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High-density polyethylene (HDPE) is among the most voluminous commodity plastic, which has received
increasing public scrutiny about its impact on environment and climate change. There have been many efforts to
recycle HDPE chemically, though significant hurdles remain. Toward a closed-loop economy, it is considered
appealing to design “HDPE-like” materials, which contain built-in degradable groups and preserve thermal and
mechanical properties like HDPE. This review provides a concise overview of three major areas: HDPE recycling

methods, preparation of “HDPE-like” materials, and perspective towards more sustainable polymers. Each sec-
tion includes a few inspiring achievements and challenges of the past decade.

1. Introduction

The advent of plastic in the 1950s was a boon for mankind because of
its incredibly versatile functions and applications in daily routines. Since
its invention, plastic products have skyrocketed due to their afford-
ability, durability, light weight, resistance to corrosion, electric insu-
lation, and processability [1]. Based on the projection of the
Organisation for Economic Cooperation and Development (OECD) [2],
the overall usage of plastic from 2009 to 2019 has risen two-fold, with a
total consumption of 460 million tons (Mt) in 2019. There are various
types of commodity plastic, each possessing distinct properties that are
suitable for specific applications. The packaging industry constitutes the
largest plastic usage, accounting for 31 % with a market size exceeding
265 billion U.S. dollars in 2022 [3]. Polyolefins have a significant impact
on plastic industry, with a market value exceeding 243 billion U.S.
dollars in 2022 and a compound annual growth rate (CAGR) of 5.1 %
from 2023 to 2030 [4]. The largest market share in the polyolefin in-
dustry is held by two types: polyethylene (PE) and polypropylene (PP).
Polypropylene (PP) and low-density polyethylene (LDPE) comprise 17 %
and 16 % of global plastic production, respectively. High-density poly-
ethylene (HDPE) follows at 13 %.

The production of HDPE totaled 40 million tons in 2022 with a CAGR
of 5.15 % expected till 2035 [5]. The versatility of HDPE is responsible
for its widespread use across different sectors. The exceptional me-
chanical properties and low weight of HDPE make it an attractive
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commodity with increasing demand for manufacturing lightweight ve-
hicles and construction industry. However, the frequent use of plastic
produces a significant amount of waste that possesses severe threats to
the environment. Among about 400 million metric tons of plastic pro-
duced, over 90 % was discarded as waste [6,7], which includes 50 %
stayed in the landfill and 22 % disposed to or leaked to the environment.
This allows durable plastic to remain in the environment and degrade
into microparticles or nanoparticles causing severe threat to the
ecosystem [8]. Given the haunting challenges, there have been
tremendous opportunities in developing diverse approaches to
designing more sustainable polymers [9-13], including HDPE.

This review article starts with a brief introduction of general
methods of recycling plastic, followed by chemical recycling of HDPE.
The focus will be on the synthesis of “HDPE-like” polymers, which could
shed light on the next generation plastic to replace traditional HDPE.

2. General recycling methods

Recycling plastic has become a crucial measure to safeguard the
environment. Different techniques have been developed to recycle
various types of plastic, depending on the quality of the recycled ma-
terials, the type of plastic, and economic considerations. According to
ASTM D7209-06 and ISO 15,270 standards plastic recycling is catego-
rized into four types: primary (closed-loop), secondary (mechanical),
tertiary (chemical), and quaternary (energy recovery), as shown in Fig. 1
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[14-16].

Primary and secondary recycling methods use mechanical recycling
techniques. However, they differ in terms of the feedstock used. Primary
recycling utilizes post-production plastic waste, which is used in similar
high-value applications. On the other hand, secondary recycling uses
post-consumer plastic waste as feedstock. However, the properties of the
plastic can deteriorate due to continuous polymer degradation during
each cycle of melt processing and the risk of contamination [15].

Tertiary recycling, also known as chemical recycling, involves
modifying the chemical structure of polymers to transform them into
either monomers or new raw chemicals. This method is generally used
for polymers that are no longer suitable for mechanical recycling [16].
Several technologies, including pyrolysis (cracking), depolymerization
(thermal or catalytic), gasification, and solvolysis, have been deployed
for the chemical recycling of plastic. However, the solvolysis technique
is limited to O- and N-linked polymers such as polyethylene tere-
phthalate, polyamides, and polyurethanes [15]. Tertiary recycling re-
quires advanced infrastructures and could be expensive, making it less
common compared to primary and secondary recycling methods. The
tertiary recycling will be further detailed in the next section of this
article.

Quaternary recycling is a process of plastic waste incineration used
for energy recovery. This has become the default method for plastic that
is unsuitable for any other type of recycling [17]. Quaternary recycling
is in general a more efficient method for large scale waste plastic
treatment in comparison to other three recycling methods. However,
incineration of the plastic releases noxious and large amounts of
greenhouse gases, which is now considered not environmentally feasible
[18].

3. Chemical recycling

Chemical recycling, known as depolymerization to monomers or
pyrolysis to chemicals, can offer an alternative solution for producing
new chemical products or plastic when other recycling methods are not
worth considering. A commonly used plastic, polyethylene, is particu-
larly challenging to recycle chemically due to the lack of cleavable
functional groups. Conversely, it is more promising for polyethylene to
convert into value-added chemicals or materials via chemical upcycling,
considering corresponding environmental and economic impacts. It is
worthy to mention that the term "upcycling" might be controversial,
unless rigorous techno-economic analysis and life-cycle analysis are
evaluated, which is beyond the scope of this review. This section briefly
addresses conventional chemical recycling methods (pyrolysis and
gasification), primarily focusing on HDPE upcycling (catalytic
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hydroconversion and tandem strategies) and downstream products, as
shown in Fig. 2. It is worth mentioning that there are several compre-
hensive reviews covering a range of chemical recycling and upcycling
for polyolefins [8,14,19-23].

