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Abstract— Sketch-to-image synthesis method transforms a 

simple abstract black-and-white sketch into an image. Most 

sketch-to-image synthesis methods generate an image in an end-

to-end manner, leading to generate a non-satisfactory result. The 

reason is that, in end-to-end models, the models generate images 

directly from the input sketches. Thus, with very abstract and 

complicated sketches, the models might struggle in generating 

naturalistic images due to the simultaneous focus on both factors: 

overall shape and fine-grained details. In this paper, we propose 

to divide the problem into subproblems. To this end, an 

intermediate output, which is a semantic mask map, is first 

generated from the input sketch via an instance and semantic 

segmentation.  In the instance segmentation stage, the objects' 

sizes might be modified depending on the surrounding 

environment and their respective size prior to reflect reality and 

produce more realistic images. In the semantic seg-mentation 

stage, a background segmentation is first constructed based on the 

context of the detected objects. Various natural scenes are 

implemented for both indoor and outdoor scenes.  Following this, 

a foreground segmentation process is commenced, where each 

detected object is semantically added into the constructed 

segmented background. Then, in the next stage, an image-to-

image translation model is leveraged to convert the semantic mask 

map into a colored image. Finally, a post-processing stage is 

incorporated to further enhance the image result. Extensive 

experiments demonstrate the superiority of our proposed method 

over state-of-the-art methods.  

Keywords— Sketch-to-Image, Image Generation, Image 

Synthesis, Scene and Size Sensing. 

I. INTRODUCTION 

"Pictures speak louder than words." - Anonymous 

Image can be seen everywhere since it conveys a story, a 
fact, or an imagination without any words. A single image can 
convey multiple meanings based on the viewers' point of view, 
while usually a single sentence can only maintain one meaning. 
In addition, images can substitute the sentences because the 
human brain can extract the knowledge from images faster than 
words. Furthermore, images have a long-lasting impression in 
individuals’ memory. However, creating an image from scratch 
is not only time-consuming, but also it requires skills. Moreover, 
it is a painful and a tedious task. In order to generate an image 

in less time and without any artistic skills, sketch-to-image 
synthesis can be adopted. The reason is that hand sketches are 
much easier to produce, where only the key structural 
information is contained. Moreover, it can be drawn without 
skills and in less time. On the other hand, images contain not 
only the structural information and objects' boundaries but also 
contain other important features, including color, saturation, 
luminance, brightness, texture, and shadow, just to name a few. 
Thus, it consumes a long time and requires skills. Hence, much 
research has been conducted in sketch-based image generation 
field, where only a black and white rough sketch with key 
structural information is required. Then, the input sketch is 
automatically mapped without human intervention into the 
corresponding image. Therefore, anyone can create an image 
even without artistic skills and in no time. Different techniques 
have been adopted to create images from input sketches.  

One research direction is sketch-based image retrieval 
(SBIR) systems [1]. Nonetheless, several issues might result 
from SBIR systems. First, fine-grained images might not be 
retrieved by the system due to the manual feature extraction 
process. In addition, SBIR might not work with poorly sketched 
objects since the systems may not be able to appropriately 
recognize the objects in the input sketch to retrieve the most 
similar image. Moreover, the system might not generate images 
that are sufficiently comparable to the input sketches, 
particularly in terms of orientation, perspective, or occlusion 
features.  

To address the aforementioned problems in SBIR method, 
researchers have leveraged deep convolutional neural networks 
(CNNs) in sketch-based image synthesis task [2]. Because 
CNNs automatically learn the features rather than manually 
extracting them, CNNs-based image synthesis methods produce 
better images than SBIR method for the sketch-to-image 
problem. However, unnaturalistic image might be generated 
when the input sketch has several drawn objects. Image 
generation has become a hot topic, and much research has been 
conducted, especially after proposing the Generative 
Adversarial Network (GAN). Incorporating GAN in sketch-
based image generation tasks [3-4] improves the generated 
results over time. However, GAN-based image synthesis 
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methods are still struggling to generate photo-realistic images 
from complex scenes with multiple objects.  

