A Meta-Pattern for Building QoS-Optimal Mobile
Services out of Equivalent Microservices

Zheng Song'", Zhengquan Li' and Eli Tilevich?

"Department of Computer and Information Science, University of
Michigan at Dearborn, Dearborn, 48128, Michigan, USA.
2Department of Computer Science, Virginia Tech, Blacksburg, 24061,
Virginia, USA.

*Corresponding author(s). E-mail(s): zhesong@umich.edu;
Contributing authors: zqliQumich.edu; tilevich@cs.vt.edu;

Abstract

A QoS-optimal service balances reliability, execution cost, and latency to satisfy
application requirements. In emerging distributed environments, with their unre-
liable and resource-scarce mobile/IoT devices, it is hard but essential to optimize
the QoS of mobile services. Fortunately, these environments are characterized by
ever-growing equivalent functionalities that satisfy the same requirements by dif-
ferent means. The combined execution of equivalent microservices has been used
to improve QoS (e.g., majority voting for accuracy, speculative parallelism for
latency, and failover for reliability). These executions are commonly described
as workflow patterns, crude-grained recurring interactions across microservices
within a service. However, as the number of equivalent microservices grows, apply-
ing a crude-grained pattern may cause severely unbalanced QoS, while nesting
these patterns is convoluted to implement and expensive to maintain. In this arti-
cle, we introduce a novel workflow meta-pattern for defining fine-grained workflow
patterns that describe QoS-optimal combined executions of equivalent microser-
vices. The meta-pattern employs a domain-specific algebraic expression to specify
the invocation sequences of equivalent microservices, and a Boolean function to
determine whether to terminate the execution. To evaluate the applicability of
our meta-pattern, we build a Scala functional programming library, by which we
further develop edge computing and cognitive service applications. Our exper-
iments show that applying our meta-pattern to define such workflow patterns
saves programmer effort, while the resulting patterns effectively improve the QoS
of distributed applications.

Keywords: Edge Computing, Equivalent Service, Service Orchestration

1 Introduction

The number of IoT devices has grown from 15 billion in 2015 to 26 billion in 2020,
and is predicted to reach 75 billion in 2025 [1]. Instead of uploading raw sensor data
to the cloud for processing, the emerging paradigm of edge computing [2] processes
these data at the edge of the network to produce information that drives the exe-
cution of co-located applications. To facilitate the implementation of applications in
this domain, the service/microservice oriented architecture (SOA) exposes the sens-
ing and computing capabilities of edge-based mobile and IoT devices as services or
microservices [3-6].

One of the major challenges in provisioning mobile services is achieving QoS-
optimality [7, 8]. Because edge and IoT environments are less dependable than
traditional cloud environments, mobile services are often unreliable and untrustwor-
thy. When it is mobile and energy-harvesting devices that provide edge resources,
the resulting services become vulnerable to partial failure and low reliability [7, 8].
Besides, operated in physically unprotected environments, devices can be compromised
to report false information, so the services they provide become untrustworthy [9].
Moreover, the resource constraints of these devices render their services more sensitive
to execution cost and latency.

The microservice architecture isolates business functionalities into fine-grained
building blocks [10], and applies workflow patterns [11] to assemble the resulting
microservices into services. Microservices are considered equivalent if they satisfy the
same requirements by different means (e.g., authenticating a user via a password,
biometrics, SMS, or touchscreen patterns). The reliability and trustworthiness of
mobile services can be improved by exploiting the combined execution of equivalent
microservices [12, 13].

Workflow patterns describe common execution strategies that solve recurrent
problems in process-oriented applications. Workflow patterns that describe combined
executions of equivalent microservices include failover, speculative parallel, and major-
ity voting. These workflow patterns provide the same functionality, while enhancing
certain QoS characteristics (e.g., speculative parallelism for performance, failover for
reliability, and majority voting for trustworthiness). However, intended for a small
number of equivalent microservices, these workflow patterns’ crude-grained execution
strategies cannot achieve optimal QoS for larger microservice numbers. For example,
consider improving accuracy: with up to several equivalent microservices, majority
voting improves accuracy without incurring unreasonable microservice usage fees.
However, with a larger number of equivalent microservices, their combined usage fees
can become prohibitive.

As compared to coarse-grained patterns, fine-grained patterns can balance QoS
characteristics better. For example, to better balance cost and accuracy as compared
to majority voting, some equivalent microservices can be executed first, with their
results’ coherence examined to determine whether to execute the remaining ones [13];
to improve reliability while controlling for costs, approximation algorithms are applied
to discover optimal execution strategies [14].

However, fine-grained workflow patterns are hard and error-prone to express,
implement, and maintain. Customizing workflow patterns in general-purpose program-
ming languages is tedious, as it requires synchronizing multi-threaded execution and
data exchanges. A fine-grained pattern can also be formed by nesting crude-grained
patterns, but this approach suffers from several drawbacks: 1) some fine-grained pat-
terns need to access the execution results of all constituent microservices, while some
crude-grained patterns may not output their intermediate results; 2) nesting work-
flow patterns is hard to express and understand (i.e., to elucidate a nested workflow
pattern, workflow expressions are accompanied by flow charts [15]).

This article introduces a workflow meta-pattern that declaratively specifies fine-
grained workflow patterns for the combined execution of equivalent microservices. In
particular, our meta-pattern describes a fine-grained workflow pattern as 1) an alge-
braic expression that denotes the invocation sequences of equivalent microservices and
2) a Boolean function that determines whether to terminate the execution. To demon-
strate how our meta-pattern can concisely and flexibly express the combined execution
of equivalent microservices on different programming platforms, we implemented it
as a Scala library, and further integrated the resulting workflow patterns into realis-
tic mobile services. We evaluated these integrations to determine how effectively our
approach optimizes the QoS of mobile services and how much programmer effort it
requires as compared to the state of the art.

