‖ · ‖∗

Rm the dual norm of ‖ · ‖Rm . Suppose that 
X is a real Banach space with the dual space X ∗ and a j , j ∈ Nm , are a finite number of linearly 
independent elements of X ∗ and the operator A : X → Rm is defined by Ax :=

(
〈x,a j〉X : j ∈ Nm

)
, 

for all x ∈ X . It follows from the definition of A that for all x ∈ X and all λ := (λ j : j ∈ Nm) ∈ Rm , 

〈x, A∗λ〉X =
∑

j∈Nm
λ j〈x, a j〉X =

〈
x,

∑
j∈Nm

λ ja j

〉
X

, which leads to

A∗λ =
∑

j∈Nm

λ ja j, for all λ := (λ j : j ∈ Nm) ∈ R
m. (3.7)

We also let Z be a real Banach space with the dual space Z ∗ . Suppose that B : X → Z is a 
bounded linear operator satisfying Ran B = Z , that is, B∗ is injective. It follows from equation (3.7)
and A∗λ + ρ1/pB∗μ = 0 that

μ = −ρ−1/p
∑

j∈Nm

λ j(B
∗)−1a j . (3.8)

Consequently, we conclude by Theorem 3.4 that

inf
{(

‖y0 − Ax‖
p

Rm + ρ‖Bx‖
p
Z

)1/p
: x ∈ X

}

= sup

{
∑

j∈Nm

y jλ j :
∥∥∥
(
(λ j : j ∈ Nm),−ρ−1/p

∑

j∈Nm

λ j(B
∗)−1a j

)∥∥∥∥∥
Rm⊕p′Z ∗

≤ 1

}
. (3.9)

The dual extremal problem in (3.9) has only a finite number of real parameters, namely the m compo-

nents of λ. Notice that the expression 
∥∥(

(λ j : j ∈ Nm), −ρ−1/p
∑

j∈Nm
λ j(B

∗)−1a j

)∥∥
Rm⊕p′Z ∗ defines 

a norm on Rm , which must be equivalent to the Euclidean norm. Consequently, the dual problem is 
to maximize a linear function of m variables over some compact set in Rm . The maximum must be 
attained, though not necessarily uniquely. The fact that the solution (λ̂, μ̂) to the dual problem (3.9)
takes the form (3.8) can be viewed as a representer theorem. The original representer theorem [29]
for a learning method was in the setting of a Hilbert space, which is self-dual. Representer theorems 
for solutions of regularization problems in Banach spaces have received considerable attention in the 
literature. A systematic study of this topic was conducted in [41]. The resulting representer theorem 
states that the solution lies in a subdifferential set of the norm function evaluated at a finite linear 
combination of given functionals. The regularization problem in an infinite dimensional Banach space 
was then reduced to a finite dimensional optimization problem of the coefficients of the linear com-

bination. The dual problem (3.9) coincides with the resulting finite dimensional optimization problem 
in the representer theorem.

By combining Propositions 2.4 and 3.1, we can characterize the solution of the regularized extremal 
problem (1.3) with p ∈ (1, +∞) by using the norming functionals of the solution of the dual problem 
stated in Theorem 3.4.

10
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Proposition 3.5. Suppose that X , Y and Z are real Banach spaces with the respective dual spaces X ∗, Y ∗

and Z ∗ , A : X → Y , B : X → Z are bounded linear operators with the adjoint operators A∗, B∗ , respec-
tively. Let y0 ∈ Y , ρ > 0 and p, p′ ∈ (1, +∞) satisfy 1/p + 1/p′ = 1. If x̂ ∈ X has the property that

(
‖y0 − Ax̂‖

p
Y

+ ρ‖Bx̂‖
p
Z

)1/p
= inf

{(
‖y0 − Ax‖

p
Y

+ ρ‖Bx‖
p
Z

)1/p
: x ∈ X

}
> 0, (3.10)

and (λ̂, μ̂) ∈ Y ∗ ⊕p′ Z ∗ satisfies 
(
‖λ̂‖

p′

Y ∗ + ‖μ̂‖
p′

Z ∗

)1/p′

= 1, A∗λ̂ + ρ1/pB∗μ̂ = 0 and

〈y0, λ̂〉Y = sup

{
|〈y0, λ〉Y | :

(
‖λ‖

p′

Y ∗ + ‖μ‖
p′

Z ∗

)1/p′

≤ 1, A∗λ + ρ1/pB∗μ = 0

}
> 0,

then the following statements hold.

1. If μ̂ = 0, then Bx̂ = 0 and ‖y0 − Ax̂‖Y = 〈y0, ̂λ〉Y ;

2. If λ̂ and μ̂ are both nonzero, then y0− Ax̂ 
= 0, Bx̂ 
= 0, and α(y0− Ax̂) is norming for λ̂ and βBx̂ is norming 

for μ̂, where α :=
(
1 +‖μ̂‖

p′

Z ∗/‖λ̂‖
p′

Y ∗

)1/p
/〈y0, ̂λ〉Y and β :=−ρ1/p

(
1 +‖λ̂‖

p′

Y ∗/‖μ̂‖
p′

Z ∗

)1/p
/〈y0, ̂λ〉Y .

Proof. As pointed out earlier, the regularized extremal problem (1.3) with p ∈ (1, +∞) can be refor-
mulated as in (2.1) with A , B and b0 being replaced by X , Y ⊕p Z and (y0, 0), respectively, 
and H being defined by (3.1). We conclude by Proposition 2.4 that (y0 − Ax̂, −ρ1/pBx̂)/‖(y0 −

Ax̂, −ρ1/pBx̂)‖Y ⊕pZ is norming for (λ̂, μ̂) ∈ Y ∗ ⊕p′ Z ∗ . According to statement 1 of Proposition 3.1, 
we have that if μ̂ = 0, then Bx̂ = 0. This, together with

(‖y0 − Ax̂‖
p
Y

+ ρ‖Bx̂‖
p
Z

)1/p = 〈y0, λ̂〉Y , (3.11)

leads to ‖y0 − Ax̂‖Y = 〈y0, ̂λ〉Y . For the case that λ̂, μ̂ are both nonzero, we get by state-

ment 3 of Proposition 3.1 that y0 − Ax̂ 
= 0, Bx̂ 
= 0. Moreover, 
(
1 + ‖μ̂‖

p′

Z ∗/‖λ̂‖
p′

Y ∗

)1/p
(y0 −

Ax̂)/‖(y0 − Ax̂, −ρ1/pBx̂)‖Y ⊕pZ is norming for λ̂ and 
(
1 + ‖λ̂‖

p′

Z ∗/‖μ̂‖
p′

Y ∗

)1/p
(−ρ1/pBx̂)/‖(y0 −

Ax̂, −ρ1/pBx̂)‖Y ⊕pZ is norming for μ̂. By setting α, β as in this proposition and equation (3.11), we 
get the desired result. �

The next proposition concerns the characterization of the solution of the regularized extremal 
problem (1.3) with p = 1, which can be obtained by employing Propositions 2.4 and 3.2.