3.1. Traditional chemical recycling

Chemical recycling of polyolefins is mostly limited to thermal
deconstruction such as pyrolysis and gasification, which typically work
at high temperature [24] and can convert the polymers into gaseous
(syngas) [25,26] or liquid (aliphatic) [27] chemicals. These processes
require a significant amount of energy due to the inert carbon backbone,
resulting in low-value products that downgrade the polymers, as shown
in Fig. 2.

3.2. Catalytic hydroconversion methods

Polyolefin hydroconversion is an emerging alternative for converting
polyolefins into fuels, lubricants, and waxes. This process uses hydro-
cracking and hydrogenolysis methods to degrade polyolefin chains at
moderate temperature, under an atmosphere of hydrogen and a catalyst.
The process targets liquid hydrocarbons instead of methane and gaseous
alkanes. Several review articles have recently summarized the recycling
of polyolefins using catalytic hydroconversion strategies [20,28-30].

3.2.1. Hydrocracking

The hydrocracking process converts heavy plastic into lighter mol-
ecules in the presence of hydrogen. It involves dehydrogenation of the
polymer backbone, skeletal rearrangement, cleavage of carbon-carbon
bonds via carbocation chemistry, followed by p-scission and hydroge-
nation of unsaturated molecules, as shown in Fig. 3a [20]. The reactions
are carried out at lower process temperature and result in reduced
amounts of olefins, aromatics, and coke formation. Hydrocracking
typically occurs in the presence of a bifunctional catalyst (consists of
metallic and acidic sites supported on various materials) in a stirred
batch autoclave at moderate temperature (300-450 °C) and a hydrogen
pressure of 2-15 MPa [31].

Vlachos et al. selectively converted HDPE to liquid fuels such as
diesel, jet and gasoline-range hydrocarbons via tandem catalysis in the
presence of mechanically blended Pt/WOs3/ZrO5 with HY (30) zeolite at
225 °C, resulting in a high yield of 85 % [33]. Similarly, Korley et al.
investigated the deconstruction of HDPE in the presence of same catalyst
system [21]. Moreover, the authors reported the effect of the additives
(antioxidants- and slip agent-containing) present in the HDPE base resin
over metal acid balance and on the yield of gas and liquid products
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Fig. 1. Different approaches to the recycling of plastic, including primary, secondary, tertiary, and quaternary recycling.
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Fig. 3. a) General hydrocracking mechanism of polyethylene using metal/acid
catalyst resulting in short-chain hydrocarbons. In this process the polymer is
dehydrogenated, disintegrated via carbocation chemistry and finally hydroge-
nated to saturated hydrocarbons [20]; Copyright 2023. Reproduced with
permission from Wiley-VCH GmbH. b) Conversion and yield of HDPE to gas and
liquid with respect to different catalysts for 60 min at 300 °C, 20 bar H, [32].
Copyright 2022. Adopted with permission from Royal Society of Chemistry.

obtained.

In 2022, Costa and Ribeiro et al. conducted an experiment on hy-
drocracking of HDPE (M,, = 155 kg/mol) using four commercially
available zeolites: H-USY, H-MOR (large pore), H-ZSM-5 (medium
pore), and H-FER (small pore), with a similar Si/Al molar ratio (10-15)
[32]. They found that H-ZSM-5 was the most effective catalyst for the
100 % conversion of HDPE, with a high likelihood of producing lighter
alkanes in the C3—Cs range, as shown in Fig. 3b. Additionally, H-ZSM-5
enabled complete recovery of its initial activity upon regeneration. The
study also highlighted the importance of acidity and porous structure in
the hydrocracking process and ranked the activity of catalysts as follows:
H-ZSM-5 > H-MOR > H-USY > H-FER.

3.2.2. Hydrogenolysis

Hydrogenolysis is a process where a C-C single bond is cleaved by
hydrogen in the presence of a monofunctional metal catalyst, such as Pt
and Ru, supported on various materials. In this process, both polymers
and hydrogen are absorbed by the metal-supported materials, facili-
tating the scission process of the polymers to the subsequent hydrocar-
bon fragments, as shown in Fig. 4a [34].

Delferro et al. used a Pt/STO catalyst to transform HDPE (laboratory
and post-consumer) into value-added products by hydrogenolysis [36].
The catalyst was prepared using atomic layer deposition (ALD) with
different numbers of cycles to obtain a series of Pt NP loading on SrTiO3
(STO). They achieved a high-quality lubricant product with a yield of 47
% from PE (M, = 8150 Da, M,, = 22,150 Da, and dispersity (b = 2.7))
and investigated different loading of Pt (1.7 %-18.8 %). The results
revealed completely gaseous hydrocarbons (C;—Cg) and high-quality
liquid for low loading and higher loading of Pt, respectively. They also
compared these catalysts with the commercial Pt/g-AloO3. With the
same catalyst Pt/STO synthesized in scalable amount via strong elec-
trostatic adsorption, Poeppelmeier et al. hydrogenated HDPE to wax
products with a conversion of 99 % with a loading of 3.6 wt% Pt under
similar conditions [37]. In 2020, Scott et al. reported the conversion of
HDPE (M,, = 53,500 Da) to low molecular weight liquid/wax products
in the presence of catalyst Pt/g-AloO3 with 1.5 % Pt loading at 280 °C, as
shown in Fig. 4b. The tandem synthesis was performed in the absence of
solvent or hydrogen gas to obtain products, which constitute of long
chain alkylaromatics and alkylnaphthenes in yields up to 80 % [35].

