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Abstract
Sketch-to-image is an important task to reduce the burden of creating a color image from 
scratch. Unlike previous sketch-to-image models, where the image is synthesized in an 
end-to-end manner, leading to an unnaturalistic image, we propose a method by decompos-
ing the problem into subproblems to generate a more naturalistic and reasonable image. It 
first generates an intermediate output which is a semantic mask map from the input sketch 
through instance and semantic segmentation in two levels, background segmentation and 
foreground segmentation. Background segmentation is formed based on the context of the 
foreground objects. Then, the foreground segmentations are sequentially added to the cre-
ated background segmentation. Finally, the generated mask map is fed into an image-to-
image translation model to generate an image. Our proposed method works with 92 distinct 
classes. Compared to state-of-the-art sketch-to-image models, our proposed method out-
performs the previous methods and generates better images.

Keywords  Sketch-to-image generation · Sketch-to-image synthesis · Computer vision · 
Generative adversarial networks · Instance and semantic segmentation · Machine learning

1  Introduction

In the digital world and daily life, images are considered as one of the significant ele-
ments that can tell a long story. There is a famous saying, “A picture is worth a thousand 
words,” meaning that complex and sometimes multiple ideas can be conveyed by a single 
still image. However, creating an image is not only a trivial task, but also time-consuming 
since it involves both low-level and high-level features such as colors, texture, brightness, 
and semantic information. Therefore, converting a sketch to its corresponding image has 
attracted attention from research community for many reasons. First, the sketch is com-
posed of key structural information, where it contains only edges that shape the fore-
grounds which in turns can be useful to translate the sketch into a photo-realistic image. 
Moreover, the sketch does not include any pixel information which plays a significant role 
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in mapping the sketch into several naturalistic images in no time. Thus, the sketch-to-image 
synthesis helps artists, photographers, and animation makers reduce their repetitive work-
load. However, sketch-to-image synthesis is very challenging due to the lack of seman-
tic information in the sketch and the complexity of the image. In addition, sketch is often 
highly sparse, abstract, and artist-dependent [71]. Further, the visual cues are lacked in the 
sketch [72]. Thus, to map a sketch, that contains key structural information, into an image, 
the research community has leveraged sketch-based image retrieval (SBIR) systems [1–4]. 
However, SBIR systems might face many problems. The system may not be able to retrieve 
fine-grained images. Furthermore, the system may not generate proper images in terms of 
the similarity to the input object sketch, in particular size, orientation, or occlusion aspects. 
Therefore, researchers have incorporated deep convolutional neural networks (CNNs) [5] 
to solve the sketch-to-image problem [6, 7]. While incorporating CNNs with the sketch-
to-image task obtains better synthesized images than SBIR approach because the features 
are learned instead of being manually extracted, it gives unnaturalistic images with more 
than one sketched object. After generative adversarial network (GAN) [8] was proposed, 
the research community has shifted to GAN-based sketch to image [9–16] since it produces 
better results than before. However, it still struggles to produce photo-realistic images for 
complex scenes with multiple sketched objects.

To this end, this proposed research attempts to divide the sketch-to-image problem into 
subproblems to seamlessly create a naturalistic image from the sketch in four main stages. 
In the first stage, the objects are detected from the input sketch, and a mask is created for 
each detected object through instance segmentation models, for example, Mask R-CNN 
[17], Cascade RCNN [18], HTC [19], QueryInst [20], and DetectoRS [21]. In the second 
stage, for each created mask, a semantic segmentation process is performed to label each 
mask along with creating a semantic segmentation background. In the third main stage, the 
generated semantic segmentation map is fed into an image-to-image translation model, i.e., 
SPADE model [22] to generate the corresponding image. Following this step, a post-pro-
cessing stage is implemented to enhance the synthetic image further through background 
improvement and face refinement. A sample of our sketch-to-image results is shown in 
Fig. 1. Our contribution is as follows.

–	 We first create a sketch-like image dataset based on MS-COCO [37] through four dif-
ferent methods, in particular, dodging and burning [38], Holistically-nested edge detec-
tion [39], Canny edge detector [40], and Sobel operators [41].

–	 Following this, we re-train several instance segmentation models, namely, Mask 
R-CNN [17], Cascade RCNN [18], HTC [19], QueryInst [20], and DetectoRS [21] on 
our newly generated sketch-like image dataset.

Fig. 1   A sample of our sketch-to-image results. The first row corresponds to the input sketch, while the sec-
ond row shows the synthesized images generated by our framework
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–	 Moreover, the semantic mask segmentation is implemented in two levels: background 
segmentation and foreground segmentation.