Proposition 3.6. Suppose that X , Y and Z are real Banach spaces with the respective dual spaces X ∗, Y ∗

and Z ∗ , A : X → Y , B : X → Z are bounded linear operators with the adjoint operators A∗, B∗ , respec-
tively. Let y0 ∈ Y and ρ > 0. If x̂ ∈ X has the property that

‖y0 − Ax̂‖Y + ρ‖Bx̂‖Z = inf
{
‖y0 − Ax‖Y + ρ‖Bx‖Z : x ∈ X

}
> 0, (3.12)

and (λ̂, μ̂) ∈ Y ∗ ⊕∞ Z ∗ satisfies max{‖λ̂‖Y ∗ , ‖μ̂‖Z ∗ } = 1, A∗λ̂ + ρB∗μ̂ = 0 and

〈y0, λ̂〉Y = sup

{
|〈y0, λ〉Y | : max{‖λ‖Y ∗ ,‖μ‖Z ∗} ≤ 1, A∗λ + ρB∗μ = 0

}
> 0,

then the following statements hold.

1. If ‖λ̂‖Y ∗ > ‖μ̂‖Z ∗ , then Bx̂ = 0 and ‖y0 − Ax̂‖Y = 〈y0, ̂λ〉Y ;

2. If ‖λ̂‖Y ∗ < ‖μ̂‖Z ∗ , then Ax̂ = y0 and ρ‖Bx̂‖Z = 〈y0, ̂λ〉Y ;

3. If ‖λ̂‖Y ∗ = ‖μ̂‖Z ∗ , then x̂ satisfies one of the following three conditions: (i) Bx̂ = 0 and ‖y0 − Ax̂‖Y =

〈y0, ̂λ〉Y ; (ii) Ax̂ = y0 and ρ‖Bx̂‖Z = 〈y0, ̂λ〉Y ; (iii) y0 − Ax̂ 
= 0, Bx̂ 
= 0, (y0 − Ax̂)/‖y0 − Ax̂‖Y is 
norming for λ̂ and −Bx̂/‖Bx̂‖Z is norming for μ̂.

11
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Proof. Note that the regularized extremal problem (1.3) can be reformulated as in (2.1) with A , B
and b0 being replaced by X , Y ⊕p Z and (y0, 0), respectively, and H being defined by (3.1). Proposi-
tion 2.4 ensures that (y0 − Ax̂, −ρBx̂)/‖(y0 − Ax̂, −ρBx̂)‖Y ⊕1Z

is norming for (λ̂, μ̂) ∈ Y ∗ ⊕∞ Z ∗ . 
We characterize the norming vector by Proposition 3.2 with A := Y ∗ and B := Z ∗ . If ‖λ̂‖Y ∗ >

‖μ̂‖Z ∗ , statement 1 of Proposition 3.2 leads directly to Bx̂ = 0. Moreover, Theorem 3.4 guarantees 
that

‖y0 − Ax̂‖Y + ρ‖Bx̂‖Z = 〈y0, λ̂〉Y , (3.13)

which together with Bx̂ = 0 leads to ‖y0 − Ax̂‖Y = 〈y0, ̂λ〉Y . If ‖λ̂‖Y ∗ < ‖μ̂‖Z ∗ , we get by statement 
2 of Proposition 3.2 that Ax̂ = y0 . Again by equation (3.13), we obtain that ρ‖Bx̂‖Z = 〈y0, ̂λ〉Y . 
It suffices to consider the case that ‖λ̂‖Y ∗ = ‖μ̂‖Z ∗ . In this case, Statement 3 of Proposition 3.2

shows that the norming vector (y0 − Ax̂, −ρBx̂)/‖(y0 − Ax̂, −ρBx̂)‖Y ⊕1Z
may satisfy one of three 

conditions. By similar arguments as above, the first one leads to Bx̂ = 0 and ‖y0 − Ax̂‖Y = 〈y0, ̂λ〉Y
and the second one ensures that Ax̂ = y0 and ρ‖Bx̂‖Z = 〈y0, ̂λ〉Y . In addition, the third condition 
coincides with y0 − Ax̂ 
= 0, Bx̂ 
= 0, (y0 − Ax̂)/‖y0 − Ax̂‖Y is norming for λ̂ and −Bx̂/‖Bx̂‖Z is 
norming for μ̂. This completes the proof of this proposition. �

In the special case that X , Y and Z have pre-dual spaces, there is a similar dual problem.

Theorem 3.7. Suppose that X , Y and Z are real Banach spaces with the respective pre-dual spaces X∗, Y∗

and Z∗ , A∗ : Y∗ → X∗ , B∗ : Z∗ → X∗ are bounded linear operators with the adjoint operators A, B, respec-
tively. Let y0 ∈ Y and ρ > 0. If Y is finite dimensional and Ran B = Z , then there holds

inf
{
‖y0 − Ax‖Y + ρ‖Bx‖Z : x ∈ X

}

= sup

{
|〈y0, λ〉Y | : max{‖λ‖Y∗ ,‖μ‖Z∗} ≤ 1, A∗λ + ρB∗μ = 0

}
. (3.14)

If p, p′ ∈ (1, +∞) such that 1/p + 1/p′ = 1, then there holds

inf
{(

‖y0 − Ax‖
p
Y

+ ρ‖Bx‖
p
Z

)1/p
: x ∈ X

}

= sup

{
|〈y0, λ〉Y | :