In 2021, Lin et al. depolymerized HDPE into jet-fuel- and lubricant-
range hydrocarbons in the presence of Ru/C catalyst in n-hexane solvent
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Fig. 4. a) Cracking pathway of polyethylene using hydrogenolysis in the presence of metal catalyst [34]; b) Hydrogenolysis of PE, product fractions and distribution
of hydrocarbons at 280 °C after 24 h in the presence of Pt/y-Al,O3 [35]. Copyright 2020. Adopted with permission from the American Association for the

Advancement of Science.

under mild condition at 220 °C [38]. Moreover, the product distribution
was tuned by regulating hydrogen pressure, active-metal particle size,
and solvents. The maximum optimized yield of the fuel obtained was 90
% in minimum time of 1 h under 60 bar Hy. Tamura and Tomishige et al.
studied a novel heterogenous reusable catalyst based on CeO5 supported
Ruthenium (Ru/Ce0O5), which resulted in the conversion of HDPE and
other polyolefins to valuable chemicals such as liquid fuels and waxes in
high yields (83-90 %) at lower temperature (200 °C) compared to the
above mentioned reports [39]. In 2022, the same group reported Zir-
conia supported Ru with high-temperature-calcined ZrO, (800 °C)
revealing a higher activity compared to previously reported Ru/CeO2
and other metal based catalyst such as Pt and Ni [40].

3.3. Tandem reaction strategies involving olefin intermediates

A tandem reaction, also called a cascade or domino reaction, is a
chemical process involving at least two consecutive reactions. Each
subsequent reaction only occurs because of the chemical functionality
formed in the previous step. Tandem catalytic cross alkane metathesis
(CAM) to produce aliphatic hydrocarbon from n-alkanes was initially
developed by Goldmann and Brookhart et al. [41,42] Later, they applied
this method for PE to convert into waxes and low molecular weight oils
[43].

A three-step strategy for breaking down HDPE into low molecular
weight alkanes and waxes was developed by Guan and Huang et al. [44]
The process involves dehydrogenation of PE to introduce internal
olefinic functionality, using an Ir-based catalyst, cross-metathesis with
alkene using Re»07/g-Aly,03 as a catalyst, and hydrogenation to form
saturated low molecular weight alkanes using an Ir-based catalyst, as
shown in Fig. 5. Three types of dehydrogenation Ir-based catalysts with
different ligands (“"B'PCP, ©B"POCOP, “""'POCOP) in the presence of
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Fig. 5. Disintegration of polyethylene into lighter alkanes via cross-alkane
metathesis (CAM). Dehydrogenation in the presence of Ir-based pincer (Ir),
followed by cross metathesis using Re based catalyst and subsequently hydro-
genation resulting in shorter hydrocarbon chains. Repeated cycles lead to PE
degradation to liquid fuel and waxes [44]. Copyright 2016. Reproduced with
permission from the American Association for the Advancement of Science.

the cross-metathesis catalyst were investigated. Among which POCOP
ligand-based catalyst resulted in a better yield (98 %) with
laboratory-grade HDPE (M,, = 3350 Da) compared to PCP ligand-based
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counterparts with low yields. It was believed the higher regioselectivity
for the formation of internal alkenes with POCOP ligand-based catalysts
compared to PCP ligand-based catalysts. This study also revealed
promising results with both commercial PE plastic, post-consumer
polyethylene, and ultrahigh molecular weight PE, thus, providing a
better solution for feedstock recovery from PE plastic waste.

In 2022, a few groups reported the use of tandem catalysis for the
disintegration of HDPE using similar techniques via dehydrogenation
and subsequent isomerization ethanolysis (DIE) to obtain propylene as
the product. Hartwig et al. developed dehydrogenation of polyethylene
in the presence of Ir'BYPOCOP catalyst (Ir1) and tert-butyl ethylene (TBE,
H, acceptor), which was further disintegrated to propylene with yields
surpassing 80 % under ethylene pressure in the presence of varying
combinations of a second-generation Hoveyda-Grubbs metathesis cata-
lyst (Rul) and [PdP(tBu)3(m-Br)]; (I) as isomerization catalysts (Fig. 6)
[45]. The DIE test was also performed on post-consumer polyethylene
(PE) material, resulting in a yield of 57 %. Scott and Guironnet et al.
used a similar DIE technique on vinyl-terminated polyethylene in the
presence of a ruthenium-based ethenolysis catalyst, Ultracat (Ru2), and
homogenous or heterogenous catalysts [46]. In the presence of Ru2 and
homogenous isomerization catalyst I, a high selectivity of propylene (94
mol% in 1 h) was obtained, as shown in Fig. 6b. However, the high price
and lower thermal stability of the catalyst led to the investigation of a
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heterogenous isomerization catalyst. MTO/Cl-Al,O3 (Re), which is
methyltrioxorhenium (MTO) supported on and activated by chlorinated
alumina (Cl-Al,0O3), was employed as a heterogenous isomerization
catalyst to obtain 50 % light olefins. The propylene selectivity was 95 %,
and the catalyst was completely deactivated within 7 h. Transfer
dehydrogenation of saturated PE using a heterogenous -catalyst
(Pt/g-Alx03) and consecutive ethenolysis/isomerization resulted in a
low yield of propylene due to the small extent of unsaturation of PE.
Performing all three catalytic reactions in tandem using dehydrogena-
tion catalyst Ir-based pincer (Ir2), and Re with monounsaturated PE
resulted in a low yield of propylene (30 wt%).