–	 In addition, two post-processing steps are incorporated to further enhance the gener-
ated images. During the background improvement step, a scene dataset of 10 k images 
categorized into 365 different scene classes is collected. Then, based on the classified 
scene, our framework selects a scene image and blends the foregrounds into the cho-
sen background. Further, the face refinement step is implemented by extracting human 
faces, reconstructing them through image completion model, i.e., ICT model [45], and 
aligning them in the corresponding generated image.

–	 Last but not least, an evaluation dataset is collected. It contains 378 different sketch 
styles.

2 � Related work

Generative AI is the means that uses AI algorithms to create content. Specifically, it gener-
ates an output from the data they are trained on. For instance, it synthesizes text, images, 
videos, 3D renderings, code, just to name a few. Recently, image generation has attracted 
the research community. Many applications have been developed, such as natural image 
generation [1–4, 6, 7, 9–16, 49, 50, 52, 53, 60, 75, 76], art generation [80–83], face gen-
eration [73, 77–79], and adversarial example generation [84–88]. Image generation is the 
process that converts the inputs into images. Sketch to image task [1–4, 6, 7, 9–16, 49, 50, 
52, 53, 60, 73] converts the rough and simple sketch to a detailed color image. To convert a 
sketch to its corresponding image, research has been conducted using SBIR systems [1–4]. 
Then, due to the limitation in SBIR, researchers have incorporated CNNs [5] to translate 
a sketch into an image [6, 7]. After proposing GAN [8], many researchers have leveraged 
GAN into a sketch-to-image problem [9–16]. The taxonomy of the related work discussed 
in this paper is illustrated in Fig. 2.

2.1 � Sketch‑based image retrieval (SBIR)

SBIR system utilizes a database or a search engine to query the input sketch and retrieve 
the closest image to the input sketch. To determine the most similar image to the input 
sketch, different descriptors [23–28] are used to extract the features. Features play a signifi-
cant role in determining the matched image to the input sketch.

Fig. 2   The taxonomy of the related work discussed in this paper
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Sketch2Photo [1] inputs the sketch along with the labels of objects in the sketch into an 
image search engine to retrieve an image for each object based on the provided label. Then, 
for each retrieved image, the image is segmented to determine the object that matches the 
sketched object. Next, the image composition step is required to blend all retrieved images 
through the blending technique. Following this, different results are evaluated based on the 
quality score to determine the best synthetic image. Due to using a search engine and an 
image composition, many problems could occur, i.e., improper object size, improper object 
orientation, or improper object occlusion. Furthermore, this method may produce artifacts, 
leading to unrealistic synthetic images especially with complex scenes.

Sketch4match [3] uses various descriptors [23, 24, 27] to extract the features of not only 
the sketch, but also the image after some preprocessing steps. These preprocessing steps on 
the image are required due to the fine-grained details in the color image and the simplic-
ity of the sketch. While the extracted features on the color images are stored in a database, 
the features of the sketch are extracted when the sketch is entered into the system. A com-
parison between the feature vector of the sketch and the feature vectors of the images in 
the database is made to determine the closest image to the sketch. This step depends on 
Minkowski distance [29] and classification-based retrieval [30]. One major problem is that 
the system is implemented on a small database. Therefore, sometimes it is challenging to 
find the proper image that matches the input sketch.

To retrieve the best correct match of natural image to the corresponding input sketch 
through SBIR system, Rajput et  al. [4] adopt a large dataset. A preprocessing step is 
required prior the feature extraction process from the sketch and natural image, where 
Otsu’s approach is used to extract only the strong contours. Then, the features are extracted 
in two phases to extract the features from non-overlapping and 20% overlapping grids. Fol-
lowing this, a weighted similarity approach is leveraged, where the range [0,1] is used to 
apply weights to both overlapping and non-overlapping grids. Based on Euclidean distance 
[48], the most similar image to the input sketch is retrieved.

2.2 � Sketch to image via convolutional neural networks (CNNs)

Due to the limitations in SBIR, researchers have shifted to leverage convolutional neu-
ral networks [5] to translate a sketch into an image. Additionally, since SBIR depends on 
extracting the features manually, it lacks the fine-grained retrieval. However, CNN depends 
on learning the features.

Sketch Me That Shoe [6] utilizes a new collected dataset of 1432 sketch-image pairs of 
only two labels (shoes and chairs). A deep convolutional neural network CNN, i.e., Sia-
mese network [31] is used for the goal of triplet ranking. For this, three identical Sketch-
a-Net [32] are leveraged. However, the network might overfit, meaning that the network 
is not able to generalize on new inputs that are not seen during the training process. This 
problem might happen since it is not enough to train a triplet ranking on only 1432 pairs.