(
‖λ‖

p′

Y∗
+ ‖μ‖

p′

Z∗

)1/p′

≤ 1, A∗λ + ρ1/pB∗μ = 0

}
. (3.15)

Proof. As pointed out earlier, the regularized extremal problem (1.3) can be rewritten as in (2.1) with 
A , B and b0 being replaced by X , Y ⊕p Z and (y0, 0), respectively, and H being defined by (3.1). 
We prove this theorem by using Theorem 2.5. Note that Y ⊕p Z has the pre-dual space Y∗ ⊕p′ Z∗

and H is the adjoint operator of H∗ : Y∗ ⊕p′ Z∗ → X∗ defined by H∗(λ, μ) := A∗λ +ρ1/pB∗μ, for all 

(λ, μ) ∈ Y∗ ⊕p′ Z∗ . By setting M := {(Ax,ρ1/pBx) : x ∈ X }, we have that

M
w∗

= {Ax : x ∈ X }
w∗

× {ρ1/pBx : x ∈ X }
w∗

,

which, together with the assumptions that Y is finite dimensional and Ran B = Z , yields that 

M
w∗

= M . That is, the hypotheses of Theorem 2.5 are satisfied. Hence, Theorem 2.5 ensures that

inf
{(

‖y0 − Ax‖
p
Y

+ ρ‖Bx‖
p
Z

)1/p
: x ∈ X

}

= sup

{
|〈y0, λ〉Y | : ‖(λ,μ)‖Y∗⊕p′Z∗ ≤ 1, (λ,μ) ∈ ker H∗

}
.

Substituting the kernel of H∗ and the definition of the norm of the direct sum Y∗ ⊕p′ Z∗ , p′ ∈

(1, +∞], into the above equation leads to the desired equations (3.14) and (3.15). �

12
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By specializing Proposition 2.6 to the regularized extremal problem (1.3) when X , Y and Z have 
pre-dual spaces, we relate the solution of (1.3) to the dual solution. The proofs of the following two 
propositions are similar to those of Propositions 3.5 and 3.6 and thus are omitted.

Proposition 3.8. Suppose that X , Y and Z are real Banach spaces with the respective pre-dual spaces 
X∗, Y∗ and Z∗ , A∗ : Y∗ → X∗ , B∗ : Z∗ → X∗ are bounded linear operators with the adjoint operators 
A, B, respectively. In addition, suppose that Y is finite dimensional and Ran B = Z . Let y0 ∈ Y , ρ > 0 and 
p, p′ ∈ (1, +∞), satisfy 1

p
+ 1

p′ = 1. If x̂ ∈ X has the property (3.10) and (λ̂, μ̂) ∈ Y∗ ⊕p′ Z∗ satisfies 
(
‖λ̂‖

p′

Y∗
+ ‖μ̂‖

p′

Z∗

)1/p′

= 1, A∗λ̂ + ρ1/pB∗μ̂ = 0 and

〈y0, λ̂〉Y = sup

{
|〈y0, λ〉Y | :

(
‖λ‖

p′

Y∗
+ ‖μ‖

p′

Z∗

)1/p′

≤ 1, A∗λ + ρ1/pB∗μ = 0

}
> 0,

then the following statements hold.

1. If μ̂ = 0, then Bx̂ = 0 and ‖y0 − Ax̂‖Y = 〈y0, ̂λ〉Y ;

2. If λ̂ and μ̂ are both nonzero, then y0− Ax̂ 
= 0, Bx̂ 
= 0, and α(y0− Ax̂) is norming for λ̂ and βBx̂ is norming 

for μ̂, where α :=
(
1 + ‖μ̂‖

p′

Z∗
/‖λ̂‖

p′

Y∗

)1/p
/〈y0, ̂λ〉Y and β := −ρ1/p

(
1 + ‖λ̂‖

p′

Y∗
/‖μ̂‖

p′

Z∗

)1/p
/〈y0, ̂λ〉Y .

Proposition 3.9. Suppose that X , Y and Z are real Banach spaces with the respective pre-dual spaces 
X∗, Y∗ and Z∗ , A∗ : Y∗ → X∗ , B∗ : Z∗ → X∗ are bounded linear operators with the adjoint operators 
A, B, respectively. In addition, suppose that Y is finite dimensional and Ran B = Z . Let y0 ∈ Y and ρ > 0. If 
x̂ ∈ X has the property (3.12) and (λ̂, μ̂) ∈ Y∗ ⊕∞ Z∗ satisfies max{‖λ̂‖Y∗

, ‖μ̂‖Z∗
} = 1, A∗λ̂ +ρB∗μ̂ = 0

and

〈y0, λ̂〉Y = sup

{
|〈y0, λ〉Y | : max{‖λ‖Y∗ ,‖μ‖Z∗} ≤ 1, A∗λ + ρB∗μ = 0

}
> 0,

then the following statements hold.

1. If ‖λ̂‖Y∗
> ‖μ̂‖Z∗

, then Bx̂ = 0 and ‖y0 − Ax̂‖Y = 〈y0, ̂λ〉Y ;

2. If ‖λ̂‖Y∗
< ‖μ̂‖Z∗

, then Ax̂ = y0 and ρ‖Bx̂‖Z = 〈y0, ̂λ〉Y ;

3. If ‖λ̂‖Y∗
= ‖μ̂‖Z∗

, then x̂ satisfy one of the following three conditions: (i) Bx̂ = 0 and ‖y0 − Ax̂‖Y =

〈y0, ̂λ〉Y ; (ii) Ax̂ = y0 and ρ‖Bx̂‖Z = 〈y0, ̂λ〉Y ; (iii) y0 − Ax̂ 
= 0, Bx̂ 
= 0, (y0 − Ax̂)/‖y0 − Ax̂‖Y is 
norming for λ̂ and −Bx̂/‖Bx̂‖Z is norming for μ̂.

4. Regularized extremal problem in �1(N)

In this section, we illustrate the duality approach developed in the previous section with the reg-
ularized extremal problem in �1(N).

