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Abstract— Sketch-to-image synthesis method transforms a
simple abstract black-and-white sketch into an image. Most
sketch-to-image synthesis methods generate an image in an end-
to-end manner, leading to generate a non-satisfactory result. The
reason is that, in end-to-end models, the models generate images
directly from the input sketches. Thus, with very abstract and
complicated sketches, the models might struggle in generating
naturalistic images due to the simultaneous focus on both factors:
overall shape and fine-grained details. In this paper, we propose
to divide the problem into subproblems. To this end, an
intermediate output, which is a semantic mask map, is first
generated from the input sketch via an instance and semantic
segmentation. In the instance segmentation stage, the objects'
sizes might be modified depending on the surrounding
environment and their respective size prior to reflect reality and
produce more realistic images. In the semantic seg-mentation
stage, a background segmentation is first constructed based on the
context of the detected objects. Various natural scenes are
implemented for both indoor and outdoor scenes. Following this,
a foreground segmentation process is commenced, where each
detected object is semantically added into the constructed
segmented background. Then, in the next stage, an image-to-
image translation model is leveraged to convert the semantic mask
map into a colored image. Finally, a post-processing stage is
incorporated to further enhance the image result. Extensive
experiments demonstrate the superiority of our proposed method
over state-of-the-art methods.

Keywords—  Sketch-to-Image, Generation,
Synthesis, Scene and Size Sensing.
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I. INTRODUCTION

"Pictures speak louder than words." - Anonymous

Image can be seen everywhere since it conveys a story, a
fact, or an imagination without any words. A single image can
convey multiple meanings based on the viewers' point of view,
while usually a single sentence can only maintain one meaning.
In addition, images can substitute the sentences because the
human brain can extract the knowledge from images faster than
words. Furthermore, images have a long-lasting impression in
individuals’ memory. However, creating an image from scratch
is not only time-consuming, but also it requires skills. Moreover,
it is a painful and a tedious task. In order to generate an image
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in less time and without any artistic skills, sketch-to-image
synthesis can be adopted. The reason is that hand sketches are
much easier to produce, where only the key structural
information is contained. Moreover, it can be drawn without
skills and in less time. On the other hand, images contain not
only the structural information and objects' boundaries but also
contain other important features, including color, saturation,
luminance, brightness, texture, and shadow, just to name a few.
Thus, it consumes a long time and requires skills. Hence, much
research has been conducted in sketch-based image generation
field, where only a black and white rough sketch with key
structural information is required. Then, the input sketch is
automatically mapped without human intervention into the
corresponding image. Therefore, anyone can create an image
even without artistic skills and in no time. Different techniques
have been adopted to create images from input sketches.

One research direction is sketch-based image retrieval
(SBIR) systems [1]. Nonetheless, several issues might result
from SBIR systems. First, fine-grained images might not be
retrieved by the system due to the manual feature extraction
process. In addition, SBIR might not work with poorly sketched
objects since the systems may not be able to appropriately
recognize the objects in the input sketch to retrieve the most
similar image. Moreover, the system might not generate images
that are sufficiently comparable to the input sketches,
particularly in terms of orientation, perspective, or occlusion
features.

To address the aforementioned problems in SBIR method,
researchers have leveraged deep convolutional neural networks
(CNNs) in sketch-based image synthesis task [2]. Because
CNNs automatically learn the features rather than manually
extracting them, CNNs-based image synthesis methods produce
better images than SBIR method for the sketch-to-image
problem. However, unnaturalistic image might be generated
when the input sketch has several drawn objects. Image
generation has become a hot topic, and much research has been
conducted, especially after proposing the Generative
Adversarial Network (GAN). Incorporating GAN in sketch-
based image generation tasks [3-4] improves the generated
results over time. However, GAN-based image synthesis
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Fig. 1. The overview of our proposed sketch to image synthesis S° method. Our framework consists of four main stages (Instance Segmentation Stage, Semantic
Segmentation Stage, Semantic Mask-to-Image Synthesis Stage, and Post-processing Stage). The fourth and last stage is composed of two steps, which are
Background Improvement Step and Human Face Refinement Step to further enhance the generated images.

methods are still struggling to generate photo-realistic images
from complex scenes with multiple objects.