The contribution of this article is three-fold:

(1) We introduce a meta-pattern for declaratively specifying fine-grained patterns
that describe the combined execution of equivalent microservices to improve QoS.
(2) We concretely implement our meta-pattern in Scala to provide programming
support for composing QoS-optimal mobile services.

(3) We apply our reference implementation to compose practical mobile services and
empirically evaluate their QoS characteristics in dissimilar execution environments.
Our evaluation shows that our design can be effectively reified to address some of the
most pertinent problems in emerging applications, both enhancing various distributed
execution properties and saving programmer effort.

The rest of this article is organized as follows: Section 2 introduces the background
of this article and Section 3 demonstrates usage examples of fine-grained combined
execution of equivalent microservices. Section 4 introduces the design of our meta-
pattern. Section 5 details how we implement our design and apply it to engineer novel
mobile services, as well as our empirical evaluation. Section 6 compares our approach
with existing works. Section 8 concludes.

2 Background

We introduce workflow patterns as well as mobile and IoT services, background
required to understand our contribution.

2.1 Workflow Patterns

In SOA, workflow patterns serve as basic building blocks. Based on their application
targets, workflow patterns divide into multiple categories: control flow, resource, data,

and error handling patterns. We use the following control flow [16] to introduce a meta-
pattern for generating fine-grained workflows for the combined execution of equivalent
microservices:

e XOR Split: connects to multiple microservices that can be invoked. Only one
branch executes given a condition.

e AND Split: connects to multiple microservices that can be invoked, with all
branches executing in parallel.

e AND Join: connects from multiple microservices; the following process continues
only upon receiving all results.

e Cancelling Discriminator: connects from multiple microservices; the follow-
ing process continues upon receiving any result, with the remaining branches
terminated.

e Cancelling Partial Join (a.k.a, M-out-of-N join): connects from N microservices;
the following process continues upon receiving M results, with the remaining
branches terminated.

2.2 Equivalent Microservices and their Combined Execution

Equivalent microservices satisfy the same requirements by different means. In this
work, we assume that equivalent microservices share the same invocation interface
(i.e., signature) and input/output parameters.

Several well-known workflow patterns describe the combined execution of equiva-
lent microservices. As shown in Fig. 1, failover [17] improves reliability by switching to
equivalent microservices upon failure; speculative parallel ezecution [12, 18] executes
multiple equivalent microservices simultaneously and uses the first result to improve
both reliability and latency; majority voting [19, 20] compares the execution results
of multiple equivalent microservices and outputs the most likely result to improve
trustworthiness.

2.3 Mobile and IoT services

As edge computing technologies evolve, mobile and IoT services become possible [21,
22]: mobile and IoT devices at the edge expose their sensing and computing capabilities
as services, accessed by nearby client devices.

Equivalent microservices are common in mobile environments: 1) recognizing facial
images using services provided by different vendors [13]; 2) authenticating users by
means of a password, biometrics (fingerprint, iris or facial image), SMS, or touchscreen
patterns [23-26]; 3) detecting atmospheric particulate matter value (PM2.5) by reading
from a portable PM2.5 sensor, estimating from images [27, 28], or invoking the web
service of the nearest environmental station; detecting crowds by reading a weight
sensor, recognizing persons from the area’s camera image[29], using an entrance-exit
counting device, or counting WiFi beacons[30], or using modern smartphones[31].

When provisioning mobile services, QoS-optimality is hard to achieve [7, 8]. The
mobility and diversified ownership of these devices lead to low reliability and trustwor-
thiness. The combined execution of equivalent microservices can improve these QoS
characteristics. However, compared with web service composition, mobile services pose

EqvMS A

AND
@ @V EqvMS B

EqvMS C

il

i

(c) the Majority Voting Pattern

Fig. 1 Combined Execution of Equivalent Microservices A, B, and C

two unique challenges: 1) the variety and number of equivalent mobile services are
significantly larger as compared with web services, as data-rich mobile environments
feature multiple ways to satisfy the same requirement while microservices provided
by different mobile devices are also considered equivalent [32]; 2) mobile services are
provided in resource-constrained environments, rendering them more in need of QoS
optimality. In the next section, we demonstrate by example how a larger number of
equivalent microservices requires a fine-grained workflow pattern to optimize service

QoS.

3 Motivating Scenario

Authentication, expression analysis, and emotion recognition rely on detecting and
locating faces in images and videos. Facial detection is provided as web services by
different vendors and as deployable mobile services [13]. However, none of these equiv-
alent microservices is 100% accurate, as the quality of input images and videos affect
the accuracy of these functionalities [33]. To improve accuracy, the majority voting
pattern has been applied [34], which executes all alternatives simultaneously, and waits
till receiving all results to determine the final output. We use facial detection as an
example to demonstrate how fine-grained patterns improve overall QoS as compared
with majority voting and the problems in constructing such patterns.

3.1 Fine-Grained Patterns for Optimizing QoS

Alas, majority voting improves accuracy at the expense of increasing execution latency
and cost: the additional latency is incurred by the necessity to wait for those microser-
vices that takes longer to execute, while the additional cost is incurred by the necessity

to invoke all equivalent microservices. In the presence of equivalent microservices whose
execution latency or cost is unusually high, a more fine-grained workflow pattern can
better optimize the QoS of the combined execution of equivalent microservices.

To demonstrate how fine-grained workflow patterns work, we denote three equiv-
alent microservices as “A”, “B”, and “C”. To increase accuracy while reducing the
overall execution latency, example pattern 1 executes “A”, “B”, and “C” simulta-
neously, and terminates upon receiving two coincident results. If the first two results
are the same, the execution can terminate without waiting for the third result, which
could incur unusually high latency. To increase accuracy while reducing the over-
all cost, example pattern 2 first executes “A” and “B” simultaneously, and waits
for both of their results. If “A” and “B” return the same result, output it as final;
otherwise, execute “C” and output the results agreed upon by any two microservices.