Another technique used in image generation problem is 
diffusion models. Incorporating diffusion models in sketch-to-
image synthesis task [5] may help with complex sketches but 
suffer from the abstraction and simplicity of drawn sketches. 
This might lead to generate unsatisfactory images. 

Previous state-of-the-art sketch-to-image synthesis methods 
have shown great success in generating images; however, the 
results are still unrealistic, especially with complicated sketches. 
Indeed, the generated images of complex scenes with multiple 
objects are still a challenging problem, and the performance of 
the current methods is unsatisfactory. This might be because the 
generation process occurs in one shot, where the sketches are 
directly mapped into images, leading to generating unrealistic 
images from complex sketches. 

 To this end, the proposed S5, short form of Sketch-to-image 
Synthesis via Scene and Size Sensing, method attempts to not 
only generate realistic images from complicated sketches but 
also reflect the reality of the objects' sizes in different 
environments by decomposing the problem into subproblems. It 
first generates intermediate outputs, namely, mask maps from 
the input sketches through an instance segmentation and 
semantic segmentation. The intermediate output maintains the 
boundaries, shapes, layouts, and overall structures. Then, the 
mask maps are mapped into colored images through image-to-
image translation models, where textures, colors, shadows, 
among other features are preserved. To reflect reality with 
regard to the objects' sizes and generate more realistic images, 
we propose that the objects' sizes are modified based on the 
surrounding environment and masks' prior size. This leads to 
generating more photo-realistic images compared to prior 
models. Our contribution is as follows. 

- First, using four different techniques, i.e., dodging and 
burning [6], Holistically-nested edge detection [7], Canny edge 
detector and Sobel operators, we generate a sketch-like image 
dataset depending on MS-COCO. 

- Next, leveraging our created dataset of sketch-like images, 
we fine-tune an instance segmentation model [8]. To reflect 
reality in terms of the objects’ size compared to the scene, the 
objects' sizes might be modified based on the surrounding 
environment (indoor vs. outdoor). Thus, our framework first 
determines the background depending on the context of the 
existing objects, and then objects' sizes might be changed based 
upon a computed factor. 

- Furthermore, the semantic mask segmentation works in 
two levels which are background segmentation and foreground 
segmentation. 

- To further improve the synthetic images, two post-
processing steps are included: background improvement step 
and face refinement step. In the background improvement step, 
10k scene images divided into 365 different scene classes are 
collected. Following this and depending on the classified scene, 
a scene image is chosen by our method, and then the generated 
foregrounds are blended into the selected scene image in a 
specific pre-defined location so that objects are in a proper 
location to maintain realism. In the face refinement step, human 
faces are first extracted, and then, reconstructed face images are 
obtained via an autoencoder model, followed by aligning the 
reconstructed faces into the respective synthetic image. 

- Finally, a dataset for evaluation purpose is compiled. This 
dataset is composed of 378 distinct sketch styles. 

II. RELATED WORK 

A. Semantic Segmentation  

Semantic segmentation is the task that identifies not only 
the semantic labels for each object in the image but also defines 
the precise regions and where each object starts and ends. It 
works by assigning a label for every pixel in the image. Hence, 
it is useful for many applications that require accurate image 
maps, such as autonomous driving, crowd counting, image-to-
image translation, satellite imagery, medical imaging, and 
robotic vision. Many studies have been accomplished in this 
field leveraging different techniques [9-12]. 