Sangkloy et al. [7] use a larger new collected dataset of sketch-image pairs. The size of 
the dataset is 75,471 pairs, and the number of labels is 125 classes. The sketches are not 
simple, and they contain fine-grained details. Then, the dataset of sketch-image pairs is 
trained on convolutional neural networks CNNs such as AlexNet [33] and deep GoogLeNet 
[34] to retrieve objects of correct labels with fine-grained similarity to the sketch. Since the 
domain of sketches is different from the domain of images, the model is trained on sketches 
and images independently to embed their features separately. Although the dataset is large, 
the synthetic images lack a high level of realism, leading to unnaturalistic images.
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Wang et al. [49] adopt two convolutional neural networks (CNNs) to improve sketch-
based image retrieval (SBIR) results through re-ranking system. While the first CNN 
(Q-Net) is responsible for capturing the semantic information of the input sketch, the sec-
ond CNN (N-Net) is responsible for capturing the category information of initial retrieved 
natural images that are obtained through initial SBIR system. Following this, a category 
similarity measurement approach is used to compute the similarity between the input 
sketch and initial retrieval results in terms of the semantic information extracted from soft-
max layer vectors of both networks. Then, the most similar natural images to the input 
sketch are determined via re-ranking process.

2.3 � Sketch to image via generative adversarial network (GAN)

Due to inability to generate photorealistic images through CNNs, research has moved 
again to incorporate generative adversarial network GAN. TextureGAN [11] uses not only 
sketches as inputs, but also the color strokes and the texture; thus, the user has to select 
the color strokes and texture and place them on top of the sketch to determine the color 
and texture of each sketched object. This helps generate photorealistic images through 
GAN. Although this model works fine and generates naturalistic images, it is only trained 
on three labels which are handbags, shoes, and clothes; and thus, it is unable to generate 
images of other objects.

Gao et al. [16] generate images from input sketches in two levels instance-level and scene-
level through two steps foreground generation and background generation. The first step is 
foreground generation which concentrates on generating the objects as provided in the input 
sketch. Thus, it uses a sketch segmentation approach [35] to detect and locate the objects in 
the input sketch. Then, it produces an image of only foreground objects. A background genera-
tion step is run by taking the generated foregrounds and the background sketch as inputs in the 
pix2pix model [36] to generate the final output image. One drawback of this method is that it 
is unable to synthesize realistic images from complex sketches with fine-grained details. Li 
et al. [50] introduce a two stage semi-supervised GAN-based image generation model. The 
first stage takes the class label and random noise as inputs and generates common information 
for every label learned via cGAN [51]. Next, during the second stage, a synthesized image is 
produced by leveraging the common information and the sketch via another cGAN model.

Osahor et al. [52] propose to generate multiple face images with various target attrib-
utes, such as gender, age, and hair color from a single input face sketch. The generator 
incorporates an identity preserving and quality guided networks. The quality guided 
encoder is utilized to improve the quality and decrease the dissimilarity between the syn-
thesized image and its respective original image with regard to the embedding. To maintain 
the biometric identity of the synthetic image during the training process, the identity pre-
serving network is leveraged. Then, a hybrid discriminator is used to infer a variety target 
attributes to generate different images with different attributes.

In another work, Liu et al. [53] eliminate the need of sketch-image pairs dataset by incor-
porating an unsupervised learning model to create different sketches for each image. Then, 
an auto-encoder [54, 55] is used along with a self-supervised approach [56, 57] and momen-
tum mutual-information minimization loss [58] to separate the features into style and con-
tent features for both natural images and input sketches. The auto-encoder is composed of 
two encoders, style encoder and content encoder. While the style encoder generates a style 
feature map from the natural image, the content encoder produces a content feature map 
from the input sketch. Following this, the decoder generator takes the two produced feature 
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maps and generates an image. To ease extracting the style feature maps for fine-grained tex-
ture and distinct colors, the momentum mutual-information minimization is adopted.

In sketch-based image generation, most of the focus is on sketch-to-image synthesis of 
natural scenes. Some approaches are implemented to generate color face images from face 
sketches. One of the prior works that concentrates on learning the illumination over faces 
is proposed by Sun et al. [73] incorporating generative adversarial fusion model, namely, 
GAF. GAF integrates two U-Net generators and a single discriminator, where the illumina-
tion is learned and controlled by a parametric tanh (ptanh) activation function. This acti-
vation function is employed between the two generators through an illumination distribu-
tion layer. To preserve the identity and refine the facial details for fine-grained generated 
images, an attention mechanism is integrated into the second generator.

2.4 � Sketch to image via diffusion model (DM)

Diffusion models [59], a specific form of generative model, have recently shown tremen-
dous promise in generating high-quality images. As a result, several studies [60–67] in the 
field of image synthesis have taken advantage of diffusion models [59]. The forward diffu-
sion phases of the diffusion model [59] start by slowly and progressively adding random 
noise to the input. The model then learns to reverse the diffusion process in order to recon-
struct the input sample from the noise.