LaPointe, Delferro and Coates et al. used Irl catalyst to introduce
olefinic functionalities to HDPE with a concentration of 0.79 mol% of
internal olefin without the use of an alkene acceptor [28]. Further, cross
metathesis with 2-hydroxyethyl acrylate, followed by hydrogenation
can obtain telechelic PE macromonomer from unsaturated HDPE. The
telechelic macromonomers, containing 0.69 mol% internal olefin, were
processed using the above-mentioned procedure to obtain Oligol, as
illustrated in Fig. 7a. Later, polyester Polyl (RP1) was synthesized
through a polycondensation reaction by polymerizing Oligol in the
presence of Ti(O"Bu)s, which allowed the incorporation of cleavable
functionalities. However, the My, of Poly1 is low (33 kDa) compared to
the M,, of waste polyethylene (120 kDa), therefore affecting the tensile
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Fig. 6. a) Tandem reaction process for the conversion of HDPE to a valuable raw material, propylene, using dehydrogenation and isomerizing ethenolysis (DIE) [46].
Iridium-based pincer (Irl, Ir2) as a catalyst for the dehydrogenation process introducing unsaturation in the PE backbone, homogenous Rul or Ru2 or heterogenous
Re as cross-metathesis catalyst with ethylene, and I or Re for isomerization of double bond resulting in the formation of propylene [45,46]; b) Dehydrogenation and
subsequent isomerization ethanolysis of HDPE resulting in propane surpassing a yield of 80 % with 1.96 % dehydrogenation [45]. Copyright 2022. Adopted with

permission from the American Association for the Advancement of Science.
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Tensile properties of post-consumer waste HDPE, Polyl (RP1) and Poly2 (RP2) [28]. Copyright 2022. Adopted with permission from American Chemical Society.

properties of the polymer. In order to enhance the mechanical proper-
ties, Oligo2 was synthesized with amide functionalities using a trifunc-
tional cross-linker diethanol amine (10 equiv) in comparison to Oligol.
The mixture of Oligol and Oligo2 had 8 mol% of amide functionalities
compared to all functionalities in Oligol + Oligo2. Further, Poly2 was
obtained by subjecting Oligol and Oligo2 to polycondensation. The
material produced had a yield strength of 18 MPa and a strain at break of
970 %, which was comparable to the original post-consumer waste
HDPE, as shown in Fig. 7b. Additionally, the process of depolymerizing
Poly2 (RP2) into depolymerized Oligol was examined and successfully
accomplished with the help of a catalytic amount of triazabicyclodecene
(TBD) and an excess of ethylene glycol. The conversion reached over 95
%.

4. “HDPE-like” materials

In addition to conventional recycling and upcycling HDPE waste, a
promising alternative strategy is to design and synthesize new polymers
by introducing potentially degradable functionable groups, such as ester
[47,48], acetal [49], amide [50,51], thioester [52] etc., into the HDPE
backbone while keeping its properties. These in-chain degradable
functional groups as break points in the HDPE chains can be recycled
chemically by solvolysis, resulting in short fragments, which can be
further polymerized to afford materials with similar properties to their
original polymers and achieve closed-loop recycling of “high-density
polyethylene-like” or “high-density polyethylene mimic” materials
(Fig. 8). To date, many research groups have attempted to synthesize
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Fig. 8. a) Degradable functional groups within “HDPE-like” polymer backbone; b) A closed-loop recycling of “HDPE-like” materials.
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linear aliphatic polymers containing these degradable functional
groups. However, many properties of these polymers exhibit limitations,
preventing a complete resemblance of the characteristics of commodity
HDPE. For instance. Zhang et al. reported that sulphur-containing
“HDPE-like” plastic had two diffraction peaks at 21° and 24°, with
stress values ranging from 15.1 MPa to 28.9 MPa, and the elongation at
break ranging from 480 % to 702 %, which were comparable to com-
mercial HDPE [53]. However, the melting temperature (T,,) of these
polymers was between 55 °C and 75 °C, which is substantially lower
than that of commercial HDPE. Spoljaric et al. reported a series of
polyamides with good impact resistance and excellent
stiffness-to-toughness balance comparable to HDPE, but the T, of
short-chain polyamides were above 200 °C, substantially higher than
that of HDPE [50]. Some relevant earlier reviews have given summaries
of the preparation, thermal-mechanical properties, and degradability of
HDPE alternative materials [10,13,54,55]. Owing to the advances in
chemical synthesis, polymerization conditions, and analytical tech-
niques, an increasing number of studies have emerged, yielding a great
number of sustainable and “HDPE-like” materials. Concerning the scope
of this review, “HDPE-like” or “HDPE mimic” materials are considered
to polymers that have 10 or more linear aliphatic methylene groups
between functional groups with a melting temperature range of
100 °C-150 °C [54,56]. Polymers that cannot meet these criteria are
excluded from consideration.

A lot of efforts have been made in recent years to develop sustainable
“HDPE-like” polymers [10,54,72]. Notably, techniques such as poly-
condensation of long-chain aliphatic monomers [57,73], ring-opening
polymerization (ROP) [74], ring-opening metathesis (co)polymeriza-
tion (ROMP) [75], and acyclic diene metathesis (ADMET)

a) Polycondensation
A-A + B-B Type
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polymerization [76-78], have been explored to create more friendly
alternatives to traditional HDPE. Specifically, polycondensation in-
volves the condensation of long-chain a, o-difunctional monomers such
as diols, diesters, diamines and hydroxyl esters with release of small
molecules, leading to the incorporation of degradable functional groups,
including esters and amides within the methylene segments of the
backbone (Fig. 9a). ROP is a reaction in which one polymer chain has a
reactive center on its terminal end, reacting with another cyclic mono-
mer bearing degradable ester groups, thereby opening the ring system to
form a long-chain aliphatic polyester (Fig. 9b). ROMP represents a type
of olefin metathesis chain-growth polymerization using strained cyclic
olefins to produce polymers and copolymers containing degradable
functional groups (Fig. 9c). ADMET is a step-growth polycondensation
reaction of o, o-dienes bearing degradable functional groups along
methylene units with the release of ethylene as the byproduct. ADMET is
consistently followed by hydrogenation to yield polymers with compa-
rable properties to HDPE (Fig. 9d). This section is composed of various
methodologies and instances for the synthesis of “HDPE-like” materials,
including polycondensation, ROP, ROMP, ADMET and other polymeri-
zation approaches [57,59,60,62,65,66,70]. Table 1 summaries some
recent efforts.