We describe the regularized extremal problem in �1(N). Let X = Z = �1(N), the Banach space 
consisting of all real sequences x := (x j : j ∈ N) such that ‖x‖1 :=

∑
j∈N

|x j | < +∞. It is known that 
�1(N) has c0(N) as its pre-dual space, where c0(N) denotes the Banach space of all real sequences 
a := (a j : j ∈ N) converging to 0 as j → ∞, endowed with ‖a‖∞ := sup{|a j| : j ∈ N} < +∞. For 
m ∈ N , let Y = Rm endowed with a norm ‖ · ‖Rm and y0 = (y j : j ∈ Nm) ∈ Rm . For a norm ‖ · ‖Rm

on Rm , we denote by ‖ · ‖∗
Rm its dual norm. Suppose that a j := (a j,k : k ∈ N), j ∈ Nm , are a finite 

number of linearly independent elements of c0(N) and let A be the semi-infinite matrix whose m
rows are a1, a2, . . . , am . It is easy to see that A determines a bounded linear operator from �1(N) to 
Rm . We also choose the operator B as the identity operator on �1(N). Let p ∈ [1, +∞) and ρ > 0. 
We then consider the regularized extremal problem

inf
{
(‖y0 − Ax‖

p

Rm + ρ‖x‖
p
1 )1/p : x ∈ �1(N)

}
. (4.1)

13
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We now solve the regularized extremal problem (4.1) by applying the duality approach developed 
in section 3. To this end, we first establish the dual problem of (4.1) by using Theorem 3.7. It is easy 
to see that the operator A is the adjoint operator of A∗ : Rm → c0(N) defined by

A∗λ :=
∑

j∈Nm

λ ja j, for all λ := (λ j : j ∈ Nm). (4.2)

Theorem 3.7 ensures that the dual problem of problem (4.1) has the form

sup

⎧
⎪«
⎪¬

∑

j∈Nm

y jλ j :

∥∥∥∥∥∥

(
λ,−ρ−1/p

∑

j∈Nm

λ ja j

)∥∥∥∥∥∥
Rm⊕p′ c0(N)

≤ 1, λ := (λ j : j ∈ Nm) ∈ R
m

«
⎪¬
⎪­

.

(4.3)

We next show that the dual problem (4.3) is indeed a finite dimensional optimization problem. 
We first consider the case that p = 1, p′ = +∞, in which the dual problem can be represented as

sup

⎧
«
¬

∑

j∈Nm

y jλ j : ‖(λ j : j ∈ Nm)‖∗
Rm ≤ 1,

∥∥∥∥∥∥

∑

j∈Nm

λ ja j

∥∥∥∥∥∥
∞

≤ ρ, λ j ∈ R, j ∈ Nm

«
¬
­ . (4.4)

Although this optimization problem has only finitely many parameters λ j , j ∈ Nm , a certain infi-
nite dimensional aspect is hidden in the resulting finite dimensional problem. In fact, the constraint ∥∥∥
∑

j∈Nm
λ ja j

∥∥∥
∞

≤ ρ involves infinitely many constraints 
∣∣∣
∑

j∈Nm
λ ja j,k

∣∣∣ ≤ ρ, k ∈ N . To overcome 

this obstacle, we define for each k ∈ N

Uk :=

⎧
«
¬λ := (λ j : j ∈ Nm) ∈ R

m : −ρ ≤
∑

j∈Nm

λ ja j,k ≤ ρ

«
¬
­ , (4.5)

and set U :=
⋂

k∈N
Uk . It has been proved in [11] that the set U is the intersection of finitely many 

of the regions Uk . That is to say, the dual problem (4.4) is an optimization problem with finitely many 
constraints. Hence, we can obtain a solution of (4.4) by using standard numerical methods. Likewise, 
when p, p′ ∈ (1, +∞), the dual problem

sup

⎧
⎪«
⎪¬

∑

j∈Nm

y jλ j : (‖(λ j : j ∈ Nm)‖∗
Rm )p

′
+ ρ1−p′

∥∥∥∥∥∥

∑

j∈Nm

λ ja j

∥∥∥∥∥∥

p′

∞

≤ 1, λ j ∈ R, j ∈ Nm

«
⎪¬
⎪­

(4.6)

also has infinitely many constraints (‖(λ j : j ∈ Nm)‖∗
Rm )p

′
+ρ1−p′

∣∣∣
∑

j∈Nm
λ ja j,k

∣∣∣
p′

≤ 1, k ∈ N . How-

ever, by similar arguments as in [11], we can reduce the above constraints to finite number of 
constraints. Accordingly, the dual problem (4.6) can also be solved by numerical methods.

Finally, we consider solving the original regularized extremal problem (4.1). According to the re-
lation between the solutions of the regularized extremal problem (4.1) and its dual problem (4.3), 
we can obtain the solution of (4.1) by solving an equivalent finite dimensional optimization prob-
lem. To see this, we introduce some notation. For each c := (c j : j ∈ N) ∈ c0(N), we denote by 
N(c) the index set on which the sequence c achieves its supremum norm ‖c‖∞ , that is, N(c) :={
j ∈ N : |c j | = ‖c‖∞

}
. It follows from lim j→+∞ c j = 0 that the cardinality of index set N(c), denoted 

by nc , is finite. It has been proved in [11] that there holds for any norming functional x ∈ �1(N) of 
c ∈ c0(N) \ {0} that supp (x) ⊆ N(c). Here, the support supp (x) of x is defined to be the index set 
on which x is nonzero. For c ∈ c0(N) with N(c) := {k j ∈ N : j ∈ Nnc }, we truncate the semi-infinite 
matrix A to obtain a matrix Ac := [hi j : i ∈ Nm, j ∈ Nnc ] ∈ Rm×nc by

hi j := ai,k j
, i ∈ Nn, j ∈ Nnc . (4.7)

14
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Proposition 4.1. Suppose that a j , j ∈ Nm , are a finite number of linearly independent elements of c0(N), A
is the infinite matrix whose m rows are a j , j ∈ Nm , y0 = (y j : j ∈ Nm) ∈ Rm , ρ > 0 and p ∈ [1, +∞). Let λ̂
be a solution of the dual problem (4.3), μ̂ := A∗λ̂ and N(μ̂) := {k j ∈ N : j ∈ Nnμ̂

}. If ẑ := (ẑ j : j ∈ Nnμ̂
) is a 

solution of the optimization problem

inf
{
(‖y0 − Aμ̂z‖

p

Rm + ρ‖z‖
p
1 )1/p : z ∈ R

nμ̂
}
, (4.8)

then x̂ := (x̂ j : j ∈ N) with x̂k j
:= ẑ j , j ∈ Nnμ̂

, and x̂ j := 0, j /∈ N(μ̂), is a solution of (4.1).