Another technique used in image generation problem is
diffusion models. Incorporating diffusion models in sketch-to-
image synthesis task [5] may help with complex sketches but
suffer from the abstraction and simplicity of drawn sketches.
This might lead to generate unsatisfactory images.

Previous state-of-the-art sketch-to-image synthesis methods
have shown great success in generating images; however, the
results are still unrealistic, especially with complicated sketches.
Indeed, the generated images of complex scenes with multiple
objects are still a challenging problem, and the performance of
the current methods is unsatisfactory. This might be because the
generation process occurs in one shot, where the sketches are
directly mapped into images, leading to generating unrealistic
images from complex sketches.

To this end, the proposed S, short form of Sketch-to-image
Synthesis via Scene and Size Sensing, method attempts to not
only generate realistic images from complicated sketches but
also reflect the reality of the objects' sizes in different
environments by decomposing the problem into subproblems. It
first generates intermediate outputs, namely, mask maps from
the input sketches through an instance segmentation and
semantic segmentation. The intermediate output maintains the
boundaries, shapes, layouts, and overall structures. Then, the
mask maps are mapped into colored images through image-to-
image translation models, where textures, colors, shadows,
among other features are preserved. To reflect reality with
regard to the objects' sizes and generate more realistic images,
we propose that the objects' sizes are modified based on the
surrounding environment and masks' prior size. This leads to
generating more photo-realistic images compared to prior
models. Our contribution is as follows.

- First, using four different techniques, i.e., dodging and
burning [6], Holistically-nested edge detection [7], Canny edge
detector and Sobel operators, we generate a sketch-like image
dataset depending on MS-COCO.

- Next, leveraging our created dataset of sketch-like images,
we fine-tune an instance segmentation model [8]. To reflect
reality in terms of the objects’ size compared to the scene, the
objects' sizes might be modified based on the surrounding
environment (indoor vs. outdoor). Thus, our framework first
determines the background depending on the context of the
existing objects, and then objects' sizes might be changed based
upon a computed factor.

- Furthermore, the semantic mask segmentation works in
two levels which are background segmentation and foreground
segmentation.

- To further improve the synthetic images, two post-
processing steps are included: background improvement step
and face refinement step. In the background improvement step,
10k scene images divided into 365 different scene classes are
collected. Following this and depending on the classified scene,
a scene image is chosen by our method, and then the generated
foregrounds are blended into the selected scene image in a
specific pre-defined location so that objects are in a proper
location to maintain realism. In the face refinement step, human
faces are first extracted, and then, reconstructed face images are
obtained via an autoencoder model, followed by aligning the
reconstructed faces into the respective synthetic image.

- Finally, a dataset for evaluation purpose is compiled. This
dataset is composed of 378 distinct sketch styles.

II. RELATED WORK

A. Semantic Segmentation

Semantic segmentation is the task that identifies not only
the semantic labels for each object in the image but also defines
the precise regions and where each object starts and ends. It
works by assigning a label for every pixel in the image. Hence,
it is useful for many applications that require accurate image
maps, such as autonomous driving, crowd counting, image-to-
image translation, satellite imagery, medical imaging, and
robotic vision. Many studies have been accomplished in this
field leveraging different techniques [9-12].
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Fig. 2. The flowchart of the first two stages, namely, instance segmentation and semantic segmentation, after training the instance segmentation model on the

four different edge map datasets.