 
Fig. 1. The overview of our proposed sketch to image synthesis S5 method. Our framework consists of four main stages (Instance Segmentation Stage, Semantic 
Segmentation Stage, Semantic Mask-to-Image Synthesis Stage, and Post-processing Stage). The fourth and last stage is composed of two steps, which are 
Background Improvement Step and Human Face Refinement Step to further enhance the generated images. 
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B. Sketch-to-image Synthesis Methods 

• Sketch-based Image Retrieval (SBIR) 

One of first approaches is sketch-based image retrieval 
(SBIR) system [1]. In SBIR, a database or a search engine is 
leveraged to query a simple rough sketch and retrieve the most 
similar colored image to the corresponding input sketch. The 
similarity criteria between the input sketch and the 
corresponding colored image are determined by the descriptor. 
However, many problems might appear. One major problem is 
that it might be hard to find the appropriate matched image to 
the corresponding sketch. Furthermore, many problems might 
occur regarding the retrieved images’ objects. It might retrieve 
an improper object orientation or improper object occlusion. 
Another challenge is the inability to retrieve fine-grained images 
due to the manual features extraction process. Additionally, with 
badly drawn sketches, SBIR might not work well in producing 
a proper respective image. 

• Sketch-to-Image via Convolutional Neural 

Networks (CNNs) 

Due to the limitations in SBIR and after developing CNNs, 
researchers have shifted their direction and used deep CNNs to 
map an input sketch to a colored image [2]. Unlike SBIR, where 
it lacks the fine-grained retrieval because the features are 
extracted manually via the descriptor, CNN is able to maintain 
the fine-grained details because it learns the feature and extracts 
them automatically. While the results of leveraging CNNs in 
sketch-based image generation are much better than the results 
obtained through SBIR, generated images lack high level of 
realism, especially with multiple objects in the input sketch. 

• Sketch-to-Image via Generative Adversarial 

Network (GAN) 

With the advancement in machine learning and deep 
learning, different models have been proposed. Recently, a 
popular and commonly used model has been developed, named 

GAN. GAN has proven its capability in image generation tasks; 
thus, researchers have moved to GAN to synthesize a colored 
image from the corresponding input sketch [3-4]. Incorporating 
GAN can generate realistic images from sketches. However, 
many challenges emerge from leveraging GAN. It may require 
a large dataset of sketch-photo pairs to train the model. Another 
limitation presented in [3] is that each class should be trained 
separately. Thus, it is not only time-consuming and high 
computation, but also less efficient. Another shortcoming is the 
inability to generate images from complicated sketches with 
fine-grained details. Furthermore, synthesized images may not 
be visually realistic to resemble real-world images, especially 
with complex sketches. Hence, to date, GAN-based sketch-to-
image synthesis models produce better results than previous 
approaches. However, with complex sketches that consist of 
multiple objects, the results are still unsatisfactory. 

• Sketch-to-Image via Diffusion Model (DM) 

 Many studies have leveraged diffusion models in the image 
synthesis field. PITI [5] uses a pretrained model that is capable 
of capturing the entire distribution of the natural image. This 
framework works well for mask-to-image and geometry-to-
image translation, but it may fail with the sketch-to-image 
generation, especially with different sketch styles. The reason is 
that the model is trained on sketches extracted only via HED [7]. 

III. PROPOSED METHOD 

 Dataset: Since there is no available sketch dataset with 
complex scenes and multiple objects in one scene, we aim to 
create our own sketch dataset based on MS-COCO dataset 
which contains over 118k and 5k images for training and 
validation, respectively. Four different methods are leveraged to 
convert images into sketch-like images. Specifically, dodging 
and burning [6], Holistically-nested edge detection [7], Canny 
edge detector and Sobel operators are used. The reason for 
incorporating different types of edge maps is to improve model 
detection and segmentation since people tend to sketch 

 
Fig. 2. The flowchart of the first two stages, namely, instance segmentation and semantic segmentation, after training the instance segmentation model on the 
four different edge map datasets. 
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differently. Hence, having such a dataset helps in image 
generation process even with various sketch styles. In total, our 
dataset consists of over 472k and 20k different edge maps and 
sketches for training and validation, respectively. 

Methodology: The framework is comprised of four main 
stages. Figure 1 illustrates the overall view of our proposed 
framework. Details are described as follows. 