3.2 Problems with Expressing Fine-Grained Patterns

condition: x% of results are consistent

EqvMS A

(b) Fine-grained Pattern 2: Optimized for Cost Efficiency

l.
80% Results are Coincident
@

/_\'.
80% Results are Coincident

EqvMSH
(c) Fine-grained Pattern 3: 8 Equivalent Microservices

Fig. 2 Fine-grained Combined Execution of Microservices A, B, and C

Fig. 2 demonstrates how workflow constructs can express the aforementioned
fine-grained patterns. For the pattern in Fig. 2.a, we change the semantics of the stan-
dard construct “M-out-of-N join” from “terminating upon receiving M results from
N branches” to “terminating upon a certain condition,”, i.e., “two received results
coincide” in our case.

Although standard pattern constructs can fully support the pattern in Fig. 2.b,
the required number and complexity of workflow constructs would be much higher
than in the standard majority voting pattern. As the number of equivalent microser-
vices grows, expressing such patterns would become unwieldy. For example, example
pattern 3 can be: for 8 equivalent microservices, execute every four in a row, and con-
tinue to execute the next row of four microservices only if less than “80%” of previous
results coincide. It takes 6 workflow constructs to express this pattern, while the con-
dition of “80% of all results coincide” needs to be repeated twice (Fig. 2.c). To make
things worse, the “XOR split” needs the execution results of all equivalent microser-
vices to determine the next step, while these results serve as intermediate information
and are not exposed to these external “XOR split” constructs.

The necessity to change the semantics and data access of basic workflow constructs
makes nesting workflow constructs tedious and error-prone, while unwieldy nested
workflow patterns are hard to understand and maintain. These shortcomings motivate
the need for dedicated programming support for the fine-grained combined execution
of equivalent microservices.

4 Meta-pattern Design and Implementation

To express and manage the combined execution of equivalent microservices, we design
a meta-pattern that generates workflow patterns with the following properties:
1. Applicable to microservices that are equivalent;
2. The generated workflow shares the same input and output with its constituent
microservices, thus providing the same functionality;
3. Compared with its constituent microservices, the generated workflow improves
at least one QoS characteristic.
In the rest of this section, we introduce the syntax, semantics, design rationale, and
visualization of our meta-pattern, as well as its applicability and runtime support.

4.1 Meta-Pattern Syntax and Semantics

Formally, the meta-pattern expresses a pattern as a triple m =< 6,(,w >:
® (: a set of equivalent microservices;
® (: an invocation sequence, an expression that denotes the complete execution
order of the equivalent microservices;
® (: a terminating condition, a Boolean function that takes as input the receive
results of microservices’ executions and outputs whether to terminate the
workflow execution.
For example, the workflow pattern in Fig. 2.b can be expressed by Fig. 3. It
describes a sequence of “executing A and B in parallel first (i.e., A * B), and then

C (i.e., —C)”, which can be short-circuited upon reaching the condition: the mostly
agreed upon result should reach at least 60% of all received votes.

= (A, B, C),
AxB-C,
mostVotedResult.votes/totalVotes>=0.6 >

o

Fig. 3 Meta-Pattern for Expressing Fine-Grained Pattern 2

An invocation sequence is expressed by a set of equivalent microservices and the
operators connecting them into an expression. The binary operators — and * denote
a sequential and a parallel execution, respectively. For example, given two equiva-
lent microservices a and b, a — b expresses that the microservices are to be executed
in sequence from left to right, while a * b expresses that the microservices are to
be executed in parallel. Notice that because the — and % operators take equivalent
microservices as their operands, the traditional built-in operator precedence is slightly
altered. For example, for the invocation sequence a — b * ¢, a is executed first; then b
and c are executed in parallel. The parentheses operators denote that the invocation
sequence inside a pair of parentheses is considered as one equivalent microservice. For
example, a*b— ¢ means to execute a and b in parallel first and then ¢, while a* (b—c¢)
means to treat b — ¢ as an equivalent microservice, and execute a and b— ¢ in parallel.
Fig. 4 gives the EBNF grammar of an invocation sequence.

1| invokeSeq({) ::= fl(£)If-flf*xf, Vf € 0'

Fig. 4 EBNF Definition for Invocation Sequence Specification

An invocation sequence can terminate at different points between runs. In the
example in Fig. 3, “C” would be executed only of “A” and “B” return different results.
Terminating conditions control such variability across runs.

4.2 Design Considerations

Our meta-pattern for the combined execution of equivalent microservices describes
a workflow pattern as an invocation sequence of microservices that is short-circuited
upon reaching a specified condition. Two observations inform our design:

1. For the combined execution of equivalent microservices, different terminating con-
ditions determine which QoS characteristic to enhance, while different invocation
sequences determine how to balance the remaining QoS characteristics. Common
terminating conditions include: any results is received (to enhance reliability)
and the received results coincide (to enhance trustworthiness). The equivalent
microservices are executed either in parallel or in sequence; the parallel execution
incurs additional cost but shortens latency, and the sequential execution is vice
versa. To optimize service QoS, one can vary the terminating conditions and the
invocation sequences of equivalent microservices.

2. An invocation sequence cannot be altered, only continued or discontinued. The
generated patterns only apply to equivalent microservices, so a microservice’s

result cannot serve as a control flow condition that determines which microser-
vice to execute next. Hence, an invocation sequence is expressed with no control
flow constructs, with “” and “*” denoting sequential and parallel invocations,
respectively.

It has become common to use the and “—” operators to express paral-
lel and sequential execution, respectively [35]. In our design, we intentionally avoid
using the same operators to express the parallel or sequential execution of equivalent
microservices that can be short-circuited. Besides, based on our definition of equiva-
lent microservices (i.e., all microservices take the same input and generate the same
output), workflow patterns specified by our meta-pattern coordinate the execution of
equivalent microservices that share the same input and output parameters. Hence, the
algebraic expressions exclude invocation parameters.