B. Sketch-to-image Synthesis Methods

e Sketch-based Image Retrieval (SBIR)

One of first approaches is sketch-based image retrieval
(SBIR) system [1]. In SBIR, a database or a search engine is
leveraged to query a simple rough sketch and retrieve the most
similar colored image to the corresponding input sketch. The
similarity ~criteria between the input sketch and the
corresponding colored image are determined by the descriptor.
However, many problems might appear. One major problem is
that it might be hard to find the appropriate matched image to
the corresponding sketch. Furthermore, many problems might
occur regarding the retrieved images’ objects. It might retrieve
an improper object orientation or improper object occlusion.
Another challenge is the inability to retrieve fine-grained images
due to the manual features extraction process. Additionally, with
badly drawn sketches, SBIR might not work well in producing
a proper respective image.

e Sketch-to-Image via Convolutional Neural
Networks (CNNs)

Due to the limitations in SBIR and after developing CNNSs,
researchers have shifted their direction and used deep CNNs to
map an input sketch to a colored image [2]. Unlike SBIR, where
it lacks the fine-grained retrieval because the features are
extracted manually via the descriptor, CNN is able to maintain
the fine-grained details because it learns the feature and extracts
them automatically. While the results of leveraging CNNs in
sketch-based image generation are much better than the results
obtained through SBIR, generated images lack high level of
realism, especially with multiple objects in the input sketch.

e Sketch-to-Image via Generative Adversarial
Network (GAN)
With the advancement in machine learning and deep

learning, different models have been proposed. Recently, a
popular and commonly used model has been developed, named

GAN. GAN has proven its capability in image generation tasks;
thus, researchers have moved to GAN to synthesize a colored
image from the corresponding input sketch [3-4]. Incorporating
GAN can generate realistic images from sketches. However,
many challenges emerge from leveraging GAN. It may require
a large dataset of sketch-photo pairs to train the model. Another
limitation presented in [3] is that each class should be trained
separately. Thus, it is not only time-consuming and high
computation, but also less efficient. Another shortcoming is the
inability to generate images from complicated sketches with
fine-grained details. Furthermore, synthesized images may not
be visually realistic to resemble real-world images, especially
with complex sketches. Hence, to date, GAN-based sketch-to-
image synthesis models produce better results than previous
approaches. However, with complex sketches that consist of
multiple objects, the results are still unsatisfactory.

e Sketch-to-Image via Diffusion Model (DM)

Many studies have leveraged diffusion models in the image
synthesis field. PITI [5] uses a pretrained model that is capable
of capturing the entire distribution of the natural image. This
framework works well for mask-to-image and geometry-to-
image translation, but it may fail with the sketch-to-image
generation, especially with different sketch styles. The reason is
that the model is trained on sketches extracted only via HED [7].

III. PROPOSED METHOD

Dataset: Since there is no available sketch dataset with
complex scenes and multiple objects in one scene, we aim to
create our own sketch dataset based on MS-COCO dataset
which contains over 118k and 5k images for training and
validation, respectively. Four different methods are leveraged to
convert images into sketch-like images. Specifically, dodging
and burning [6], Holistically-nested edge detection [7], Canny
edge detector and Sobel operators are used. The reason for
incorporating different types of edge maps is to improve model
detection and segmentation since people tend to sketch
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Fig. 3. An illustration of the human face refinement step. In this step, a human face detector is first used to detect and locate the human faces, followed by
extracting the face regions and creating a square mask for each extracted face. Then, a new face is generated for each extracted face through an autoencoder
network, namely, ICT image completion model [14]. To align the reconstructed faces, another circle mask is created for each reconstructed face, and an alpha
blending technique is leveraged to align the refined face in the exact location of the generated image produced by the previous step: Background Improvement

Step.

differently. Hence, having such a dataset helps in image
generation process even with various sketch styles. In total, our
dataset consists of over 472k and 20k different edge maps and
sketches for training and validation, respectively.

Methodology: The framework is comprised of four main
stages. Figure 1 illustrates the overall view of our proposed
framework. Details are described as follows.