4.1. Polycondensation of long-chain aliphatic monomers

The traditional polycondensation routes to synthesize these
degradable long-chain aliphatic polycondensates are divided into two
categories: (1) synthesized from an AB-type monomer X;-(CHg)y-Xo; (2)
synthesized from two AA and BB-type long-chain «, o-difunctional
monomers X;-(CH)p-X; [54]. One advantage is that these long chain
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Table 1
Thermal and mechanical property summary of “HDPE-like” materials synthesized via different polymerization methods.
Polymerization methods Degradable functional group M, (kg/mol) Tm (°C) c (MPa) e (%) E (MPa) Ref.
Polycondensation Ester 50 98.7 22 470 910 [57]
Carbonate 90 87.3 16 350 640 [571
Amide 10 156, 152 [58]
ROP Ester 10-60 98-106 [59]
ROMP Ester 31.2-50 105-131.7 [60]
Orthoester 0.9-12.7 86-117 [61]
ADMET Ester 8.9-15.5 100-133 [62]
10 108 [63]
Acetal 10.3-13 104-131 [64]
Carbonate 10.6-13.5 102-132 [64]
Other Amide 55, 48 125, 121 23, 22 645, 600 430, 300 [65]
123-133 13-17 520-1037 570-750 [66]
Ester 124-130 15-17 490-880 590-730 [66]
120-123 11-37 40-380 300-820 [67]
26.5-41.6 127.4-133.9 [68]
Ketone 1070 147 [69]
220 134 26.7 470 1062 [70]
58 130 [71]

monomers can be obtained from plant oils, which are one of the most
abundant renewable resources [79-81]. However, polycondensation
reactions have several drawbacks, including the difficult control of
molecular weights and dispersity. In addition, the conditions of high
temperature and vacuum could make this approach energy intensive,
and high temperature can also trigger thermal decomposition reactions.
Side-reactions and evaporation of monomers can result in a stoichio-
metric imbalance of reactants, which makes the synthesis of high mo-
lecular weight polymers difficult [82]. Since the high molecular weight
is very necessary for high performance polymer materials, a lot of
studies have been focused on improving the molecular weights of
long-chain aliphatic polycondensates.

Mecking et al. reported a significant advancement in the realm of
sustainable polymer materials by demonstrating the closed-looped
chemical recycling of “HDPE-like” materials (Scheme 1a) [57].
Polyester-18, 18 (PE-18, 18) was synthesized by Ti(O"Bu)4 catalyzed
polycondensation with stoichiometric amounts of C;g diester and diol,
yielding a weight average molecular weight (M,,) of approximately 80
kg/mol. Additionally, polycarbonate-18 (PC-18) with M,, of approxi-
mately 300 kg/mol was also synthesized by reacting the Cyg diol with
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diethyl carbonate. The starting materials C;g diester and diol were ob-
tained from commercially available 1,18-octadecanedioic acid, derived
from scalable biorefining of plant oils through olefin metathesis [83].
Upon degradation, PE-18, 18 could be depolymerized in MeOH with or
without a catalyst at 150 °C, yielding a near quantitative ratio of the C;g
diester and C;g diol mixture. In the case of PC-18, depolymerization in
basic EtOH yields the C;g diol and diethyl carbonate with a recovery rate
of more than 96 %. Finally, the recycled monomers were successfully
repolymerized, resulting in high molecular weights PE-18, 18 and PC-18
again. They also investigated the thermal-mechanical properties of
PE-18, 18 and PC-18 and found that the melting temperature, Young’s
modulus and elongation at break were 910 MPa and 470 % for PE-18,
18, and 640 MPa and 350 % for PC-18, respectively (Fig. 10b and c).
They were comparable to those of commercial HDPE [84]. The WAXS
diffraction patterns of the prepared materials corresponding to the
orthorhombic unit [110] and [200] were closed resembled to HDPE,
indicating that the incorporation of ester and carbonate linkages did not
significantly influence the crystalline PE structure (Fig. 10a). Impor-
tantly, the performance of the recovered polymers was comparable to
those of the original PE-18, 18 and PC-18, confirming the successful
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Scheme 1. a) Synthesis of degradable HDPE-like polymers with plant oil or microalgae oil-derived monomer feedstock [57]; Copyright 2021. Reproduced with
permission from Springer Nature. b) synthesis of diacids and diamines from methyl oleate and erucate [58].
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Fig. 10. a) WAXS of PE-18, 18, PC-18 and commercial HDPE; b) stress-strain curves of PE-18, 18, PC-18 and commercial HDPE; ¢) DSC traces of PE-18, 18, PC-18
and commercial HDPE [57]. Copyright 2021. Adopted with permission from Springer Nature.

synthesis of closed-loop chemically recyclable “HDPE-like” polymers.

Long-chain aliphatic polycondensates, like polyesters and poly-
carbonates, differ from their shorter chain aliphatic polycondensates,
where the polar groups on the polymer main chain largely determine
their physical properties. Due to a great number of methylene units in
the backbone, these long-chain aliphatic polycondensates not only have
similar mechanical properties as HDPE, but also show unique degrad-
ability, compostability, and biocompatibility [85,86]. Consequently,
these polymers are frequently discussed as “HDPE mimics” or “HDPE--
like” (Fig. 11).

Long-chain aliphatic polyamides have also been reported as “HDPE
mimics”, which could be synthesized by polycondensation of diamines
and dicarboxylic acids. These starting materials are easily obtained from
vegetable oils. Meier et al. presented an efficient method to prepare
various long-chain aliphatic polyamides from vegetable oils [87].
Mecking et al. reported long-chain aliphatic polyamides PA-23, 19 and
PA-23, 23 with molecular weight around 10 kg/mol, exhibiting a
melting temperature 156 °C and 152 °C, respectively (Scheme 1b) [58].