Proof. By employing Propositions 3.8 and 3.9, we have that for any solution x̂ of (4.1), there holds 
that x̂ = 0 or −x̂/‖x̂‖�1(N) is norming for −ρ−1/pμ̂. Note that supp (x̂) ⊆ N(μ̂) holds in both cases. 
Hence, we rewrite (4.1) as an equivalent form

inf
{
(‖y0 − Ax‖

p

Rm + ρ‖x‖
p
1 )1/p : supp (x) ⊆ N(μ̂), x ∈ �1(N)

}
. (4.9)

By use of the matrix Aμ̂ , the optimization problem (4.9) can be further represented by (4.8). More-

over, we can obtain a solution x̂ := (x̂ j : j ∈ N) of (4.9) through augmenting a solution ẑ := (ẑ j : j ∈
Nnμ̂

) of (4.8) by setting x̂k j
:= ẑ j , j ∈ Nnμ̂

, and x̂ j := 0, j /∈ N(μ̂). �

Based on Propositions 3.9 and 4.1, we develop a scheme for finding a solution of the infinite 
dimensional regularized extremal problem (4.1) with p = 1.

Step 1: Solve the dual problem (4.4) and obtain a solution λ̂.
Step 2: Compute ρ‖λ̂‖Rm and ‖A∗λ̂‖∞ .

Step 3: If ρ‖λ̂‖Rm > ‖A∗λ̂‖∞ , obtain a solution of (4.1) by x̂ := 0.

Step 4: If ρ‖λ̂‖Rm ≤ ‖A∗λ̂‖∞ , determine the index set N(μ̂) := {k j ∈ N : j ∈ Nnμ̂
} and generate the 

matrix Aμ̂ with μ̂ := A∗λ̂. Solve the finite dimensional optimization problem (4.8) and obtain 
a solution ẑ.

Step 5: Obtain a solution of (4.1) by setting x̂ := (x̂ j : j ∈ N) with x̂k j
:= ẑ j , j ∈ Nnμ̂

, and x̂ j := 0, 
j /∈ N(μ̂).

Propositions 3.8 and 4.1 may also provide a scheme for solving the regularized extremal problem 
(4.1) with p ∈ (1, +∞).

Step 1: Solve the dual problem (4.6) and obtain a solution λ̂.
Step 2: Compute μ̂ := A∗λ̂.

Step 3: If μ̂ = 0, obtain a solution of (4.1) by x̂ := 0.

Step 4: If μ̂ 
= 0, determine the index set N(μ̂) := {k j ∈ N : j ∈ Nnμ̂
} and generate the matrix Aμ̂ . 

Solve the finite dimensional optimization problem (4.8) and obtain a solution ẑ.
Step 5: Obtain a solution of (4.1) by setting x̂ := (x̂ j : j ∈ N) with x̂k j

:= ẑ j , j ∈ Nnμ̂
, and x̂ j := 0, 

j /∈ N(μ̂).

5. Numerical experiments

This section is devoted to the presentation of three numerical experiments which illustrate the 
feasibility of the dual approach developed in this paper. In the first experiment, we consider a small 
size problem to illustrate every key step of the proposed approach, and in the last two experiments, 
we consider relatively large size problems to demonstrate the effectiveness of the method. All the 
experiments are performed with Matlab R2018a on an Intel Core I5 (8-core) with 1.80 GHz and 8 GB
RAM.

We consider solving the regularized extremal problem

inf
{
‖y0 − Ax‖1 + ρ‖x‖1 : x ∈ �1(N)

}
. (5.1)
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Note that the space �1(N) is of infinite dimension and thus, numerical methods used in compress-

sensing or image processing are not directly applicable to problem (5.1). We will employ the duality 
approach developed in this paper to solve problem (5.1). We first describe the choice of the data y0
and the semi-infinite matrix A to be used in the experiments. Let m be a positive even integer. We 
choose A as a semi-infinite matrix whose rows a j := (a j,k : k ∈ N), j ∈ Nm , are m linearly independent 
elements of c0(N), defined by

a j,k :=
cos( jk)

k
, a j+m/2,k :=

sin( jk)

k
, for all j ∈ Nm/2 and all k ∈ N.

We take x0 := (xk : k ∈ N) ∈ �1(N) with xk = 1
10k2

, k ∈ N and generate the noise free data y := Ax0 . 
The noisy data is modeled as y0 := y + η, where η is the Gaussian noise with the standard deviation 
σ = 1.0 × 10−3(maxy −miny).

Following the scheme described in section 4, we need to solve the dual problem

sup

⎧
«
¬

∑

j∈Nm

y jλ j : ‖(λ j : j ∈ Nm)‖∞ ≤ 1,

∥∥∥∥∥∥

∑

j∈Nm

λ ja j

∥∥∥∥∥∥
∞

≤ ρ

«
¬
­ . (5.2)

Note that the constraint 
∥∥∥
∑

j∈Nm
λ ja j

∥∥∥
∞

≤ ρ of problem (5.2) involves m infinite dimensional vectors 

a j . It is equivalent to the constraints 
∣∣∣
∑

j∈Nm
λ ja j,k

∣∣∣ ≤ ρ , k ∈ N , which defines a polytope in Rm . To 

describe the polytope precisely, we define the sets Uk , k ∈ N as in (4.5). It is known [11] that the set 
U :=

⋂
k∈N

Uk is the intersection of finitely many of the regions Uk , that is, U =
⋂

k∈Nn0
Uk for some 

n0 ∈ N . We need to identify the number n0 . To this end, we propose two ideas. When m is small, 
we set for each n ∈ N , Ũn :=

⋂
k∈Nn

Uk and compute the vertices of the regions Ũn , n ∈ N , in the 
increasing order of n. The computation stops at n0 ∈ N when Ũn0 and Ũn0+1 have the same vertices. 
Note that the number of the vertices increases exponentially as the dimension m of the space Rm

increases. Hence, when m is large, this idea is not practical. In this case, for l ∈ N we may instead 
define

S(l) := sup

⎧
«
¬

∑

j∈Nm

y jλ j : |λ j| ≤ 1, j ∈ Nm,

∣∣∣∣∣∣

∑

j∈Nm

λ ja j,k

∣∣∣∣∣∣
≤ ρ,k ∈ Nl

«
¬
­

and empirically choose n0 ∈ N such that S(n0) = S(n0 + 1). Computing S(l) may be done by using 
linear programming software. In the following three numerical experiments we use these two ideas 
respectively.