A. Instance Segmentation Stage

The instance segmentation stage starts by re-training an
instance segmentation model. This model usually takes a
colored image as input and outputs only the segmented objects
as masks. DetectoRS [8] is leveraged as an instance
segmentation model and fine-tuned for 30 epochs on our newly
created dataset of sketch-like images. This stage produces a
mask for each detected and segmented object in the input sketch.
Meanwhile, to reflect reality regarding objects’ size and
maintain realistic results, objects' sizes might be modified based
on the surrounding environment (indoor vs. outdoor). In our
proposed method, we modify the object size if the surrounding
environment is determined to be an indoor scene so that the
object size is consistent with the scene. To this end, the
environment/background scene is first determined based on the
detected objects. To define the scene based on the existing
objects' context, a simple yet effective algorithm is leveraged.
Specifically, based on the prior and existing knowledge of the
location of each object in real life, each object is categorized in
one or more scenes. Then, for each recognized and segmented
object in the input sketch, the corresponding scene(s) is
increased by one. At the end of this simple yet effective
algorithm, the final scene is the scene with the highest value. In
total, 26 environment/background scenes are identified which
are categorized into indoor and outdoor. For the indoor scenes,
eight scenes are specified, which are living room, dining room,
office room, child room, bedroom, kitchen, bathroom, and
bookstore. In the meantime, three outdoor scene subcategories
are defined for the outdoor scenes, namely, natural,
transportation, and sport and leisure scenes with 18 distinct

scenes. As for natural scenes, beach, ocean, courtyard, forest,
farm, pasture, snow, and desert are defined. Street, sidewalk,
airfield, heliport, harbor, and railroad track are identified for
transportation. Regarding sports and leisure, baseball field,
basketball field, football field, and park are determined. If the
scene is indoor, the mask size of each detected and segmented
object in the input sketch is updated based on the following
equations (1)

factor = magnifyFactor * (Popject/Prota) (1)

, Where Pypjece is the pixels’ number in the object area, and
DProtar 18 the total pixels’ number in the input sketch.
magnifyFactor is varied in range of (2,5) based on the
determined indoor scene.

Next, for each modified object mask in indoor scenes, the
mask is pasted in an empty image with the same size as the input
sketch in a location determined by the following.

Point = ((Ssx — Smx)/2, (Ss.y - Sm.y)/z) 2

, where S, and S, are the sketch size in x and y direction,
respectively. Sy, and S, ,, are the segmented object size after
modifying its size in x and y direction, respectively.

Otherwise, if the scene is outdoor, no change is applied to the
mask size of the segmented objects.

B. Semantic Segmentation Stage

The semantic segmentation process occurs in two levels
(background and foreground segmentation). Background
segmentation is first applied, where every pixel value in the
background is modified based on the defined background scene
in the previous stage. For each scene, we define two regions to
be segmented. One exception is the beach scene, where the
background is divided into three regions which are sky, sea, and
sand. Following this, the pixels in each region are manipulated
based on the specified region label that follows the COCO-Stuff
labels. For example, in ‘grass’ region label, every pixel is
manipulated to ‘124’ to semantically segment the region.
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Fig. 4. A visual representation of the images produced by our approach and the baselin
while generating the objects' texture. Thus, it generates better object-level results in terms of realism, quality, and fidelity. Moreover, with scene-level generated

images, photorealistic and relevant backgrounds are obtained.

To make all instances that belong to a specific class easily
recognizable, the foreground segmentation process is done by
modifying the pixels belonging to each object in each COCO
class with a particular value based on the COCO labels. Thus,
foregrounds are segmented semantically and added
sequentially to the generated segmented background.

Therefore, based on the first two stages, mask maps are
generated as intermediate outputs. A general overview of the
first and second stages is demonstrated in Figure 2.

C. Semantic Mask-to-Image Synthesis Stage

Colored images are generated through image-to-image
translation model, in particular, CC-FPSE [13] is utilized.
Image-to-image translation model takes the intermediate results,
i.e., semantic mask maps, produced in the first two stages as
inputs and generates the texture, the color, the saturation among
other features to generate colored images.