4.2. Ring-opening (metathesis) polymerization

Ring-opening polymerization (ROP) has already been used to syn-
thesize a variety of long-chain aliphatic polyesters. Unlike poly-
condensation, which requires removal of small molecules, high
temperature, and bulk condition to obtain high molecular weights. ROP
could be performed in solution, resulting in a lower viscosity, and a
linear relationship of molecular weight and monomer conversion.
Therefore, long-chain aliphatic polyesters with high molecular weights
could be obtained via ROP under mild conditions.
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Ring-opening polymerization (ROP) of macrolactones has been
proved as an efficient method to synthesize high molecular weight long-
chain aliphatic polyesters. Mecking and Williams et al. reported ROP of
w-pentadecalactone (Cjs), nonadecalactone (Cj9) and tricosalactone
(Ca3) using an yttrium phosphasalen catalyst with molecular weights
ranging from 10 kg/mol to 60 kg/mol and melting temperatures ranging
from 98 °C to 106 °C (Scheme 2a) [59].

Unlike polycondensation and ROP, where the amount of methylene
units between every adjacent pair of functional groups is the same, long-
chain aliphatic polymers with a random distribution of functional
groups can be obtained using the copolymerization of degradable
functional groups containing olefinic monomers with hydrocarbon
olefinic monomers by ring-opening metathesis polymerization (ROMP).
ROMP could afford relatively high molecular weight polymers without
an extremely high conversion of monomers.

Duchateau et al. has reported the influence of methylene-to-ester
ratios and random distribution of ester groups on the physical proper-
ties of long-chain aliphatic polyesters (Scheme 2b) [60]. They conducted
ROMP of ambrettolide and cis-cyclooctene followed by hydrogenation,
yielding long-chain aliphatic polyesters with M, ranging from 31.2
kg/mol to 50 kg/mol. They found that as methylene-to-ester ratio
increased from 23 to 229, the T, of these long-chain aliphatic polyesters
increased from 105.0 °C to 131.7 °C (Fig. 12a). When the
methylene-to-ester ratio was high enough, the random distribution of
ester groups had no effect on the Ty, and crystallinity of long-chain
aliphatic polyesters, which was comparable to HDPE.

Wurm et al. synthesized degradable polyethylene mimics containing
orthoester groups via ROMP of 1,5-cyclooctadiene with a diverse of
cyclic orthoester monomers, yielding linear copolymers with molecular

Amorphous Region

/ \§
¥
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Fig. 11. A proposed model to illustrate crystalline and amorphous regions of “HDPE-like” materials.
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Fig. 12. a) DSC traces of long-chain aliphatic polyesters [60]; Copyright 2013. Adopted with permission from American Chemical Society. b) TEM bright-field
micrograph and corresponding diffraction pattern of long-chain polyorthoesters [61]. Copyright 2019. Reprinted with permission from American Chemical Society.

weight up to 38 kg/mol. Subsequent hydrogenation of such copolymers
produced semicrystalline “HDPE-like” materials (Scheme 2c¢) [61].
Notably, while mechanical property assessment of these materials
proved challenging because of the brittle nature resulting from relatively
low molecular weights, the Ty, exhibited an increase from 86 °C to
117 °C with increasing the number of methylene groups between the
orthoester groups, making the material became more similar to HDPE.
Additionally, electron diffraction showed the single crystal pattern of
flat-on orthorhombic PE crystals (Fig. 12b). The incorporation of
orthoester groups would not change the crystal structure of these
polymers, maintaining a crystal structure similar to that of commercial
HDPE. Their study represented a potential advantage of biodegradable
HDPE mimics based on orthoester linkages compared to commercial
HDPE.

4.3. Acyclic diene metathesis polymerization

Acyclic diene metathesis polymerization (ADMET) of linear
o,0-diene monomers could afford regular polyolefins, followed by hy-
drogenation to produce “HDPE-like” materials with functionality sepa-
rated by a constant number of methylene spacers. In the past years,
researchers tried to incorporate a higher number of methylene units
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between functional groups and achieve “HDPE-like” properties. For
example, Mecking et al. synthesized long-chain aliphatic polyesters by
ADMET copolymerization of undec-10-en-1-yl undec-10-enoate and
undeca-1,10-diene followed by hydrogenation. These ester groups
decreasing from 52.6 to 0.9 per 1000 methylene units randomly
distributed in the polyethylene backbone, resulting in an increase of Ty,
from 100 °C to 133 °C (Scheme 3a) [62]. They demonstrated that a
lower content of ester groups was necessary to achieve thermal prop-
erties of polyethylene. Similarly, this conclusion also applies to
long-chain aliphatic polyacetals and polycarbonates (Scheme 3b). They
found that melting temperature of polyacetals increased from 104 °C to
131 °C as acetal groups decreased from 21 to 1.5 per 1000 methylene
units and melting temperature of polycarbonates increased from 102 °C
to 132 °C as carbonate groups decreased from 30.6 to 1.1 per 1000
methylene units. In the comparison of the influence of ester, carbonate,
and acetal groups on the thermal properties of long-chain polymers,
carbonate groups have a more pronounced impact on Tj, than ester
groups because of its lower polarity and a less propensity for ordered
layer formation. Polyacetals could form more complex and less uniform
structures, resulting in “HDPE-like” polymers only at exceedingly low
contents of acetal groups [64].