44‘77

4.3 Runtime Support for Executing Patterns

Executing the workflow patterns specified by our meta-pattern requires dedicated
runtime support. The flowchart in Fig.5 explains the execution logic for this runtime
support:
® Sy: to start executing, a workflow pattern receives input parameters and then
transitions to state S, “execute next equivalent microservices”.
® S: based on (, determine which microservices to execute next and initialize them,
transitioning to state So, “waiting for any results to be returned”.
® S,: wait to receive any microservice execution result or for the overall execution to
timeout. Upon timeout, transition to the“failure” state. Upon receiving a result,
persist it with the other microservice execution results, transition to state Ss,
“applying the terminating condition.”
® S3: apply the terminating condition w, output a Boolean value indicating whether
to terminate the execution. If true, transition to the final state, “success and prun-
ing”, which terminates all unfinished microservices and outputs the final result;
Otherwise, transition to state Sy, “checking whether there is any microservice
running.”
® S,: If no microservices are still running, transition to state Ss, “checking if the
invocation sequence has reached the end;” otherwise, transition to state Sj.
® S5: check if there are still microservices in (waiting to be executed. If true,
transition to state Sp; otherwise, transition to the “failure” state.

5 Reference Implementation and Evaluation

We implement our meta-pattern design as a Scala library for functional programming.
We demonstrate that the meta-pattern is expressive enough to generate fine-grained
workflows that enhance the performance of mobile/IoT services. Our evaluation
shows that compared with crude-grained patterns, the generated fine-grained patterns
improve the overall QoS.

V

S1: Execute next
Equivalent Microservices

Timeout

i S2: Wait for Results

Received

Add Result to
Yes Set

Yes 5: Unfinished

Sequence?

Fig. 5 Runtime Support for Executing Generated Patterns
5.1 Reference Implementations

The Scala-based reference implementation (Scala SDK 2.12.8) comprises approxi-
mately 870 lines of code (ULOC). To allow any set of functions with the same signature
to represent equivalent microservices, the library features a generic function container
and an invocation sequence class. Each constituent function is wrapped into a container
object, whose operators - and * are overloaded to generate an invocation sequence.
The Scala compiler checks if all functions forming an invocation sequence share the
same signature. An invocation sequence sets its terminating condition by calling the
terminate method, and executes the equivalent functions by calling the overridden
apply method, returning a mapping of (functionName, executeResult).

We observe that an invocation sequence naturally maps into a tree structure that
can serve as its runtime representation. The tree structure’s nodes have three types:
leaf, sequential, and parallel. A leaf is an equivalent functionality. A sequential
node has its left and right children, and a parallel node has two or more child nodes.

Algorithm 1 explains how to implement the runtime using the tree structure.
To create and manage concurrency, our implementation uses the Future, Promise,
and concurrentMap APIs. A concurrent access protected key-value data structure

10

Algorithm 1 Execute a Specified Meta-pattern

Input: p: execution parameter; < 6, ¢, w >
Output: r: result

1: execute((.root)

2: function EXECUTE(¢: TREE)(Boolean)

3: switch ¢.Type do

4: case Leaf(v)

5: resultMap <« resultMap + (v.funcName, v.func(p))
6: return terminator.check(resultMap)
7
8

case SequentialNode(left, right)
: if execute(left) then
9: return true

10: else

11: return execute(right)

12: end if

13: case ParallelNode(chidren)

14: fSet <0

15: for each c € children do

16: fSet «+ fSet + Future(execute(c))
17: end for

18: Wait any f € fSet.Complete:

19: if f==True then

20: return True > Early Termination
21: else if fSet.all.isCompleted then

22: return False

23: else

24: continue Wait

25: end if

26: end function

(resultMap) maps the completed equivalent functions and their results. A recursive
procedure starts from the tree structure’s root node, and returns true, as soon as the
terminating condition is fulfilled. Upon reaching a leaf node, its equivalent function
is executed, with the result stored in the key-value structure. All the stored results
are checked after each completed function if the pattern’s terminating condition has
been fulfilled (line 6). For a sequential node, its left node is executed first, followed
by executing its right node if the recursive procedure of its left node returns false.
For a parallel node, all child nodes are executed in parallel, and the parallel node
waits for the results of these recursive procedures. If any of the child nodes fulfills the
terminating condition and returns true, the parallel node returns true (line 20) and
the parallel execution is terminated without waiting for the other branches to com-
plete. Otherwise, it continues to wait, until all child nodes’ executions fail to fulfill
the terminating condition and return false. After the recursive procedure completes,
it returns the stored final results to the caller.

5.2 Applying Meta-Pattern to Mobile Service

We adopt the mobile services provisioning system model introduced in [36]. In par-
ticular, the system features a local gateway that collects the available microservices,
provided by mobile and IoT devices. For a given mobile service request with reliability,
trustworthiness, and QoS-optimality requirements [37], the gateway orchestrates the

11

Mobile Mobile

Service /\ Microservices
KBl ——— 1L

Mobile and loT devices

End User Gateway owned by individuals

Fig. 6 System Components for Provisioning Mobile Services

combined execution of equivalent microservices, provided by mobile and IoT devices,
which can be unreliable and untrustworthy [36].