D. Post-processing Stage

The post-processing stage is implemented to further
improve the generated images. Details are provided below.
Background Improvement Step. In this step, we first
classify the scene from the generated images using
Places365-CNN. Then, based on the classified scene, a
new scene is randomly selected from our newly collected
background scene dataset. Our dataset consists of 365
different classes of scenes similar to the classes provided
by Places365. However, our dataset only contains the

€S

A\

3-5]. Our method maintains the objects' key structural information

scenes without any foreground objects to preserve the
synthetic images. It contains approximately 10k images
in total. These scene images are collected through
Google Image search. Next, foreground objects in the
generated image from previous stage are extracted using
the instance and semantic segmentation stages with one
difference. Only the foregrounds are segmented while
ignoring the background segmentation. This mask map
serves as an extractor tool to extract only the foregrounds
from the generated images. After extracting the
foregrounds, an alpha blending process is leveraged to
blend the selected scene image with the extracted
foregrounds in a specific location. This location is
manually and previously determined, where each scene
class is considered a cluster. Then, for each cluster, a
snapping point from the background images is located so
that objects are in a proper location to maintain realism.

Human Face Refinement Step. It starts by detecting
and localizing any human faces in the generated images
after the background improvement step using a face
detection model. Next, each face region is extracted, and
a binarized image is formed with same size as the
extracted face region. A square mask is constructed in
the center of the binarized image to cover a portion of the
extracted face region to complete the covered region and
reconstruct the face again through an autoencoder
network, namely, ICT image completion model [14].
After face reconstruction, a circular mask is applied to a
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Table 1. A comparison between our method and the baselines in terms of the realism criteria, in particular, IS [19], FID [17], and LPIPS [18] on our newly

collected dataset, PACS [15], TU-Berlin [16], and Sketchy dataset [2].
Method Our newly PACS TU-Berlin Sketchy dataset [2]
collected dataset [15] dataset [16]
dataset
IS[19]1 IS[19]1 IS[19]1 IS [19] 1 FID [17] | LPIPS [18] 1
EdgeGAN [4] 5.49 +0.40 4.52£0.21 5.50 £ 0.45 5.68 £0.27 214.806 0.49
Liu et. al [3] 5.18 +£0.53 4.40+0.17 4.49 £0.28 4.35£0.15 324.082 0.66
PITI [5] 6.44 +0.89 6.01 +£0.26 6.50 +0.56 5.93+0.34 282.357 0.70
S’ (object-level) 7.61 £0.45 8.43 +0.50 6.92 +0.76 7.78 £0.80 209.638 0.93
S’ (scene-level) 8.02 + 0.60 9.82 +0.53 9.46 + 0.50 11.04 £ 0.90 189.598 0.76

Table 2. A comparison between our method and the baselines in terms of the fidelity criteria, in particular, L2 Distance, and SSIM [20] on our newly collected dataset,

PACS [15], TU-Berlin [16], and Sketchy dataset [2].

Method Our newly collected PACS dataset [15] TU-Berlin dataset [16] Sketchy dataset [2]
dataset
L2 SSIM [20] 1 | L2 Distance | SSIM [20] 1 | L2 Distance | SSIM [20] 1 | L2 Distance | SSIM [20] 1
Distance | | ) )

EdgeGAN [4] 1.66 0.557 1.66 0.61 1.68 0.63 1.63 0.41
Liu et. al [3] 1.64 0.643 1.66 0.69 1.68 0.56 1.72 0.44
PITI [5] 1.56 0.241 1.60 0.24 1.67 0.34 1.62 0.39

S5 (object-level) 1.44 0.699 1.58 0.74 1.66 0.78 1.52 0.80

binarized image that is the same size as the reconstructed
face. Then, the extracted face's size is used to resize both
the reconstructed face and its respective mask. The
reconstructed face is then positioned in the same exact
location and blended onto the generated image. Figure 3
shows the face reconstruction and refinement step.