Pretraining-based Image-To-Image translation, often known as PITI [60], is a straight-
forward but efficient approach that employs a pretrained model to capture the whole distri-
bution of the natural image. More specifically, GLIDE [68], a diffusion model, is adopted 
as a pretrained generative prior. A hierarchical generation mechanism [68–70] is employed 
to improve the synthetic image quality. This technique creates a coarse image initially, fol-
lowed by super-resolution image. To enhance the diffusion model’s texture generation, an 
adversarial training is also added throughout the denoising process. PITI [60] works suc-
cessfully for translating geometry and masks into images; however, it might fail when map-
ping sketches into images, especially when various sketching styles are used as inputs. This 
could be attributed to the fact that the model was trained on sketch-like images obtained 
only by Holistically-nested Edge Detection (HED) [39].

3 � Proposed method

In this section, we first introduce our dataset that is used. Then, our proposed methodology 
is discussed.

Dataset  We aim to build an edge map dataset based on Microsoft COCO dataset [37] 
(over 118 k for training and 5 k for validation). MS-COCO [37] has 92 different classes, 
and it is considered a complex dataset because of its complexity level and multiplicity and 
difference of objects. Four methods are considered to synthesize edges from images. The 
first algorithm is dodging and burning [38] which considers two image blending techniques 
to maintain the structural details of the image content and obtain a pencil sketch output. 
The second algorithm is Holistically-nested edge detection [39] that obtains a coarse edge 
and minimal structural information. In addition, Canny edge detector [40] and Sobel opera-
tors [41] are used to obtain the edge map of COCO dataset.
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Methodology  The overall structure of the proposed method is illustrated in Fig. 3. The 
method consists of four main stages. In the fourth and last stage, two post-processing steps 
are implemented to enhance the results further via a background improvement and a face 
refinement steps. Details are discussed as follows.

Instance segmentation stage  In this stage, the generated edge maps based on MS-COCO 
dataset [37] are used as inputs into an instance segmentation model. Different instance seg-
mentation models are used, such as Mask R-CNN [17], Cascade RCNN [18], HTC [19], 
QueryInst [20], and DetectoRS [21]. For each instance segmentation model, the pretrained 
model on the COCO dataset of RGB images is utilized and fine-tuned on the edge maps 
dataset. The parameters are selected via preliminary studies. All instance segmentation 
models are fine-tuned and re-trained on our newly generated sketch-like images dataset for 
30 epochs. For all models, the optimizer used during the training process is Stochastic Gra-
dient Descent (SGD) with an intial learning rate of 0.02 and momentum of 0.9. One excep-
tion is with QueryInst [20], where AdamW is leveraged as an optimizer with learning rate of 
0.0001. For all models, the weight decay is 0.0001. As for the backbone architecture, Mask 
R-CNN [17], Casecaded RCNN [18], and HTC [19] integrate ResNext-101 as the backbone 
architecture. In the meantime, for DetectoRS [21] and QueryIns [20] use ResNet-101 as the 
backbone architecture. The ultimate goal of this stage is to detect and locate 92 objects in 
the input sketch based on COCO objects, and then produce a mask for each object.

Semantic mask segmentation stage  In this stage, the background is first segmented 
semantically based upon the detected objects in the first stage. For example, if the instance 
segmentation model recognizes three cars, five people, and one dog, the background is 
determined to be outdoor, in particular, a street scene. Thus, the background is segmented 
to sky and street. Specifically, to create a meaningful background based on the context, a 
simple algorithm is defined. First, an empty image with the same size as the input sketch is 
created. Then, to determine the background scene, we categorize each object in one or more 
background scenes based on the prior knowledge about where the object can be found in real 
world. Next, for each detected object from the previous stage, we increase the correspond-
ing background scene(s) by one. The highest background scene is considered the actual 
background scene of the corresponding sketch input. In total, eight background scenes are 
identified. These background scenes are categorized into indoor and outdoor. For the indoor 

Fig. 3   The overview of our proposed framework
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scenes, two scenes are specified based on the type of flooring, i.e., floor or carpet scenes. 
Meanwhile, for the outdoor scenes, six scenes are defined, namely, beach scene, park scene, 
snow scene, street scene, sidewalk scene, or sea scene. Therefore, after specifying the actual 
background scene, a semantic segmentation process is applied for the background, where 
for each and every pixel in the background, the pixel value is manipulated based on the 
determined background scene. Indeed, all scenes are divided into two segmented regions, 
except the beach scene. Thus, if the detected background is beach scene, the image is seg-
mented into three regions which are sky, sea, and sand. Meantime, if the detected back-
ground is snow scene, the image is segmented into two regions which are fog and snow. 
Then, for each region, pixels are modified based on the region label, following COCO-Stuff 
[42] labels. Following this, foregrounds are segmented sequentially and inserted to the cre-
ated segmented background. In particular, each mask is processed and segmented semanti-
cally with a particular value based on the class number assigned to each class of COCO 
classes. Then, every pixel that belongs to that mask has the same specific value.