5.2.1 Enhancing Service’s Accuracy

// invoke a web service:

def ibm(image:String) :Boolean = {...}

def ms(image:String):Boolean = {...}

def face(image:String) :Boolean = {...}

// invoke an edge service:

def dl(image:String):Boolean = {
val reg = new EdgeReg() //connect to an edge gateway
val edgeService = reg.query("deepLearningFaceDetection")
result = edgeService.execute(image)

}

def opencv(image:String) :Boolean = {...}

// Specify equivalent microservices

val (el, e2, e3, e4, e5) = (eqv(ibm), eqv(ms), eqv(face), eqv(dl),
eqv (opencv))

// Specify an invocation sequence
val seq = e4d*eb - el*e2xe3

// Specify a terminating condition
seq.terminate(majorityVoting())

// Execute and process result

val result = seq(’img.jpg’).groupBy(_._2) .maxBy(_._2.size)._

Fig. 7 Specifying Mobile Service in Scala Library

To detect faces, developers can choose proprietary cloud services (IBM!,
Microsoft?, and Face++?%) or deploy open-source libraries as edge services (deep
learning based* and openCV Cascade classifier based®). Fig. 7 shows how with our
Scala library, a fine-grained workflow pattern that enhances service accuracy can
be implemented in 4 lines of code. Lines 1-11 implement microservices ibm, ms,
face, dl, opencv, taking a String (i.e., image file) and returning a Boolean (i.e., face
detected). Line 13 wraps them up in equivalent microservice containers. Line 15 uses
the overloaded operators to declare an invocation sequence, and Line 17 sets the ter-
minating condition for the invocation sequence. Line 19 executes the specified pattern

Lhttps://www.ibm.com /watson/services/visual-recognition/
Zhttps://azure.microsoft.com/en-us/services/cognitive-services/face/
Shttps://www.faceplusplus.com /face-detection /
“https://github.com/ageitgey /face_recognition
Shttps://docs.opencv.org/3.4/d1/de5/classcv_1_1CascadeClassifier.html

12

https://www.ibm.com/watson/services/visual-recognition/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://www.faceplusplus.com/face-detection/
https://github.com/ageitgey/face_recognition
https://docs.opencv.org/3.4/d1/de5/classcv_1_1CascadeClassifier.html

Table 1 Facial Detection Microservices

id | func cost | latency (ms) [accuracy

el | IBM 400 | 95 0.918

e2 | MS 100 | 74 0.737

e3 | Face++ 50 96 0.898

ed | DL-based 2 56 0.642

e5 | openCV-based | 2 66 0.676

Table 2 QoS of Facial Detection Services

invocation sequence accuracy | cost | latency
Crude-grained Majority Voting || 0.859 554 | 97
e4 *x e5 — €9 0.739 23 81
e4 * e5 — €3 0.812 13 85
el x e3 x ex 0.908 452 1 95
es3 *xe5 — ey 0.908 110 110
es xe3 — €] 0.939 311 134

with the input of “img.jpg” and obtains the execution result that is agreed by most
microservices.

5.2.2 Enhancing Service’s Reliability

Edge environments typically feature multiple sensors, whose input can be used to sat-
isfy the data requirements of an edge service. Consider a service that obtains ambient
temperature. Ambient temperature can be obtained by: 1) directly reading a local tem-
perature sensor (readTempSensor); 2) estimating based on the CPU temperature of an
edge computer [38] (estTemp); 3) reading from a web service based on the current loca-
tion (readLocationTemp). In most edge environments, the readTempSensor microservice
is first executed to provide a low-latency, low-cost, and accurate temperature reading.
However, if some microservices are unavailable in a given environment, estTemp and
readLocationTemp are executed next in parallel as fail-over to guarantee an acceptable
latency. Hence, we express the getTemp as readTempSensor-estTemp*getLocationTemp.

5.3 Performance Evaluation
5.3.1 Enhancing Accuracy

To verify how the generated workflow patterns work for the aforementioned application
scenario, we use the image dataset collected from WiKi [33] as an alternative for human
labeling, in which each image contains a face. We deploy the edge services on a Dell
desktop with a 17-4790@3.6GHz processor and 16GB RAM. Table 1 shows the average
latency, accuracy, and cost of each equivalent microservice. The cost of invoking the
web services provided by IBM, Microsoft, and Face++ are $0.004, $0.001, and $0.0005
per request, respectively. Assuming the average electricity rate of $0.12 per kWh, and
the power supply of the experimental desktop of 0.65kW, the costs of microservices
become 400, 100, 50, 2, and 2, respectively.

Table 2 compares the QoS of crude-grained majority voting and fine-grained pat-
terns generated by our meta-pattern. We observe that: 1) the generated plan can be
extremely cost/latency efficient by first executing the two open source implementations

13

deployed at the edge. Compared with invoking the IBM web service, the generated pat-
tern saves as much as 97% of the execution cost, while reducing the accuracy by 13%; 2)
the workflow pattern es*e5 — e strikes a good balance between accuracy and cost. By
invoking a low-cost web service and an open-source implementation first, the execution
gains more accuracy than when using the two cost-efficient open-source implementa-
tions. Compared with invoking the IBM service, the generated pattern saves 72.5%
of execution cost, while the accuracy only decreases by 3.2%; 3) compared with the
crude-grained majority voting pattern, the generated patterns on average reduce the
cost by 67.6%, with less than 3% differences in accuracy and latency. This observation
confirms our motivation: fine-grained workflow patterns do optimize performance.

Table 3 QoS of Service “getTemp”

Pattern Invocation Sequence | Reliability | Latency | Cost
Speculative Parallel | e x eg x e3 100% 56 ms 148
Fine-Grained e1 — eg x €3 99% 69 ms 74.5

5.3.2 Enhancing Reliability

The execution environment features a mobile device (Moto G6) that queries the “get-
LocationTemp” microservice, a temperature sensor (Raspberry Pi 3 and DS18B20)
for “readTempSensor”, and an edge server (ThinkCentre M900 Tiny) for “estTemp”.
The sensor is only available for 60% of all requests. We further set the cost for exe-
cuting each microservice to 50 points. Table 3 compares the reliability, latency, and
cost of the speculative parallel execution and the fine-grained workflow pattern. The
fine-grained pattern reduces the average latency by 49.7%, at the expense of 23.2%
additional latency, as compared with the speculative parallel workflow pattern.

6 Related Work

Most existing approaches related to systemically leveraging equivalence focus on pro-
gramming and system support for pre-defined execution strategies. For example,
Orc [35] provides abstractions for declaratively specifying the fail-over and speculative
parallel execution of two function units; NVP [39] introduces a programming model
to implement equivalent functions for parallel execution and processing their execu-
tion results with majority voting; Eureka [40] introduces a programming model that
supports speculative parallel execution; references [41] and [42] introduce several pre-
defined execution strategies that combine sequential and parallel execution strategies,
expressed as BPEL [43] or WSDL workflow constructs. However, these predefined
strategies only cover a limited portion of all possible execution strategies. Compared
with these approaches, the flexibility of our meta-pattern makes it possible to express
and execute any strategy.