A. Instance Segmentation Stage 

The instance segmentation stage starts by re-training an 
instance segmentation model. This model usually takes a 
colored image as input and outputs only the segmented objects 
as masks. DetectoRS [8] is leveraged as an instance 
segmentation model and fine-tuned for 30 epochs on our newly 
created dataset of sketch-like images. This stage produces a 
mask for each detected and segmented object in the input sketch. 
Meanwhile, to reflect reality regarding objects’ size and 
maintain realistic results, objects' sizes might be modified based 
on the surrounding environment (indoor vs. outdoor). In our 
proposed method, we modify the object size if the surrounding 
environment is determined to be an indoor scene so that the 
object size is consistent with the scene. To this end, the 
environment/background scene is first determined based on the 
detected objects. To define the scene based on the existing 
objects' context, a simple yet effective algorithm is leveraged. 
Specifically, based on the prior and existing knowledge of the 
location of each object in real life, each object is categorized in 
one or more scenes. Then, for each recognized and segmented 
object in the input sketch, the corresponding scene(s) is 
increased by one. At the end of this simple yet effective 
algorithm, the final scene is the scene with the highest value. In 
total, 26 environment/background scenes are identified which 
are categorized into indoor and outdoor. For the indoor scenes, 
eight scenes are specified, which are living room, dining room, 
office room, child room, bedroom, kitchen, bathroom, and 
bookstore. In the meantime, three outdoor scene subcategories 
are defined for the outdoor scenes, namely, natural, 
transportation, and sport and leisure scenes with 18 distinct 

scenes. As for natural scenes, beach, ocean, courtyard, forest, 
farm, pasture, snow, and desert are defined. Street, sidewalk, 
airfield, heliport, harbor, and railroad track are identified for 
transportation. Regarding sports and leisure, baseball field, 
basketball field, football field, and park are determined. If the 
scene is indoor, the mask size of each detected and segmented 
object in the input sketch is updated based on the following 
equations (1)                 𝑓𝑎𝑐𝑡𝑜𝑟 =   𝑚𝑎𝑔𝑛𝑖𝑓𝑦𝐹𝑎𝑐𝑡𝑜𝑟 ∗  (𝑝𝑜𝑏𝑗𝑒𝑐𝑡 𝑝𝑡𝑜𝑡𝑎𝑙)⁄             (1)                 

, where 𝑝𝑜𝑏𝑗𝑒𝑐𝑡  is the pixels’ number in the object area, and 𝑝𝑡𝑜𝑡𝑎𝑙  is the total pixels’ number in the input sketch. 𝑚𝑎𝑔𝑛𝑖𝑓𝑦𝐹𝑎𝑐𝑡𝑜𝑟  is varied in range of (2,5) based on the 
determined indoor scene. 

    Next, for each modified object mask in indoor scenes, the 
mask is pasted in an empty image with the same size as the input 
sketch in a location determined by the following. 

         𝑃𝑜𝑖𝑛𝑡 = ((𝑆𝑠.𝑥 − 𝑆𝑚.𝑥) 2⁄ , (𝑆𝑠.𝑦 − 𝑆𝑚.𝑦) 2)⁄               (2) 

, where 𝑆𝑠.𝑥  and 𝑆𝑠.𝑦 are the sketch size in x and y direction, 
respectively. 𝑆𝑚.𝑥  and 𝑆𝑚.𝑦 are the segmented object size after 
modifying its size in x and y direction, respectively. 

    Otherwise, if the scene is outdoor, no change is applied to the 
mask size of the segmented objects.  

B. Semantic Segmentation Stage 

The semantic segmentation process occurs in two levels 
(background and foreground segmentation). Background 
segmentation is first applied, where every pixel value in the 
background is modified based on the defined background scene 
in the previous stage. For each scene, we define two regions to 
be segmented. One exception is the beach scene, where the 
background is divided into three regions which are sky, sea, and 
sand. Following this, the pixels in each region are manipulated 
based on the specified region label that follows the COCO-Stuff 
labels. For example, in ‘grass’ region label, every pixel is 
manipulated to ‘124’ to semantically segment the region. 