The remaining internal double bonds within the polymer backbone



X. Lietal Polymer 295 (2024) 126698
a)
i G bbs | Red f
/\(\/)JL rubbs eduction
ArS ¢ AN S W S M b g ¥ Fa S e )
b)
Grubbs | Reduction
0O 0. _0 (AMA)WO 0.
Grubbs | Reduction
0O 0. O MWO o)
M + mg\g/% - 7 s\lc])/ M;:):“\n ’ 7 s\g/ M;)\n
c)
Self-Metathesis JWL /\
—_—

. . Hydrogenation
10-Undecenoic acid

NiductIOi\(/\)\/\ J

PE-20,20

Scheme 3. a) The synthesis of long-chain aliphatic polyesters by ADMET copolymerization and hydrogenation [62]; b) The synthesis of long-chain aliphatic pol-
yacetals and polycarbonates by ADMET copolymerization and hydrogenation [64]; ¢) The synthesis of long-chain aliphatic polyesters by polycondensation of

monomers obtained from 10-undecenoic acid [63].

during reduction could limit the crystallization and prevent the poly-
mers from exhibiting fully “HDPE-like” thermal-mechanical properties.
To overcome this limitation, researchers have proposed a strategy that
amalgamates the metathesis reaction with polycondensation, thereby
elevating molecular weight of polymers with similar thermol-
mechanical properties to HDPE. Mecking et al. synthesized an unsatu-
rated o,m-dicarboxylic acid by a metathesis reaction to couple two
undecanoic acid segments together, subsequently employing a hydro-
genation reaction to yield a saturated long chain C20 diacid. Further
reduction of the saturated long chain C20 diacid gave the corresponding
C20 diol. Polycondensation of these two monomers yielded a polyester-
20, 20 with a M, of 10 kg/mol and a Ty, of 108 °C similar to that of the
hydrogenated polymer resulting from ADMET polymerization of unde-
cenyl undecenoate (Scheme 3c) [63]. Similarly, the same methodology
was employed to synthesize polyester-38, 23 and polyester-44, 23 with
T of 109 °C and 111 °C, respectively. After polycondensation, all these
long-chain aliphatic polyesters exhibited more “HDPE-like” properties
than their ADMET polymerization-derived counterparts [56].

4.4. Other polymerizations

Seppala et al. reported a series of sulphur-containing polyamides
synthesized by polycondensation (Scheme 4a) [65]. In their approach,
sulphur was initially introduced into the polyamide backbone through a
thiol-ene click reaction of dithiol and 10-undecenoic acid monomers,
resulting in an increase of aliphatic segment length. The subsequent
polycondensation of these elongated sulphur-modified linear poly-
amides with dodecamethlenediamine yielded polymers with a M,
approaching 55 kg/mol. Consequently, the resulting polyamides
exhibited Tj, of 125 °C and 121 °C, tensile strength, Young’s modulus
from 26 MPa to 430 MPa-22 MPa and 300 MPa, respectively. While
decreased from 645 % to 600 % compared to commercial polyamides, it
was due to the fact that sulphur groups within the polyamide backbone
hindered the chain packing and constrained the extent of interchain
hydrogen bonding. Collectively, these instances clearly demonstrated
that thiol-ene click reaction represented a powerful tool for design of
“HDPE-like” materials.

Long et al. reported the synthesis of HDPE mimic through chain-
transfer ring-opening metathesis polymerization (CT-ROMP) of cyclo-
octene and hydrogenation to yield carboxytelechelic PE oligomers with
various molecular weights. The subsequent polycondensation with diols
or diamines produced chain-extended polyesters or polyamides,
respectively (Scheme 4b) [66]. These polymers displayed comparable
performance to commercial HDPE. Specifically, the polyamides
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exhibited a Ty, ranging from 123 °C to 133 °C and the degree of crys-
tallinity ranging from 46 % to 53 % with increasing the molecular
weights of the PE oligomers. Meanwhile, the polyesters also displayed
an increase in Tp, from 124 °C to 130 °C and an increase in the degree of
crystallinity from 53 % to 58 % with increasing PE oligomer length.
Additionally, tensile testing of these polyesters and polyamides after
chain extension revealed the stress values ranging from 13 MPa to 17
MPa, Young’s modulus between 570 MPa and 750 MPa, and strain at
break values spanning from 490 % to 1037 %. Similarly, Long et al.
produced segmented copolyesters through CT-ROMP and poly-
condensation of carboxytelechelic PE segments with adipic acid and
neopentyl glycol. These copolyesters exhibited more “HDPE-like”
properties with increasing PE oligomer length, including the Ty, stress,
elongation at break, and Young’s modulus, approaching 123 °C, 37 MPa,
380 %, and 820 MPa, respectively [67].

In 2021, Chen and Liu et al. reported the synthesis of polyketones by
copolymerization of ethylene and CO with palladium catalyst [69]. The
T value of the polymer reduced to 147 °C with 24.2 % extra ethylene
incorporation. Meantime, Mecking et al. showed that the Ni(II) com-
plexes catalyzed copolymerization of ethylene with CO yielded HDPE
mimic with the My, up to 400 kg/mol and the Ty, approaching 134 °C
(Fig. 13c), while retaining desirable material properties compared to
HDPE [70]. Specifically, these polymers exhibited a Young’s modulus of
approximately 1062 MPa and a stress of around 26.7 MPa (Fig. 13b).
Additionally, the WAXS diffraction patterns of these polymers also
showed marked similarity to those of HDPE (Fig. 13a). In parallel,
Nozaki et al. reported the synthesis of linear HDPE bearing a low content
of ketone groups catalyzed by palladium catalyst [71]. This polymer
exhibited the Ty, up to 130 °C, effectively preserving a similar thermal
property of HDPE (Scheme 4c).

In 2023, Coates et al. proposed the synthesis of polyethylene with
double bonds in the polymer backbone using copolymerization of
ethylene with an oxa-norbornadiene followed by retro-Diels-Alder re-
action. Subsequent cross metathesis with 2-hydroxyethyl acrylate and
hydrogenation resulted in ester-capped polyethylene macromonomers.
These macromonomers could undergo step growth polymerization to
yield HDPE mimics with thermal-mechanical properties comparable to
those of commercial HDPE (Scheme 4d). Moreover, Ty, values increased
from 127.4 °C to 133.9 °C by decreasing the number of ester groups
[68].