Other approaches enable developers to implement the control logic for equivalent
execution but are often non-trivial and error-prone. For example, Baresi et al. [44]
introduce self-healing BPEL, for manually writing logic to control the execution of
equivalent services. Dino [45] provides semantic and runtime support for atomic tasks

14

by creating and recovering from checkpoints, which ensures the stateless execution of
equivalent functionalities. Compared with these approaches, our meta-pattern enables
developers to concisely express equivalent execution.

Several studies of web service composition have observed that different execution
strategies of a set of equivalent services may lead to dissimilar execution charac-
teristics [14, 15, 20, 46]. Some of them provide system or algorithmic support for
approximating the sub-optimal execution strategies for a given set of QoS require-
ments. As the number of fine-grained patterns can get exponentially large, they cannot
be named explicitly, so these works express them by nesting basic workflow constructs,
which could be error-prone to express and hard to understand. For example, to express
an execution strategy for equivalent services, a tree graph was used [15].

Meta-patterns have been previously applied to scientific computing and exception
handling [47-49], as a flexible approach to express complicated workflow patterns [50].
However, existing meta-patterns include full control flow semantics for generality. To
the best of our knowledge, this article is the first to provide a meta-pattern tailored
for the combined execution of equivalent microservices, so the generated patterns can
provision QoS-optimal services in unreliable, untrustworthy, and cost/latency-sensitive
mobile/IoT environments.

7 Discussion

We envision that the applicability of our meta-pattern framework should extend to
large-scale application environments. Unfortunately, at the time of this writing, we
are unable to support this claim empirically, as we lack the computing and person-
nel resources required to obtain evaluation results from the field. Instead, we next
list several realistic domains that could benefit from our approach and discuss the
applicability of our design and its potential issues.
Smart Homes: encompass a wide array of devices and services designed to automate
and enhance various aspects of home living. For example,
® Home security systems, including smart locks, surveillance cameras, and alarm
systems, heavily rely on trustworthiness. Trustworthiness is crucial as home-
owners need to be able to trust that these systems effectively protect their
homes while maintaining privacy. In this case, the developer can develop multiple
equivalent intrusion detection microservices (e.g., camera-based, motion-based,
audio-based), and specify the termination condition of the meta-pattern as “give
a warning if any microservice returns true.” The termination condition also
improves the responsiveness of the system, as it sends alarms upon receiving the
first positive detection result. However, it also increases the chance of sending
false alarms, thus requiring that each microservice improve its accuracy.
® Voice Assistants: Devices like Amazon Echo or Google Home must incur min-
imal latency to provide a seamless interaction experience. Reliability is crucial
as users depend on assistants for various tasks, ranging from setting reminders
to controlling other smart home devices. To ensure the user’s voice command is
correctly captured, even in noisy environments or for users with speech differ-
ences, developers could invoke multiple voice translation web services and specify

15

the termination condition as “when a majority of these approaches reach a con-

sensus.” However, the approach may incur additional costs. Hence, we plan to

extend this work by validating the results of equivalent microservices for a given

user, and dynamically selecting the microservice that best fits their context.
Autonomous Driving is a field in which the accuracy and latency of systems are of
paramount importance, particularly in applications such as detecting pedestrians. In
autonomous vehicles, the three primary technologies used for this purpose are Radar,
Lidar, and cameras. Each of these technologies has unique characteristics that affect
their performance in terms of accuracy and latency. In autonomous vehicles, these
technologies are often used in conjunction to compensate for each other’s weaknesses.
For instance, radar can detect objects in challenging weather conditions where cam-
eras and Lidar might struggle, while Lidar and cameras provide the detailed object
recognition necessary for complex urban environments. Developers can rely on our
meta-pattern to intuitively specify their combination in a fine-grained fashion, like
“using Camera and Lidar first, and switch to Radar if they both fail.”

To summarize, our meta-pattern can improve QoS for various applications while
saving programming effort. The framework should be feasible to deploy in realistic
settings, as it can orchestrate the execution of microservices built as standard Docker
images and as Android apps. Specifically, for Android classes, we incorporated a Java
reflection-based execution method, a concept we introduced and detailed in our earlier
work [51].

8 Conclusion

We have presented a meta-pattern that declaratively expresses fine-grained work-
flow patterns for the combined execution of equivalent microservices to improve QoS.
The meta-pattern declaratively specifies a fine-grained pattern as a set of equivalent
microservices, an invocation sequence, and a terminating condition. Our evaluation
demonstrates that our approach is expressive and effective, presenting a viable solu-
tion that helps conquer the complexity of reliable, accurate, and efficient execution in
distributed execution environments with scarce and unreliable resources.

Acknowledgment

This research is supported by NSF through grants #2104337, and #2232565.

Compliance with Ethical Standards

The authors have no relevant financial or non-financial interests to disclose.