In the first experiment, we solve problem (5.1) with m = 12. In this case, we identify the number 
of the effective constraints in the dual problem by computing the vertices of the regions Ũn , n ∈
N , in the increasing order of n. Due to the large number of the vertices we do not report all of 
them. Instead, we report in Table I the selected values of n and the number Vn of the vertices of Ũn

when ρ = 1. The numerical results show that n0 = 19 for this case. In our experiment, we begin the 
computation with an initial integer equal to 12. Note that associated with different parameters ρ > 0, 
the polytopes are similar, and thus, the values of n0 for the polytopes are the same. With the number 
n0 = 19, we now rewrite the dual problem (5.2) as

sup

⎧
«
¬

∑

j∈N12

y jλ j : |λ j| ≤ 1, j ∈ N12,

∣∣∣∣∣∣

∑

j∈N12

λ ja j,k

∣∣∣∣∣∣
≤ ρ,k ∈ N19

«
¬
­ . (5.3)

Problem (5.3) is a typical linear programming problem. We then solve (5.3) by using the function 
“linprog” available in Matlab to obtain its numerical solution λ̂ and the supremum S of (5.3).

With a dual solution λ̂ at hand, we then solve the original problem (5.1) according to Proposi-
tions 3.9 and 4.1. To this end, we compute ρ‖λ̂‖∞ and ‖A∗λ̂‖∞ with A∗ being defined by (4.2), and 
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Table I

The number of the vertices.

n 14 16 18 19 20 21 25 30

Vn 10,256 21,070 44,134 59,930 59,930 59,930 59,930 59,930

compare their values. If ρ‖λ̂‖∞ > ‖A∗λ̂‖∞ , we take x̂ = 0 as the solution of (5.1) by (1) of Proposi-
tion 3.9. If ρ‖λ̂‖∞ ≤ ‖A∗λ̂‖∞ , we identify the index set N(μ̂) of μ̂ := A∗λ̂, on which the sequence 
μ̂ achieves its supremum norm, the cardinality nμ̂ of N(μ̂), and generate the matrix Aμ̂ defined 
by (4.7) with c being replaced by μ̂. According to Proposition 4.1, we solve the finite dimensional 
optimization problem

inf
{
‖y0 − Aμ̂z‖1 + ρ‖z‖1 : z ∈ R

nμ̂
}
, (5.4)

by employing the FPPA originally developed in [18,24]. We describe the FPPA as follows: Let f : Rd →

R ∪ {+∞} be a convex function such that dom( f ) := {w ∈ Rd : f (w) < +∞} 
= ∅. The proximity 
operator prox f : Rd → Rd of a convex function f is defined for w ∈ Rd by

prox f (w) := argmin

{
1

2
‖u−w‖22 + f (u) : u ∈ R

d

}
.

Set ϕ := ρ‖ · ‖1 and ψ := ‖y0 − ·‖1 . By choosing positive constants β , γ and initial points z0 ∈ Rnμ , 
v0 ∈ Rm , we solve (5.4) by the FPPA

⎧
«
¬

zk+1 = proxβϕ

(
zk − βA�

μ̂
vk

)
,

vk+1 = γ
(
I − prox 1

γ ψ

)(
1
γ vk + Aμ̂

(
2zk+1 − zk

))
,

(5.5)

to obtain a numerical solution ẑ. In Algorithm (5.5), parameters β and γ are chosen so that the 
algorithm converges, and proxβϕ and prox 1

γ ψ
have closed-forms that we present below. The proximity 

operator prox βϕ at w := (w j : j ∈ Nnμ̂
) ∈ R

nμ̂ has the form prox βϕ(w) := (u j : j ∈ Nnμ̂
), where for 

all j ∈ Nnμ̂

u j :=

⎧
«
¬

w j − βρ, if w j > βρ,

w j + βρ, if w j < −βρ,

0, if w j ∈ [−βρ, βρ].

Likewise, the proximity operator prox 1
γ ψ

at w := (w j : j ∈ Nm) ∈ Rm has the form prox 1
γ ψ

(w) :=

(u j : j ∈ Nm), where for all j ∈ Nm

u j :=

⎧
«
¬

w j − 1/γ , if w j > y j + 1/γ ,

w j + 1/γ , if w j < y j − 1/γ ,

y j, if w j ∈ [y j − 1/γ , y j + 1/γ ].

Algorithm FPPA generates a numerical solution ẑ of (5.4), with which a numerical solution x̂ of the 
original problem (5.1) is obtained by augmenting ẑ as described in Proposition 4.1.

For convenience, we use fr to denote the value of the objective function f := ‖y0 − A(·)‖1 +ρ‖ · ‖1
at the numerical solution x̂ of (5.1), which is a computed infimum of (5.1). We define ERR := ‖x̂ −

x†‖2 , where x† = argmin {‖x‖1 : Ax = y, x ∈ �1(N)}. Here, we solve the minimum norm interpolation 
problem by the duality approach developed in [11]. In Table II we report the selected values of ρ , the 
corresponding values of ρ‖λ̂‖∞ , ‖A∗λ̂‖∞ , S , fr , ERR, ‖y − Ax̂‖2 and the sparsity levels SL of x̂. From 
the numerical results, we observe that the value of fr approximates the supremum S (which is equal 
to the infimum of (5.1)) very well. This shows that the proposed dual approach provides an effective 
numerical method for solving the regularized extremal problem (5.1).

17



R. Cheng, R. Wang and Y. Xu Journal of Complexity 81 (2024) 101818

Table II

Numerical results for regularized extremal problem with m = 12.