Semantic mask to image synthesis stage  Following the completion of the mask map, the 
third stage begins by taking the semantic mask map as input and feeding it to an image-to-
image translation model. Specifically, the pre-trained SPADE model [22], that is trained on 
COCO-Stuff dataset [42], is leveraged in our proposed framework. As a result, this stage 
produces a synthetic image from an input semantic mask map.

Post‑processing stage  To enhance the synthesized images further, two post-processing 
steps are implemented as follows.

Background improvement step  In the background improvement post-processing step, a 
scene classifier is used, namely, Places365-CNN [43] to recognize the scene from the syn-
thesized images. Thus, for each generated image from the previous stage, the pre-trained 
scene classifier, i.e., Places365-CNN [43] is used to predict the scene category. There are 
365 scene categories in Places365 [43]. After that, our system randomly selects a single 
scene image based on the classified scene and from our newly collected dataset.

Our scene dataset contains around 10,000 images categorized into 365 classes as 
Places365 [43], where each class has about 27 images. We collect our dataset using Google 
Image, where the scene should be empty without any distracting foregrounds to maintain 
our synthesized images. Following this step, the first two stages (instance segmentation 
stage and semantic segmentation stage) are performed on the input sketch image again with 
one difference. The background segmentation step is ignored and only the foregrounds are 
segmented, meaning that the background is empty, i.e., white background. This semantic 
mask map works as a binary image to help in segmenting and extracting the foregrounds 
from the background. Then, an alpha blending step is used to blend the chosen scene with 
the segmented extracted foregrounds. More specifically, this semantic mask map is resized 
to the same size as the synthesized image (256 × 256), followed by converting it to gray-
scale color image. To segment the foregrounds from the background in the synthesized 
images, Otsu’s thresholding [74] is integrated. Next, the thresholded image is converted 
back to RGB image, and a bitwise_and operator is used to visualize the segmented masked 
foregrounds. Subsequently, the black background resulted in previous step is changed into 
transparent background to ease the next step. Lastly, the extracted foregrounds are merged 
and blended into the chosen scene after resizing the scene into the same size which is 
256 × 256. An illustration of the background improvement stage is shown in Fig. 4.
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Face refinement step  In the face refinement post-processing step, we adopt a face detec-
tor model [44] to detect any human faces in the synthesized images after the background 
improvement step. Then, each face region is extracted, and a binarized image of the same 
size as the extracted face region is created. In the binarized image, a square mask is created 
in the center. This helps to cover part of the extracted face region in order to reconstruct 
the face. Next, an image completion model, in particular, the ICT model [45] is utilized to 
reconstruct and complete the covered region of the face.

Following this step, a binarized image is created as the same size as the reconstructed 
face with a circle mask implemented. The reconstructed face and its corresponding mask 
are resized to have the same size as the extracted face. Following this, a bitwise_and opera-
tor is used to visualize only the reconstructed masked face region. Afterwards, the black 
background is changed into transparent background to help during the blending process. 
Therefore, this reconstructed face is blended onto the corresponding synthesized image and 
aligned in the same location. Face reconstruction stage is demonstrated in Fig. 5.

4 � Experiments

4.1 � Experimental settings

Dataset  To evaluate our proposed method with state-of-the-art sketch-to-image methods, 
we compile a new dataset for testing purposes on different types of sketches. Since people 
have different sketching styles, we collect a dataset based on Sketchy dataset [7], Scketchy-
COCO dataset [16], and via Google Image search engine. Fourteen classes (cat, dog, horse, 

Fig. 4   An illustration of the background improvement stage. We adopt a scene classifier and the back-
ground scene database to obtain the relevant background scene
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sheep, cow, elephant, zebra, giraffe, car, bicycle, motorcycle, airplane, traffic light, and fire 
hydrant) are selected, where these classes belong to both aforementioned datasets along 
with MS-COCO dataset [37]. Our evaluation dataset consists of 378 sketches.