 
Fig. 3. An illustration of the human face refinement step. In this step, a human face detector is first used to detect and locate the human faces, followed by 
extracting the face regions and creating a square mask for each extracted face. Then, a new face is generated for each extracted face through an autoencoder 
network, namely, ICT image completion model [14]. To align the reconstructed faces, another circle mask is created for each reconstructed face, and an alpha 
blending technique is leveraged to align the refined face in the exact location of the generated image produced by the previous step:  Background Improvement 
Step. 
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binarized image that is the same size as the reconstructed 
face. Then, the extracted face's size is used to resize both 
the reconstructed face and its respective mask. The 
reconstructed face is then positioned in the same exact 
location and blended onto the generated image. Figure 3 
shows the face reconstruction and refinement step. 

IV. EXPERIMENTS 

A. Experimental Settings 

Dataset. To validate our proposed approach with prior 
methods, four datasets are adopted. The first dataset is our newly 
collected dataset that contains various sketch types since people 
tend to sketch differently. This dataset is acquired based on 
Sketchy dataset [2], ScketchyCOCO dataset [4], and through 
Google Image. 378 different sketches are collected containing 
fourteen different classes which are cat, dog, horse, sheep, cow, 
elephant, zebra, giraffe, car, bicycle, motorcycle, airplane, 
traffic light, and fire hydrant. These fourteen classes are chosen 
since they belong to both adopted datasets (Sketchy dataset [2], 
and ScketchyCOCO dataset [4]) as well as COCO dataset.  

The second testing dataset is a subset of PACS dataset [15]. 
We choose four classes: dog, elephant, giraffe, and horse to be 
in our testing subset since they belong to the pre-trained state-
of-the-art sketch-to-image methods and our proposed method. 
In total 3,081 sketches are included. 

Moreover, we test our framework on a subset of TU-Berlin 
dataset [16]. Twenty classes are involved for the same 
aforementioned reason. These classes are airplane, bicycle, bus, 
car(sedan), cat, cow, dog, elephant, fire hydrant, giraffe, horse, 
motorbike, pickup truck, race car, sheep, suv, traffic light, truck, 
van, and zebra. The total number of images is 1600 sketches. 

The last dataset used is a subset of Sketchy dataset [2]. It is 
composed of the same fourteen classes as the first evaluation 
dataset. In total, 1,127 sketches are included. The reason for 

incorporating this subset is that the ground truth images are also 
included. 

 Baselines. We compare our work with state-of-the-art 
methods that provide the source code. Three models are adopted 
to evaluate our method quantitatively and qualitatively. These 
models are EdgeGAN [4], the model proposed by Liu et. al [3], 
and PITI [5]. Regarding EdgeGAN [4] and PITI [5], we use the 
pre-trained models trained on SketchyCOCO [4] and COCO-
stuff datasets, respectively. As for [3], we train the model on 
SketchyCOCO dataset [4] after leveraging [6] to produce pencil 
sketches. Since SketchyCOCO dataset [4] consists of fourteen 
classes, fourteen separate models are trained. This model works 
on generating images from sketches in two levels, where it first 
generates grayscale images from sketches, and then, the 
grayscale images are translated into colored images. Therefore, 
we train each model for 400 and 200 epochs for shape translation 
network and content enrichment network, respectively, as 
suggested by the authors in the original work. 