ρ ρ‖λ̂‖∞ ‖A∗λ̂‖∞ S fr SL ERR ‖y− Ax̂‖2

12.0000 12.0000 7.7309 0.7637 0.7637 0 0.1039 0.2451

10.0000 10.0000 7.7309 0.7637 0.7637 0 0.1039 0.2451

8.0000 8.0000 7.7309 0.7637 0.7637 0 0.1039 0.2451

7.0000 7.0000 7.0000 0.7180 0.7180 1 0.0336 0.0525

5.0000 5.0000 5.0000 0.5498 0.5498 1 0.0316 0.0449

1.0000 1.0000 1.0000 0.1407 0.1411 3 0.0103 0.0070

0.8000 0.8000 0.8000 0.1145 0.1147 4 0.0076 0.0044

0.5000 0.5000 0.5000 0.0736 0.0737 5 0.0055 0.0025

0.3000 0.3000 0.3000 0.0455 0.0458 6 0.0049 0.0021

0.2500 0.2500 0.2500 0.0384 0.0387 7 0.0051 0.0020

0.2000 0.2000 0.2000 0.0310 0.0310 9 0.0031 7.2907e-4

0.1800 0.1800 0.1800 0.0279 0.0279 10 0.0030 7.4563e-4

0.1000 0.0660 0.1000 0.0155 0.0155 12 0.0032 5.4190e-4

0.0100 6.6010e-4 0.0100 0.0016 0.0016 12 0.0032 5.4190e-4

0.0010 6.6010e-6 0.0010 1.5550e-4 1.5550e-4 12 0.0032 5.4190e-4

Table III

Numerical results for regularized extremal problem with m = 200.

ρ ρ‖λ̂‖∞ ‖A∗λ̂‖∞ S fr SL ERR ‖y− Ax̂‖2

132.0000 132.0000 127.0107 12.8027 12.8027 0 0.1040 1.0075

130.0000 130.0000 127.0107 12.8027 12.8027 0 0.1040 1.0075

128.0000 128.0000 127.0107 12.8027 12.8027 0 0.1040 1.0075

127.0000 127.0000 127.0000 12.8026 12.8026 1 0.0915 0.8778

100.0000 100.0000 100.0000 10.7137 10.7137 1 0.0324 0.1992

80.0000 80.0000 80.0000 8.9762 8.9762 1 0.0306 0.1683

50.0000 50.0000 50.0000 6.2516 6.2516 2 0.0212 0.0979

10.0000 10.0000 10.0000 1.4854 1.4855 5 0.0064 0.0135

1.0000 1.0000 1.0000 0.1891 0.1894 12 0.0019 0.0020

0.1000 0.1000 0.1000 0.0413 0.0453 36 0.0077 0.0019

0.0500 0.0500 0.0500 0.0272 0.0331 67 0.0188 0.0025

0.0300 0.0300 0.0300 0.0177 0.0239 132 0.0410 0.0030

0.0100 0.0050 0.0100 0.0060 0.0060 200 0.0453 0.0031

0.0010 5.0431e-5 0.0010 5.9779e-4 5.9779e-4 200 0.0453 0.0031

0.0001 5.0431e-7 0.0001 5.9779e-5 5.9779e-5 200 0.0453 0.0031

In the second and the third experiments, we solve the regularized extremal problem (5.1) with 
m = 200 and m = 600, respectively, by the duality approach. This time we increase the size of the 
problem from m = 12 to m = 200 and m = 600. We choose the number n0 of the constraints in the 
dual problem (5.2) as n0 = 333 and n0 = 710 by using the second empirical method described earlier. 
The selected values of ρ , the values of ρ‖λ̂‖∞ , ‖A∗λ̂‖∞ , S , fr , ERR, ‖y − Ax̂‖2 and the sparsity levels 
SL of x̂ are reported in Table III and Table IV. The numerical results indicate that for problems of these 
sizes, the proposed duality approach works well.

The three numerical experiments presented in this section demonstrate that the proposed duality 
approach is feasible for solving the regularization problem in infinite dimensional Banach spaces.

To close this section, we remark that the main purpose of this paper is to lay out the mathematical 
foundation of the duality approach. Issues related to practical implementation of this approach remain 
to be addressed. Addressing the issues will be our future research project.
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Table IV

Numerical results for regularized extremal problem with m = 600.

ρ ρ‖λ̂‖∞ ‖A∗λ̂‖∞ S fr SL ERR ‖y0 − Ax̂‖2

385.0000 385.0000 380.3394 38.3914 38.3914 0 0.1040 1.7456

382.0000 382.0000 380.3394 38.3914 38.3914 0 0.1040 1.7456

381.0000 381.0000 380.3394 38.3914 38.3914 0 0.1040 1.7456

380.0000 380.0000 380.0000 38.3864 38.3864 1 0.0841 1.3868

300.0000 300.0000 300.0000 32.1429 32.1429 1 0.0323 0.3412

250.0000 250.0000 250.0000 27.8101 27.8101 1 0.0311 0.3070

150.0000 150.0000 150.0000 18.7604 18.7604 2 0.0216 0.1761

50.0000 50.0000 50.0000 7.1210 7.1210 3 0.0105 0.0509

10.0000 10.0000 10.0000 1.6264 1.6265 7 0.0033 0.0075

1.0000 1.0000 1.0000 0.2608 0.2616 17 0.0012 0.0014

0.1000 0.1000 0.1000 0.1071 0.1151 69 0.0121 0.0025

0.0500 0.0500 0.0500 0.0837 0.0988 150 0.0369 0.0036

0.0200 0.0200 0.0200 0.0413 0.0487 515 0.1132 0.0053

0.0100 0.0073 0.0100 0.0208 0.0208 600 0.1146 0.0054

0.0010 7.3254e-5 0.0010 0.0021 0.0021 600 0.1146 0.0054

0.0001 7.3254e-7 0.0001 2.0760e-4 2.0801e-4 600 0.1146 0.0054

Foundation under grants DMS-1912958 and DMS-2208386, and by the US National Institutes of Health 
under grant R21CA263876. All correspondence should be sent to Y. Xu.

Appendix A. Proofs of auxiliary results

Throughout the paper, numerous standard or straightforward results from functional analysis are 
used. Their proofs are collected here for reference.