Baselines  We compare our proposed method with the model proposed by Liu et al. [13], 
EdgeGAN [16], and PITI [60]. SketchyCOCO dataset [16] is selected to train the model 
proposed by Liu et al. [13]. Therefore, the original networks are trained on SketchyCOCO 
[16] through dodging and burning sketching techniques [38] to obtain pencil sketch 
images. Only the fourteen classes of SketchyCOCO are used in the training phase. Since 
fourteen classes are chosen, so fourteen individual models are trained separately for each 
class. However, this model generates an image into two steps, where the first step is to 
translate the sketch into grayscale image via shape translation network. Then, the second 
step is utilized to generate the color image from the generated grayscale image through a 
content enrichment network. Thus, we train the model with 400 and 200 epochs for step1 
and step2, respectively, as suggested in the original work. Regarding EdgeGAN [16], the 
pre-trained model trained on SketchyCOCO dataset [16] is used to evaluate the model 
on our collected testing dataset. As for PITI [60], the pre-trained sketch-to-image model 
trained on COCO-Stuff dataset [42] is utilized.

Evaluation metrics  To quantitatively evaluate the synthetic images, Fréchet Inception Dis-
tance (FID) [46] and Inception Score (IS) [47] are adopted. Both of these metrics attempt 
to assess the quality of the synthesized images. However, FID [46] is used to compare 
the distribution of synthetic images with the distribution of ground truth images, while IS 
[47] is utilized to evaluate the distribution of synthetic images based upon the realism, the 
quality, and the diversity of the generated images. IS metric [47] is used to judge synthetic 
images as human judgment. IS [47] is computed as follows.

where DKL indicates Kullback-Leibler (KL) divergence, a measure that computes the simi-
larity/difference between two probability distributions. In particular, the two distributions 
are the conditional probability distribution p(y| x) and the marginal probability distribution 

(1)IS = exp
(
ExDKL

(
p(y|x) ‖‖‖ p(y)

))

Fig. 5   A demonstration of face refinement stage. First, a human detector is used to detect the existing 
face(s) in the synthesize image. Then, each detected face is corrected to provide a clear face
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p(y), where x refers to the generated sample, and y denotes the predicted label through the 
inception model.

As for FID [46], it considers both the generated and real image by computing the dis-
tance between the distribution of the generated image pg(x) and the distribution of the real 
image preal(x) in terms of the extracted features. The formula is illustrated in Eq. (2).

where d is the distance. mreal, creal, mg, and cg are mean and covariance of real and gener-
ated images, respectively. Tr refers to the trace linear algebra operation, i.e., the summation 
of elements of the square matrix’s main diagonal.

Since the real images (the ground truth) is required for calculating FID [46], we use this 
metric only during the ablation study of our work. Furthermore, a user study is conducted 
to assess how realistic the synthetic images are and how similar the generated images are to 
their corresponding sketches through computing the Average Human Rank (HR). Table 1 
details the notations used in this paper.

Evaluation on sketches dataset  We compare our proposed model with the baselines 
quantitatively and qualitatively based on sketches dataset that we collected to contain dif-
ferent types of sketches. In addition, an ablation study is conducted to analyze the effec-
tiveness of some components of our proposed method.

4.2 � Quantitative results

Realism and diversity factors are important in evaluating the quality of synthetic 
images; thus, we compare our method with the baselines based on IS [47]. Higher 
IS score indicates a better model with regard to quality and diversity of synthesized 
images. The comparison in terms of IS between our proposed method and previous 
methods is summarized in Fig. 6 and Table 2. For fairness purposes, the backgrounds 
are excluded from all generated images produced by our proposed framework to com-
pare the results in only object-level as well as scene-level. As can be seen from Fig. 6 
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Table 1   Notations and their 
corresponding meaning

Notation Meaning

DKL Kullback-Leibler divergence
p(y| x) Conditional probability distribution
p(y) Marginal probability distribution
x Generated image
y Predicted label through the inception model
mreal Mean of real image
mg Mean of generated image
creal Covariance of real image
cg Covariance of generated image
Tr Trace linear algebra operation
HR Average Human Rank
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and Table 2, our proposed method achieves the higher IS score in both object-level and 
scene-level, meaning that it is the best model in terms of quality and diversity. The rea-
son is that the shape of objects is preserved during instance and semantic segmentation 
stages, while the content and texture are maintained throughout the mask map to image 
synthesis stage. However, with the model proposed by Liu et al. [13], the overall shape 
is highly preserved, but the content and texture are not rich since it is based on the col-
oring idea. On the other hand, EdgeGAN [16] produces good content/texture; however, 
since it converts the sketches to edges via common learned representations, the shapes 
of objects are not well-preserved. As for PITI [60], most of the time, the shape along 
with the texture are not well preserved. This may be attributed to the fact that the model 
is trained on only one type of edge map, namely, HED [39], and it generates images for 
the foreground and the background altogether in one-shot. The visual results generated 
by our method and baselines are shown in Fig. 7.