References

[1] Statista Research Department: Internet of Things - Number of Con-
nected Devices Worldwide 2015-2025. https://www.statista.com/statistics/
471264 /iot-number-of-connected-devices-worldwide/

16

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

[2] Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: Vision and challenges.
IEEE Internet of Things Journal 3(5), 637-646 (2016)

[3] Wu, H., Deng, S., Li, W., Yin, J., Li, X., Feng, Z., Zomaya, A.Y.: Mobility-aware
service selection in mobile edge computing systems. In: 2019 IEEE International
Conference on Web Services (ICWS), pp. 201-208 (2019). IEEE

[4] Sun, M., Zhou, Z., Zhang, W., Hung, P.C.: Tot service composition for concur-
rent timed applications. In: 2019 IEEE International Conference on Web Services
(ICWS), pp. 50-54 (2019). IEEE

[5] Moeini, H., Yen, I.-L., Bastani, F.: Service specification and discovery in iot net-
works. In: 2019 IEEE International Conference on Web Services (ICWS), pp.
55-59 (2019). IEEE

[6] Achir, M., Abdelli, A., Mokdad, L., Benothman, J.: Service discovery and selec-
tion in iot: A survey and a taxonomy. Journal of Network and Computer
Applications 200, 103331 (2022)

[7] El-Sayed, H., Sankar, S., Prasad, M., Puthal, D., Gupta, A., Mohanty, M., Lin,
C.-T.: Edge of things: The big picture on the integration of edge, iot and the
cloud in a distributed computing environment. IEEE Access 6, 1706-1717 (2017)

[8] Varghese, B., Wang, N., Barbhuiya, S., Kilpatrick, P., Nikolopoulos, D.S.: Chal-
lenges and opportunities in edge computing. In: Smart Cloud (SmartCloud),
IEEE International Conf. On, pp. 20-26 (2016). IEEE

[9] Chiang, M., Zhang, T.: Fog and iot: An overview of research opportunities. IEEE
Internet of Things Journal 3(6), 854-864 (2016)

[10] Hassan, S., Bahsoon, R.: Microservices and their design trade-offs: A self-adaptive
roadmap. In: 2016 IEEE International Conference on Services Computing (SCC),
pp. 813-818 (2016). IEEE

[11] Der Aalst, W.M., Ter Hofstede, A.H., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distributed and parallel databases 14(1), 5-51 (2003)

[12] Song, Z., Tilevich, E.: A programming model for reliable and efficient edge-based
execution under resource variability. In: 2019 IEEE International Conf. on Edge
Computing (EDGE), pp. 64-71 (2019)

[13] Bhatia, A., Li, S., Song, Z., Tilevich, E.: Exploiting equivalence to efficiently
enhance the accuracy of cognitive services. In: 2019 IEEE International Con-

ference on Cloud Computing Technology and Science (CloudCom), pp. 143-150
(2019). IEEE

[14] Hiratsuka, N., Ishikawa, F'., Honiden, S.: Service selection with combinational use

17

[15]

[16]

[17]

[18]

[19]

[20]

[22]

[23]

of functionally-equivalent services. In: Web Services (ICWS), IEEE International
Conference On, pp. 97-104 (2011). IEEE

Cardellini, V., Casalicchio, E., Grassi, V., lannucci, S., Presti, F.L., Mirandola,
R.: Moses: A framework for qos driven runtime adaptation of service-oriented
systems. IEEE Transactions on Software Engineering 38(5), 1138-1159 (2011)

Workflow Patterns. Workflow Patterns Initiative (2017)

Aldwyan, Y., Sinnott, R.O.: Latency-aware failover strategies for containerized
web applications in distributed clouds. Future Generation Computer Systems
101, 1081-1095 (2019)

Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X.: Thinkair: Dynamic
resource allocation and parallel execution in the cloud for mobile code offloading.
In: 2012 Proceedings IEEE Infocom, pp. 945-953 (2012). IEEE

Yen, 1.-L., Bastani, F., Solanki, N., Huang, Y.: Trustworthy computing in the
dynamic iot cloud. In: 2018 IEEE International Conference on Information Reuse
and Integration (IRI), pp. 411-418 (2018). IEEE

Song, Z., Rowader, O., Li, Z., Tello, M., Tilevich, E.: Quality of informa-
tion matters: Recommending web services for performance and utility. In: 2022
IEEE International Conference on Cloud Computing Technology and Science
(CloudCom), pp. 41-48 (2022). IEEE

Qiao, Y., Nolani, R., Gill, S., Fang, G., Lee, B.: Thingnet: A micro-service based
iot macro-programming platform over edges and cloud. In: 2018 21st Conference
on Innovation in Clouds, Internet and Networks and Workshops (ICIN), pp. 1-4
(2018). IEEE

Cheng, B., Solmaz, G., Cirillo, F., Kovacs, E., Terasawa, K., Kitazawa, A.:
Fogflow: Easy programming of iot services over cloud and edges for smart cities.
IEEE IoT Journal 5(2), 696-707 (2018)

Rogowski, M., Saeed, K., Rybnik, M., Tabedzki, M., Adamski, M.: User authen-
tication for mobile devices. In: Computer Information Systems and Industrial
Management: 12th IFIP TC8 International Conference, CISIM 2013, Krakow,
Poland, September 25-27, 2013. Proceedings, pp. 47-58 (2013). Springer

Mahfouz, A., Mahmoud, T.M., Eldin, A.S.: A survey on behavioral biometric
authentication on smartphones. Journal of information security and applications
37, 28-37 (2017)

Wang, C., Wang, Y., Chen, Y., Liu, H., Liu, J.: User authentication on mobile
devices: Approaches, threats and trends. Computer Networks 170, 107118 (2020)

18

[26]

[27]

Zaidi, A.Z., Chong, C.Y., Jin, Z., Parthiban, R., Sadiq, A.S.: Touch-based contin-
uous mobile device authentication: State-of-the-art, challenges and opportunities.
Journal of Network and Computer Applications 191, 103162 (2021)

Liu, X., Song, Z., Ngai, E., Ma, J., Wang, W.: Pm2: 5 monitoring using images
from smartphones in participatory sensing. In: Computer Communications Work-
shops (INFOCOM WKSHPS), 2015 IEEE Conference On, pp. 630-635 (2015).
IEEE

Song, S., Li, V.O., Lam, J.C., Wang, Y.: Personalized ambient pollution estima-
tion based on stationary camera-taken images under cross-camera information
sharing in smart city. IEEE Internet of Things Journal (2023)

Li, M., Zhang, Z., Huang, K., Tan, T.: Estimating the number of people in
crowded scenes by mid based foreground segmentation and head-shoulder detec-
tion. In: Pattern Recognition, 2008. ICPR 2008. 19th International Conference
On, pp. 1-4 (2008). IEEE