Proof of Proposition 2.7. There exists a sequence a′
n ∈ N ⊥ , n ∈ N , such that

lim
n→∞

‖a− a′
n‖A = dist(a,N ⊥). (A.1)

The sequence {a′
n}

∞
n=1 is bounded in norm, since there holds ‖a′

n‖A ≤ ‖a‖A + ‖a − a′
n‖A . There-

fore the Banach-Alaoglu Theorem supplies a subsequence {a′
nk

: k ∈ N} that converges in the weak∗

sense to some a′ ∈ A . That is, limk→∞ ank (�) = a′(�), for all � ∈ A∗ . In particular, if � ∈ N , then 
a′(�) = limk→∞ a′

nk
(�) = 0. Hence, a′ ∈ N ⊥ . It suffices to verify that ‖a − a′‖A = dist(a, N ⊥). By the 

definition of the norm of A , we have that for any ε > 0 there exists a unit vector � ∈ A∗ such that

|a(�) − a′(�)| ≥ ‖a− a′‖A − ε. (A.2)

It follows from equation (A.1) that dist(a, N ⊥) = limk→∞ ‖a − a′
nk

‖A ≥ limk→∞ |a(�) − a′
nk

(�)|, which 
further leads to dist(a, N ⊥) = |a(�) − a′(�)|. Substituting inequality (A.2) into the above equation, 
we obtain that dist(a, N ⊥) ≥ ‖a − a′‖A − ε . Since ε was arbitrary, it follows that dist(a, N ⊥) ≥
‖a − a′‖A . The reverse inequality holds because a′ ∈ N ⊥ , and thus the claim is proved.

Proof of Proposition 3.1. Since (a, b) ∈ A ⊕p B is normed by (λ, μ) ∈ A ∗ ⊕p′ B∗ , we have that

(
‖λ‖

p′

A ∗ + ‖μ‖
p′

B∗

)1/p′

= 1, 〈a, λ〉A + 〈b,μ〉B =
(
‖a‖

p
A

+ ‖b‖
p
B

)1/p
. (A.3)

At the same time, it must be that

〈a, λ〉A + 〈b,μ〉B ≤ ‖a‖A ‖λ‖A ∗ + ‖b‖B‖μ‖B∗

≤
(
‖a‖

p
A

+ ‖b‖
p
B

)1/p(
‖λ‖

p′

A ∗ + ‖μ‖
p′

B∗

)1/p′

=
(
‖a‖

p
A

+ ‖b‖
p
B

)1/p
. (A.4)
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Equality is forced throughout (A.4). In particular, the condition for equality must hold in Hölder’s 
inequality, as employed in the second step of (A.4). The following identifications result

〈a, λ〉A = ‖a‖A ‖λ‖A ∗ , 〈b,μ〉B = ‖b‖B‖μ‖B∗ , (A.5)

and

‖a‖
p
A

= C‖λ‖
p′

A ∗ , ‖b‖
p
B

= C‖μ‖
p′

B∗ , (A.6)

for some positive constant C . In fact, the value of C is determined from ‖a‖p

A
+ ‖b‖

p

B
= C

(
‖λ‖

p′

A ∗ +

‖μ‖
p′

B∗

)
= C .

If b = 0, then the second equation in (A.6) yields that μ = 0, which together with the first equation 
in (A.3) leads to ‖λ‖A ∗ = 1. Hence, we conclude from the first equation in (A.5) that λ is norming 
for a. This proves statement 1. We can prove statement 2 by similar arguments. Finally, we verify 
statement 3. If a 
= 0, b 
= 0, equations in (A.6) show that λ and μ are both nonzero. By normalizing 
the functionals λ and μ, we obtain norming functionals for a and b, respectively:

‖λ‖A ∗ = C−1/p′
‖a‖

p/p′

A
=

(
1+ ‖b‖

p
B

/‖a‖
p
A

)−1/p′

,

‖μ‖B∗ = C−1/p′
‖b‖

p/p′

B
=

(
1+ ‖a‖

p
A

/‖b‖
p
B

)−1/p′

.

This proves the claims.

Proof of Proposition 3.2. By the hypothesis that (λ, μ) ∈ A ∗ ⊕1 B∗ is norming for (a, b) ∈ A ⊕∞ B, 
we have that

‖λ‖A ∗ + ‖μ‖B∗ = 1, 〈a, λ〉A + 〈b,μ〉B = max{‖a‖A ,‖b‖B}. (A.7)

According to the first equation in (A.7), we get that

〈a, λ〉A + 〈b,μ〉B ≤ ‖a‖A ‖λ‖A ∗ + ‖b‖B‖μ‖B∗

≤
(
‖λ‖A ∗ + ‖μ‖B∗

)
max{‖a‖A ,‖b‖B}

= max{‖a‖A ,‖b‖B}, (A.8)

which together with the second equation in (A.7) shows that equality is forced throughout (A.8). 
Hence, we obtain equations in (A.5) and

‖a‖A ‖λ‖A ∗ = ‖λ‖A ∗ max{‖a‖A ,‖b‖B}, ‖b‖B‖μ‖B∗ = ‖μ‖B∗ max{‖a‖A ,‖b‖B}. (A.9)

To prove statement 1, we suppose that ‖a‖A > ‖b‖B . Then the second equation in (A.9) reduces 
to ‖b‖B‖μ‖B∗ = ‖a‖A ‖μ‖B∗ , which further yields that μ = 0. We then conclude by the equations 
in (A.7) that ‖λ‖A ∗ = 1 and 〈a, λ〉A = ‖a‖A , that is, λ is norming for a. This completes the proof of 
statement 1 and statement 2 may be proved similarly. It remains to show statement 3. We assume 
that ‖a‖A = ‖b‖B . If μ = 0, then equations in (A.7) lead directly to ‖λ‖A ∗ = 1 and 〈a, λ〉A = ‖a‖A . 
That is to say, λ is norming for a, likewise, if λ = 0, we may show that μ is norming for b. Finally, if 
λ and μ are both nonzero vectors, then we conclude by equations in (A.5) that λ/‖λ‖A ∗ is norming 
for a, and μ/‖μ‖B∗ is norming for b, proving the desired results.
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