In summary, a multitude of approaches have been explored to mimic
HDPE starting from plant oil feedstock. Indeed, fatty acids are suitable
for the design of long-chain aliphatic polymers due to the presence of
long chain linear methylene segments. The monomers of
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Fig. 13. a) WAXS of copolymers with different content of keto; b) stress-strain curves of keto-modified HDPE and commercial HDPE; ¢) DSC traces of keto-modified
HDPE [70]. Copyright 2021. Adopted with permission from the American Association for the Advancement of Science.

polycondensation are easily derived from plant oils. However, poly-
condensation reactions entail challenges in controlling molecular
weights and dispersity, often demanding high-temperature and vacuum

conditions. In contrast, ROP allows for milder conditions while resulting
in long-chain aliphatic polymers with high molecular weights. ROMP
affords the advantages of generating long-chain aliphatic polymers with
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random functional group distribution and relatively high molecular
weights, although subsequent hydrogenation is necessary for HDPE
mimics. Besides, the ring strain is another limitation for the range of
cyclic olefins. ADMET proves highly efficient for design of HDPE mimics
through either directly polymerization or amalgamation of metathesis
reaction with polycondensation. But the drawback of this pathway is the
necessary of further hydrogenation steps and the high price of the
metathesis catalysts. The thiol-ene reactions expand the database of
monomers for other polymerization methods by introducing functional
groups into fatty acid derivatives. Additionally, TES polymerization
provides an effective method to precisely control the placement of
functional groups in the synthesis of HDPE mimics. However, the
incorporation of sulphur atoms within the polymer backbone leads to a
lower Tp,. Various other methods for the synthesis of HDPE mimics have
been reported as well, fine-tuning is needed to increase molecular
weights, enhance thermos-mechanical properties, and achieve similar
crystallinity levels compared to commercial HDPE. The task of elevating
molecular weights, improving thermo-mechanical properties, and con-
ducting comprehensive investigations into degradability remains an
ongoing pursuit demanding further exploration and scrutiny.

5. Potential new routes

Considering the limitation of these expensive and complicated re-
sources of HDPE mimics, a growing incentive to pursue green bioplastic
is also developed from renewable natural resources like plant oils. The
main component of plant oils are triglycerides, a class of esters
combining glycerol and various fatty acids, such as linolenic acid,
linoleic acid, oleic acid, ricinoleic acid, 10-undecenoic acid and erucic
acid (Scheme 5a) [55]. The major approach is to prepare linear «o,
o-difunctional monomers from fatty acids. For instance, the double bond
of oleic acid could be oxidized via ozonolysis to yield azaleic and
pelargonic acid in industry [79]. Similarly, the oxidative cleavage can be
achieved using tungsten, tantalum, molybdenum, zirconium, and
niobium-based catalysts with HoO5 in high yield [88,89]. Certain yeast
strains like Candida tropicalis and Candida maltose are able to oxidize
terminal aliphatic carbons to carboxylic acids, thereby facilitating the
conversion of fatty acids to long-chain dicarboxylic acids [90,91]. Self-
or cross-metathesis is another approach to convert the double bonds
within unsaturated fatty acids to new linear «, 0-difunctional monomers
[80]. A more challenging method is isomerization-functionalization of
carbon-carbon double bonds to generate functional groups in the desired
terminal positions [54]. Miilhaupt and Mecking et al. reported isomer-
izing alkoxycarbonylation of methyl oleate and methyl erucate with
carbon monoxide and methanol, yielding long-chain diesters for the
preparation of long-chain polycondensates (Scheme 5b, Fig. 14a) [48].
All of these approaches provide the possibilities to develop the green
bioplastic, with potential utilization of used plant oils as renewable
natural resources for the synthesis of “HDPE-like” materials in the near
further.

Processing is an effective approach to improving the performance of
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plant oil-derived bioplastics. Recently, Wang and Tang et al. reported
ultra-strong long-chain polyamides via the development of amide diene
monomers derived from castor oil, with unidirectional processing
(Fig. 14b) [9]. The thermal-mechanical properties and crystallinity of
polyamides can be adjusted through monomer feed ratios. Notably,
uniaxial deformation resulted in a rearrangement and alignment of
crystalline microstructures, achieving an ultrahigh enhancement in
mechanical strength.

6. Conclusions and perspectives

Despite the incorporation of degradable functionable groups,
including ester, acetal and amide moieties into polyethylene-based
backbone being widely explored during the past decade, the realiza-
tion of sustainable plastic remains a significant challenge. Due to the
constrained experimental conditions, many experiments may not be able
to attain an industry-level scale-up, where the cost of reactants and
catalyst as well as other chemical agents pose significant challenges for
the production expenditures. Furthermore, many of these HDPE mimics
with added functional groups do not have thermo-mechanical properties
consistent with commercial HDPE. Despite this crucial attribute, some
studies neglect to characterize the thermo-mechanical characteristics of
their HDPE mimics. For some other instances, the repolymerization
process could not be successfully completed using the degradable olig-
omers obtained after chemical degradation. Undoubtedly, these chal-
lenges will impede the development of HDPE mimics towards industrial-
scale production. Several considerations should be mentioned to address
these challenges. First, the thermal and mechanical properties of HDPE
mimics should be comparable to those of the commercial counterpart.
Second, the cost of HDPE mimics needs to be drastically reduced; it is
currently not competitive with commercial HDPE. Third, other physical
properties such as gas permeation and chemical resistance, need to be
evaluated. Future efforts are encouraged on the synthesis of scalable and
low-cost fatty monomers and high molecular weight aliphatic conden-
sation polymers, better and quick analytical tools (i.e. high throughput
high temperature GPC), and perhaps utmost the design of highly selec-
tive and efficient catalysts for all synthetic processes. It should be
considered to explore techno-economic analysis together with life-cycle
analysis, should this class of degradable polymers go into large-scale
commercialization toward a closed-loop plastic economy.
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