4.3 � Qualitative results

To evaluate the generated images qualitatively, a perceptual study is carried out to 
assess the synthesized images. Two factors are evaluated. The first aspect is realism 
which evaluates the quality of the generated images. The second aspect is the image 

Fig. 6   An illustration of the mean of IS score [47] of our proposed framework and baselines [13, 16, 60]

Table 2   IS score [47] of our 
proposed method and previous 
methods, in particular, Liu et al. 
[13], EdgeGAN [16], and PITI 
[60]

Bold font indicates best result obtained for image synthesis in terms of 
IS score [47]

Method IS

Mean score ↑ Std ↑

EdgeGAN [16] 3.827 0.790
Liu et al. model [13] 4.388 0.783
PITI [60] 4.565 0.499
Ours (object-level) 4.9898 0.879
Ours (scene-level) 5.168 1.047
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fidelity, how similar the generated images are to their input sketches. 35 participants 
who aged between 20 and 50 years old are asked to rank the synthetic images, gener-
ated by our method and the baselines, in terms of the most realistic image on a scale 
of 1 to 4, where 1 means most realistic and 4 means less realistic. Object(s) label are 
given for each sample. Moreover, they are requested to rank the resulting images based 
on the similarity to the input sketch and the coloring quality with the same scale cri-
teria, where 1 means most similar and 4 means less similar to the input sketch. Then, 
Average Human Rank (HR) is computed based on the user ranking choices and sum-
marized in Fig. 8. As shown in this figure, our proposed method outperforms the base-
lines in both photo realism and image fidelity factors by a significant margin, where 
it achieves 75.43 and 77.41 for realism and fidelity, respectively as the first best rank 
among other generated images generated by the baselines, meaning that our method 
reflects more realism and better faithfulness. In the meantime, as for realism first rank, 
EdgeGAN [16], Liu et  al. model [13], and PITI [60] reach only 3.57, 10.62, and 0, 
indicating less realism and quality. In addition, regarding fidelity factor first rank, 
EdgeGAN [16], Liu et  al. model [13], and PITI [60] reach 10.71, 17.86, and 7.14, 
denoting less similarity to the corresponding input sketches. With regard to the worst 

Input sketch EdgeGAN [16] Liu et al.
model [13] 

PITI [60] Ours 
(object-level) 

Ours 
(scene-level) 

Fig. 7   Visualization of the results generated by our method and baselines [13, 16, 60]. Our results are with 
high quality and relevant background
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case, our proposed framework is barely diagnosed as worst comparing to the baselines, 
where it obtains 0 and only 2.33 for realism and fidelity, respectively.

4.4 � Ablation study

To analyze the efficacy of some components in our approach, we carry out an ablation study 
on MS-COCO dataset [37], where 5000 images are tested. We analyze the synthesized 
image after the image synthesis stage (ISS), after the background improvement stage (BIS), 
and after the face reconstruction stage (FRS). The reason is to specify whether the post-
processing steps are working better and enhancing the synthesis results. FID [46] and IS 
[47] are computed after each of the mentioned stages. Moreover, various instance segmenta-
tion models are used in our framework, in particular, Mask R-CNN [17], Cascade RCNN 
[18], HTC [19], QueryInst [20], and DetectoRS [21] to determine which model works the 
best; and thus, the best model is incorporated in our framework. Only dodging and burning 
[38] edge maps that obtains pencil sketch is used in the ablation study. The analysis is sum-
marized in Table 3. As can be seen, our assumption of implementing a post-process step 
of improving the background and reconstructing the human face is significantly enhance 
the generated images in all different instance segmentation models. Furthermore, DetectoRS 
model [21] achieves the best results with lowest FID score [46] and highest IS score [47] 
with 42.016 and 18.656, respectively. The example pencil sketches, and their corresponding 
synthetic images generated by our model are shown in Fig. 9. To aid our method to general-
ize better on freehand testing sketches of different types, we further train DetectoRS [21] 
on several types of edge maps, namely, dodging and burning [38], Holistically-nested edge 
detection [39], Canny edge detector [40], and Sobel operators [41].

5 � Analysis and discussion

In the digital world and daily life, images are considered as one of the significant ele-
ments that can abbreviate a long story. A single image can tell a long story/fact, while 
a single word cannot. Further, a single image can convey multiple meanings based on 
the viewers’ point of view, while usually a single sentence can only maintain one mean-
ing. Thus, images are considered an important source of information and knowledge. 

(a) Photo realism evaluation (b) Image fidelity evaluation

Fig. 8   A summary of Average Human Rank (HR) on the user ranking choices of our proposed method and 
the baselines [13, 16, 60]. Participants are requested to rank the generated images in terms of fidelity, the 
similarity to the input sketches, and the realism. Then, Average HR is computed and illustrated in this figure



29061Multimedia Tools and Applications (2024) 83:29047–29066	

1 3

However, creating an image is not only time-consuming, but also a tedious and pain-
ful task. Additionally, it requires artistic skills or expertise in the field or the soft-
ware. Hence, creating an image from scratch is not a trivial task since it contains rich 

Table 3   The ablation study of our framework with different instance segmentation models.