Schauer, L., Werner, M., Marcus, P.: Estimating crowd densities and pedestrian
flows using wi-fi and bluetooth. In: MobiQuitous 2014, pp. 171-177 (2014)

Torkamandi, P., Pajevic Karkkainen, L., Ott, J.: Characterizing wi-fi probing
behavior for privacy-preserving crowdsensing. In: Proceedings of the 25th Inter-
national ACM Conference on Modeling Analysis and Simulation of Wireless and
Mobile Systems, pp. 203-212 (2022)

Song, Z., Tilevich, E.: Equivalence-enhanced microservice workflow orchestration
to efficiently increase reliability. In: 2019 IEEE International Conference on Web
Services (ICWS), pp. 426-433 (2019). IEEE

Jung, S.-G., An, J., Kwak, H., Salminen, J., Jansen, B.J.: Assessing the accuracy
of four popular face recognition tools for inferring gender, age, and race. In:
Twelfth International AAAT Conference on Web and Social Media (2018)

Vuurens, J., Vries, A.P., Eickhoff, C.: How much spam can you take? an analysis
of crowdsourcing results to increase accuracy. In: Proc. ACM SIGIR Workshop
on Crowdsourcing for Information Retrieval (CIR’11), pp. 21-26 (2011)

Kitchin, D., Quark, A., Cook, W., Misra, J.: The orc programming language. In:
Formal Techniques for Distributed Systems: Joint 11th IFIP WG 6.1 Interna-
tional Conference FMOODS 2009 and 29th IFIP WG 6.1 International Conference
FORTE 2009, Lisboa, Portugal, June 9-12, 2009. Proceedings, pp. 1-25 (2009).
Springer

Song, Z., Tilevich, E.: Pmdc: Programmable mobile device clouds for convenient
and efficient service provisioning. In: 2018 IEEE 11th International Conf. on Cloud
Computing (CLOUD), pp. 202-209

19

[37]

[49]

Le, M., Song, Z., Kwon, Y.-W., Tilevich, E.: Reliable and efficient mobile edge
computing in highly dynamic and volatile environments. In: 2017 Second Inter-
national Conference on Fog and Mobile Edge Computing (FMEC), pp. 113-120
(2017). IEEE

Krintz, C., Wolski, R., Golubovic, N., Bakir, F.: Estimating outdoor tempera-
ture from cpu temperature for iot applications in agriculture. In: International
Conference on the Internet of Things (2018)

Hu, T., Bertolott, I.C., Navet, N.: Towards seamless integration of n-version pro-
gramming in model-based design. In: 2017 22nd IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), pp. 1-8 (2017). IEEE

Imam, S., Sarkar, V.: The eureka programming model for speculative task paral-
lelism. In: 29th European Conference on Object-Oriented Programming (ECOOP
2015) (2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik

Zheng, 7., Lyu, M.R.: A distributed replication strategy evaluation and selection
framework for fault tolerant web services. In: 2008 IEEE International Conference
on Web Services, pp. 145-152 (2008). IEEE

Russell, N., Ter Hofstede, A.H., Van Der Aalst, W.M., Mulyar, N.: Work-
flow control-flow patterns: A revised view. BPM Center Report BPM-06-22,
BPMcenter. org, 06-22 (2006)

Louridas, P.: Orchestrating web services with bpel. IEEE software 25(2), 85-87
(2008)

Baresi, L., Guinea, S.: Self-supervising bpel processes. IEEE Transactions on
Software Engineering 37(2), 247-263 (2010)

Lucia, B., Ransford, B.: A simpler, safer programming and execution model for
intermittent systems. ACM SIGPLAN Notices 50(6), 575-585 (2015)

Song, Z., Tilevich, E.: Win with what you have: Qos-consistent edge services with
unreliable and dynamic resources. In: 2020 IEEE 40th International Conference
on Distributed Computing Systems (ICDCS), pp. 530-540 (2020). IEEE

Abouelhoda, M., Alaa, S., Ghanem, M.: Meta-workflows: pattern-based interop-
erability between galaxy and taverna. In: Proceedings of the 1st International
Workshop on Workflow Approaches to New Data-centric Science, pp. 1-8 (2010)

Taghiyar, M.J., Rosner, J., Grewal, D., Grande, B.M., Aniba, R., Grewal, J.,
Boutros, P.C., Morin, R.D., Bashashati, A., Shah, S.P.: Kronos: a workflow
assembler for genome analytics and informatics. Gigascience 6(7), 042 (2017)

Kumar, A., Wainer, J.: Meta workflows as a control and coordination mechanism

20

[50]

for exception handling in workflow systems. Decision Support Systems 40(1),
89-105 (2005)

Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware informa-
tion systems. Transactions on Petri Nets and Other Models of Concurrency II:
Special Issue on Concurrency in Process-Aware Information Systems, 115-135
(2009)

Song, Z., Chadha, S., Byalik, A., Tilevich, E.: Programming support for sharing
resources across heterogeneous mobile devices. In: Proceedings of the 5th Inter-
national Conference on Mobile Software Engineering and Systems, pp. 105-116
(2018)

21

	Introduction
	Background
	Workflow Patterns
	Equivalent Microservices and their Combined Execution
	Mobile and IoT services

	Motivating Scenario
	Fine-Grained Patterns for Optimizing QoS
	Problems with Expressing Fine-Grained Patterns

	Meta-pattern Design and Implementation
	Meta-Pattern Syntax and Semantics
	Design Considerations
	Runtime Support for Executing Patterns

	Reference Implementation and Evaluation
	Reference Implementations
	Applying Meta-Pattern to Mobile Service
	Enhancing Service's Accuracy
	Enhancing Service's Reliability

	Performance Evaluation
	Enhancing Accuracy
	Enhancing Reliability

	Related Work
	Discussion
	Conclusion