IV. EXPERIMENTS

A. Experimental Settings

Dataset. To validate our proposed approach with prior
methods, four datasets are adopted. The first dataset is our newly
collected dataset that contains various sketch types since people
tend to sketch differently. This dataset is acquired based on
Sketchy dataset [2], ScketchyCOCO dataset [4], and through
Google Image. 378 different sketches are collected containing
fourteen different classes which are cat, dog, horse, sheep, cow,
elephant, zebra, giraffe, car, bicycle, motorcycle, airplane,
traffic light, and fire hydrant. These fourteen classes are chosen
since they belong to both adopted datasets (Sketchy dataset [2],
and ScketchyCOCO dataset [4]) as well as COCO dataset.

The second testing dataset is a subset of PACS dataset [15].
We choose four classes: dog, elephant, giraffe, and horse to be
in our testing subset since they belong to the pre-trained state-
of-the-art sketch-to-image methods and our proposed method.
In total 3,081 sketches are included.

Moreover, we test our framework on a subset of TU-Berlin
dataset [16]. Twenty classes are involved for the same
aforementioned reason. These classes are airplane, bicycle, bus,
car(sedan), cat, cow, dog, elephant, fire hydrant, giraffe, horse,
motorbike, pickup truck, race car, sheep, suv, traffic light, truck,
van, and zebra. The total number of images is 1600 sketches.

The last dataset used is a subset of Sketchy dataset [2]. It is
composed of the same fourteen classes as the first evaluation
dataset. In total, 1,127 sketches are included. The reason for

incorporating this subset is that the ground truth images are also
included.

Baselines. We compare our work with state-of-the-art
methods that provide the source code. Three models are adopted
to evaluate our method quantitatively and qualitatively. These
models are EdgeGAN [4], the model proposed by Liu et. al [3],
and PITI [5]. Regarding EdgeGAN [4] and PITI [5], we use the
pre-trained models trained on SketchyCOCO [4] and COCO-
stuff datasets, respectively. As for [3], we train the model on
SketchyCOCO dataset [4] after leveraging [6] to produce pencil
sketches. Since SketchyCOCO dataset [4] consists of fourteen
classes, fourteen separate models are trained. This model works
on generating images from sketches in two levels, where it first
generates grayscale images from sketches, and then, the
grayscale images are translated into colored images. Therefore,
we train each model for 400 and 200 epochs for shape translation
network and content enrichment network, respectively, as
suggested by the authors in the original work.

B. Experimental Analysis

The objective of our research is to address and overcome the
disadvantages of prior works. Previous works concentrate on
generating images directly in an end-to-end manner, leading to
generating unsatisfactory images, especially with complex
sketches. Therefore, the objective is to decompose the sketch-
to-image problem into two sub-problems to generate better
results. In particular, we divided the sketch-based image
generation problem into sketch-based semantic mask map and
image-to-image synthesis problems. Since the GAN model is
widely used in image synthesis, we integrated one of the GAN
models as an image-to-image synthesis model. Then, we
compared our proposed method that uses GAN with three
different models. One of the baselines, particularly, PITI [5], is
built based on the recently used model in image synthesis, which
is the diffusion model. The experimental results validate our
objective and outperform even advanced models.
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Fig. 5. The results of our proposed method and the baselines [3-5] based on the Average Human Rank (HR) of the user ranking in terms of two criteria

(fidelity and realism).

Quantitative Results. To quantitatively compare our
approach with the baselines, various evaluation metrics are
leveraged. In particular, to evaluate the realism, FID [17] and
LPIPS [18] are used. In addition, IS [19] score is computed to
evaluate not only the realism but also quality and diversity.
Meanwhile, to validate the faithfulness of the generated images,
two different techniques are utilized. The first approach is
generating the edge maps of the synthetic images based on
Gabor features. Then, L2 distance is computed between the
produced edge maps and the corresponding input sketches. The
other technique starts by using Canny edge detector to obtain the
edge maps of synthesized images. Following this, SSIM [20] is
computed.