Bold font indicates best result obtained for image synthesis in terms of FID [46] and IS score [47]

Instance segmentation model Component FID [46] ↓ IS [47]

Mean score ↑ Std ↑

Mask R-CNN [17] ISS 81.279 13.539 0.557
BIS 46.234 16.295 0.492
FRS 45.170 17.328 0.502

Cascade RCNN [18] ISS 82.754 13.449 0.579
BIS 46.208 16.406 0.549
FRS 45.096 17.427 0.577

HTC [19] ISS 73.146 14.853 0.342
BIS 43.159 17.092 0.689
FRS 42.019 18.152 0.686

QueryInst [20] ISS 85.314 13.924 0.854
BIS 45.964 17.054 0.680
FRS 44.927 18.083 0.722

DetectoRS [21] ISS 75.090 14.659 0.638
BIS 43.129 17.590 0.734
FRS 42.016 18.656 0.739

Pencil Sketch Synthetic image Pencil Sketch Synthetic image

Fig. 9   Visualization of pencil sketches and their corresponding synthetic images generated by our model
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features and fine-grained details such as colors, brightness, saturation, luminance, tex-
ture, shadow, just to name a few. To overcome this, an image synthesis, in particular, a 
sketch-to-image synthesis is the best approach to generate a colored image in no time 
through only a simple and rough black and white sketch. In fact, sketch-to-image syn-
thesis reduces the burden of creating an image from scratch since it only requires a 
black and white rough and simple sketch with key structural information. Then, the 
input sketch is automatically mapped without human interventions into the correspond-
ing image. Therefore, anyone can create an image even without artistic skills or exper-
tise in the field or the software and in no time. This aids artists, photographers, and 
animation makers to reduce the repetitive work.

Since sketches are usually abstract and imperfect and mostly contain only the key 
structural information, converting a sketch into a colored image is a very challenging 
task that recently attracts the researchers’ attention. Many studies have been conducted in 
this field, but the results are still not natural and realistic, especially with complex scenes 
with multiple objects. The reason is that the image is synthesized from the input sketch 
directly end-to-end in one shot, leading to an unnaturalistic and unsatisfactory image.

To this end, the key innovation and novelty of our proposed framework is decomposing 
the sketch-to-image synthesis problem into two sub-problems. Rather than generating an 
image directly from the input sketch, as most of the state-of-the-art sketch-to-image syn-
thesis methods follow, we propose to first generate an intermediate result, e.g., semantic 
mask map, from the input sketch. Then, the color image is generated from the semantic 
mask map. This helps in generating more realistic image than the previous work. The rea-
son is that our proposed framework first concentrates on generating similar objects’ shape 
in the first intermediate result through the instance and semantic segmentation stages. Next, 
it concentrates on the content/texture of the objects and the fine-grained details via seman-
tic mask to image synthesis stage. Therefore, our framework concentrates on one factor 
at a time, i.e., fidelity and then realism and quality, leading to better results. Moreover, 
our proposed method is performed in two levels: background segmentation and foreground 
segmentation so that no conflicts or inconsistency occurs. Furthermore, since our method 
is trained on different edge maps, it is able to generate images from various sketch styles. 
However, other state-of-the-art sketch-to-image models generate images directly in one-
shot, focusing on both shape and texture at once, leading to unnaturalistic images. In addi-
tion, most of the previous methods are either ignoring the background generation or gen-
erating the background at the time of generating the foreground, leading to inconsistency. 
Indeed, one important reason of the deficiency in the existing approaches is that models 
are trained on only one style of sketches or one type of edge maps. Thus, they are unable to 
generate good results when the input sketches are different than what they trained on.

6 � Conclusion and future work

In this paper, we propose a novel approach for sketch-to-image synthesis. Instead of gener-
ating the image directly from the sketch, we propose an intermediate output, in particular, 
mask map due to its ability to preserve the object shape, orientation, occlusion, and size. 
Therefore, using instance and semantic segmentation, the semantic mask map is gener-
ated from the input sketch. Following this, the mask map is translated into an image. Our 
method shows a significant improvement and outperforms the state-of-the-art sketch-to-
image synthesis methods. Moreover, since our method is trained on different types of edge 
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maps, it is able to synthesize an image from different types of sketches. Furthermore, our 
method is capable of generating images of complex scenes, such as MS-COCO dataset 
[37]. In the future, we plan to improve our framework further by approximating the input 
sketch to the nearest edge map while preserving the shapes. This could be accomplished by 
learning a common representation for each object via a cross-modality learning to transfer 
the knowledge between different modalities, i.e., sketches and edge maps. This would sup-
port to generate images from very abstract sketches.
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