B. Experimental Analysis 

The objective of our research is to address and overcome the 
disadvantages of prior works. Previous works concentrate on 
generating images directly in an end-to-end manner, leading to 
generating unsatisfactory images, especially with complex 
sketches. Therefore, the objective is to decompose the sketch-
to-image problem into two sub-problems to generate better 
results. In particular, we divided the sketch-based image 
generation problem into sketch-based semantic mask map and 
image-to-image synthesis problems. Since the GAN model is 
widely used in image synthesis, we integrated one of the GAN 
models as an image-to-image synthesis model. Then, we 
compared our proposed method that uses GAN with three 
different models. One of the baselines, particularly, PITI [5], is 
built based on the recently used model in image synthesis, which 
is the diffusion model. The experimental results validate our 
objective and outperform even advanced models. 

Table 1. A comparison between our method and the baselines in terms of the realism criteria, in particular, IS [19], FID [17], and LPIPS [18] on our newly 
collected dataset, PACS [15], TU-Berlin [16], and Sketchy dataset [2]. 

Method Our newly 

collected 

dataset 

PACS 

dataset [15] 

TU-Berlin 

dataset [16] 

Sketchy dataset [2] 

IS [19] ↑ IS [19] ↑ IS [19] ↑ IS [19] ↑ FID [17] ↓ LPIPS [18] ↑ 
EdgeGAN [4] 5.49 ± 0.40 4.52 ± 0.21 5.50 ± 0.45 5.68 ± 0.27 214.806 0.49 

Liu et. al [3] 5.18 ± 0.53 4.40 ± 0.17 4.49 ± 0.28 4.35 ± 0.15 324.082 0.66 

PITI [5] 6.44 ± 0.89 6.01 ± 0.26 6.50 ± 0.56 5.93 ± 0.34 282.357 0.70 

S5 (object-level) 7.61 ± 0.45 8.43 ± 0.50 6.92 ± 0.76 7.78 ± 0.80 209.638 0.93 

S5 (scene-level) 8.02 ± 0.60 9.82 ± 0.53 9.46 ± 0.50 11.04 ± 0.90 189.598 0.76 

 

Table 2. A comparison between our method and the baselines in terms of the fidelity criteria, in particular, L2 Distance, and SSIM [20] on our newly collected dataset, 
PACS [15], TU-Berlin [16], and Sketchy dataset [2]. 

Method Our newly collected 

dataset 

PACS dataset [15] TU-Berlin dataset [16] Sketchy dataset [2] 

L2 
Distance ↓ 

SSIM [20] ↑ L2 Distance 
↓ 

SSIM [20] ↑ L2 Distance 
↓ 

SSIM [20] ↑ L2 Distance 
↓ 

SSIM [20] ↑ 

EdgeGAN [4] 1.66 0.557 1.66 0.61 1.68 0.63 1.63 0.41 

Liu et. al [3] 1.64 0.643 1.66 0.69 1.68 0.56 1.72 0.44 

PITI [5] 1.56 0.241 1.60 0.24 1.67 0.34 1.62 0.39 

S5 (object-level) 1.44 0.699 1.58 0.74 1.66 0.78 1.52 0.80 
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Quantitative Results. To quantitatively compare our 
approach with the baselines, various evaluation metrics are 
leveraged. In particular, to evaluate the realism, FID [17] and 
LPIPS [18] are used. In addition, IS [19] score is computed to 
evaluate not only the realism but also quality and diversity. 
Meanwhile, to validate the faithfulness of the generated images, 
two different techniques are utilized. The first approach is 
generating the edge maps of the synthetic images based on 
Gabor features. Then, L2 distance is computed between the 
produced edge maps and the corresponding input sketches. The 
other technique starts by using Canny edge detector to obtain the 
edge maps of synthesized images. Following this, SSIM [20] is 
computed.  