In order to compare the outputs fairly with the previous
works in terms of realism criteria, object-level as well as scene-
level of the generated images by our proposed framework are
included. The object-level images are obtained through
excluding the backgrounds from all synthetic images before
background improvement step. Table 1 summarizes the
comparison between our method and the baselines in terms of
the realism criteria. As seen, our proposed framework
outperforms the baselines. This could be attributed to two
reasons. The first reason is that our framework decomposes the
image generation problem into two sub-problems. This leads to
first emphasize on the objects' shape during generating the mask
maps, followed by concentrating on fine-grained details and rich
information during generating the final outputs, i.e., colored
images. Thus, it produces more realistic images. The second
reason is incorporating the background improvement step,
where photo-realistic background scenes are blended on the
generated images. This improves the images' quality as well as
the images' diversity. As for the fidelity criteria, how similar the
generated images are to the input sketches, our method also
exceeds the baselines in L2 distance and SSIM [20], as shown
in Table 2. This could be related to the decomposition of image
generation problem, where the key structural information (the
content) is maintained during the intermediate outputs, namely,
mask maps. It is important to note that only object-level of our
proposed method is evaluated in terms of the fidelity criteria for
fairness reasons. The background may interfere during
computing the similarity between the sketched objects and the

generated objects; thus, the background is excluded. Visual
comparison is illustrated in Figure 4. As shown in Figure 4, our
proposed method achieves the best results in terms of quality,
realism, diversity, and fidelity. Our method maintains the
objects' key structural information while generating the objects'
texture. Thus, it generates better object-level results. Moreover,
with scene-level generated images, photorealistic and relevant
backgrounds are obtained.

Qualitative Results. We conduct a perceptual study to
qualitatively assess the synthetic images based on two main
criteria (realism and fidelity). Our sample consists of 45
participants ages 20-50 years old with 25 females and 20 males.
The participants are requested to rank the synthesized images
obtained by our method and the baselines based on the realism
criterion and on a scale from 1 to 4, where 1 indicates most
realistic image and 4 refers to least realistic image.
Additionally, they are asked to rank the synthesized images of
our approach and the baselines based on the similarity between
the generated images to the input sketches and the coloring
quality. Same scale is used as well for fidelity criterion.
Following the users' ranking, we compute the Average Human
Rank (HR) depending on the user ranking choices. HR for both
realism and fidelity criteria are shown in Figure 5. As seen, our
proposed framework significantly defeats the baselines in both
criteria.

V. CONCLUSION AND FUTURE WORK

Nowadays image generation is becoming a trending topic.
State-of-the-art sketch-based image generation methods have
shown great potential; however, the results for complicated
sketches are still not satisfactory. To this end, this paper
proposes S3, a novel sketch-to-image synthesis framework,
where intermediate outputs, namely, semantic mask maps are
first generated from the input sketches through instance and
semantic segmentation. Our model not only concentrates on the
sketched objects, but it is also aware of the surrounding
environment to reflect reality and enhance the generation
process. Then, these mask maps are translated into colored
images. This way, the structural information, the shape, the
orientation, the occlusion, among other features are maintained
since sketches are not directly translated into images in one-
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shot. Following this, we further improve our generated images
incorporating two additional steps which are background
improvement and face refinement steps.

Our approach represents a substantial advancement in
image generation, where it surpasses the previous work in
sketch-to-image synthesis field in terms of realism, quality,
diversity, and fidelity. Various collections of evaluation
datasets have been used during the evaluation process. Indeed,
our method is able to generate images of complex sketches as
well as to produce images from different sketch styles. For
future work, we plan to integrate more advanced components,
such as the diffusion model in the semantic mask-to-image
synthesis stage. We believe that the integration of more
advanced components will produce better results. Furthermore,
we aim to roughly estimate and approximate the input sketches
to the closest edge maps to further enhance our results. This
would enable the creation of images even from highly abstract
sketches.
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