In order to compare the outputs fairly with the previous 
works in terms of realism criteria, object-level as well as scene-
level of the generated images by our proposed framework are 
included. The object-level images are obtained through 
excluding the backgrounds from all synthetic images before 
background improvement step. Table 1 summarizes the 
comparison between our method and the baselines in terms of 
the realism criteria. As seen, our proposed framework 
outperforms the baselines. This could be attributed to two 
reasons. The first reason is that our framework decomposes the 
image generation problem into two sub-problems. This leads to 
first emphasize on the objects' shape during generating the mask 
maps, followed by concentrating on fine-grained details and rich 
information during generating the final outputs, i.e., colored 
images. Thus, it produces more realistic images. The second 
reason is incorporating the background improvement step, 
where photo-realistic background scenes are blended on the 
generated images. This improves the images' quality as well as 
the images' diversity. As for the fidelity criteria, how similar the 
generated images are to the input sketches, our method also 
exceeds the baselines in L2 distance and SSIM [20], as shown 
in Table 2. This could be related to the decomposition of image 
generation problem, where the key structural information (the 
content) is maintained during the intermediate outputs, namely, 
mask maps. It is important to note that only object-level of our 
proposed method is evaluated in terms of the fidelity criteria for 
fairness reasons. The background may interfere during 
computing the similarity between the sketched objects and the 

generated objects; thus, the background is excluded. Visual 
comparison is illustrated in Figure 4. As shown in Figure 4, our 
proposed method achieves the best results in terms of quality, 
realism, diversity, and fidelity. Our method maintains the 
objects' key structural information while generating the objects' 
texture. Thus, it generates better object-level results. Moreover, 
with scene-level generated images, photorealistic and relevant 
backgrounds are obtained. 

  Qualitative Results. We conduct a perceptual study to 
qualitatively assess the synthetic images based on two main 
criteria (realism and fidelity). Our sample consists of 45 
participants ages 20-50 years old with 25 females and 20 males. 
The participants are requested to rank the synthesized images 
obtained by our method and the baselines based on the realism 
criterion and on a scale from 1 to 4, where 1 indicates most 
realistic image and 4 refers to least realistic image.   
Additionally, they are asked to rank the synthesized images of 
our approach and the baselines based on the similarity between 
the generated images to the input sketches and the coloring 
quality. Same scale is used as well for fidelity criterion. 
Following the users' ranking, we compute the Average Human 
Rank (HR) depending on the user ranking choices. HR for both 
realism and fidelity criteria are shown in Figure 5. As seen, our 
proposed framework significantly defeats the baselines in both 
criteria. 

V. CONCLUSION AND FUTURE WORK 

Nowadays image generation is becoming a trending topic. 
State-of-the-art sketch-based image generation methods have 
shown great potential; however, the results for complicated 
sketches are still not satisfactory. To this end, this paper 
proposes S5, a novel sketch-to-image synthesis framework, 
where intermediate outputs, namely, semantic mask maps are 
first generated from the input sketches through instance and 
semantic segmentation. Our model not only concentrates on the 
sketched objects, but it is also aware of the surrounding 
environment to reflect reality and enhance the generation 
process. Then, these mask maps are translated into colored 
images. This way, the structural information, the shape, the 
orientation, the occlusion, among other features are maintained 
since sketches are not directly translated into images in one-

 
(a) Fidelity criterion HR results.  (b) Realism criterion HR results 

Fig. 5. The results of our proposed method and the baselines [3-5] based on the Average Human Rank (HR) of the user ranking in terms of two criteria 
(fidelity and realism). 
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shot. Following this, we further improve our generated images 
incorporating two additional steps which are background 
improvement and face refinement steps. 

Our approach represents a substantial advancement in 
image generation, where it surpasses the previous work in 
sketch-to-image synthesis field in terms of realism, quality, 
diversity, and fidelity. Various collections of evaluation 
datasets have been used during the evaluation process. Indeed, 
our method is able to generate images of complex sketches as 
well as to produce images from different sketch styles. For 
future work, we plan to integrate more advanced components, 
such as the diffusion model in the semantic mask-to-image 
synthesis stage. We believe that the integration of more 
advanced components will produce better results. Furthermore, 
we aim to roughly estimate and approximate the input sketches 
to the closest edge maps to further enhance our results. This 
would enable the creation of images even from highly abstract 
sketches. 
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